University of Notre Dame
Browse

Know thy nano neighbor. Plasmonic versus electron charging effects of metal nanoparticles in dye sensitized solar cells

journal contribution
posted on 2024-11-07, 19:56 authored by H. Choi, W. T. Chen, P. V. Kamat
Neighboring metal nanoparticles influence photovoltaic and photocatalytic behavior of semiconductor nanostructures either through Fermi level equilibration by accepting electrons or inducing localized surface plasmon effects. By employing SiO(2)- and TiO(2)-capped Au nanoparticles we have identified the mechanism with which the performance of dye-sensitized solar cells (DSSC) is influenced by the neighboring metal nanoparticles. The efficiency of an N719 dye-sensitized solar cell (9.3%) increased to 10.2% upon incorporation of 0.7% Au@SiO(2) and to 9.8% upon loading of 0.7% Au@TiO(2) nanoparticles. The plasmonic effect as monitored by introducing Au@SiO(2) in DSSC produces higher photocurrent. However, Au nanoparticles undergo charge equilibration with TiO(2) nanoparticles and shift the apparent Fermi level of the composite to more negative potentials. As a result, Au@TiO(2) nanoparticle-embedded DSSC exhibit higher photovoltage. A better understanding of these two effects is crucial in exploiting the beneficial aspects of metal nanoparticles in photovoltaics.

History

Temporal Coverage

2012

Extent

Page 4418-4427

Publisher

ACS Nano

Source

Volume 6

Usage metrics

    Radiation Laboratory

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC