University of Notre Dame
Browse

Functional single-wall carbon nanotube nanohybrids-associating SWNTs with water-soluble enzyme model systems

journal contribution
posted on 2024-11-07, 19:48 authored by D. M. Guldi, G. M. A. Rahman, N. Jux, D. Balbinot, U. Hartnagel, N. Tagmatarchis, M. Prato
We succeeded in integrating single-wall carbon nanotubes (SWNTs), several water-soluble pyrene derivatives (pyrene-), which bear negatively charged ionic headgroups, and a series of water-soluble metalloporphyrins (MP8+) into functional nanohybrids through a combination of associative van der Waals and electrostatic interactions. The resulting SWNT/pyrene- and SWNT/pyrene-/MP8+ were characterized by spectroscopic and microscopic means and were found to form stable nanohybrid structures in aqueous media. A crucial feature of our SWNT/pyrene- and SWNT/pyrene-/MP8+ is that an efficient exfoliation of the initial bundles brings about isolated nanohybrid structures. When the nanohybrid systems are photoexcited with visible light, a rapid intrahybrid charge separation causes the reduction of the electron-accepting SWNT and, simultaneously, the oxidation of the electron-donating MP8+. Transient absorption measurements confirm that the radical ion pairs are long-lived, with lifetimes in the microsecond range. Particularly beneficial are charge recombination dynamics that are located deep in the Marcus-inverted region. We include, for the first time, work devoted to exploring and testing FeP8+ and CoP8+ in donor−acceptor nanohybrids.

Funding

EU MIUR

History

Temporal Coverage

2005

Extent

Page 9830-8

Publisher

J. Am. Chem. Soc.

Source

Volume 127

Usage metrics

    Radiation Laboratory

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC