University of Notre Dame
Browse

γ -Radiolysis of room-temperature ionic liquids: An EPR spin-trapping study.

journal contribution
posted on 2024-11-07, 20:12 authored by P. Tarabek, A. Lisovskaya, D.M. Bartels
The radiolytic stability of a series of room-temperature ionic liquids (ILs) composed of bis(trifluoromethylsulfonyl)imide anion (Tf2N–) and triethylammonium, 1-butyl-1-methylpyrrolidinium, trihexyl(tetradecyl)phosphonium, 1-hexyl-3-methylpyridinium, and 1-hexyl-3-methylimidazolium (hmim) cations was studied using spin-trap electron paramagnetic resonance (EPR) spectroscopy with a spin-trap α-(4-pyridyl N-oxide)-N-tert-butylnitrone (POBN). The trapped radical yields were measured as a function of POBN concentration and as a function of radiation dose by double integration of the broad unresolved lines. Well-resolved motionally narrowed EPR spectra for the trapped radicals were obtained by dilution of the ILs with CH2Cl2 after irradiation. The trapped radicals were identified as mainly carbon-centered alkyl and •CF3, and their ratio varies greatly across the series of ILs. Expected nitrogen-centered radicals derived from Tf2N– were not observed. The hmim liquid proved most interesting because a large part of the trapped radical yield (entirely carbon-centered) grew in over several hours after irradiation. We also discovered a complicated narrow-line stable radical signal in this neat IL with no spin trap added, which grows in over several hours after irradiation and decays over several weeks.

History

Temporal Coverage

2019

Publisher

J. Phys. Chem. B

Usage metrics

    Radiation Laboratory

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC