University of Notre Dame
Browse

Extending infrared emission via energy transfer in a CsPbI3-cyanine dye hybrid

journal contribution
posted on 2024-11-07, 19:57 authored by J. Chakkamalayath, L.E. Martin, P.V. Kamat
Directing energy flow in light harvesting assemblies of nanocrystal–chromophore hybrid systems requires a better understanding of factors that dictate excited-state processes. In this study, we explore excited-state interactions within the CsPbI3–cyanine dye (IR125) hybrid assembly through a comprehensive set of steady-state and time-resolved absorption and photoluminescence (PL) experiments. Our photoluminescence investigations reveal the quenching of CsPbI3 emission alongside the simultaneous enhancement of IR125 fluorescence, providing evidence for a singlet energy transfer. The evaluation of both photoluminescence (PL) quenching and PL decay measurements yield ∼94% energy transfer efficiency for the CsPbI3–IR125 hybrid assembly. Transient absorption spectroscopy further unveils that this singlet energy transfer process operates on an ultrafast time scale, occurring within 400 ps with a rate constant of energy transfer of 1.4 × 1010 s–1. Our findings highlight the potential of the CsPbI3–IR125 hybrid assembly to extend the emission of halide perovskites into the infrared region, paving the way for light energy harvesting and display applications.

History

Temporal Coverage

2024

Extent

Page 401-407

Publisher

J. Phys. Chem. Lett.

Source

Volume 15

Usage metrics

    Radiation Laboratory

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC