University of Notre Dame
Browse

Improving Scientific Information Extraction with Text Generation

Download (3.18 MB)
dataset
posted on 2025-04-09, 14:43 authored by Qingkai Zeng
As research communities expand, the number of scientific articles continues to grow rapidly, with no signs of slowing. This information overload drives the need for automated tools to identify relevant materials and extract key ideas. Information extraction (IE) focuses on converting unstructured scientific text into structured knowledge (e.g., ontologies, taxonomies, and knowledge graphs), enabling intelligent systems to excel in tasks like document organization, scientific literature retrieval and recommendation, claim verification even novel idea or hypothesis generation. To pinpoint the scope of this thesis, I focus on the taxonomic structure in this thesis to represent the knowledge in the scientific domain. To construct a taxonomy from scientific corpora, traditional methods often rely on pipeline frameworks. These frameworks typically follow a sequence: first, extracting scientific concepts or entities from the corpus; second, identifying hierarchical relationships between the concepts; and finally, organizing these relationships into a cohesive taxonomy. However, such methods encounter several challenges: (1) the quality of the corpus or annotation data, (2) error propagation within the pipeline framework, and (3) limited generalization and transferability to other specific domains. The development of large language models (LLMs) offers promising advancements, as these models have demonstrated remarkable abilities to internalize knowledge and respond effectively to a wide range of inquiries. Unlike traditional pipeline-based approaches, generative methods harness LLMs to achieve (1) better utilization of their internalized knowledge, (2) direct text-to-knowledge conversion, and (3) flexible, schema-free adaptability. This thesis explores innovative methods for integrating text generation technologies to improve IE in the scientific domain, with a focus on taxonomy construction. The approach begins with generating entity names and evolves to create or enrich taxonomies directly via text generation. I will explore combining neighborhood structural context, descriptive textual information, and LLMs' internal knowledge to improve output quality. Finally, this thesis will outline future research directions.

History

Date Created

2025-03-10

Date Modified

2025-04-09

Defense Date

2024-12-16

CIP Code

  • 14.0901

Research Director(s)

Meng Jiang

Committee Members

Jane Huang Xiangliang Zhang Jiawei Han

Degree

  • Doctor of Philosophy

Degree Level

  • Doctoral Dissertation

Language

  • English

Library Record

006693491

OCLC Number

1514240029

Publisher

University of Notre Dame

Additional Groups

  • Computer Science and Engineering

Program Name

  • Computer Science and Engineering

Usage metrics

    Dissertations

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC