University of Notre Dame
Browse

Pathways of organic carbon utilization in small lakes: results from a whole-lake $^{13}C$ addition and coupled model

journal contribution
posted on 2022-08-03, 00:00 authored by J.F. Kitchell, J.J. Cole, M.L. Pace, S.R. Carpenter
In many small aquatic ecosystems, watershed loading of organic C exceeds autochthonous primary production. Although this allochthonous organic C has long been thought of as refractory, multiple lines of evidence indicate that substantial portions are respired in the receiving aquatic ecosystem. To what extent does this terrestrial C support secondary production of invertebrates and fish? Do current models adequately trace the pathways of allochthonous and autochthonous C through the food web? We evaluated the roles of allochthonous and autochthonous organic C by manipulating 13C content of dissolved inorganic C in a small, softwater, humic lake, thereby labeling autochthonous primary production for about 20 d. To ensure rapid and sufficient uptake of inorganic 13C, we enriched the lake with modest amounts of N and P. We constructed a carbon flow model based on the ambient and manipulated levels of 13C in C compartments in the lake, along with information on key rate processes. Despite the short nature of this experiment, several results emerged. (1) Fractionation of photosynthetically assimilated 13C-CO2 by phytoplankton (ɛ) is lower (~6‰) than physiologic models would estimate (~20‰). (2) Bacteria respire, but do not assimilate, a large amount of terrestrially derived dissolved organic C (DOC) and pass little of this C to higher trophic levels. (3) The oxidation of terrestrial DOC is the major source of dissolved inorganic C in the lake. (4) Zooplankton production, a major food of young-of-year fishes, is predominantly derived from current autochthonous carbon sources under the conditions of this experiment.

History

Date Modified

2022-08-03

Language

  • English

Publisher

Limnology and Oceanography

Usage metrics

    University of Notre Dame Environmental Research Center (UNDERC)

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC