University of Notre Dame
Browse

Depth-integrated, continuous estimates of metabolism in a clear-water lake

journal contribution
posted on 2022-08-03, 00:00 authored by J.J. Cole, J.J. Coloso, M.L. Pace, P.C. Hanson
High-frequency dissolved oxygen (DO) measurements have been used for estimating gross primary production (GPP) and respiration (R) in lake ecosystems. Most researchers have determined GPP and R only in surface waters, a practice that may underestimate R in general and GPP in clear-water lakes in particular. We deployed oxygen sondes at multiple sites and depths in a clear-water lake. Rates of GPP or R were similar horizontally over the surface waters of the lake. Diel DO signals weakened with depth; however, removing noise from the data, by either wavelet transforms or moving averages, enhanced our ability to resolve diel metabolic signals. While GPP declined sharply with depth, R was unrelated to depth. The majority of GPP and R occurred in the upper mixed layer, but deeper water accounted for 14%–28% of GPP and 20%–43% of R, depending on the statistical filtering technique used. GPP and R were nearly in balance in the surface waters, but for the entire lake R exceeded GPP, and net ecosystem production was negative. Deployment of oxygen sondes in various habitats and at multiple depths allows for a more complete estimate of whole-lake metabolism and a better understanding of the spatial and temporal complexity of lakes.

History

Date Modified

2022-08-03

Language

  • English

Publisher

Canadian Journal of Fisheries and Aquatic Sciences

Usage metrics

    University of Notre Dame Environmental Research Center (UNDERC)

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC