University of Notre Dame
Browse

Heat- and gas-induced transformation in CH3NH3Pbl3 perovskites and its effect on the efficiency of solar cells

journal contribution
posted on 2024-11-07, 19:50 authored by W. Huang, S. Sadhu, S. Ptasinska
Following the remarkable success of the application of CH3NH3PbI3 perovskites in photovoltaics, a great focus has been placed on their stability to improve their optoelectronic properties and seek commercial production. To gain a better understanding of their thermal stability, we investigated the chemical, morphological, and photovoltaic transformations of CH3NH3PbI3 perovskites under elevated temperatures and various controlled atmospheric conditions (vacuum, 1 mbar O2, and 1 mbar H2O). A temperature-dependent study showed that CH3NH3PbI3 decomposed to PbI2 with the release of CH3NH2 and HI under low-temperature annealing (25–150 °C). Further annealing resulted in the formation of metallic lead (Pb0) under vacuum and Pb oxides and hydroxides under an O2 or H2O pressure. Moreover, the sublimation of Pb-based compounds occurred at temperatures above 150 °C, causing structural changes, which resulted in a decrease in the power conversion efficiency of the solar cell. A time-dependent study showed that, compared with vacuum conditions, the addition of O2 or H2O accelerated the degradation of the perovskite films.

History

Temporal Coverage

2017

Extent

Page 8478−8485

Publisher

Chem. Mater.

Source

Volume 29

Usage metrics

    Radiation Laboratory

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC