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COMPLEXITY-FEEDBACK TRADEOFFS AND CAPACITY RESULTS FOR
PACKET ERASURE NETWORKS

Abstract
by

Srinath Puducheri Sundaravaradhan

Many communication networks are well-modeled as packet erasure networks,
as packets transmitted over these networks are either received correctly at the des-
tination or are “erased”; a packet erasure occurs when an error-corrupted packet
is detected and discarded, or when a packet is dropped due to congestion in the
network. This dissertation investigates two problems related to communicating
reliably over packet erasure networks, adopting two different views of the net-
work, viz., (i) a point-to-point erasure channel (that models either a single link or
end-to-end communication), and (ii) a network of erasure links.

Reliable communication over a point-to-point erasure channel can be accom-
plished in one of two ways: 1) incorporating redundant packets in the transmitted
packet sequence, i.e., via forward-error-correction (FEC) techniques, or 2) us-
ing feedback to request re-transmission of erased packets, i.e., automatic-repeat-
request (ARQ) protocols.

This dissertation presents new constructions of hybrid ARQ protocols (i.e.,
protocols combining FEC and ARQ) for the point-to-point erasure channel. These
protocols use Tornado codes (a class of LDPC codes) for erasure correction. The

focus is on enabling and characterizing trade-offs between costs associated with



Srinath Puducheri Sundaravaradhan
FEC (i.e., computational complexity of encoding/decoding) and ARQ (the amount
of feedback utilized). The described protocols provide efficient trade-offs and
can offer significant savings in computational/feedback requirements in several
situations, compared to simple time-sharing between FEC and ARQ.

The second topic of this dissertation deals with reliable communication over
two wireless relay networks — the multiple access relay channel (MARC) and the
multiple relay channel (MRC) — wherein the links are memoryless erasure channels,
and individual nodes time-share the use of the medium. The MARC is comprised
of M independent sources that communicate with a common destination with the
help of a single relay, while the MRC consists of a single source communicating
with a single destination with the aid of M parallel relays.

The capacity region of the MARC and the capacity of the MRC are derived,
assuming the destination has perfect knowledge of erasure patterns on all the links.
Optimal bandwidth allocation strategies are obtained in closed-form as functions
of the link parameters. These serve to highlight the utility of the relay(s) in various
scenarios. Also, it is shown that easily-implemented capacity-approaching codes
for the binary erasure channel, such as LDPC or Tornado codes, can be used at
the link level to attain any achievable rate(s). Finally, these capacity results are

unchanged in the presence of feedback of erasure location information to all nodes.
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CHAPTER 1

INTRODUCTION

The model of an erasure channel, first introduced by Elias in 1956 ([1]), is
perhaps the simplest among “noisy” communication system models. In its general
form, an erasure channel between a transmitter and a receiver either allows error-
free communication of a transmitted symbol, or replaces it with a special erasure
symbol E at the output. More formally, if X denotes the (finite) input alphabet
of the channel, then the output alphabet is given by Y = X U {E}; when any
x € X is transmitted over the channel, it is received as either z or E (an erasure),
typically in a probabilistic fashion. Consequently, the receiver is able to identify
exactly which transmitted symbols were erased, and the unerased symbols are
detected without any ambiguity.

Erasure channels can be memoryless, wherein for any stream of transmitted
symbols, erasures occur independently with some probability €, or the channel
could have memory, wherein the erasures follow a more complicated correlated
random process. A special case of the erasure channel is when the input alphabet
consists of bits, i.e, X = {0,1} — this gives rise to the popular binary erasure
channel (BEC) model, depicted in Fig. 1.1.

Despite its simplicity, an erasure channel is often used to accurately model

modern packet-based communication systems. In particular, data transfer over
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Figure 1.1. The binary erasure channel — transition probabilities

networks such as the Internet occurs in the form of packets, i.e., distinct format-
ted blocks of bits. When transmitted over a network, these packets are typically
subject to impairments such as noise, interference from other transmissions, fad-
ing (such as in wireless networks), etc., which can result in errors in the received
packets. Further, packets may be discarded or “dropped” at intermediate routers,
as a result of congestion. Packets received with errors are detected via an in-
ternal check-sum mechanism; further, every corrupted or dropped packet can be
identified by means of a unique, pre-assigned sequence number. Consequently,
such packets can be thought of as “erasures” produced by the network (channel).
In this situation, the end-to-end communication channel between a source and a
destination can be modeled as either (i) a single point-to-point packet erasure
channel, or (ii) a network of interconnecting links that individually behave as
packet erasure channels.

In this dissertation, the model of a packet erasure channel is often simplified
to its binary counterpart — the BEC. This is done primarily for convenience of

analysis, and the results obtained with the BEC model are easily generalized to



packet erasure channels. For example, since each packet is simply a binary string,
binary linear codes naturally lead to packet coding schemes, in which binary XOR

operations are replaced by bit-wise “packet-XOR” operations.

1.1 Reliable communication over the point-to-point erasure channel

Reliable communication over an erasure channel can be accomplished via two

different methods:

1. Feedback: In the presence of a feedback channel from the destination to
the source, a simple mechanism called Automatic Repeat reQuest (ARQ)
can be used to reliably communicate data. Essentially, the status of every
received symbol (bit/packet), i.e., whether erased or not, is fed back by the
destination to the source, which then repeatedly re-transmits every erased
symbol until it is received without erasure. This mechanism is employed in
the popular transmission control protocol (TCP), used for communication

over the Internet.

2. Coding: In the absence of feedback, reliable communication can still be
accomplished by means of coding or forward error correction (FEC). Specif-
ically, the source encodes a set of intended message symbols using an ap-
propriate erasure-correcting code to generate a larger set of (redundant)
code symbols, which are transmitted over the erasure channel. This pre-
incorporated redundancy suffices to decode the message symbols from the

subset of code symbols that are received without erasures at the destination.

Examples of erasure correcting codes include Reed-Solomon codes, certain
classes of low-density parity-check (LDPC) codes, Fountain codes, etc., as

will be discussed in the next chapter.



Each of the above techniques has its own associated “cost”. The drawback with
ARQ is the need for an ideal feedback channel, which requires dedicated band-
width and additional resources to ensure error-free communication. Likewise, one
of the costs associated with FEC is the complexity in encoding and decoding re-
dundant code symbols, each of which is a packet containing several hundred to
few thousand bits.

Therefore, it is interesting to see if methods incorporating both coding and
feedback for reliable communication, commonly referred to as hybrid ARQ pro-
tocols, can achieve a combination of costs that makes them more attractive than
using only coding or only feedback. This is relevant in scenarios where limited
resources may exist for feedback, such as (i) limited bandwidth (e.g., upstream
channels in asymmetric digital subscriber loop (ADSL) systems, control channels
in cellular systems, etc.), (ii) limited power (such as mobile wireless receivers with
limited battery life) or, (iii) a combination of both. Likewise, there could exist
situations where coding is feasible, albeit at reduced complexity.

The above topic forms the basis of discussion of the first part of this disser-
tation. In connection with this, different classes of hybrid ARQ protocols are
derived, and the associated tradeoffs between coding complexity and feedback

requirements are analyzed.

1.2 Networks of erasure channels

Conventionally, in packet-based networks, the intermediate nodes that handle
data traffic act primarily as “routers”, i.e., they merely forward received data
along the appropriate path. On the other hand, allowing these nodes to process

incoming data prior to routing it can result in significant improvements in the end-



to-end throughput. To achieve these gains, it is necessary to take into account
the individual link-level erasure statistics of the network.

In general, we would like to solve the problem of (i) characterizing the best
end-to-end throughputs possible over a given network, as a function of all its
link-level erasure statistics, and (ii) determining the processing strategy at each
node that can help achieve these throughputs. The solution to this problem
also has important implications concerning network architecture and design, viz.,
identifying potential traffic “bottlenecks”, determining optimum medium-sharing
strategies (in the case of wireless networks), etc.

This dissertation addresses the above problem for the case of two simple, yet
fundamental, configurations of wireless networks, viz., the multiple-access relay
channel (MARC) and the multiple-relay channel (MRC). The MARC consists of
two or more sources (s;) communicating with a common destination (d) with
the aid of a single relay (r), as shown in Fig. 1.2(a) for the two-user case. This
could represent a situation in which multiple mobile stations communicate with
a common base station with the assistance of a common dedicated relay that
could potentially aid in improving coverage. The MRC consists of a single source-
destination pair (s, d) communicating with the aid of one or more relays (r;), as
shown in Fig. 1.2(b) for the two-relay case. This situation could arise in a wireless
ad-hoc or sensor network, where certain wireless nodes may double up as relays

for other pairs of nodes communicating with each other.

1.3 Contribution and organization of this dissertation

The rest of this dissertation is organized as follows.

Chapter 2 provides the relevant background for the topics addressed in this
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Figure 1.2. (a) The two-source multiple-access relay channel; (b) the
two-relay multiple-relay channel.

dissertation and outlines previous work on erasure correcting codes, hybrid ARQ
protocols and wireless erasure networks.

In Chapter 3, various hybrid ARQ protocols are presented for the point-to-
point erasure channel, assuming the existence of a mnoiseless feedback channel.
These protocols are based on a class of erasure-correcting codes called Tornado
codes. The main goal in designing these protocols is to reduce the complexity
incurred with coding by using a limited amount of feedback, which is measured
as the number of bits communicated over the feedback channel. To this end, the
amount of feedback required by different hybrid protocols is optimized using tools
from rate-distortion theory.

For each hybrid protocol, the corresponding tradeoff between coding complex-
ity and feedback requirements is characterized, and it is seen that these protocols
can offer “better” tradeoffs than a benchmark time-sharing protocol in different
regimes. Chapter 4 considers some practical aspects of these hybrid protocols, in-

cluding: the choice of Tornado codes and how it affects the performance of these



protocols, as well as the design of “practical” rate-distortion schemes.

Chapter 5 derives capacity results for two wireless relay networks — the MARC
and the MRC — with links modeled by memoryless BECs, under the assumptions
of: (i) orthogonal medium access (achieved via time-sharing) among the different
transmitting nodes, and (ii) perfect knowledge at the destination of all erasure
events that occur in the network. The approach adopted here consists of for-
mulating cut-set outer bounds on the capacity (region), and demonstrating the
achievability of these bounds using simple codes designed for the point-to-point
erasure channel. As a consequence, optimum bandwidth-allocation strategies for
both these networks are obtained as explicit functions of the link erasure statistics,
which serve to highlight the utility of the relay node(s) under different scenarios.

In particular, for the MARC, it is shown that the relay is useful only for those
sources that have a weaker direct link to the destination than the relay itself -
regardless of the quality of the source-to-relay links. On the other hand, for the
MRC, the participation of a relay r in the optimum strategy is determined by a
more complex, inductive criterion — it depends on the best throughput achievable
using only those relays with a better link to the destination than r.

Finally, Chapter 6 presents a summary and discussion of the main results of

this dissertation.



CHAPTER 2

BACKGROUND

2.1 Erasure correcting codes

The capacity of the binary erasure channel with erasure probability € is given by
1—e bits/channel use [2]. More generally, the capacity of an M-ary erasure channel
with the same erasure probability can be shown to be 1—e M-ary symbols/channel
use, or (1 —€) - log, M bits/channel use. Consequently, in order to communicate
k message symbols reliably, at least n = k/(1 — €) code symbols need to be
transmitted over an erasure channel.

The class of Reed-Solomon (RS) codes [3] comes close to achieving this lower
bound in the following sense: for an (n, k) RS code that maps k& message symbols
to n code symbols, any subset of size k of the code symbols suffices to decode
all k& message symbols. However, RS codes are defined over a finite field contain-
ing at least as many elements as the codeword length n. Further, the encoding
and decoding complexities of typical implementations of these codes grow at least
as O(k?). This makes these codes computationally unattractive for larger block-
lengths.

The class of Tornado codes was proposed in [4] as capacity-approaching (c.a.)
code constructions for the BEC. These codes are described using sparse bipartite

graphs and are similar in construction to low-density parity-check (LDPC) codes



[5]. Consequently, they have encoding and decoding complexities that are linearin
the blocklength, i.e., O(n). These codes are constructed with a non-zero gap § to
capacity, where ¢ can be chosen arbitrarily small provided n is chosen sufficiently
large, and their encoding/decoding complexity grows as O(log(1/6)) for fixed n,
as 0 is made small.

The code construction presented in [4] led to the discovery of other families of
c.a. Tornado and irregular LDPC codes, a systematic study of which is presented
in [6]. While Tornado codes have both linear encoding and decoding complexity,
these irregular LDPC codes have only linear decoding complexity. Another class
of codes that approaches capacity with linear encoding and decoding complexity is
the family of systematic irregular-repeat accumulate (SIRA) codes [7], [8]. These
codes have a very simple encoder structure, similar to Tornado codes, consisting
of the cascade of an irregular single-parity-check (SPC) code and an accumulator.

All these families of codes have the common property that their complexity
grows unbounded as O(log(l /5)), when the gap-to-capacity d goes to zero. In
contrast, the class of non-systematic irregular-repeat-accumulate (NSIRA) codes
[9] and accumulate-repeat-accumulate (ARA) codes [10] approach capacity with
bounded complexity (that is linear in the blocklength), as ¢ approaches zero.

Finally, the above codes are all designed for a fixed value of the erasure prob-
ability e that is assumed to be known a priori. In contrast, it is possible to
construct erasure-correcting codes that can achieve capacity for any value of e,
i.e., the value of € is not needed in designing the code. Consequently, these codes
are universal and can adapt to varying channel statistics. Examples of these codes
are LT codes [11] and Raptor codes [12]. For the LT codes developed in [11], the

encoding complexity is O(log(k)) per code bit and the overall decoding complexity



is O(klog(k)); further, their gap-to-capacity is O(lo\g/%k). On the other hand, the
behavior of Raptor codes is similar to Tornado codes — they have encoding com-
plexity O(log(1/§)) per code bit and overall decoding complexity O(klog(1/4))

for gap to capacity 9.

2.2  Feedback, coding and hybrid ARQ protocols for packet erasure networks

For packet-based networks such as the Internet, feedback has traditionally been
used to achieve reliable communication. Various types of ARQ protocols are used
at both the link layer and the transport layer (such as in TCP) of the network
protocol stack, as discussed in [13].

In [14], the use of coding or FEC as an alternative to feedback in networks
was proposed for two different cases: multicast over networks, and end-to-end
transmission over links with a high bandwidth-delay product. In the context of
multicast, the same redundant packets generated using FEC can compensate for
potentially different packets erased at different receivers; thus, FEC avoids the
problem of “feedback implosion” that occurs when each of several receivers at-
tempts to provide feedback about its own erasure status. In the case of links
with a high bandwidth-delay product, the round trip time can exceed the total
transmission time; using feedback in this context can be wasteful as it leads to
long wait times at the transmitter, and FEC can reduce this inefficiency. The use
of Reed-Solomon codes for reliable multicast was explored in [15].

The idea of using FEC for multicast in networks led to the notion of “digi-
tal fountain” codes [16], [17]. With Fountain codes, a transmitter continuously
broadcasts distinct code packets encoded from a single message. Receivers lis-

tening to the broadcast experience different erasure processes with potentially
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different statistics, unknown to the transmitter; nonetheless, each receiver is able
to decode the message on receiving a sufficient number of unerased code pack-
ets, that is roughly equal to the total number of message packets. The notion of
Fountain codes led to the invention of LT and Raptor codes, outlined earlier.

Besides the above FEC-only approaches, there has also been work on devel-
oping hybrid ARQ protocols for packet-erasure networks. Some of these schemes
are outlined below.

In [18], simple hybrid ARQ schemes using very short blocklength RS codes
are presented for the case of multicast transmission; these help reduce the num-
ber/content of feedback requests from each receiver and improve the efficiency of
re-transmissions.

In [19], a hybrid rateless scheme based on binary codes is developed that uses a
very small amount of feedback to acknowledge only the number of decoded message
packets. The resulting scheme has a “real-time decoding” property (i.e., decoding
occurs as packets are received) and low memory requirements at the destination,
at the cost of higher transmission overhead, roughly by a factor of two.

In [20], hybrid ARQ schemes using binary sparse-graph codes are proposed
for multicast transmission with quality-of-service (QoS) constraints — the code-
structure is adapted on-the-fly based on limited feedback from each receiver, re-
garding the number of lost packets.

In [21], the use of feedback to improve the reliability of erasure correcting codes
is explored. In particular, this work introduces an LDPC coding scheme that uses
a limited amount of noiseless feedback in order to improve the decoder’s perfor-
mance in the presence of stopping sets [22]. Tradeoffs are established between the

resulting reliability (i.e., frame error rate) and the amount of feedback utilized.
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In [23], feedback is used in the context of network coding for multicast, with
the goal of reducing the queue-size (of packets waiting to be delivered) at the
sender and decoding delay at the receivers. The encoding process consists of
generating random linear combinations of message packets in a queue, treating
them as symbols over a sufficiently large finite field. Conventional ARQ is used
by all receivers to acknowledge received code packets. Based on this feedback,
the sender identifies a particular common message packet as being “seen” by all
receivers, and this packet is removed from the queue for encoding future code
packets. This also has the effect of reducing coding complexity.

The hybrid protocols introduced in this dissertation differ from the approaches
adopted earlier in many fundamental aspects. Our primary goal is to design
“flexible” hybrid protocols for unicast transmission (i.e. for a single receiver)
that allow for tradeoffs between the amount of coding and feedback used. Within
this framework, our focus is explicitly on minimizing coding complexity for a given
amount of feedback and vice versa. In contrast, much of the earlier work has dealt
with fized coding/feedback strategies, primarily for multicast transmission, where
the focus has been different from establishing complexity-feedback tradeoffs. As
mentioned earlier, our protocols use binary erasure correcting codes (i.e., Tornado
codes) with XOR as the only operation, unlike some previous approaches that
make use of codes defined over larger finite fields (e.g., RS codes) requiring far
more complex operations. Further, all protocols considered in this dissertation are
capacity-approaching, in the sense that there is no waste resulting from excessive
transmission of redundant packets, i.e., beyond what is needed by the receiver to
decode the message.

On a final note, it is worthwhile highlighting the difference between the hybrid
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ARQ protocols considered here for erasure-recovery, and conventional hybrid ARQ
protocols used at the link-level for error-correction [24]. While the former are
used for losslessly communicating a collection of packets, the latter are used to
communicate individual packets reliably. Consequently, the nature of feedback
used in these two approaches is quite different; for example, while it is practically
impossible to feedback the status of every “noisy” bit within a received packet,

feeding back locations of erased packets is quite feasible.

2.3  Wireless relay networks with erasure links — MARC and MRC

The MARC and MRC can be viewed as extensions of the three-terminal relay
channel (with a single source and single relay) studied by van der Meulen [25] and
Cover and El Gamal [26]. The MARC was first introduced in [27], and bounds for
the capacity region of the discrete memoryless MARC were derived in [27], [28],
[29]. Similarly, achievable rates for the general discrete memoryless multiple relay
channel have been derived, cf. [29], [30].

The focus of the cited work is primarily on establishing performance bounds
for the most general descriptions of the MARC and the MRC, as is typical in
information theory. While such an approach is quite powerful, the underlying
problems are invariably extremely hard to tackle, and so as of yet there is no
exact formulation for the capacity (region).

In contrast, this dissertation seeks a formulation for the capacity (region) by
restricting attention to networks composed of erasure channels, which is a special
case of the discrete memoryless channel (DMC) model. This allows us to consid-
erably simplify the problem of solving for the capacity (region) and gain insights

that are not easily accessible via more complex models. Also, as we have seen, the
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model of an erasure channel is quite relevant in packetized communication. The
shortcoming of the erasure-channel assumption, of course, is that the results do
not generalize to other instances of the DMC that arise in practice.

The study of wireless networks using the simple erasure-link model has been
undertaken with great success by several researchers, cf. [31], [32], [33], [34],
[35]. In [31], the capacity region of multi-source multicast over arbitrary wireless
networks with erasures is derived, assuming: (i) orthogonal links that carry one
packet per channel use, and (i7) perfect knowledge of erasure patterns on all
links at the destination; moreover, it is shown in [31] that the capacity region
coincides with that described by cut-set bounds. Further, [32] demonstrates that
the capacity of single-source unicast and multicast transmission over such networks
is achievable using random network coding at the intermediate nodes. In [33],
[34] and [35], the authors consider particular relay erasure networks where the
destination nodes do not have access to the above side information; converse
bounds and achievability results using maximum distance separable (MDS) codes
are presented for this scenario.

The models for the MARC and the MRC assumed in this dissertation are quite
similar to that in [31] — in particular, we also assume the presence of perfect side
information of all erasure patterns in the network, at the destination. In fact, the
capacity results of [31] can be specialized to the MARC and the MRC. However, in
[31] the available bandwidth is apportioned equally among all transmitting nodes;
in contrast, we do not pre-determine the allocation of the wireless medium. As a
consequence, the region of all achievable rates we obtain is strictly a superset of the
region that follows from the results of [31]. Further, we demonstrate that points

in the capacity region may be achieved using low-complexity capacity-achieving
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(c.a.) codes designed for the BEC (such as Tornado or LDPC codes), in place of

the random coding arguments employed in [31].
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CHAPTER 3

HYBRID ARQ PROTOCOLS FOR THE ERASURE CHANNEL

3.1 Introduction

As noted earlier, coding and feedback constitute two fundamentally different
means of communicating reliably over erasure channels. One of the main costs
of coding is the associated computational complexity in generating and decoding
code packets. Likewise, the use of feedback necessitates dedicated bandwidth on
a feedback link. Hybrid ARQ protocols combine coding and feedback to reli-
ably communicate data. In this chapter, we explore a new class of hybrid ARQ
protocols designed to permit trade-offs between computational complexity of en-
coding/decoding and the amount of feedback utilized.

We consider the model of a memoryless binary erasure channel (BEC) between
a source s and destination d. The erasure probability of the BEC is denoted e.
The destination is able to convey information to the source by means of a noiseless
feedback link. The source has k message bits that need to be conveyed reliably
to the destination. We restrict ourselves to capacity-achieving protocols, i.e.,
protocols that achieve reliable communication with n = k/(1—¢€) bits transmitted
from s, on average.

We adopt the following metrics to evaluate different protocols:

e Coding complexity C: This is the total number of XORs needed to gen-

16



erate all the bits that are transmitted by s, i.e., the encoding complexity.
For the codes we consider (Tornado codes), this is the same as the decoding

complexity.

e Feedback channel usage F: This is given by the total number of bits

communicated by d to s over the feedback link.

We begin with an overview of feedback-only and coding-only approaches.

3.2 Feedback-only (ARQ) protocol

The simplest form of a feedback-only protocol is as follows: s re-transmits
every message bit until it is received unerased and d feeds back the status of
every received bit. For this scheme, it follows that both s and d need to transmit
k/(1—¢€) bits on average. However, it is possible to reduce the amount of feedback,
as shown below.

For n transmissions over the BEC, the erasure locations can be thought of
as the output of a Bernoulli {0,1} source, where 1 denotes an erasure and 0 a
non-erasure. Since the probability of a 1 is e, it follows that the n-bit Bernoulli
sequence describing the erasure locations can be efficiently represented with n-h(e)
bits, using an appropriate source code. Here, h(z) = —xlog,(x)—(1—2z) log,(1—2)
is the binary entropy function.

The above observation leads to the compressed-feedback protocol. In this
protocol, feedback from d and re-transmission from s occur in several rounds, as

follows:

Round 0: s transmits the £ uncoded message bits and d feeds back the

erasure locations, after appropriate compression using a source code.
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Round i (1 <i < N —1): s re-transmits the bits erased in the (i — 1)%
round; d feeds back the erasure locations among these bits using compres-

sion.

Round N: The erased bits in round N — 1 are communicated to d using
naive (uncompressed) feedback, i.e., s re-transmits every erased bit until
it is received correctly and d immediately feeds back the status of every

transmission.

In round i, 0 < i < N — 1, the average number of bits transmitted by s is €'k;
consequently, the average number of bits transmitted by d in feedback is €'k - h(e).
In the N** round, both s and d transmit ¢Vk/(1 — €) bits each, on average. While
the total number of transmissions from s is unchanged from the uncompressed

case, the total amount of feedback from d is as follows:

I R

As N—oo, the contribution of the second term tends to zero. Since we are pri-

marily interested in order behavior, this term will be neglected in the future.
Henceforth, we shall assume that the feedback-only protocol uses compressed-

feedback. Summarizing, the coding complexity and feedback usage for this pro-

tocol are as follows:

|
(@]
—
o
)
~—

Carg =

Fang = kl' f(? (3.3)

Note that we have disregarded the complexity involved in compressing the feed-

back, relative to coding (FEC) for the erasure channel; this is primarily because
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compression involves bit-level operations, whereas in practice, erasure-correction
coding is done at the level of packets. Consequently, the complexity of coding may
often be much larger than the complexity of compression. The same reasoning
is applied in evaluating hybrid ARQ protocols which may employ some form of

compression/processing for the feedback part.

3.3 Coding-only approach — Tornado codes

As noted in Chapter 2, there are several classes of practical capacity-approaching
erasure correcting codes, with encoding and decoding complexities that grow lin-
early with the message size k. We restrict our attention to the class of Tornado
codes [4], as these codes are easily adapted for the hybrid protocols developed
later.

Thus, the coding-only approach is as follows: s encodes the k message bits
using an (n, k) Tornado code and transmits the resulting n code bits over the BEC;
d can decode the message from the unerased portion of the received codeword with
high probability, without having to use the feedback channel. We now briefly
describe the structure and encoding/decoding process for Tornado codes.

The n code bits of an (n, k) Tornado code are partitioned into layers. These

layers are encoded in a recursive manner as follows:

1. Layer 0 consists of the k& message bits themselves; hence, these codes are

systematic.

2. Layer i (1 < i < N — 1) consists of 3k parity bits, where 3 = ¢/(1 — ¢)
and 6 > 0 is a small overhead parameter. Layer 7 is obtained by forming

different linear combinations (XORs) of bits in layer ¢ — 1.
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3. The final layer N consists of 3Vk/(1 — [3) parities derived from layer N — 1

parities.

The blocklength of this code is n = Y. ' ik + Vk/(1 — ) = k/(1 — 3), and
hence its rate is R = 1 — 3. For the case when ¢ is small, the blocklength and rate
are approximately k/(1 — €) and 1 — ¢, respectively.

The layers 1 through N —1 are constructed such that each layer, in its entirety,

can be used to decode a random fraction € of erased bits in the preceding layer, with

. 1. . . . BN -1k _
high probability. The final layer N comprises the parity bits of a < T BN 1k>

systematic erasure correcting code, whose message bits are the parities of layer
N — 1. Thus, the final layer can help recover a random fraction € of erased bits
in layer N — 1, even when a fraction € within itself is erased. For our discussion,
we shall assume that the generator matrix of this final erasure-correcting code
is of the form [I P], where I is the identity matrix of order 3N='k, and P is a
BNk x fTNg matrix whose every element is chosen to be either a 0 or a 1 with
equal probability. It can be shown that this choice of the final code works in
practice because the sub-matrix formed by randomly picking a fraction € of the
rows and a fraction 1 — € of the columns of P has full-rank with high probability
(Proposition 2 in [12]).

The connections between successive layers from 0 through N — 1 can be rep-
resented by a cascade of bipartite graphs as shown in Fig. 3.1, where each node
represents a code bit. Each right node of a bipartite graph is generated by XOR-
ing its left neighbors — i.e., nodes that it is connected to on the left. The average
number of neighbors of the left and right nodes within each bipartite graph con-
stitute the average left and right degrees, denoted by a; and a,., respectively. Since

the total number of edges emanating from the left nodes must equal the number
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Figure 3.1. Tornado codes - encoding graph

converging on the right nodes, we have the following relation:

a; = Pa, (3.4)

The bipartite graphs connecting layers 0 through N — 1 are characterized by
their node-degree distributions, viz., the fractions of left and right nodes of
different degrees (i.e., number of neighbors). Alternatively, they may equivalently
be characterized using edge-degree distributions which are more commonly
used in the literature [4], viz., the left edge-degree distribution {\;}3°; and the
right edge-degree distribution {p;}32,. Here \; represents the fraction of edges
that originate from left nodes of degree i. Likewise, p; is the fraction of edges
terminating on right nodes of degree j. We shall use the short-hand notation
A= {152, and p = {p;}32, henceforth. It follows that the average degrees a
and a, are functions of the degree distribution (d.d.) pair (A, p). For Tornado
codes, all bipartite graphs in the cascade (excluding the final layer N) have the

same d.d. pair, and hence the same a; and a,.
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For layers 1 through N — 1, the average number of XORs needed to generate a
parity bit is a, — 1. For layer N, the average number is 3V~'k/2. Summing over

all layers, the total encoding complexity is given by

B(L— %Y Bk BN
A A e R
k 2(N_1)]€
— _15_6((1_5N—1)-(ar—1) + Pk 5 ) (3.5)

Tornado codes are decoded in the reverse direction of encoding. Starting with
the unerased parities of layer IV, the erased parities of layer N —1 are first recovered
by solving a system of linear equations. This is done using Gaussian elimination,
which needs a total of O ((3"~'k)?*) XOR operations. Next, each layer i (< N —1)
is recursively decoded from the reconstructed higher layer ¢ + 1, via the belief
propagation (BP) algorithm. The number of XORs needed for this is again a, — 1
per right node (in the decoding graph). Thus, the total decoding complexity is

given by:

B — N

e

(a, = 1) + O((BY'k)?). (3.6)

Usually, the number of layers N is chosen to be large so that Y = O(k=%/4).
Consequently, for large k, we can neglect the contribution of the last layer (in com-
parison with the remaining layers) to both the encoding and decoding complexity,
which are the same otherwise.

Thus, for the coding-only protocol using Tornado codes, the coding complexity
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and feedback usage are:

=
@

Crec = ~(a, — 1)

—_

>~
@

= (ar = B) (3.7)

S =
|
@

Frec = (3.8)

The d.d. pair (A, p) depends on the erasure probability e and overhead ¢ but
is independent of k. Consequently, the encoding and decoding complexity scale
linearly with message size k. However, for any d.d. pair, the values of a, and q
are proportional to log(1/d) [6]. Consequently, the coding complexity of Tornado
codes is unbounded as d—0.

In contrast, certain c.a. codes, such as ARA codes [10], possess bounded com-
plexity per message bit even as 0—0. Therefore, to ensure similar complexity,
Tornado codes need to operate at a larger overhead ¢ in practice. Consequently,

we only consider applications where this is not much of a penalty.

3.4 A hybrid protocol based on time-sharing

The simplest hybrid protocol consists of time-sharing between the coding-
only and feedback-only protocols. Specifically, for some 6 € [0, 1], a subset of 0k
message bits are communicated using only coding, and the remaining bits using
only feedback. We use this protocol as a benchmark for comparing other hybrid
protocols.

The performance of any hybrid protocol may be characterized by the following

parameters:

Fractional feedback f — defined as the ratio of its feedback usage to that
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of the feedback-only protocol, and

Fractional complexity c — defined as the ratio of its coding complexity to

that of the coding-only protocol.

For the time-sharing protocol, these parameters are given by:

Crgs — 9 (39)

frs = 1—0 (3.10)

The plot of crg versus frg is a straight line as shown in Fig. 3.2. Our goal is to
design hybrid schemes with ¢ versus f curves that lie below the time-sharing curve,
i.e., for a fixed amount of feedback (coding complexity), we want the amount of
coding complexity (feedback) of the hybrid schemes to be strictly smaller than

the corresponding complexity (feedback) of the time-sharing scheme.

3.5 Hybrid-A: “Quantized” feedback

The first hybrid protocol we consider is essentially a simple adaptation of the
coding-only protocol. The basic idea is to reduce the encoding and decoding
complexity by feeding back a “quantized” version of the erasure locations.

In the hybrid-A protocol, the transmission of code bits from s and feedback

from d occur in N — 1 rounds as follows:

1. Inround 7 (0 < i < N — 2), s transmits the 5°k code bits of layer i of the
Tornado code used in the coding-only protocol (layer 0: systematic bits).
The 'k channel outputs at the destination (comprising both erased and
unerased bits) are partitioned into §'k/¢ contiguous blocks of size £ bits

each. The locations of blocks that contain at least one erased bit are then
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Figure 3.2. Performance of the time-sharing protocol

fed back to s via compressed feedback. We shall refer to such blocks as

“erased” blocks.

2. The parity bits to be transmitted in round ¢ (1 <i < N — 1) are encoded
only after the feedback from round ¢ — 1 has been received. In particular,
the layer ¢+ — 1 parity bits belonging to unerased blocks in round ¢ — 1 are

simply omitted while encoding the layer ¢ parities, as illustrated in Fig. 3.3.

3. In round N — 1, the fV~1k layer N — 1 parities are encoded as above and
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Figure 3.3. Hybrid-A scheme: Encoding process

communicated to d using the feedback-only protocol.

By excluding layer ¢ — 1 bits known to have been unerased at d, s can save
on computations (XORs) needed to generate the layer i parities. Likewise, while
decoding erasures in layer ¢ —1 via the BP algorithm, d can avoid having to remove
the contribution of these unerased bits, which is unavoidable with the coding-only
approach. We shall refer to the subset of layer i — 1 parities (belonging to erased
blocks) that participate in the encoding process during round i as the encoding
set for that round.

The probability p of a block erasure is given by:

p=1—(1-¢" (3.11)

Thus, the total number of bits that must be fed back (using compression) in round
i (1 <i< N-—2)isgiven by h(p)-3'k/¢, where h(-) is the binary entropy function.

Also, the number of feedback bits required for the last round N — 1 is given by
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BNk - h(e)/(1 — €). Hence, the total amount of feedback is given by:

J - (1_5N_1 UG ﬂN‘1~&>. (3.12)

For large N, we neglect SV~! and the contribution of the second term, and we

have for the hybrid-A protocol:

Fo = % - @. (3.13)
The bits belonging to the encoding set for round ¢ (i.e., the erased blocks of
round i — 1) essentially constitute a random subset of layer i — 1 parities, chosen
regardless of their degree profile; therefore, these bits have the same left-node
degree distribution and average left degree a; as the original Tornado code. Then,
it is easily verified that the new average right degree of the graph in Fig. 3.3,

after removing the unerased bits, is given by a/. = pa;/ = pa,. Consequently, the

coding complexity is given by:

iﬁik"(a;_l) _ k.m%%_l).(par_l), (3.14)

Again, ignoring BV~ for large N yields the coding complexity:

Ch = ﬁ—kﬁ-(par—l). (3.15)

Under the assumption that the overhead of the Tornado code satisfies 0 < 1,

which yields a, > 1 and 3 = ¢, the fractional complexity and feedback are given
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cy = Ca = p, (3.16)
Crec
Fa h(p)
f, = = . 3.17
A FARQ f . h(E) ( )

Note that ¢, and £, can be changed by varying ¢ between 1 and k. The
resulting c, versus f, curves for different values of € are shown in Fig. 3.4. (For
these curves, the value of ¢ was varied between 1 and 10%.)

It is seen that for small values of € (e.g. 0.05), the hybrid-A scheme performs
significantly better than the time-sharing scheme, in the sense that the fractional
complexity for a given value of fractional feedback is substantially lower (and vice-
versa) for the hybrid-A scheme. This behavior is observed over a large range of
the fractional feedback, with the exception of £, close to 1. For larger ¢ (> 0.2),
the performance of hybrid-A degrades and is worse than the time-sharing scheme
over a wider range of values for f.

For all €, it is seen that ¢, # 0 when £, = 1, unlike the time-sharing scheme. In
other words, even when all the erasure (and non-erasure) locations have been fed
back to s, there is still some residual coding complexity in the hybrid-A scheme;
this is because, while the unerased bits in any round are omitted from the encoding
process, the contribution of erased bits to computing the parities in the next round
remains unchanged in the presence of feedback.

We analyze the performance of this protocol for the case when ¢ < 1. Let
{ = c/e, for some constant ¢ > 0. Then, we have p =1 — (1 —€)¥¢ = 1 —e™°.

Thus, the fractional complexity c, is roughly constant (independent of €). On the
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fore, the fractional feedback f, decays as m. This explains the improved

performance of the hybrid-A scheme in the small-¢ regime.

3.6 Hybrid-B: Optimizing hybrid-A’s feedback

In this section, we describe a variation of the hybrid-A scheme that requires
less feedback.

The basic idea of the hybrid-A protocol is to feed back partial information
about the channel-outcomes (erasures and non-erasures) in each round so that a
subset of the unerased bits in that round can be omitted from encoding the next
round. We now pose the question as to whether there exist feedback strategies
that achieve the same reduction in the size of the encoding set in each round as
the hybrid-A scheme, but require fewer feedback bits than the quantized-feedback
strategy. This is formally stated as follows.

Let the channel outcomes of m transmissions (for some m) over a BEC be
represented by the m-tuple x € {0, 1}, where 0 denotes a non-erasure and 1 an
erasure. Suppose these channel outcomes are encoded with some distortion as the
m-tuple y € {0,U}™, where again 0 represents a non-erasure while U represents
an unacknowledged channel outcome (that could have been either an erasure or a

non-erasure). Further, we encode y according to the following rules:

1. An element of y can be 0 only if the corresponding element in x is also 0.

In other words, an erasure in x cannot be reported as a non-erasure in y.

2. The total number of non-erasures (i.e., 0’s) in x that are unacknowledged
(i.e., reported as U) in y cannot exceed mD. Here, 0 < D < 1 —¢€is a

distortion parameter that is fixed beforehand.
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Suppose the vector y is fed back to s instead of x; then s can identify a subset of the
unerased transmissions, as in the hybrid-A protocol. Thus, if y can be compressed
more efficiently than the quantization scheme used in hybrid-A, fewer feedback
bits are needed to convey this information. We now formalize this problem of
optimum compression as a problem in rate-distortion theory.

Let y = f(x) denote an encoding function from the space of true erasure
outcomes to the space of distorted reconstructions, i.e., f: {0,1}" — {0,U}™.

Let the following function define the per-letter distortion measure:

0, ifz=0,y=0,
1, ife=0y=U,
Diz,y) = (3.19)
oo, ifx=1y=0,

0, fe=1y=U.

Then, the sum-distortion measure between the vectors x and y is given by

and the average per-letter distortion d 7 associated with an encoding function f(-)
is given by
d, - % S o) - d(x, (). (3.21)
x €{0,1}m
Note here that, for finite dy, the pair (z;, (f(x));) can never be (1, 0); consequently,
for each x, d(x, f(x)) is exactly the number of non-erasures in x that are unac-
knowledged in f(x). Therefore, imposing the condition d; < D (for 0 < D < 1—e¢)

on the encoding function f(-) simultaneously enforces both encoding rules outlined

earlier.
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Finally, for Bernoulli random variables X and Y, with Pr(X = 1) = ¢, define
the following positive-valued function R(-):

R(D) = min I(X;Y), (3.22)

py|x (ylz): E(D(X,Y))<D

where the expectation E(D(X,Y)) is over the joint distribution of X and Y.
We now state the following result due to Gallager [36, Theorems 9.2.1 and

9.3.2] for arbitrary distortion measures:

Theorem 1 ([36]). For the rate-distortion code f(-), if dy < D then the entropy

of the set of reconstruction sequences must satisfy:
H(f(x)) > m-R(D). (3.23)

Further, given any D > 0 and k > 0, there exists, for sufficiently large m, a

rate-distortion code f(-) for which Jf <D+ Kk and

H(f(x)) < m-(R(D)+ k). (3.24)

Consequently, for a specified average per-letter distortion D between x and
y = f(x), a minimum of m - R(D) bits on average are required to communicate y
to s. Here, mD is the average number of 0’s (non-erasures) in x that are reported

as U’s (unacknowledged outcomes) in y. Further, it can be shown that

1 1
R(D) = (D+e¢) — Dlog, = + (1 —¢)log, T (3.25)

1
log, 5% D

(See Appendix A for a derivation.)

In sum, by using a rate-distortion code that achieves the rate-distortion bound
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R(D), the feedback can potentially be more efficient than in the hybrid-A scheme.
For a fixed distortion parameter 0 < D < 1 — ¢, the hybrid-B scheme is

described as follows:

1. Inround i, 0 < i < N —2, s transmits the n; = 3'k code bits of layer i of the
Tornado code used in the coding-only protocol. The n; channel outcomes in
round ¢ consist of n;(1 — €) non-erasures: d feeds back the channel outcomes
to s with distortion D in the non-erasure locations (i.e., only a subset of
n;(1 — e — D) non-erasures are acknowledged without ambiguity), using a

rate-distortion code that achieves the bound R(D).

2. The feedback received in round 7 is used to reduce the encoding complexity
in round 7 + 1 exactly as in the hybrid-A scheme, viz., the subset of layer
1 parities that are known by s to be unerased are omitted while encoding
layer ¢ 4+ 1 parities. Likewise, d neglects the contribution of these bits while

decoding.

3. In round N — 1, the SV ~'k parities of layer N — 1 are computed as in the

hybrid-A scheme and communicated to d using the feedback-only approach.

Thus, only n;(D + €) parities of layer i participate in encoding during round i+ 1.
As in the hybrid-A scheme, the average left degree among these participating bits
remains unchanged from the original Tornado code. Similar reasoning shows that
the average right degree in this case is given by (D + €)a,, where a, is the average

right degree of the original code. Consequently, the coding complexity is given
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=X
N

Cg = -((D—l—e)ar—l),

—_

> |
@

= (Dt - 5) (3.26)

—
@

where we have ignored a 3V ~! term, following the standard large N approximation.

The amount of feedback in round i (1 < i < N — 2) is given by n,R(D) =
Bk - R(D). Thus, the total amount of feedback is:

S k(D) + 51 M
— 1—e€
1—pN1 o no1 h(e)
k- <W "R(D) + B!, :) (3.27)
Again, for large N, ignoring V! yields:
Fp o= . R(D) (3.28)
BT 123 . .

Finally, assuming 6 < 1 as in the hybrid-A scheme, i.e., a, > 1 and § = ¢, the

fractional complexity and feedback for the hybrid-B protocol are given by:

cg = D+e, (3.29)
_ k(D)
o= G (3.30)

The variation of cg with fg for different values of € is plotted in Fig. 3.5. Also
shown are the corresponding hybrid-A curves. It is seen that significant gains
are obtained with an optimum rate-distortion code compared to the quantized

feedback strategy of hybrid-A, especially for smaller values of e: e.g., for e = 0.01
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Figure 3.5. Performance of the hybrid-B protocol

1
2

and f, = fz = 0.4, we have cg = 5 - c,. Since, the coding strategy in hybrid-
B is unchanged from hybrid-A, there is the same residual coding complexity for
hybrid-B when fg = 1, i.e., when the distortion D = 0.

It is instructive to compare the rate Ror of the quantized feedback strategy,
i.e., number of bits fed back per forward transmission, with the rate-distortion
function R(D). It is easily seen that Rop = h(p)/f. We compare the two rates for
a fixed distortion D; note that the distortion introduced by quantized feedback

is simply D = p — ¢, i.e., the difference between the fraction of channel outcomes
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marked as erasures and the true fraction of erasures. The ratio Rop/R(D) is plot-
ted as a function of D in Fig.3.6, for different values of € (again, ¢ is varied between
1 and 10%). Tt is seen that there is a significant gap to optimality with quantized
feedback; this is not surprising, considering that it is a fairly naive strategy. It is
also seen that this gap increases with decreasing e, which is consistent with our

observations regarding Fig. 3.5.

0 0.2 0.4 0.6 0.8 1
Dstortion D

Figure 3.6. Comparison of quantized-feedback with the rate-distortion
function
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3.7 Hybrid-C: “Distortion-adapted” coding strategy

Both hybrid-A and hybrid-B protocols have the problem of a non-zero resid-
ual coding complexity even in the presence of full (i.e., undistorted) feedback.
In particular, the fractional complexity ¢ for these protocols equals the channel
erasure rate ¢ when £ = 1. Consequently, these protocols perform poorly relative
to time-sharing as € is increased, for moderate to large values of the fractional
feedback.

As pointed out in Section 3.5, this residual complexity results from the fact
that the contribution of the erased bits to the coding complexity remains non-
zero even when all erasures have been identified via feedback. More generally,
for both hybrid-A and hybrid-B protocols, the average left degree of the encoding
set (i.e., parity bits that participate in encoding) in each round remains constant
irrespective of the size of the encoding set. Ideally, we would like the left degree
to reduce to 1 when the encoding set is reduced to just the set of erased bits, as
this corresponds to simply re-transmitting the erased bits in each round.

It turns out that the average left degree of the encoding set can be reduced by
appropriately changing the Tornado code used. We illustrate this in the following
for the hybrid-B protocol.

In the hybrid-B scheme, the encoding set for round 7 + 1 consists of a subset
of size n;(D + ¢€) of the parities transmitted in round ¢, which also includes the n;e
erasures in that round. The (n; parities transmitted in round 7 + 1 help recover
these erasures, and are generated from the encoding set by suitably altering the
structure of a Tornado code designed for erasure probability e. However, among
the parities of the encoding set, the effective erasure rate (fraction of erasures) is

actually € = €/(D + ¢€). Thus, the parities of round 7 + 1 may alternatively be
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generated from the encoding set by using the parity layer of a new Tornado code
designed for erasure probability €, which helps recover any ¢ fraction of erasures
within the encoding set. Since € > ¢, this implies that the new Tornado code
must be of lower rate than the original code used in the coding-only scheme. For
Tornado codes with appropriately chosen d.d. pairs, reducing the rate has the
effect of also lowering the average left degree, as shown in the following.

Recall that the choice of the d.d. pair (A, p) for a Tornado code is influenced
by the target erasure probability €, desired rate R = 1 — [ and overhead ¢ (here,
0 =1—¢/(1 — R)). Further, the average left and right degrees are functions of
the d.d. pair: a; = ﬁ, and a, = m [4].

For a Tornado code of rate R and overhead 4, it can be shown that the average

right degree is lower bounded — independent of the actual d.d. pair (A, p) — as

ap > llsgg((ll //g)) [6]. Consequently, since ¢; = fa, = (1 — R)a,, we have
1-R
> ———log(1/0). 3.31
The function ﬁ is increasing in R. Thus, if there exists a family of d.d. pairs

(A, p) such that the above lower bound is met for all R and 4, then the average
left degree a; can be reduced by decreasing the code-rate R.

It is shown in [6] that the family of right-reqular d.d. pairs comes close to
satisfying this bound as 6—0. With right-regular d.d. pairs, the right degrees take
on only a single value, i.e., the right edge-degree distribution satisfies p; = €,
for some m (here, €;,, is the Kronecker-delta function, i.e., it is a time-sequence
indexed by j that takes on value 1 for j = m, and 0 for all other j). The left-
edge degree distribution J; is obtained from the coefficients of an appropriately-

truncated Taylor series expansion of 1 — (1 —x)Y™ about x = 0. Specifically, it is
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shown in [6] that there exists a sequence of right-regular d.d. pairs (A™ p(™) of

rate R, indexed by the right degree m, with the property that:

(i) the overhead §,, satisfies lim,, ... d,, = 0,

(ii) the average left degree is given by al(m) = 1og1(_11/qR) - (log i + Ap(R)), where

lim,,, oo Ap(R) = 1.78.

From the above, it can be inferred that for every 0 < R < 1, there exists a
family of right-regular d.d. pairs (\s, ps), indexed by the overhead® §, with average
left degree

1-R

a; = m(1og(1/5) + As(R)), (3.32)

where lims g As(R) ~ 1.78.

Summarizing, Tornado codes designed with right-regular d.d. pairs are asymp-
totically optimal ([6]) in the sense that they satisfy the lower bound on ¢; up to
a constant additive term, whose contribution can be neglected as 6—0. Further,
the average left degree a; decreases with decreasing code-rate in the limit as 6—0.

In the following, we shall assume that Tornado codes based on right-reqular
d.d. pairs are employed in all protocols, including the coding-only scheme. How-
ever, our results also hold for any family of d.d. pairs that satisfies the lower bound
(3.31) on the average left degree in a similar or tighter sense than right-regular
d.d. pairs.

The hybrid-C scheme exploits the above property of right-regular distributions

and is described as follows:

1. As in the hybrid-B scheme, s transmits n; = (3'k code bits in round i,

IStrictly speaking, there may not exist right-regular d.d. pairs for every (R,d) pair. A
solution is to employ time-sharing between two d.d. pairs that exist for (R, 1) and (R, d2), with
01 < 6 < dg.
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0 <i< N —1, and d acknowledges n;(1 — e — D) unerased bits (i.e., feeds
back their addresses) among n;(1 — €) non-erasures, using an optimum rate-

distortion code with distortion D (0 < D <1 —).

2. The feedback from round 7 is used in round i+1 as follows: the n, = n;(D+¢)
unacknowledged code bits of round i are used to generate (3'n parities (akin
to a parity layer of a Tornado code), using a right-regular d.d. pair designed
for rate R’ and overhead 6. Here 5/ = €' /(1 —0), € = €¢/(D + ¢) and
R =1-0.

These 3'n; parities help recover up to €'n; = en; erasures in round 4. (It is

easily verified that 8'n} = Bn; = Bk.)

3. In the final round N — 1, the SV 'k parities generated similarly as above

are communicated to d using the feedback-only protocol.

Thus, the size of the encoding set and the number of parities generated in each
round ¢ above is the same as in the hybrid-B protocol. The chief difference lies
in the fact that the average left degree a; of the encoding set is now smaller, for
0 small enough, as the effective rate R’ at which each parity layer is encoded has
decreased. The dependence of a; on R and ¢ is given by (3.32).

The coding complexity for this protocol has the same form as hybrid-B, with

the only difference being that the average left-degree is changed to a;:

Co = %-((D%—e)a;—ﬁ). (3.33)
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The fractional complexity is evaluated in the limit as 6—0:

. Ce
ce = lim
=0 Cppe

/ _
— hm (D + E)al 6
5—0 a— f3

(D +e) - ﬁ(bg(l/& + A5(R’)) -0

= jm B (10g(1/3) + As(R)) — B (3:34)
B log(1 —¢)
= el (3.35)

In going from (3.34) to (3.35), we have used the fact that log(1/d) > As(-),
R~1l—¢cand R =1 —¢€ when 6 < 1. It can be shown that c; < cg for a fixed

value of D, using the series expansion log(l —z) = > ">°, ' /i:

14 € /i
log(1 —¢) € ( ; / )
1+Ze’i/i

log(1 —¢€) 2
€
(because € < €’)

¢

= D+e (= cp). (3.36)

Since the feedback strategy is unchanged from the hybrid-B scheme, the frac-

tional feedback remains the same for the hybrid-C protocol:

fo = . (3.37)

It is easily shown that limp_occ = 0. Hence, cc—0 as f¢ approaches 1. Thus,
there is no residual complexity in the limit of complete feedback, unlike the hybrid-

B protocol.
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A plot of c¢ versus f¢ for different values of € is shown in Fig. 3.7. Also shown
are the corresponding plots for hybrid-B. The hybrid-C scheme shows significant
improvement over hybrid-B, especially with increasing ¢ and increasing f. For
e < 0.01, both schemes perform similarly, and for ¢ > 0.5, hybrid-C performs

poorly compared to time-sharing.
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Figure 3.7. Performance of the hybrid-C protocol
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3.8 Hybrid-D: Partial feedback of erasure locations

In the hybrid protocols considered so far, feedback is used to pinpoint the
locations of a subset of unerased bits. In the following, we describe a protocol in
which a portion of the erasure locations are reported to the source via feedback.
The main idea here is to reduce coding complexity by simply re-transmitting bits
known to be erased, as opposed to encoding them. Such a protocol might be
appropriate in a scenario where the erasure probability is quite large and the
simplicity of re-transmission is an attractive option.

As with non-erasure locations in the hybrid-B protocol, a rate-distortion the-
oretic formulation is possible for the problem of efficiently encoding and feeding
back a subset of the erasure locations. As before, suppose the channel outcomes
associated with m transmissions over a BEC are represented by an m-tuple x
€ {0,1}™, where 0 denotes a non-erasure and 1 an erasure. Let these channel
outcomes be encoded with some distortion as the m-tuple y € {1,U}"™, where,
as before, U represents an unacknowledged channel outcome (either erasure or
non-erasure), while 1 represents an erasure. The vector y is fed back to s after

appropriate compression. The following rules apply for encoding y:
1. An element of y can equal 1 only if the corresponding element in x is also a
1, i.e., non-erasures cannot be represented as erasures.

(As will be seen later, this condition is necessary to prevent re-transmission
of unerased bits, which would lead to waste of forward channel resources

resulting in a gap to capacity.)

Consequently, all non-erasures are unacknowledged in y.

2. The total number of erasures (1’s) in x that are unacknowledged (reported
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as U) in y is upper-bounded by mD, where D is some fixed distortion

parameter that takes on values in the interval [0, €].

Formally, let y and x be related as y = g(x), where ¢(-) denotes the encoding
function, i.e., g : {0,1}"™ — {1,U}™. The per-letter distortion measure is given
by:

0, fe=19y=1,
1, ife=1y=U,

D'(z,y) = (3.38)
oo, ifx=0,y=1,

0, ife=0,y=U.
Analogous to the hybrid-B case, we can define the sum-distortion measure between
the vectors x and y, and the average per-letter distortion d, associated with
encoding function ¢(-). Then, imposing the condition <Zg < D on the encoding
function g¢(-) enforces the encoding rules outlined above.

For g(-) satisfying the distortion constraint d, < D, a similar result as Theorem
1 holds, showing that the smallest achievable entropy for the encoded sequence
y = g(x) is given by the rate-distortion function R'(D):

R(D) = min I1(X;Y). (3.39)

py|x (ylz): E(D'(X,Y))<D

(Here, X and Y are Bernoulli random variables with Pr(X = 1) = ¢, and the
expectation E(D'(X,Y)) is over the joint distribution of X and Y.)

Further, in a similar manner as how (3.25) was derived, it can be shown that

- 1 1 1
R(D) = (1 —¢+ D)log, 1 1D Dlog, 5t elog, - (3.40)

e+ D

In sum, by using an optimum rate-distortion code with rate R'(D) at d, the
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encoded vector y can be fed back to s using m- R'(D) bits, such that at most m.D
erasures in x are unacknowledged in y.

We now describe the hybrid-D protocol for a fixed distortion D € [0, €]

1. Inround 7, 0 < i < N —1, s transmits n; = +'k code bits, where v is defined
below (round 0: message bits). Of the n;e erasures that occur, d feeds back
the locations of n;(e — D) erased bits using an optimum rate distortion code

as described above.

2. The feedback from round ¢ is used in round ¢ + 1 as follows: the code bits
of round i are partitioned into two sets F; and C;. The set F; comprises
the n;(e — D) acknowledged erasures, and C; consists of the remaining n; =
n;(1 — e + D) bits, which include n; D unacknowledged erasures. The bits
in F; are simply retransmitted in round ¢ + 1. However, the bits in C; are
encoded and transmitted as follows. The effective erasure rate among the
bits in C; is €’ = D/(1—e+ D). Let 8" = ¢’/(1—0"), for some ¢’ > 0. Then,
as in the hybrid-C scheme, the n! bits of C; are encoded to produce ("n;
Tornado parities using a right-regular d.d. pair designed for rate R” = 1—3"

and overhead ¢’. So the total number of bits transmitted in round ¢ + 1 is:

niyi = (e—D)n;+8"n;
= (e—D)n; + D (1—€e+ D)n;
R R G R 5} B R ) ‘ i
= v-n; (3.41)
where
D
’}/—E—D+1_6/. (3.42)
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Figure 3.8. Hybrid-D scheme: Encoding process

3. In the final round N — 1, s generates vV"'k code bits as above, and these

are communicated to d using the feedback-only protocol.

The encoding process is illustrated in Fig. 3.8.

The total number of bits transmitted by s is given by k/(1 — 7); since y—e
as ¢’ —0, this scheme too approaches capacity. To equalize the total number of
forward transmissions in this scheme and the preceding schemes, the overhead ¢’

must be chosen so that the condition v = [ is satisfied, where 5 = ¢/(1 —§). This

leads to:
D €
- D =
S T
( ! 1) D ( ! 1) (3.43)
0 | — = = . — i
R S -0 )

from which it follows that ¢’ > 0 since D < e. Further, in the limit of small  and
0’, we can use the approximation ﬁ —1 =~ x above to obtain &' ~ £ - 4.
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Since a right regular d.d. pair is used for code construction, the average left
degree a}/, rate R” of the d.d. pair and overhead ¢’ are related according to (3.32).
Unlike the hybrid-C scheme, the average left degree @) in this case is larger than
in the coding-only protocol, because R” > R.

The average right degree a! is given by a. = a]/B"”. The encoding (and

decoding) complexity associated with round ¢ + 1 is §”n}(a” — 1). Summing over

all the rounds yields

N—-2
Zﬂ”’a”—l = B"(1—e+D)-ni(a’ —1)
=0
N—-2 .
= (I—e+D)-v'%k-(af = B")
=0
— Dy kAo 14
= (1—€e+D)- 'ﬁ'(az—ﬂ)- (3.44)

Neglecting v¥=! for large N and setting v = f3, the coding complexity for the

hybrid-D scheme is given by:

Cp = %-(1—6%—[))- (ag'—/@”). (3.45)

The fractional complexity is again evaluated in the limit as d—0, noting that o
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and 0’ are related according to (3.43):

lim Co
cp = Ui
> 5—0 Crpc’
2/_6”
= (1-— D) -l
( €+ )61—r>% a; — ﬂ’

= (l—€+D)-lim

i (log(1/8) + Ay (R")) — 8"

I s (lo(1/6) + A(R) — 5

ey (108(1/9) + 08(D/e) + B4 (R')) = "

= (l—€e+D)-lim ’
0=0 log(l/R (10g(1/6> + A5(R)) 6
€’ —log(1 —€)
= (1—e+D)- .
(1-e+D) —log(1 —¢") € '
D log(l—e¢)

e log(l—¢")’

(3.46)

Here, we have used the approximation ¢’ ~ 5 for small §, and the fact that

" __ D

€ = 15D

The amount of feedback needed in round i (0 < i < N—2) is given by n;-R'(D).

Neglecting the feedback in round N —1 (for large N), the total amount of feedback

required for the hybrid-D scheme is given by:

(Here, we have again set v = f3.)

Evaluating the fractional feedback as 6—0 yields

(3.47)

(3.48)

In Fig. 3.9, plots of ¢p versus fp are shown for different values of e. This

protocol performs poorly for a large range of € (up to 0.8). However, in contrast
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with earlier schemes, the performance of the hybrid-D scheme is seen to improve
with increasing e. For € > 0.9, the performance is better than the time-sharing

and hybrid-C schemes for a wide range of (c, f) values.
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Figure 3.9. Performance of the hybrid-D protocol
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Observe the relatively large “residual” fractional complexity in Fig. 3.9 when
fp = 1, i.e., when the distortion D = 0. This arises from the behavior of the
average left degree a] in the hybrid-D scheme, as D—0 (which results in €’—0
and the effective code-rate R”"—1). The exact value of cp in the limit as D—0
can be shown to be % log i

Note that an alternative to the coding approach in the hybrid-D protocol is
to employ a similar approach as in the hybrid A and B protocols, wherein the
Tornado code is not adapted according to the distortion in the feedback. In other
words, we could use the same Tornado code as in the coding-only protocol (of rate
R =1—¢/(1—0) ), such that erasures acknowledged in each round are simply
omitted from the encoding process in the next round, and the erased bits are
themselves re-transmitted separately. While this method can potentially reduce
the encoding/decoding complexity, it requires the total number of transmissions
from the source to be much larger than k/(1 — 3). Consequently, this scheme

cannot achieve capacity and is hence not considered here.

3.9 Hybrid-E: A generalization of hybrid-C and hybrid-D schemes

In this protocol, we generalize the feedback strategies used in hybrid-C and
hybrid-D protocols, so that a subset of both erasure and non-erasure locations are
conveyed to the source. The rate distortion formulation for this case involves two
distortion measures.

As before, let the channel outcomes of m transmissions be represented by x
€ {0,1}™ (0: non-erasure, 1: erasure). Let these channel outcomes be encoded as
y = h(x) € {0,1,U}™, where unacknowledged channel outcomes () occur in

addition to erasures (1) and non-erasures (0). The vector y is fed back to s after
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appropriate compression. The rules in encoding y are:
1. Non-erasures cannot be reported as erasures, and vice versa.

2. The total number of non-erasures and erasures that are unacknowledged
(reported as U) in y are upper-bounded by mD, and mD;, respectively.

Here Dy € [0,1 — €] and D; € [0, €] are fixed distortion parameters.

Formally, the per-letter distortion measures are given by:

L ife=0,y=U,
Do(w,y) = oo, ifz=1y=0, (3.49)

0, otherwise.

and
, fe=1y=U,

Di(z,y) = oo, ifx=0y=1, (3.50)

0, otherwise.

Let JOJL and JLh denote the corresponding average per-letter distortions associated
with the encoding function A(-). Then, the conditions dy; < Dy and dyj; < Dy
on h(-) enforce the above encoding rules.

The rate-distortion function in this case is defined as

R(Dy, Dy) = min I(X;Y). (3.51)

py|x (yl@): BE(Di(X,Y))<D;, i€{0,1}

where X and Y are Bernoulli random variables with Pr(X = 1) =e.
For the case of multiple (vector) distortion criteria, it can be shown that a
result similar to Theorem 1 holds [37], i.e., the smallest achievable entropy for the

encoded sequence y = h(x) is given by mR(Dy, D;). Hence, this is the smallest
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number of bits needed to feed back m channel outcomes, such that at most mD,
non-erasures and mD; erasures are unacknowledged. Further, it can be shown

that the rate-distortion function evaluates to:

- 1 1 1
R(DQ,Dl) = h,(E) + (D0+D1) 10g2 DO D DologQ— — Dl 1Og231
Dy
- — (Do + Dy) - 2
h(e) = (Do+ D) - (55 57) (3.52)

(See Appendix B for a derivation.)
We now describe the hybrid-E protocol for a fixed distortion pair (Dg, D;),

with Dy € [0,1 — €] and D, € [0, ¢€l:

1. Intound 7, 0 <4 < N — 1, s transmits n; = 'k code bits (round 0: message
bits), where 7 is defined below. Of the n; channel outcomes, d feeds back
the locations of n;(1—e— Dy) unerased bits and n;(e — D) erased bits, using

an optimum rate distortion code of rate R(Dy, Dy) as described above.

2. In round 7 + 1, the feedback from round 7 is used to partition the code bits
of round 7 into three sets E;, R; and U;. The set E; consists of the n;(e — D;)
acknowledged erasures, R; comprises the n;(1 —e — Dy) acknowledged non-
erasures, and the remaining n;, = n;(Dy+ D) unacknowledged bits make up

Us.

The bits in E; are simply retransmitted in round ¢ + 1. The bits in R; do
not participate in round 7+ 1, as they have already been received by d. The

bits in U; are encoded and transmitted as follows.

The effective erasure rate among the bits in U; is € = Dy/(Dy + D1). Let
3 =¢€/(1—0), for some 6 > 0. Then, as in the hybrid C and D schemes, the n/

bits of U; are encoded to produce Bn; Tornado parities using a right-regular
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d.d. pair designed for rate R=1- B and overhead 4.

So the total number of bits transmitted in round ¢ + 1 is:

Niq1 = (e —=Dy)n; + Bn;

D,
= (E — Dl)n, + = (D() + Dl)nz
(Do + Dy)-(1-=9)
= -1 (3.53)
where
~ D,
= e— D+ =, 3.54
7 1 1_3 ( )

(Note the similarity between the above expression and that for v in (3.42)
for the hybrid-D scheme.)

3. In the final round N — 1, s generates ¥V ~'k code bits as above, and these

are communicated to d using the feedback-only protocol.

As in the hybrid-D scheme, in order to utilize the same total number of transmis-
sions as all preceding hybrid schemes, we set ¥ = 3. This gives rise to a similar
condition between § and d as (3.43). Again, for small §, this simplifies to 0 ~ 570

The average left degree &, rate R and overhead 6 are related according to
(3.32). Further, the average left and right degrees are related as @, = Ba,. Then,
similar to the case of the hybrid-D scheme, it can be shown that the coding

complexity of the hybrid-E scheme is given by:

Cp — $~(DO+D1)-<ELZ—6~), (3.55)
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and the fractional complexity can be shown to be:

cg = lim Co
-0 Crpc’
Dy log(l—e¢)
e log(l1—¢)
D, log(1 —¢)

= ¢ log(l= Dy /(Do + DY)’ (3.56)

Likewise, the total amount of feedback required for the hybrid-E scheme (when

N is large) is:

Fg = % - R(Dy, D). (3.57)

and evaluating the fractional feedback as 0—0 yields

_ R(Dy, Dy)
o= g (3.58)

Note that cg and fg each depend on both Dy and D;. It remains to determine
the optimal (Dg, D) pair for each value of fg, so that the corresponding cg is
minimized.

In order to perform the above optimization, we employ the following change
of variables, viz, p = D;/(Dy + D;) and D = Dy + D;. Consequently, D; = Dp
and Dy = D(1—p). Then, the rate-distortion function in (3.52) can be re-written

in terms of D and p as:

R(D,p) = h(e)— D - hip). (3.59)
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Further, the fractional complexity and fractional feedback in terms of (D, p) are

log i D

e log

D - h(p)
€)

Cg —

= (3.60)
1-p

fp o= 1— ———2 3.61
Now, the problem of determining the optimal (D, p) pair, that minimizes cg for a

fixed value of fg, may be cast as follows.

Minimize D - g(p) subject to D - h(p) = K, where

p
9p) = 3 (3.62)
Ongp

and k is some constant in the interval [0, h(€)].

This problem is solved in Appendix C. We present the solution here.

Let p* denote the unique value of p that minimizes f(p) £ g(p)/h(p); this is
given by p* &~ 0.692. Also, let D(/{) denote the unique solution of the equation
D -h(e/D) = k, and D(x) the unique solution of D - h((1 —€)/D) = , when each

exists. Then, the optimal (D, p) is given by:

1. For € < p*,
R x h(p*)
<h(p*)’p)’ forOSfigp—*e,
(D,p) = i . . (3.63)
D(k), = , for M20¢ < < h(e).
D(x) .



2. For € > p*,

(G v):  moswsiu—g
(D,p) = (D() 1_€> or (1 — 9 < < A9 (3.64)
K), = , for T2 €) < k < h(e).
D(k) r

In interpreting the above results, we first note that the two extreme values of
K, viz., Kk = 0 and k = h(e), correspond to fg = 1 and fg = 0, respectively (since

D-h(p) = r).

h(p*)

Now, suppose € < p*. Then, from (3.63), when x < =

€, it is optimal to split
the total distortion D, between erasure and non-erasure locations, in the fized

proportion (p*, 1 — p*) . For fixed p, note that both f¢ and cg are proportional to

D. Consequently, cg varies linearly with fg for this range of k. When x > h;’f)e,
from (3.63), it is optimal to set the distortion in the erasure-locations to the
mazimum possible value, i.e., D; = Dp = ¢; the distortion in the non-erasure
locations is then given by Dy = D — e. Thus, for this range of x, none of the
erasure locations are conveyed to the source. Consequently, the hybrid-E protocol
essentially coincides with the hybrid-C protocol in this regime.

Likewise, when € > p*, the total distortion is again split in the fixed proportion
(p*,1 — p*), between erasures and non-erasures, for k < fll(_L;,z(l —¢). Hence, cg
again varies linearly with fg in this regime. For x > ?%Q(l — €), it is optimal
to set the distortion Dy = D(1 — p) = 1 — ¢, i.e., to not feed back any of the
non-erasure locations. Hence, the hybrid-E protocol coincides 