CdSe quantum dot-fullerene hybrid nanocomposite for solar energy conversion: Electron transfer and photoelectrochemistry
journal contribution
posted on 2024-11-07, 19:48authored byJ. H. Bang, P. V. Kamat
The development of organic/inorganic hybrid nanocomposite systems that enable efficient solar energy conversion has been important for applications in solar cell research. Nanostructured carbon-based systems, in particular C60, offer attractive strategies to collect and transport electrons generated in a light harvesting assembly. We have assembled CdSe–C60 nanocomposites by chemically linking CdSe quantum dots (QDs) with thiol-functionalized C60. The photoinduced charge separation and collection of electrons in CdSe QD–C60 nanocomposites have been evaluated using transient absorption spectroscopy and photoelectrochemical measurements. The rate constant for electron transfer between excited CdSe QD and C60 increased with the decreasing size of the CdSe QD (7.9 × 109 s–1 (4.5 nm), 1.7 × 1010 s–1 (3.2 nm), and 9.0 × 1010 s–1 (2.6 nm)). Slower hole transfer and faster charge recombination and transport events were found to dominate over the forward electron injection process, thus limiting the deliverance of maximum power in CdSe QD–C60-based solar cells. The photoinduced charge separation between CdSe QDs and C60 opens up new design strategies for developing light harvesting assemblies.