University of Notre Dame
Browse

A CdSe nanowire/quantum dot hybrid architecture for improving solar cell performance

journal contribution
posted on 2024-11-07, 20:06 authored by Y. Yu, P. V. Kamat, M. Kuno
Abstract Incorporating colloidal CdSe quantum dots (QDs) into CdSe nanowire (NW)‐based photoelectrochemical solar cells increases their incident‐photon‐to‐carrier conversion efficiencies (IPCE) from 13% to 25% at 500 nm. While the effect could, in principle, stem from direct absorption and subsequent carrier generation by QDs, the overall IPCE increase occurs across the entire visible spectrum, even at wavelengths where the dots do not absorb light. This beneficial effect originates from an interplay between NWs and QDs where the latter fill voids between interconnected NWs, providing electrically accessible conduits, in turn, enabling better carrier transport to electrodes. The presence of QDs furthermore reduces the residual polarization anisotropy of random NW networks. Introducing QDs therefore addresses an important limiting constraint of NW photoelectrochemical solar cells. The effect appears to be general and may aid the future design and implementation of other NW‐based photovoltaics.

Funding

UND Energy Center, NSF Career Program

History

Temporal Coverage

2010

Extent

Page 1464-1472

Publisher

Adv. Funct. Mater.

Source

Volume 20

Usage metrics

    Radiation Laboratory

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC