University of Notre Dame
Browse

Silver Nanofilament Formation Dynamics in a Polymer-Ionic Then Film by Direct Write

journal contribution
posted on 2020-07-10, 00:00 authored by Abigale Gray, Christopher Wilmer, David Go, Garrison Crouch, Ke Xu, Kutay Sezginel, Paul BohnPaul Bohn, Susan Fillerton-Shirey, Zhongmou Chao
Silver nanofilament formation dynamics are reported for an ionic liquid (IL)-filled solid polymer electrolyte prepared by a direct-write process using a conductive atomic force microscope (C-AFM). Filaments are electrochemically formed at hundreds of xy locations on a ≈40 nm thick polymer electrolyte, polyethylene glycol diacrylate (PEGDA)/[BMIM]PF6. Although the formation time generally decreases with increasing bias from 0.7 to 3.0 V, an unexpected non-monotonic maximum is observed ≈2.0 V. At voltages approaching this region of inverted kinetics, IL electric double layers (EDLs) become detectable; thus, the increased nanofilament formation time can be attributed to electric field screening, which hinders silver electromigration and deposition. Scanning electron microscopy confirms that nanofilaments formed in this inverted region have significantly more lateral and diffuse features. Time-dependent formation currents reveal two types of nanofilament growth dynamics: abrupt, where the resistance decreases sharply over as little as a few ms, and gradual where it decreases more slowly over hundreds of ms. Whether the resistance change is abrupt or gradual depends on the extent to which the EDL screens the electric field. Tuning the formation time and growth dynamics using an IL opens the range of accessible resistance states, which is useful for neuromorphic applications.

History

Date Modified

2020-07-10

Language

  • English

Alternate Identifier

16163028

Publisher

Wiley-VCH

Usage metrics

    Integrated Imaging Facility

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC