University of Notre Dame
Browse

Ascites-induced compression alters the peritoneal microenvironment and promotes metastatic success in ovarian cancer

journal contribution
posted on 2021-02-25, 00:00 authored by Alejandro ClaureDeLaZerda, Allison Young, Andrea Jewell, Carlysa Oyama, Dineo Khabele, Sharon StackSharon Stack, Matthew J RavosaMatthew J Ravosa, Vijayalaxmi Gupta, Yueying LiuYueying Liu
The majority of women with recurrent ovarian cancer (OvCa) develop malignant ascites with volumes that can reach > 2 L. The resulting elevation in intraperitoneal pressure (IPP), from normal values of 5 mmHg to as high as 22 mmHg, causes striking changes in the loading environment in the peritoneal cavity. The effect of ascites-induced changes in IPP on OvCa progression is largely unknown. Herein we model the functional consequences of ascites-induced compression on ovarian tumor cells and components of the peritoneal microenvironment using a panel of in vitro, ex vivo and in vivo assays. Results show that OvCa cell adhesion to the peritoneum was increased under compression. Moreover, compressive loads stimulated remodeling of peritoneal mesothelial cell surface ultrastructure via induction of tunneling nanotubes (TNT). TNT-mediated interaction between peritoneal mesothelial cells and OvCa cells was enhanced under compression and was accompanied by transport of mitochondria from mesothelial cells to OvCa cells. Additionally, peritoneal collagen fibers adopted a more linear anisotropic alignment under compression, a collagen signature commonly correlated with enhanced invasion in solid tumors. Collectively, these findings elucidate a new role for ascites-induced compression in promoting metastatic OvCa progression.

History

Date Modified

2021-02-25

Language

  • English

Alternate Identifier

0123456789|20452322

Publisher

Nature Publishing Group UK

Usage metrics

    Integrated Imaging Facility

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC