University of Notre Dame
Browse
- No file added yet -

StARD9 is a novel lysosomal kinesin required for membrane tubulation, cholesterol transport and Purkinje cell survival.

journal contribution
posted on 2024-01-11, 14:29 authored by Felicity R Sterling, Kevin T. Vaughan

The pathological accumulation of cholesterol is a signature feature of Niemann–Pick type C (NPC) disease, in which excessive lipid levels induce Purkinje cell death in the cerebellum. NPC1 encodes a lysosomal cholesterol-binding protein, and mutations in NPC1 drive cholesterol accumulation in late endosomes and lysosomes (LE/Ls). However, the fundamental role of NPC proteins in LE/L cholesterol transport remains unclear. Here, we demonstrate that NPC1 mutations impair the projection of cholesterol-containing membrane tubules from the surface of LE/Ls. A proteomic survey of purified LE/Ls identified StARD9 as a novel lysosomal kinesin responsible for LE/L tubulation. StARD9 contains an N-terminal kinesin domain, a C-terminal StART domain, and a dileucine signal shared with other lysosome-associated membrane proteins. Depletion of StARD9 disrupts LE/L tubulation, paralyzes bidirectional LE/L motility and induces accumulation of cholesterol in LE/Ls. Finally, a novel StARD9 knock-out mouse recapitulates the progressive loss of Purkinje cells in the cerebellum. Together, these studies identify StARD9 as a microtubule motor protein responsible for LE/L tubulation and provide support for a novel model of LE/L cholesterol transport that becomes impaired in NPC disease.

History

Date Created

2024-01-05

Publisher

J Cell Sci, 2023 Mar 1;136(5):jcs260662. Epub 2023 Mar 2.

Usage metrics

    Integrated Imaging Facility

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC