University of Notre Dame
Browse

Quantum dot light-emitting devices: beyond alignment of energy levels

journal contribution
posted on 2024-11-07, 19:59 authored by G. Zaiats, S. Ikeda, S. Kinge, P. V. Kamat
Multinary semiconductor nanoparticles such as CuInS2, AgInS2, and the corresponding alloys with ZnS hold promise for designing future quantum dot light-emitting devices (QLED). The QLED architectures require matching of energy levels between the different electron and hole transport layers. In addition to energy level alignment, conductivity and charge transfer interactions within these layers determine the overall efficiency of QLED. By employing CuInS2–ZnS QDs we succeeded in fabricating red-emitting QLED using two different hole-transporting materials, polyvinylcarbazole and poly(4-butylphenyldiphenylamine). Despite the similarity of the HOMO–LUMO energy levels of these two hole transport materials, the QLED devices exhibit distinctly different voltage dependence. The difference in onset voltage and excited state interactions shows the complexity involved in selecting the hole transport materials for display devices.

History

Temporal Coverage

2017

Extent

Page 30741–30745

Publisher

ACS Appl. Mater. & Interfaces

Source

Volume 9

Usage metrics

    Radiation Laboratory

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC