CdSeS nanowires. Compositionally controlled band gap and exciton dynamics
journal contribution
posted on 2024-11-07, 20:10authored byJ. P. Kim, J. A. Christians, H. Choi, S. Krishnamurthy, P. V. Kamat
CdS, CdSe, and ternary CdSexS(1-x) are some of the most widely studied II-VI semiconductors due to their broad range of applications and promising performance in numerous systems. One-dimensional semiconductor nanowires offer the ability to conduct charges efficiently along the length of the wire, which has potential charge transport benefits compared to nanoparticles. Herein, we report a simple, inexpensive synthetic procedure for high quality CdSeS nanowires where the composition can be easily modulated from pure CdSe to pure CdS by simply adjusting the Se:S precursor ratio. This allows for tuning of the absorption and emission properties of the nanowires across the visible spectrum. The CdSeS nanowires have a wurtzite crystal structure and grow along the [001] direction. As measured by femtosecond transient absorption spectroscopy, the short component of the excited state lifetime remains relatively constant at ∼10 ps with increasing Se; however, the contribution of this short lifetime component increased dramatically from 8.4% to 57.7% with increasing Se content. These CdSeS nanowires offer facile synthesis and widely adjustable optical properties, characteristics that give them broad potential applications in the fields of optoelectronics, and photovoltaics.