University of Notre Dame
Browse

Hydroxyl radical self-recombination reaction and absorption spectrum in water up to 350 0C

journal contribution
posted on 2024-11-07, 20:04 authored by I. Janik, D. M. Bartels, C. D. Jonah
The rate constant for the self-recombination of hydroxyl radicals (*OH) in aqueous solution giving H2O2 product has been measured from 150 to 350 degrees C by direct measurement of the *OH radical transient optical absorption at 250 nm. The values of the rate constant are smaller than previously predicted by extrapolation to the 200-350 degrees C range and show virtually no change in this range. In combining these measurements with previous results, the non-Arrhenius behavior can be well described in terms of the Noyes equation kobs-1 = kact-1+ kdiff-1, using the diffusion-limited rate constant kdiff estimated from the Smoluchowski equation and an activated barrier rate kact nearly equal to the gas-phase high-pressure limiting rate constant for this reaction. The aqueous *OH radical spectrum between 230 and 320 nm is reported up to 350 degrees C. A weak band at 310 nm grows in at higher temperature, while the stronger band at 230 nm decreases. An isosbestic point appears near 305 nm. We assign the 230 nm band to hydrogen-bonded *OH radical, and the 310 nm band is assigned to "free" *OH. On the basis of the spectrum change relative to room temperature, over half of the *OH radicals are in the latter form at 350 degrees C.

History

Temporal Coverage

2007

Extent

Page 1835-43

Publisher

J. Phys. Chem. A

Source

Volume 111

Usage metrics

    Radiation Laboratory

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC