Multimodal Learning on Graphs: Methods and Applications
dataset
posted on 2025-05-14, 15:27authored byYihong Ma
Graph data represents complex relationships across diverse domains, from social networks to healthcare and chemical sciences. However, real-world graph data often spans multiple modalities, including time-varying signals from sensors, semantic information from textual representations, and domain-specific encodings. This dissertation introduces innovative multimodal learning techniques for graph-based predictive modeling, addressing the intricate nature of these multidimensional data representations. The research systematically advances graph learning through innovative methodological approaches across three critical modalities. Initially, we establish robust graph-based methodological foundations through advanced techniques including prompt tuning for heterogeneous graphs and a comprehensive framework for imbalanced learning on graph data. we then extend these methods to time series analysis, demonstrating their practical utility through applications such as hierarchical spatio-temporal modeling for COVID-19 forecasting and graph-based density estimation for anomaly detection in unmanned aerial systems. Finally, we explore textual representations of graphs in the chemical domain, reformulating reaction yield prediction as an imbalanced regression problem to enhance performance in underrepresented high-yield regions critical to chemists.