University of Notre Dame
Browse

The Effect of Substituted Laminin-Derived Peptides on the Conformation and Activation Kinetics of Human Plasminogen.

journal contribution
posted on 2022-09-28, 00:00 authored by Sharon StackSharon Stack, S.V. Pizzo
Conversion of the zymogen plasminogen (Pg) to the active enzyme plasmin is catalyzed by proteinases such as tissue-type plasminogen activator (t-PA). Interaction of Pg with small ligands such as lysine or macromolecular ligands such as fibrin induces a dramatic conformational change in the zymogen which enhances its efficacy as a t-PA substrate,thereby increasing catalytic efficiency of the activation reaction. We have previously demonstrated that a synthetic peptide derived from amino acids 2091-2108 of the laminin A chain (designated LamA2091-2108) can significantly enhance t-PA-catalyzed Pg activation. To probe the mechanism of this stimulatory reaction,we have determined the effect of substituted LamA2091-2108 derivatives on Pg activation by t-PA. Substitution of charged residues in LamA2091-2108 with neutral amino acids decreases the kcat/Km observed in the presence of native LamA2091-2108. Furthermore,fluorescence-quenching experiments demonstrate that whereas LamA2091-2108 alters the solvent accessibility of Pg Trp residues,charge-substituted peptides have little effect on Pg conformation. These data suggest that LamA2091-2108 stimulates Pg activation by inducing a conformational change in the zymogen similar to that observed upon binding of other ligands such as lysine and fibrin.

History

Date Modified

2022-09-29

Language

  • English

Publisher

Archives of Biochemistry and Biophysics

Usage metrics

    Harper Cancer Research Institute

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC