University of Notre Dame
Browse
- No file added yet -

Bidirectional Halide Ion Exchange in Paired Lead Halide Perovskite Films with Thermal Activation

journal contribution
posted on 2019-08-08, 00:00 authored by B Seger, P. Kamat, R. Scheidt, Tor Elmelund
MAPbBr3 and MAPbI3 films cast onto glass slides and physically paired together undergo halide exchange to form mixed halide films. The change in halide composition in these two ∼130 nm thick films occurs concurrently with Br− diffusing toward the MAPbI3 film and I− diffusing toward the MAPbBr3 film. The diffusion of these halide species, which is tracked through changes in the absorption, offers a direct measurement of thermally activated halide diffusion in perovskite films. The increase in the rate constant of halide diffusion with increasing temperature (from 8.3 × 10−6 s−1 at 23 °C to 3.7 × 10−4 s−1 at 140 °C) follows an Arrhenius relationship with activation energy of 51 kJ/mol. The thermally activated halide exchange shows the challenges of employing layers of different metal halide perovskites in stable tandem solar cells.

History

Date Modified

2019-08-26

Language

  • English

Alternate Identifier

2380-8195

Publisher

American Chemical Society

Usage metrics

    Integrated Imaging Facility

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC