University of Notre Dame
Browse

Pathways of anaerobic carbon cycling across an ombrotrophic-minerotrophic peatland gradient

journal contribution
posted on 2022-08-03, 00:00 authored by J.K. Keller, S.D. Bridgham
Peatland soils represent globally significant stores of carbon, and understanding carbon cycling pathways in these ecosystems has important implications for global climate change. We measured aceticlastic and autotrophic methanogenesis, sulfate reduction, denitrification, and iron reduction in a bog, an intermediate fen, and a rich fen in the Upper Peninsula of Michigan for one growing season. In 3-d anaerobic incubations of slurried peat, denitrification and iron reduction were minor components of anaerobic carbon mineralization. Experiments using 14C-labeled methanogenic substrates showed that methanogenesis in these peatlands was primarily through the aceticlastic pathway, except early in the growing season in more ombrotrophic peatlands, where the autotrophic pathway was dominant or codominant. Overall, methane production was responsible for 3–70% of anaerobic carbon mineralization. Sulfate reduction accounted for 0–26% of anaerobic carbon mineralization, suggesting a rapid turnover of a very small sulfate pool. A large percentage of anaerobic carbon mineralization (from 29% to 85%) was unexplained by any measured process, which could have resulted from fermentation or possibly from the use of organic molecules (e.g., humic acids) as alternative electron acceptors.

History

Date Modified

2022-08-03

Language

  • English

Publisher

Limnology and Oceanography

Usage metrics

    University of Notre Dame Environmental Research Center (UNDERC)

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC