Structural and photochemical properties of Zn(II) phenanthroline-derived complexes: From mononuclear to bimetallic and circular-trimetallic helicates
journal contribution
posted on 2024-11-07, 20:05authored byP. Levin, D. Escudero, N. Diaz, A. Olivers, A.G. Lappin, G. Ferraudi, L. Lumus
In the design of self-assembled compounds, small variations in the linkers connecting the coordinating moieties can produce large differences in the obtained structures. Here, we report three novel zinc(II) complexes with phenanthroline-derived ligands as building blocks (L1–L3): A mononuclear complex, a bimetallic helicate, and a trimetallic circular helicate. The even-number spacer in L2 promotes the formation of a bimetallic helicate stabilized by π-π interactions of adjacent phenanthrolines. The addition of an extra methylene in L3 increases the distance between where the phenanthrolines can stack, and CH-π noncovalent interactions give stability to the circular helicate. When irradiated at 308 nm in acetonitrile, long-lived excited states are formed with all three complexes, which are able to participate in oxidation of 2-propanol and in reduction of methylviologen, MV2+. While the overall behavior of the three complexes is similar, the bimetallic helicate is able to form a ground-state adduct with MV2+, while the trimer reaches the excited state to form an exciplex with MV2+.