An inverse model analysis of planktonic food webs in experimental lakes
journal contribution
posted on 2022-08-03, 00:00authored byD. Vaqué, M.L. Pace
We used inverse methods to reconstruct carbon flows in experimental lakes where the fish community had been purposely altered. These analyses were applied to three years of data from a reference lake and two experimental lakes located in Gogebic County, Michigan. We reconstructed seasonally averaged flows among two size groups of phytoplankton, heterotrophic bacteria, microzooplankton, cladocerans, and copepods. The inverse analysis produced significantly different flow networks for the different lakes that agreed qualitatively with known chemical and biological differences between lakes and with other analyses of the impact of fish manipulations on food web structure and dynamics. The results pointed to alterations in grazing pressure on the phytoplankton that parallel changes in the size and abundance of cladocerans and copepods among lakes. Estimated flows through the microbial food web indicated low bacterial production efficiencies and small carbon transfers from the microbial food web to the larger zooplankton. This study demonstrates the use of inverse methods to identify and compare flow patterns across ecosystems and suggests that microbial flows are relatively insensitive to changes at the upper trophic levels.
History
Date Modified
2022-08-03
Language
English
Publisher
Canadian Journal of Fisheries and Aquatic Sciences