University of Notre Dame
Browse

Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells

journal contribution
posted on 2024-11-07, 19:50 authored by B. Seger, P. V. Kamat
The use of a 2-D carbon nanostructure, graphene, as a support material for the dispersion of Pt nanoparticles provides new ways to develop advanced electrocatalyst materials for fuel cells. Platinum nanoparticles are deposited onto graphene sheets by means of borohydride reduction of H2PtCl6 in a graphene oxide (GO) suspension. The partially reduced GO-Pt catalyst is deposited as films onto glassy carbon and carbon Toray paper by drop cast or electrophoretic deposition methods. Nearly 80% enhancement in the electrochemically active surface area (ECSA) can be achieved by exposing partially reduced GO-Pt films with hydrazine followed by heat treatment (300 °C, 8 h). The electrocatalyst performance as evaluated from the hydrogen fuel cell demonstrates the role of graphene as an effective support material in the development of an electrocatalyst.

Funding

U.S. Army CECOM RDEC

History

Temporal Coverage

2009

Extent

Page 7990-5

Publisher

J. Phys. Chem. C

Source

Volume 113

Usage metrics

    Radiation Laboratory

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC