University of Notre Dame
Browse

Supramolecular Mitigation of the Cyanine Limit Problem

journal contribution
posted on 2022-11-17, 00:00 authored by Bradley D SmithBradley D Smith, Dong-Hao Li
Currently, there is a substantial research effort to develop near-infrared fluorescent polymethine cyanine dyes for biological imaging and sensing. In water, cyanine dyes with extended conjugation are known to cross over the “cyanine limit” and undergo a symmetry breaking Peierls transition that favors an unsymmetric distribution of π-electron density and produces a broad absorption profile and low fluorescence brightness. This study shows how supramolecular encapsulation of a newlydesigned series of cationic, cyanine dyes by cucurbit[7]uril (CB7) can be used to alter the π-electron distribution within the cyanine chromophore. For two sets of dyes, supramolecular location of the surrounding CB7 over the center of the dye favors a nonpolar ground state, with a symmetric π-electron distribution that produces a sharpened absorption band with enhanced fluorescence brightness. The opposite supramolecular effect (i.e., broadened absorption and partially quenched fluorescence) is observed with a third set of dyes because the surrounding CB7 is located at one end of the encapsulated cyanine chromophore. From the perspective of enhanced near-infrared bioimaging and sensing in water, the results show how that the principles of host/guest chemistry can be employed to mitigate the “cyanine limit” problem.

History

Date Modified

2022-11-17

Language

  • English

Publisher

American Chemical Society

Additional Groups

  • Integrated Imaging Facility

Usage metrics

    Chemistry and Biochemistry

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC