University of Notre Dame
Browse

Growth of silicon oxynitride films by atmospheric pressure plasma jet

journal contribution
posted on 2024-11-07, 20:06 authored by X. Zhang, S. Ptasinska
Ultra-thin silicon oxynitride (SiOxNy) layers were deposited by direct interaction of plasma species formed in an atmospheric pressure plasma jet (APPJ) with a silicon wafer. APPJs have been ignited in mixtures of helium (He) together with several nitrogen-based compounds. The chemical composition of the APPJ treated silicon surfaces was analysed by ultra-high vacuum x-ray photoelectron spectroscopy (XPS). The obtained N 1s XPS spectra showed that even 5 min of APPJ treatment is sufficient to fabricate SiOxNy films with a few nanometre thickness. A Si substrate exposed to an APPJ generated in a mixture of He/NH3 resulted in the most efficient growth of SiOxNy films, indicated by the strongest N 1s XPS signal among all studied gas mixtures. Moreover, the N 1s spectra exhibited two major characteristics of chemical bonding structures attributed to nitrogen bonded to three silicon surface atoms, N–(S)3, and nitrogen bonded to two silicon surface atoms and one oxygen atom, (Si)2–N–O.

History

Temporal Coverage

2014

Extent

Page 145202

Publisher

J. Phys. D

Source

Volume 14

Usage metrics

    Radiation Laboratory

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC