University of Notre Dame
Browse

Characterizing Reactive Transport Behavior in a Three-Dimensional Discrete Fracture Network

journal contribution
posted on 2021-05-11, 00:00 authored by Daniel Vassallo, Diogo BolsterDiogo Bolster, Jeffrey Hyman, Matthew R. Sweeney, Guillem Sole-Mari, Thomas Sherman
While several studies have linked network and in-fracture scale properties to conservative transport behavior in subsurface fractured media, studies on reactive transport cases remain relatively underdeveloped. In this study, we explore the behavior of an irreversible kinetic reaction during the interaction of two solute plumes, one consisting of species A and the other species B. When the plumes converge, these species react kinetically to form a new species C via A + B -> C. This reactive system is studied using a three-dimensional discrete fracture network (DFN) model coupled with reactive Lagrangian particle tracking. We find that the interplay of network topology and chemical properties of the reactive solutes controls reactive transport processes. The network topology drives species A and B together, and the chemical properties dictate whether and how quickly a reaction occurs. Results demonstrate that reactions are most likely to occur in high-velocity fractures that make up the network backbone. The interplay between species' chemical properties and transport is characterized by a non-dimensional Damkohler (Da) number. We show that the spatial distribution of reactions is sensitive to Da, which subsequently influences late-time tailing behavior in outlet breakthrough time distributions. The results of this study provide initial insights into how an irreversible reaction occurs during transport in a fracture network, using a methodology that can be applied to study reactive transport in a wide range of fractured media environments and contexts.

History

Date Modified

2021-05-11

Language

  • English

Alternate Identifier

1573-1634|0169-3913

Publisher

Springer

Usage metrics

    Environmental Change Initiative

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC