Enhancement of light-energy conversion efficiency by multi-porphyrin arrays of porphyrin-peptide oligomers with fullerene clusters
journal contribution
posted on 2024-11-07, 20:03authored byT. Hasobe, P. V. Kamat, V. Troiani, N. Solladie, T. K. Ahn, S. K. Kim, D. Kim, A. Kongkanand, S. Kuwabata, S. Fukuzumi
Organic photovoltaic cells using supramolecular complexes of porphyrin-peptide oligomers (porphyrin-functionalized alpha-polypeptides) with fullerene demonstrate remarkable enhancement in the photoelectrochemical performance as well as broader photoresponse in the visible and near-infrared regions by increasing the number of porphyrin units in alpha-polypeptide structures. A high power conversion efficiency (eta) of 1.3% and a maximum incident photon-to-photocurrent efficiency (IPCE) of 42% were attained using composite clusters of porphyrin-peptide octamer and fullerene. These results clearly show that the formation of a molecular assembly between fullerene and multi-porphyrin arrays with a polypeptide backbone controls the electron transfer efficiency in the supramolecular complex, which is essential for the light-energy conversion.
Funding
Ministry of Education, Culture, Sports, Science and Technology National Creative Research Initiative Program of KOSEF