posted on 2024-11-07, 19:56authored byD. M. Chipman
The lowest electronic states that are initially formed upon excitation of small water clusters having a central water molecule with one stretched OH bond are studied with electronic structure methods. It is found that in water dimer, trimer, and pentamer the lowest excited singlet and triplet states are each nondissociative for stretching of an OH bond that is hydrogen bonded in an icelike configuration to a neighboring water molecule. This is in marked contrast to the behavior of an isolated gas phase water monomer, where it is well known that the lowest excited state is strongly dissociative upon OH stretching. The conclusions of this study may serve as a basis to interpret recent experimental evidence that suggests a significant lifetime for excited water in irradiated thin ice films, and may also have important implications for the behavior of excitation of liquid water.