A fluorogenic substrate for vertebrate collagenase and gelatinase,Dnp-Pro-Leu-Gly-Leu-Trp-Ala-D-Arg-NH2,was designed using structure-activity data obtained from studies with synthetic inhibitors and other peptide substrates of collagenase. Tryptophan fluorescence was efficiently quenched by the NH2-terminal dinitrophenyl group,presumably through resonance energy transfer. Increased fluorescence accompanied hydrolysis of the peptide by collagenase or gelatinase purified from culture medium of porcine synovial membranes or alkali-treated rabbit corneas. Amino acid analysis of the two product peptides showed that collagenase and gelatinase cleaved at the Gly-Leu bond. The peptide was an efficient substrate for both enzymes,with kcat/Km values of 5.4 microM-1 h-1 and 440 microM-1 h-1 (37 degrees C,pH 7.7) for collagenase and gelatinase,respectively. Under the same conditions,collagenase gave kcat/Km of about 46 microM-1 h-1 for type I collagen from calf skin. Since both enzymes exhibited similar Km values for the synthetic substrate (3 and 7 microM,respectively),the higher catalytic efficiency of gelatinase reflects predominantly an increase in kcat. Both enzymes were inhibited by HSCH2(R,S)CH[CH2CH(CH3)2]CO-L-Phe-L-Ala-NH2 in this assay (50% inhibition at 20 nM and less than 1 nM for collagenase and gelatinase,respectively). Soluble type I collagen was a competitive inhibitor of peptide hydrolysis by collagenase (KI = 0.8 microM) and exhibited mixed inhibition of gelatinase (KI = 0.3 microM).