University of Notre Dame
Browse

Sharing orbitals: Ultrafast excited state deactivations with different outcomes in bucky ferrocenes and ruthenocenes

journal contribution
posted on 2024-11-07, 19:48 authored by D. M. Guldi, G. M. A. Rahman, M. Yamanaka, E. Nakamura
We report on the singlet ground and singlet/triplet excited-state features of a series of bucky ferrocenes, bucky ruthenocenes, and respective reference compounds. In the bucky ferrocene conjugates, intimate contacts between the fullerenes and ferrocenes result in appreciable ground-state interactions-suggesting a substantial shift of charge density from the electron donor (i.e., ferrocene) to the electron acceptor (i.e., fullerene). In contrast, no prominent charge-transfer features were observed for the bucky ruthenocene conjugates. An arsenal of experimental techniques, ranging from fluorescence (i.e., steady state and time-resolved) and pump probe experiments (i.e., femtosecond and nanoseconds) to pulse radiolysis, were employed to examine excited-state interactions. In the excited states, bucky ferrocene conjugates are dominated by rapid charge separation reactions (0.8 +/- 0.1 ps) to yield metastable radical ion pairs. The radical ion pair lifetimes vary between 27 and 39 ps. No charge separation was, however, found in the corresponding bucky ruthenocence. Instead, an intrinsically faster excited-state deactivation (approximately 200 ps) evolves from the heavier ruthenium center-relative to iron. This effect is further augmented by the unfavorably shifted oxidation potential in ruthenocene of about 0.61 V, which in ruthenocene (-deltaG(ET) = -0.26 eV), in contrast to ferrocene (-deltaG(ET) = 0.35 eV), renders charge separation thermodynamically unfeasible.

Funding

EU SFB 583 DFG FCI

History

Temporal Coverage

2006

Extent

Page 9420-7

Publisher

J. Am. Chem. Soc.

Source

Volume 128

Usage metrics

    Radiation Laboratory

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC