University of Notre Dame
Browse

Disassembly, reasssembly and photoelectrochemistry of etched TiO2 nanotubes

journal contribution
posted on 2024-11-07, 20:04 authored by D. R. Baker, P. V. Kamat
Etched TiO2 nanotubes are removed from the titanium foil substrate by sonication and are reassembled onto new electrodes for photovoltaic applications. CdS nanocrystallites were deposited on the restructured electrodes to compare their performance as quantum dot-sensitized solar cells to aligned nanotube electrodes. The sensitized photoresponses of the photoelectrochemical cell created from reassembled TiO2 nanotubes are very similar to aligned TiO2 nanotube arrays. Transient absorption spectroscopy of dispersed tubes indicates that electron transfer from excited CdS nanocrystallites into TiO2 nanotubes occurs at a rate of 2.0 × 1010 s−1. BET surface area analysis is investigated on etched nanotube powder without the need for weight approximation and was found to be 77.0 ± 2.9 m2/g. The importance of nanotube orientation and porosity on the electrode surface in stabilizing accumulated electrons in TiO2 nanotubes is elucidated from the open circuit voltage decay. Nanotube orientation was also seen to affect electron transport in photocurrent experiments.

History

Temporal Coverage

2009

Extent

Page 17967-72

Publisher

J. Phys. Chem. C

Source

Volume 113

Usage metrics

    Radiation Laboratory

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC