University of Notre Dame
Browse

Low-energy electron-induced dissociation in gas-phase nicotine, pyridine and methyl-pyrrolidine

journal contribution
posted on 2024-11-07, 19:48 authored by M. Ryszka, E. Alizadeh, Z. Li, S. Ptasinska
Dissociative electron attachment to nicotine, pyridine, and N-methyl-pyrrolidine was studied in the gas phase in order to assess their stability with respect to low-energy electron interactions. Anion yield curves for different products at electron energies ranging from zero to 15 eV were measured, and the molecular fragmentation pathways were proposed. Nicotine does not form a stable parent anion or a dehydrogenated anion, contrary to other biological systems. However, we have observed complex dissociation pathways involving fragmentation at the pyrrolidine side accompanied by isomerization mechanisms. Combining structure optimization and enthalpy calculations, performed with the Gaussian09 package, with the comparison with a deuterium-labeled N-methyl-d3-pyrrolidine allowed for the determination of the fragmentation pathways. In contrast to nicotine and N-methylpyrrolidine, the dominant pathway in dissociative electron attachment to pyridine is the loss of hydrogen, leading to the formation of an [M-H]- anion. The presented results provide important new information about the stability of nicotine and its constituent parts and contribute to a better understanding of the fragmentation mechanisms and their effects on the biological environment.

History

Temporal Coverage

2017

Extent

Page 94303

Publisher

J. Chem. Phys.

Source

Volume 147

Usage metrics

    Radiation Laboratory

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC