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COMPLEXITY-FEEDBACK TRADEOFFS AND CAPACITY RESULTS FOR

PACKET ERASURE NETWORKS

Abstract

by

Srinath Puducheri Sundaravaradhan

Many communication networks are well-modeled as packet erasure networks,

as packets transmitted over these networks are either received correctly at the des-

tination or are “erased”; a packet erasure occurs when an error-corrupted packet

is detected and discarded, or when a packet is dropped due to congestion in the

network. This dissertation investigates two problems related to communicating

reliably over packet erasure networks, adopting two different views of the net-

work, viz., (i) a point-to-point erasure channel (that models either a single link or

end-to-end communication), and (ii) a network of erasure links.

Reliable communication over a point-to-point erasure channel can be accom-

plished in one of two ways: 1) incorporating redundant packets in the transmitted

packet sequence, i.e., via forward-error-correction (FEC) techniques, or 2) us-

ing feedback to request re-transmission of erased packets, i.e., automatic-repeat-

request (ARQ) protocols.

This dissertation presents new constructions of hybrid ARQ protocols (i.e.,

protocols combining FEC and ARQ) for the point-to-point erasure channel. These

protocols use Tornado codes (a class of LDPC codes) for erasure correction. The

focus is on enabling and characterizing trade-offs between costs associated with
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FEC (i.e., computational complexity of encoding/decoding) and ARQ (the amount

of feedback utilized). The described protocols provide efficient trade-offs and

can offer significant savings in computational/feedback requirements in several

situations, compared to simple time-sharing between FEC and ARQ.

The second topic of this dissertation deals with reliable communication over

two wireless relay networks – the multiple access relay channel (MARC) and the

multiple relay channel (MRC) – wherein the links are memoryless erasure channels,

and individual nodes time-share the use of the medium. The MARC is comprised

of M independent sources that communicate with a common destination with the

help of a single relay, while the MRC consists of a single source communicating

with a single destination with the aid of M parallel relays.

The capacity region of the MARC and the capacity of the MRC are derived,

assuming the destination has perfect knowledge of erasure patterns on all the links.

Optimal bandwidth allocation strategies are obtained in closed-form as functions

of the link parameters. These serve to highlight the utility of the relay(s) in various

scenarios. Also, it is shown that easily-implemented capacity-approaching codes

for the binary erasure channel, such as LDPC or Tornado codes, can be used at

the link level to attain any achievable rate(s). Finally, these capacity results are

unchanged in the presence of feedback of erasure location information to all nodes.
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CHAPTER 1

INTRODUCTION

The model of an erasure channel, first introduced by Elias in 1956 ([1]), is

perhaps the simplest among “noisy” communication system models. In its general

form, an erasure channel between a transmitter and a receiver either allows error-

free communication of a transmitted symbol, or replaces it with a special erasure

symbol E at the output. More formally, if X denotes the (finite) input alphabet

of the channel, then the output alphabet is given by Y = X ∪ {E}; when any

x ∈ X is transmitted over the channel, it is received as either x or E (an erasure),

typically in a probabilistic fashion. Consequently, the receiver is able to identify

exactly which transmitted symbols were erased, and the unerased symbols are

detected without any ambiguity.

Erasure channels can be memoryless, wherein for any stream of transmitted

symbols, erasures occur independently with some probability ǫ, or the channel

could have memory, wherein the erasures follow a more complicated correlated

random process. A special case of the erasure channel is when the input alphabet

consists of bits, i.e, X = {0, 1} – this gives rise to the popular binary erasure

channel (BEC) model, depicted in Fig. 1.1.

Despite its simplicity, an erasure channel is often used to accurately model

modern packet-based communication systems. In particular, data transfer over

1



ǫ

ǫ
E

1

0

1

Y

0

X

1 − ǫ

1 − ǫ

Figure 1.1. The binary erasure channel – transition probabilities

networks such as the Internet occurs in the form of packets, i.e., distinct format-

ted blocks of bits. When transmitted over a network, these packets are typically

subject to impairments such as noise, interference from other transmissions, fad-

ing (such as in wireless networks), etc., which can result in errors in the received

packets. Further, packets may be discarded or “dropped” at intermediate routers,

as a result of congestion. Packets received with errors are detected via an in-

ternal check-sum mechanism; further, every corrupted or dropped packet can be

identified by means of a unique, pre-assigned sequence number. Consequently,

such packets can be thought of as “erasures” produced by the network (channel).

In this situation, the end-to-end communication channel between a source and a

destination can be modeled as either (i) a single point-to-point packet erasure

channel, or (ii) a network of interconnecting links that individually behave as

packet erasure channels.

In this dissertation, the model of a packet erasure channel is often simplified

to its binary counterpart – the BEC. This is done primarily for convenience of

analysis, and the results obtained with the BEC model are easily generalized to

2



packet erasure channels. For example, since each packet is simply a binary string,

binary linear codes naturally lead to packet coding schemes, in which binary XOR

operations are replaced by bit-wise “packet-XOR” operations.

1.1 Reliable communication over the point-to-point erasure channel

Reliable communication over an erasure channel can be accomplished via two

different methods:

1. Feedback: In the presence of a feedback channel from the destination to

the source, a simple mechanism called Automatic Repeat reQuest (ARQ)

can be used to reliably communicate data. Essentially, the status of every

received symbol (bit/packet), i.e., whether erased or not, is fed back by the

destination to the source, which then repeatedly re-transmits every erased

symbol until it is received without erasure. This mechanism is employed in

the popular transmission control protocol (TCP), used for communication

over the Internet.

2. Coding: In the absence of feedback, reliable communication can still be

accomplished by means of coding or forward error correction (FEC). Specif-

ically, the source encodes a set of intended message symbols using an ap-

propriate erasure-correcting code to generate a larger set of (redundant)

code symbols, which are transmitted over the erasure channel. This pre-

incorporated redundancy suffices to decode the message symbols from the

subset of code symbols that are received without erasures at the destination.

Examples of erasure correcting codes include Reed-Solomon codes, certain

classes of low-density parity-check (LDPC) codes, Fountain codes, etc., as

will be discussed in the next chapter.
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Each of the above techniques has its own associated “cost”. The drawback with

ARQ is the need for an ideal feedback channel, which requires dedicated band-

width and additional resources to ensure error-free communication. Likewise, one

of the costs associated with FEC is the complexity in encoding and decoding re-

dundant code symbols, each of which is a packet containing several hundred to

few thousand bits.

Therefore, it is interesting to see if methods incorporating both coding and

feedback for reliable communication, commonly referred to as hybrid ARQ pro-

tocols, can achieve a combination of costs that makes them more attractive than

using only coding or only feedback. This is relevant in scenarios where limited

resources may exist for feedback, such as (i) limited bandwidth (e.g., upstream

channels in asymmetric digital subscriber loop (ADSL) systems, control channels

in cellular systems, etc.), (ii) limited power (such as mobile wireless receivers with

limited battery life) or, (iii) a combination of both. Likewise, there could exist

situations where coding is feasible, albeit at reduced complexity.

The above topic forms the basis of discussion of the first part of this disser-

tation. In connection with this, different classes of hybrid ARQ protocols are

derived, and the associated tradeoffs between coding complexity and feedback

requirements are analyzed.

1.2 Networks of erasure channels

Conventionally, in packet-based networks, the intermediate nodes that handle

data traffic act primarily as “routers”, i.e., they merely forward received data

along the appropriate path. On the other hand, allowing these nodes to process

incoming data prior to routing it can result in significant improvements in the end-

4



to-end throughput. To achieve these gains, it is necessary to take into account

the individual link-level erasure statistics of the network.

In general, we would like to solve the problem of (i) characterizing the best

end-to-end throughputs possible over a given network, as a function of all its

link-level erasure statistics, and (ii) determining the processing strategy at each

node that can help achieve these throughputs. The solution to this problem

also has important implications concerning network architecture and design, viz.,

identifying potential traffic “bottlenecks”, determining optimum medium-sharing

strategies (in the case of wireless networks), etc.

This dissertation addresses the above problem for the case of two simple, yet

fundamental, configurations of wireless networks, viz., the multiple-access relay

channel (MARC) and the multiple-relay channel (MRC). The MARC consists of

two or more sources (si) communicating with a common destination (d) with

the aid of a single relay (r), as shown in Fig. 1.2(a) for the two-user case. This

could represent a situation in which multiple mobile stations communicate with

a common base station with the assistance of a common dedicated relay that

could potentially aid in improving coverage. The MRC consists of a single source-

destination pair (s, d) communicating with the aid of one or more relays (ri), as

shown in Fig. 1.2(b) for the two-relay case. This situation could arise in a wireless

ad-hoc or sensor network, where certain wireless nodes may double up as relays

for other pairs of nodes communicating with each other.

1.3 Contribution and organization of this dissertation

The rest of this dissertation is organized as follows.

Chapter 2 provides the relevant background for the topics addressed in this

5
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Figure 1.2. (a) The two-source multiple-access relay channel; (b) the
two-relay multiple-relay channel.

dissertation and outlines previous work on erasure correcting codes, hybrid ARQ

protocols and wireless erasure networks.

In Chapter 3, various hybrid ARQ protocols are presented for the point-to-

point erasure channel, assuming the existence of a noiseless feedback channel.

These protocols are based on a class of erasure-correcting codes called Tornado

codes. The main goal in designing these protocols is to reduce the complexity

incurred with coding by using a limited amount of feedback, which is measured

as the number of bits communicated over the feedback channel. To this end, the

amount of feedback required by different hybrid protocols is optimized using tools

from rate-distortion theory.

For each hybrid protocol, the corresponding tradeoff between coding complex-

ity and feedback requirements is characterized, and it is seen that these protocols

can offer “better” tradeoffs than a benchmark time-sharing protocol in different

regimes. Chapter 4 considers some practical aspects of these hybrid protocols, in-

cluding: the choice of Tornado codes and how it affects the performance of these

6



protocols, as well as the design of “practical” rate-distortion schemes.

Chapter 5 derives capacity results for two wireless relay networks – the MARC

and the MRC – with links modeled by memoryless BECs, under the assumptions

of: (i) orthogonal medium access (achieved via time-sharing) among the different

transmitting nodes, and (ii) perfect knowledge at the destination of all erasure

events that occur in the network. The approach adopted here consists of for-

mulating cut-set outer bounds on the capacity (region), and demonstrating the

achievability of these bounds using simple codes designed for the point-to-point

erasure channel. As a consequence, optimum bandwidth-allocation strategies for

both these networks are obtained as explicit functions of the link erasure statistics,

which serve to highlight the utility of the relay node(s) under different scenarios.

In particular, for the MARC, it is shown that the relay is useful only for those

sources that have a weaker direct link to the destination than the relay itself -

regardless of the quality of the source-to-relay links. On the other hand, for the

MRC, the participation of a relay r in the optimum strategy is determined by a

more complex, inductive criterion – it depends on the best throughput achievable

using only those relays with a better link to the destination than r.

Finally, Chapter 6 presents a summary and discussion of the main results of

this dissertation.

7



CHAPTER 2

BACKGROUND

2.1 Erasure correcting codes

The capacity of the binary erasure channel with erasure probability ǫ is given by

1−ǫ bits/channel use [2]. More generally, the capacity of an M-ary erasure channel

with the same erasure probability can be shown to be 1−ǫ M-ary symbols/channel

use, or (1 − ǫ) · log2 M bits/channel use. Consequently, in order to communicate

k message symbols reliably, at least n = k/(1 − ǫ) code symbols need to be

transmitted over an erasure channel.

The class of Reed-Solomon (RS) codes [3] comes close to achieving this lower

bound in the following sense: for an (n, k) RS code that maps k message symbols

to n code symbols, any subset of size k of the code symbols suffices to decode

all k message symbols. However, RS codes are defined over a finite field contain-

ing at least as many elements as the codeword length n. Further, the encoding

and decoding complexities of typical implementations of these codes grow at least

as O(k2). This makes these codes computationally unattractive for larger block-

lengths.

The class of Tornado codes was proposed in [4] as capacity-approaching (c.a.)

code constructions for the BEC. These codes are described using sparse bipartite

graphs and are similar in construction to low-density parity-check (LDPC) codes
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[5]. Consequently, they have encoding and decoding complexities that are linear in

the blocklength, i.e., O(n). These codes are constructed with a non-zero gap δ to

capacity, where δ can be chosen arbitrarily small provided n is chosen sufficiently

large, and their encoding/decoding complexity grows as O
(

log(1/δ)
)

for fixed n,

as δ is made small.

The code construction presented in [4] led to the discovery of other families of

c.a. Tornado and irregular LDPC codes, a systematic study of which is presented

in [6]. While Tornado codes have both linear encoding and decoding complexity,

these irregular LDPC codes have only linear decoding complexity. Another class

of codes that approaches capacity with linear encoding and decoding complexity is

the family of systematic irregular-repeat accumulate (SIRA) codes [7], [8]. These

codes have a very simple encoder structure, similar to Tornado codes, consisting

of the cascade of an irregular single-parity-check (SPC) code and an accumulator.

All these families of codes have the common property that their complexity

grows unbounded as O
(

log(1/δ)
)

, when the gap-to-capacity δ goes to zero. In

contrast, the class of non-systematic irregular-repeat-accumulate (NSIRA) codes

[9] and accumulate-repeat-accumulate (ARA) codes [10] approach capacity with

bounded complexity (that is linear in the blocklength), as δ approaches zero.

Finally, the above codes are all designed for a fixed value of the erasure prob-

ability ǫ that is assumed to be known a priori. In contrast, it is possible to

construct erasure-correcting codes that can achieve capacity for any value of ǫ,

i.e., the value of ǫ is not needed in designing the code. Consequently, these codes

are universal and can adapt to varying channel statistics. Examples of these codes

are LT codes [11] and Raptor codes [12]. For the LT codes developed in [11], the

encoding complexity is O(log(k)) per code bit and the overall decoding complexity
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is O(k log(k)); further, their gap-to-capacity is O( log2 k√
k

). On the other hand, the

behavior of Raptor codes is similar to Tornado codes – they have encoding com-

plexity O(log(1/δ)) per code bit and overall decoding complexity O(k log(1/δ))

for gap to capacity δ.

2.2 Feedback, coding and hybrid ARQ protocols for packet erasure networks

For packet-based networks such as the Internet, feedback has traditionally been

used to achieve reliable communication. Various types of ARQ protocols are used

at both the link layer and the transport layer (such as in TCP) of the network

protocol stack, as discussed in [13].

In [14], the use of coding or FEC as an alternative to feedback in networks

was proposed for two different cases: multicast over networks, and end-to-end

transmission over links with a high bandwidth-delay product. In the context of

multicast, the same redundant packets generated using FEC can compensate for

potentially different packets erased at different receivers; thus, FEC avoids the

problem of “feedback implosion” that occurs when each of several receivers at-

tempts to provide feedback about its own erasure status. In the case of links

with a high bandwidth-delay product, the round trip time can exceed the total

transmission time; using feedback in this context can be wasteful as it leads to

long wait times at the transmitter, and FEC can reduce this inefficiency. The use

of Reed-Solomon codes for reliable multicast was explored in [15].

The idea of using FEC for multicast in networks led to the notion of “digi-

tal fountain” codes [16], [17]. With Fountain codes, a transmitter continuously

broadcasts distinct code packets encoded from a single message. Receivers lis-

tening to the broadcast experience different erasure processes with potentially
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different statistics, unknown to the transmitter; nonetheless, each receiver is able

to decode the message on receiving a sufficient number of unerased code pack-

ets, that is roughly equal to the total number of message packets. The notion of

Fountain codes led to the invention of LT and Raptor codes, outlined earlier.

Besides the above FEC-only approaches, there has also been work on devel-

oping hybrid ARQ protocols for packet-erasure networks. Some of these schemes

are outlined below.

In [18], simple hybrid ARQ schemes using very short blocklength RS codes

are presented for the case of multicast transmission; these help reduce the num-

ber/content of feedback requests from each receiver and improve the efficiency of

re-transmissions.

In [19], a hybrid rateless scheme based on binary codes is developed that uses a

very small amount of feedback to acknowledge only the number of decoded message

packets. The resulting scheme has a “real-time decoding” property (i.e., decoding

occurs as packets are received) and low memory requirements at the destination,

at the cost of higher transmission overhead, roughly by a factor of two.

In [20], hybrid ARQ schemes using binary sparse-graph codes are proposed

for multicast transmission with quality-of-service (QoS) constraints – the code-

structure is adapted on-the-fly based on limited feedback from each receiver, re-

garding the number of lost packets.

In [21], the use of feedback to improve the reliability of erasure correcting codes

is explored. In particular, this work introduces an LDPC coding scheme that uses

a limited amount of noiseless feedback in order to improve the decoder’s perfor-

mance in the presence of stopping sets [22]. Tradeoffs are established between the

resulting reliability (i.e., frame error rate) and the amount of feedback utilized.
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In [23], feedback is used in the context of network coding for multicast, with

the goal of reducing the queue-size (of packets waiting to be delivered) at the

sender and decoding delay at the receivers. The encoding process consists of

generating random linear combinations of message packets in a queue, treating

them as symbols over a sufficiently large finite field. Conventional ARQ is used

by all receivers to acknowledge received code packets. Based on this feedback,

the sender identifies a particular common message packet as being “seen” by all

receivers, and this packet is removed from the queue for encoding future code

packets. This also has the effect of reducing coding complexity.

The hybrid protocols introduced in this dissertation differ from the approaches

adopted earlier in many fundamental aspects. Our primary goal is to design

“flexible” hybrid protocols for unicast transmission (i.e. for a single receiver)

that allow for tradeoffs between the amount of coding and feedback used. Within

this framework, our focus is explicitly on minimizing coding complexity for a given

amount of feedback and vice versa. In contrast, much of the earlier work has dealt

with fixed coding/feedback strategies, primarily for multicast transmission, where

the focus has been different from establishing complexity-feedback tradeoffs. As

mentioned earlier, our protocols use binary erasure correcting codes (i.e., Tornado

codes) with XOR as the only operation, unlike some previous approaches that

make use of codes defined over larger finite fields (e.g., RS codes) requiring far

more complex operations. Further, all protocols considered in this dissertation are

capacity-approaching, in the sense that there is no waste resulting from excessive

transmission of redundant packets, i.e., beyond what is needed by the receiver to

decode the message.

On a final note, it is worthwhile highlighting the difference between the hybrid
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ARQ protocols considered here for erasure-recovery, and conventional hybrid ARQ

protocols used at the link-level for error-correction [24]. While the former are

used for losslessly communicating a collection of packets, the latter are used to

communicate individual packets reliably. Consequently, the nature of feedback

used in these two approaches is quite different; for example, while it is practically

impossible to feedback the status of every “noisy” bit within a received packet,

feeding back locations of erased packets is quite feasible.

2.3 Wireless relay networks with erasure links – MARC and MRC

The MARC and MRC can be viewed as extensions of the three-terminal relay

channel (with a single source and single relay) studied by van der Meulen [25] and

Cover and El Gamal [26]. The MARC was first introduced in [27], and bounds for

the capacity region of the discrete memoryless MARC were derived in [27], [28],

[29]. Similarly, achievable rates for the general discrete memoryless multiple relay

channel have been derived, cf. [29], [30].

The focus of the cited work is primarily on establishing performance bounds

for the most general descriptions of the MARC and the MRC, as is typical in

information theory. While such an approach is quite powerful, the underlying

problems are invariably extremely hard to tackle, and so as of yet there is no

exact formulation for the capacity (region).

In contrast, this dissertation seeks a formulation for the capacity (region) by

restricting attention to networks composed of erasure channels, which is a special

case of the discrete memoryless channel (DMC) model. This allows us to consid-

erably simplify the problem of solving for the capacity (region) and gain insights

that are not easily accessible via more complex models. Also, as we have seen, the
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model of an erasure channel is quite relevant in packetized communication. The

shortcoming of the erasure-channel assumption, of course, is that the results do

not generalize to other instances of the DMC that arise in practice.

The study of wireless networks using the simple erasure-link model has been

undertaken with great success by several researchers, cf. [31], [32], [33], [34],

[35]. In [31], the capacity region of multi-source multicast over arbitrary wireless

networks with erasures is derived, assuming: (i) orthogonal links that carry one

packet per channel use, and (ii) perfect knowledge of erasure patterns on all

links at the destination; moreover, it is shown in [31] that the capacity region

coincides with that described by cut-set bounds. Further, [32] demonstrates that

the capacity of single-source unicast and multicast transmission over such networks

is achievable using random network coding at the intermediate nodes. In [33],

[34] and [35], the authors consider particular relay erasure networks where the

destination nodes do not have access to the above side information; converse

bounds and achievability results using maximum distance separable (MDS) codes

are presented for this scenario.

The models for the MARC and the MRC assumed in this dissertation are quite

similar to that in [31] – in particular, we also assume the presence of perfect side

information of all erasure patterns in the network, at the destination. In fact, the

capacity results of [31] can be specialized to the MARC and the MRC. However, in

[31] the available bandwidth is apportioned equally among all transmitting nodes;

in contrast, we do not pre-determine the allocation of the wireless medium. As a

consequence, the region of all achievable rates we obtain is strictly a superset of the

region that follows from the results of [31]. Further, we demonstrate that points

in the capacity region may be achieved using low-complexity capacity-achieving
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(c.a.) codes designed for the BEC (such as Tornado or LDPC codes), in place of

the random coding arguments employed in [31].
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CHAPTER 3

HYBRID ARQ PROTOCOLS FOR THE ERASURE CHANNEL

3.1 Introduction

As noted earlier, coding and feedback constitute two fundamentally different

means of communicating reliably over erasure channels. One of the main costs

of coding is the associated computational complexity in generating and decoding

code packets. Likewise, the use of feedback necessitates dedicated bandwidth on

a feedback link. Hybrid ARQ protocols combine coding and feedback to reli-

ably communicate data. In this chapter, we explore a new class of hybrid ARQ

protocols designed to permit trade-offs between computational complexity of en-

coding/decoding and the amount of feedback utilized.

We consider the model of a memoryless binary erasure channel (BEC) between

a source s and destination d. The erasure probability of the BEC is denoted ǫ.

The destination is able to convey information to the source by means of a noiseless

feedback link. The source has k message bits that need to be conveyed reliably

to the destination. We restrict ourselves to capacity-achieving protocols, i.e.,

protocols that achieve reliable communication with n = k/(1−ǫ) bits transmitted

from s, on average.

We adopt the following metrics to evaluate different protocols:

• Coding complexity C: This is the total number of XORs needed to gen-
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erate all the bits that are transmitted by s, i.e., the encoding complexity.

For the codes we consider (Tornado codes), this is the same as the decoding

complexity.

• Feedback channel usage F: This is given by the total number of bits

communicated by d to s over the feedback link.

We begin with an overview of feedback-only and coding-only approaches.

3.2 Feedback-only (ARQ) protocol

The simplest form of a feedback-only protocol is as follows: s re-transmits

every message bit until it is received unerased and d feeds back the status of

every received bit. For this scheme, it follows that both s and d need to transmit

k/(1−ǫ) bits on average. However, it is possible to reduce the amount of feedback,

as shown below.

For n transmissions over the BEC, the erasure locations can be thought of

as the output of a Bernoulli {0, 1} source, where 1 denotes an erasure and 0 a

non-erasure. Since the probability of a 1 is ǫ, it follows that the n-bit Bernoulli

sequence describing the erasure locations can be efficiently represented with n·h(ǫ)

bits, using an appropriate source code. Here, h(x) = −x log2(x)−(1−x) log2(1−x)

is the binary entropy function.

The above observation leads to the compressed-feedback protocol. In this

protocol, feedback from d and re-transmission from s occur in several rounds, as

follows:

Round 0: s transmits the k uncoded message bits and d feeds back the

erasure locations, after appropriate compression using a source code.
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Round i (1 ≤ i ≤ N − 1): s re-transmits the bits erased in the (i − 1)st

round; d feeds back the erasure locations among these bits using compres-

sion.

Round N : The erased bits in round N − 1 are communicated to d using

naive (uncompressed) feedback, i.e., s re-transmits every erased bit until

it is received correctly and d immediately feeds back the status of every

transmission.

In round i, 0 ≤ i ≤ N − 1, the average number of bits transmitted by s is ǫik;

consequently, the average number of bits transmitted by d in feedback is ǫik ·h(ǫ).

In the N th round, both s and d transmit ǫNk/(1− ǫ) bits each, on average. While

the total number of transmissions from s is unchanged from the uncompressed

case, the total amount of feedback from d is as follows:

N−1
∑

i=0

ǫik · h(ǫ) +
ǫNk

1 − ǫ
= k ·

( h(ǫ)

1 − ǫ
+

ǫN
(

1 − h(ǫ)
)

1 − ǫ

)

. (3.1)

As N→∞, the contribution of the second term tends to zero. Since we are pri-

marily interested in order behavior, this term will be neglected in the future.

Henceforth, we shall assume that the feedback-only protocol uses compressed-

feedback. Summarizing, the coding complexity and feedback usage for this pro-

tocol are as follows:

CARQ = 0 (3.2)

FARQ =
k · h(ǫ)

1 − ǫ
(3.3)

Note that we have disregarded the complexity involved in compressing the feed-

back, relative to coding (FEC) for the erasure channel; this is primarily because
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compression involves bit-level operations, whereas in practice, erasure-correction

coding is done at the level of packets. Consequently, the complexity of coding may

often be much larger than the complexity of compression. The same reasoning

is applied in evaluating hybrid ARQ protocols which may employ some form of

compression/processing for the feedback part.

3.3 Coding-only approach – Tornado codes

As noted in Chapter 2, there are several classes of practical capacity-approaching

erasure correcting codes, with encoding and decoding complexities that grow lin-

early with the message size k. We restrict our attention to the class of Tornado

codes [4], as these codes are easily adapted for the hybrid protocols developed

later.

Thus, the coding-only approach is as follows: s encodes the k message bits

using an (n, k) Tornado code and transmits the resulting n code bits over the BEC;

d can decode the message from the unerased portion of the received codeword with

high probability, without having to use the feedback channel. We now briefly

describe the structure and encoding/decoding process for Tornado codes.

The n code bits of an (n, k) Tornado code are partitioned into layers. These

layers are encoded in a recursive manner as follows:

1. Layer 0 consists of the k message bits themselves; hence, these codes are

systematic.

2. Layer i (1 ≤ i ≤ N − 1) consists of βik parity bits, where β = ǫ/(1 − δ)

and δ > 0 is a small overhead parameter. Layer i is obtained by forming

different linear combinations (XORs) of bits in layer i − 1.
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3. The final layer N consists of βNk/(1− β) parities derived from layer N − 1

parities.

The blocklength of this code is n =
∑N−1

i=0 βik + βNk/(1 − β) = k/(1 − β), and

hence its rate is R = 1−β. For the case when δ is small, the blocklength and rate

are approximately k/(1 − ǫ) and 1 − ǫ, respectively.

The layers 1 through N−1 are constructed such that each layer, in its entirety,

can be used to decode a random fraction ǫ of erased bits in the preceding layer, with

high probability. The final layer N comprises the parity bits of a
(

βN−1k
1−β

, βN−1k
)

systematic erasure correcting code, whose message bits are the parities of layer

N − 1. Thus, the final layer can help recover a random fraction ǫ of erased bits

in layer N − 1, even when a fraction ǫ within itself is erased. For our discussion,

we shall assume that the generator matrix of this final erasure-correcting code

is of the form [I P], where I is the identity matrix of order βN−1k, and P is a

βN−1k × βNk
1−β

matrix whose every element is chosen to be either a 0 or a 1 with

equal probability. It can be shown that this choice of the final code works in

practice because the sub-matrix formed by randomly picking a fraction ǫ of the

rows and a fraction 1 − ǫ of the columns of P has full-rank with high probability

(Proposition 2 in [12]).

The connections between successive layers from 0 through N − 1 can be rep-

resented by a cascade of bipartite graphs as shown in Fig. 3.1, where each node

represents a code bit. Each right node of a bipartite graph is generated by XOR-

ing its left neighbors – i.e., nodes that it is connected to on the left. The average

number of neighbors of the left and right nodes within each bipartite graph con-

stitute the average left and right degrees, denoted by al and ar, respectively. Since

the total number of edges emanating from the left nodes must equal the number
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Figure 3.1. Tornado codes - encoding graph

converging on the right nodes, we have the following relation:

al = βar (3.4)

The bipartite graphs connecting layers 0 through N − 1 are characterized by

their node-degree distributions, viz., the fractions of left and right nodes of

different degrees (i.e., number of neighbors). Alternatively, they may equivalently

be characterized using edge-degree distributions which are more commonly

used in the literature [4], viz., the left edge-degree distribution {λi}∞i=1 and the

right edge-degree distribution {ρj}∞j=1. Here λi represents the fraction of edges

that originate from left nodes of degree i. Likewise, ρj is the fraction of edges

terminating on right nodes of degree j. We shall use the short-hand notation

λ := {λj}∞j=1 and ρ := {ρj}∞j=1 henceforth. It follows that the average degrees al

and ar are functions of the degree distribution (d.d.) pair (λ, ρ). For Tornado

codes, all bipartite graphs in the cascade (excluding the final layer N) have the

same d.d. pair, and hence the same al and ar.
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For layers 1 through N −1, the average number of XORs needed to generate a

parity bit is ar − 1. For layer N , the average number is βN−1k/2. Summing over

all layers, the total encoding complexity is given by

k ·
β(1 − βN−1)

1 − β
· (ar − 1) +

βNk

1 − β
·
βN−1k

2

=
βk

1 − β

(

(1 − βN−1) · (ar − 1) +
β2(N−1)k

2

)

. (3.5)

Tornado codes are decoded in the reverse direction of encoding. Starting with

the unerased parities of layer N , the erased parities of layer N−1 are first recovered

by solving a system of linear equations. This is done using Gaussian elimination,

which needs a total of O
(

(βN−1k)3
)

XOR operations. Next, each layer i (< N−1)

is recursively decoded from the reconstructed higher layer i + 1, via the belief

propagation (BP) algorithm. The number of XORs needed for this is again ar −1

per right node (in the decoding graph). Thus, the total decoding complexity is

given by:

k ·
β(1 − βN−1)

1 − β
· (ar − 1) + O

(

(βN−1k)3
)

. (3.6)

Usually, the number of layers N is chosen to be large so that βN = O(k−3/4).

Consequently, for large k, we can neglect the contribution of the last layer (in com-

parison with the remaining layers) to both the encoding and decoding complexity,

which are the same otherwise.

Thus, for the coding-only protocol using Tornado codes, the coding complexity
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and feedback usage are:

CFEC =
kβ

1 − β
· (ar − 1)

=
k

1 − β
· (al − β) (3.7)

FFEC = 0 (3.8)

The d.d. pair (λ, ρ) depends on the erasure probability ǫ and overhead δ but

is independent of k. Consequently, the encoding and decoding complexity scale

linearly with message size k. However, for any d.d. pair, the values of ar and al

are proportional to log(1/δ) [6]. Consequently, the coding complexity of Tornado

codes is unbounded as δ→0.

In contrast, certain c.a. codes, such as ARA codes [10], possess bounded com-

plexity per message bit even as δ→0. Therefore, to ensure similar complexity,

Tornado codes need to operate at a larger overhead δ in practice. Consequently,

we only consider applications where this is not much of a penalty.

3.4 A hybrid protocol based on time-sharing

The simplest hybrid protocol consists of time-sharing between the coding-

only and feedback-only protocols. Specifically, for some θ ∈ [0, 1], a subset of θk

message bits are communicated using only coding, and the remaining bits using

only feedback. We use this protocol as a benchmark for comparing other hybrid

protocols.

The performance of any hybrid protocol may be characterized by the following

parameters:

Fractional feedback f – defined as the ratio of its feedback usage to that
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of the feedback-only protocol, and

Fractional complexity c – defined as the ratio of its coding complexity to

that of the coding-only protocol.

For the time-sharing protocol, these parameters are given by:

cTS = θ (3.9)

fTS = 1 − θ (3.10)

The plot of cTS versus fTS is a straight line as shown in Fig. 3.2. Our goal is to

design hybrid schemes with c versus f curves that lie below the time-sharing curve,

i.e., for a fixed amount of feedback (coding complexity), we want the amount of

coding complexity (feedback) of the hybrid schemes to be strictly smaller than

the corresponding complexity (feedback) of the time-sharing scheme.

3.5 Hybrid-A: “Quantized” feedback

The first hybrid protocol we consider is essentially a simple adaptation of the

coding-only protocol. The basic idea is to reduce the encoding and decoding

complexity by feeding back a “quantized” version of the erasure locations.

In the hybrid-A protocol, the transmission of code bits from s and feedback

from d occur in N − 1 rounds as follows:

1. In round i (0 ≤ i ≤ N − 2), s transmits the βik code bits of layer i of the

Tornado code used in the coding-only protocol (layer 0: systematic bits).

The βik channel outputs at the destination (comprising both erased and

unerased bits) are partitioned into βik/ℓ contiguous blocks of size ℓ bits

each. The locations of blocks that contain at least one erased bit are then
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Figure 3.2. Performance of the time-sharing protocol

fed back to s via compressed feedback. We shall refer to such blocks as

“erased” blocks.

2. The parity bits to be transmitted in round i (1 ≤ i ≤ N − 1) are encoded

only after the feedback from round i − 1 has been received. In particular,

the layer i − 1 parity bits belonging to unerased blocks in round i − 1 are

simply omitted while encoding the layer i parities, as illustrated in Fig. 3.3.

3. In round N − 1, the βN−1k layer N − 1 parities are encoded as above and
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Figure 3.3. Hybrid-A scheme: Encoding process

communicated to d using the feedback-only protocol.

By excluding layer i − 1 bits known to have been unerased at d, s can save

on computations (XORs) needed to generate the layer i parities. Likewise, while

decoding erasures in layer i−1 via the BP algorithm, d can avoid having to remove

the contribution of these unerased bits, which is unavoidable with the coding-only

approach. We shall refer to the subset of layer i − 1 parities (belonging to erased

blocks) that participate in the encoding process during round i as the encoding

set for that round.

The probability p of a block erasure is given by:

p = 1 − (1 − ǫ)ℓ. (3.11)

Thus, the total number of bits that must be fed back (using compression) in round

i (1 ≤ i ≤ N−2) is given by h(p)·βik/ℓ, where h(·) is the binary entropy function.

Also, the number of feedback bits required for the last round N − 1 is given by
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βN−1k · h(ǫ)/(1 − ǫ). Hence, the total amount of feedback is given by:

N−2
∑

i=0

βik ·
h(p)

ℓ
+ βN−1k ·

h(ǫ)

1 − ǫ

= k ·
(1 − βN−1

1 − β
·
h(p)

ℓ
+ βN−1 ·

h(ǫ)

1 − ǫ

)

. (3.12)

For large N , we neglect βN−1 and the contribution of the second term, and we

have for the hybrid-A protocol:

FA =
k

1 − β
·
h(p)

ℓ
. (3.13)

The bits belonging to the encoding set for round i (i.e., the erased blocks of

round i − 1) essentially constitute a random subset of layer i − 1 parities, chosen

regardless of their degree profile; therefore, these bits have the same left-node

degree distribution and average left degree al as the original Tornado code. Then,

it is easily verified that the new average right degree of the graph in Fig. 3.3,

after removing the unerased bits, is given by a′
r = pal/β = par. Consequently, the

coding complexity is given by:

N−1
∑

i=1

βik · (a′
r − 1) = k ·

β(1 − βN−1)

1 − β
· (par − 1). (3.14)

Again, ignoring βN−1 for large N yields the coding complexity:

CA =
βk

1 − β
· (par − 1). (3.15)

Under the assumption that the overhead of the Tornado code satisfies δ ≪ 1,

which yields ar ≫ 1 and β ≈ ǫ, the fractional complexity and feedback are given
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by:

cA =
CA

CFEC

= p, (3.16)

fA =
FA

FARQ
=

h(p)

ℓ · h(ǫ)
. (3.17)

Note that cA and fA can be changed by varying ℓ between 1 and k. The

resulting cA versus fA curves for different values of ǫ are shown in Fig. 3.4. (For

these curves, the value of ℓ was varied between 1 and 104.)

It is seen that for small values of ǫ (e.g. 0.05), the hybrid-A scheme performs

significantly better than the time-sharing scheme, in the sense that the fractional

complexity for a given value of fractional feedback is substantially lower (and vice-

versa) for the hybrid-A scheme. This behavior is observed over a large range of

the fractional feedback, with the exception of fA close to 1. For larger ǫ (≥ 0.2),

the performance of hybrid-A degrades and is worse than the time-sharing scheme

over a wider range of values for f.

For all ǫ, it is seen that cA 6= 0 when fA = 1, unlike the time-sharing scheme. In

other words, even when all the erasure (and non-erasure) locations have been fed

back to s, there is still some residual coding complexity in the hybrid-A scheme;

this is because, while the unerased bits in any round are omitted from the encoding

process, the contribution of erased bits to computing the parities in the next round

remains unchanged in the presence of feedback.

We analyze the performance of this protocol for the case when ǫ ≪ 1. Let

ℓ = c/ǫ, for some constant c > 0. Then, we have p = 1 − (1 − ǫ)c/ǫ ≈ 1 − e−c.

Thus, the fractional complexity cA is roughly constant (independent of ǫ). On the
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Figure 3.4. Performance of the hybrid-A protocol

other hand,

h(p)

ℓ · h(ǫ)
=

h(p)

c
·

ǫ

h(ǫ)

=
h(p)

c
·

1

log2
1
ǫ
− (1 − ǫ) log2(1−ǫ)

ǫ

≈
h(1 − e−c)

c
·

1

log2
1
ǫ

, (3.18)

which follows from the fact that p → 1 − e−c and log2(1−ǫ)
ǫ

→ 0 as ǫ → 0. There-
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fore, the fractional feedback fA decays as 1
log2(1/ǫ)

. This explains the improved

performance of the hybrid-A scheme in the small-ǫ regime.

3.6 Hybrid-B: Optimizing hybrid-A’s feedback

In this section, we describe a variation of the hybrid-A scheme that requires

less feedback.

The basic idea of the hybrid-A protocol is to feed back partial information

about the channel-outcomes (erasures and non-erasures) in each round so that a

subset of the unerased bits in that round can be omitted from encoding the next

round. We now pose the question as to whether there exist feedback strategies

that achieve the same reduction in the size of the encoding set in each round as

the hybrid-A scheme, but require fewer feedback bits than the quantized-feedback

strategy. This is formally stated as follows.

Let the channel outcomes of m transmissions (for some m) over a BEC be

represented by the m-tuple x ∈ {0, 1}m, where 0 denotes a non-erasure and 1 an

erasure. Suppose these channel outcomes are encoded with some distortion as the

m-tuple y ∈ {0,U}m, where again 0 represents a non-erasure while U represents

an unacknowledged channel outcome (that could have been either an erasure or a

non-erasure). Further, we encode y according to the following rules:

1. An element of y can be 0 only if the corresponding element in x is also 0.

In other words, an erasure in x cannot be reported as a non-erasure in y.

2. The total number of non-erasures (i.e., 0’s) in x that are unacknowledged

(i.e., reported as U) in y cannot exceed mD. Here, 0 ≤ D ≤ 1 − ǫ is a

distortion parameter that is fixed beforehand.
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Suppose the vector y is fed back to s instead of x; then s can identify a subset of the

unerased transmissions, as in the hybrid-A protocol. Thus, if y can be compressed

more efficiently than the quantization scheme used in hybrid-A, fewer feedback

bits are needed to convey this information. We now formalize this problem of

optimum compression as a problem in rate-distortion theory.

Let y = f(x) denote an encoding function from the space of true erasure

outcomes to the space of distorted reconstructions, i.e., f : {0, 1}m → {0,U}m.

Let the following function define the per-letter distortion measure:

D(x, y) =



































0, if x = 0, y = 0,

1, if x = 0, y = U ,

∞, if x = 1, y = 0,

0, if x = 1, y = U .

(3.19)

Then, the sum-distortion measure between the vectors x and y is given by

d̂(x,y) =

m
∑

i=1

D(xi, yi), (3.20)

and the average per-letter distortion d̄f associated with an encoding function f(·)

is given by

d̄f =
1

m

∑

x ∈{0,1}m

p(x) · d̂
(

x, f(x)
)

. (3.21)

Note here that, for finite d̄f , the pair (xi, (f(x))i) can never be (1, 0); consequently,

for each x, d̂(x, f(x)) is exactly the number of non-erasures in x that are unac-

knowledged in f(x). Therefore, imposing the condition d̄f ≤ D (for 0 ≤ D ≤ 1−ǫ)

on the encoding function f(·) simultaneously enforces both encoding rules outlined

earlier.

31



Finally, for Bernoulli random variables X and Y , with Pr(X = 1) = ǫ, define

the following positive-valued function R̃(·):

R̃(D) = min
pY |X(y|x): E(D(X,Y ))≤D

I(X; Y ), (3.22)

where the expectation E(D(X, Y )) is over the joint distribution of X and Y .

We now state the following result due to Gallager [36, Theorems 9.2.1 and

9.3.2] for arbitrary distortion measures:

Theorem 1 ([36]). For the rate-distortion code f(·), if d̄f ≤ D then the entropy

of the set of reconstruction sequences must satisfy:

H(f(x)) ≥ m · R̃(D). (3.23)

Further, given any D ≥ 0 and κ > 0, there exists, for sufficiently large m, a

rate-distortion code f̃(·) for which d̄f̃ ≤ D + κ and

H(f̃(x)) ≤ m · (R̃(D) + κ). (3.24)

Consequently, for a specified average per-letter distortion D between x and

y = f(x), a minimum of m · R̃(D) bits on average are required to communicate y

to s. Here, mD is the average number of 0’s (non-erasures) in x that are reported

as U ’s (unacknowledged outcomes) in y. Further, it can be shown that

R̃(D) = (D + ǫ) log2

1

D + ǫ
− D log2

1

D
+ (1 − ǫ) log2

1

1 − ǫ
. (3.25)

(See Appendix A for a derivation.)

In sum, by using a rate-distortion code that achieves the rate-distortion bound

32



R̃(D), the feedback can potentially be more efficient than in the hybrid-A scheme.

For a fixed distortion parameter 0 ≤ D ≤ 1 − ǫ, the hybrid-B scheme is

described as follows:

1. In round i, 0 ≤ i ≤ N −2, s transmits the ni = βik code bits of layer i of the

Tornado code used in the coding-only protocol. The ni channel outcomes in

round i consist of ni(1− ǫ) non-erasures: d feeds back the channel outcomes

to s with distortion D in the non-erasure locations (i.e., only a subset of

ni(1 − ǫ − D) non-erasures are acknowledged without ambiguity), using a

rate-distortion code that achieves the bound R̃(D).

2. The feedback received in round i is used to reduce the encoding complexity

in round i + 1 exactly as in the hybrid-A scheme, viz., the subset of layer

i parities that are known by s to be unerased are omitted while encoding

layer i + 1 parities. Likewise, d neglects the contribution of these bits while

decoding.

3. In round N − 1, the βN−1k parities of layer N − 1 are computed as in the

hybrid-A scheme and communicated to d using the feedback-only approach.

Thus, only ni(D + ǫ) parities of layer i participate in encoding during round i+1.

As in the hybrid-A scheme, the average left degree among these participating bits

remains unchanged from the original Tornado code. Similar reasoning shows that

the average right degree in this case is given by (D + ǫ)ar, where ar is the average

right degree of the original code. Consequently, the coding complexity is given
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by:

CB =
βk

1 − β
·
(

(D + ǫ)ar − 1
)

,

=
k

1 − β
·
(

(D + ǫ)al − β
)

(3.26)

where we have ignored a βN−1 term, following the standard large N approximation.

The amount of feedback in round i (1 ≤ i ≤ N − 2) is given by niR̃(D) =

βik · R̃(D). Thus, the total amount of feedback is:

N−2
∑

i=1

niR̃(D) + βN−1k ·
h(ǫ)

1 − ǫ

= k ·
(1 − βN−1

1 − β
· R̃(D) + βN−1 ·

h(ǫ)

1 − ǫ

)

. (3.27)

Again, for large N , ignoring βN−1 yields:

FB =
k

1 − β
· R̃(D). (3.28)

Finally, assuming δ ≪ 1 as in the hybrid-A scheme, i.e., ar ≫ 1 and β ≈ ǫ, the

fractional complexity and feedback for the hybrid-B protocol are given by:

cB = D + ǫ, (3.29)

fB =
R̃(D)

h(ǫ)
. (3.30)

The variation of cB with fB for different values of ǫ is plotted in Fig. 3.5. Also

shown are the corresponding hybrid-A curves. It is seen that significant gains

are obtained with an optimum rate-distortion code compared to the quantized

feedback strategy of hybrid-A, especially for smaller values of ǫ: e.g., for ǫ = 0.01
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Figure 3.5. Performance of the hybrid-B protocol

and fA = fB = 0.4, we have cB ≈ 1
2
· cA. Since, the coding strategy in hybrid-

B is unchanged from hybrid-A, there is the same residual coding complexity for

hybrid-B when fB = 1, i.e., when the distortion D = 0.

It is instructive to compare the rate RQF of the quantized feedback strategy,

i.e., number of bits fed back per forward transmission, with the rate-distortion

function R̃(D). It is easily seen that RQF = h(p)/ℓ. We compare the two rates for

a fixed distortion D; note that the distortion introduced by quantized feedback

is simply D = p − ǫ, i.e., the difference between the fraction of channel outcomes
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marked as erasures and the true fraction of erasures. The ratio RQF /R̃(D) is plot-

ted as a function of D in Fig.3.6, for different values of ǫ (again, ℓ is varied between

1 and 104). It is seen that there is a significant gap to optimality with quantized

feedback; this is not surprising, considering that it is a fairly naive strategy. It is

also seen that this gap increases with decreasing ǫ, which is consistent with our

observations regarding Fig. 3.5.
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3.7 Hybrid-C: “Distortion-adapted” coding strategy

Both hybrid-A and hybrid-B protocols have the problem of a non-zero resid-

ual coding complexity even in the presence of full (i.e., undistorted) feedback.

In particular, the fractional complexity c for these protocols equals the channel

erasure rate ǫ when f = 1. Consequently, these protocols perform poorly relative

to time-sharing as ǫ is increased, for moderate to large values of the fractional

feedback.

As pointed out in Section 3.5, this residual complexity results from the fact

that the contribution of the erased bits to the coding complexity remains non-

zero even when all erasures have been identified via feedback. More generally,

for both hybrid-A and hybrid-B protocols, the average left degree of the encoding

set (i.e., parity bits that participate in encoding) in each round remains constant

irrespective of the size of the encoding set. Ideally, we would like the left degree

to reduce to 1 when the encoding set is reduced to just the set of erased bits, as

this corresponds to simply re-transmitting the erased bits in each round.

It turns out that the average left degree of the encoding set can be reduced by

appropriately changing the Tornado code used. We illustrate this in the following

for the hybrid-B protocol.

In the hybrid-B scheme, the encoding set for round i + 1 consists of a subset

of size ni(D + ǫ) of the parities transmitted in round i, which also includes the niǫ

erasures in that round. The βni parities transmitted in round i + 1 help recover

these erasures, and are generated from the encoding set by suitably altering the

structure of a Tornado code designed for erasure probability ǫ. However, among

the parities of the encoding set, the effective erasure rate (fraction of erasures) is

actually ǫ′ = ǫ/(D + ǫ). Thus, the parities of round i + 1 may alternatively be
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generated from the encoding set by using the parity layer of a new Tornado code

designed for erasure probability ǫ′, which helps recover any ǫ′ fraction of erasures

within the encoding set. Since ǫ′ > ǫ, this implies that the new Tornado code

must be of lower rate than the original code used in the coding-only scheme. For

Tornado codes with appropriately chosen d.d. pairs, reducing the rate has the

effect of also lowering the average left degree, as shown in the following.

Recall that the choice of the d.d. pair (λ, ρ) for a Tornado code is influenced

by the target erasure probability ǫ, desired rate R = 1 − β and overhead δ (here,

δ = 1 − ǫ/(1 − R)). Further, the average left and right degrees are functions of

the d.d. pair: al = 1
P

i λi/i
, and ar = 1

P

j ρj/j
[4].

For a Tornado code of rate R and overhead δ, it can be shown that the average

right degree is lower bounded – independent of the actual d.d. pair (λ, ρ) – as

ar ≥
log(1/δ)
log(1/R)

[6]. Consequently, since al = βar = (1 − R)ar, we have

al ≥
1 − R

log(1/R)
log(1/δ). (3.31)

The function 1−R
log(1/R)

is increasing in R. Thus, if there exists a family of d.d. pairs

(λ, ρ) such that the above lower bound is met for all R and δ, then the average

left degree al can be reduced by decreasing the code-rate R.

It is shown in [6] that the family of right-regular d.d. pairs comes close to

satisfying this bound as δ→0. With right-regular d.d. pairs, the right degrees take

on only a single value, i.e., the right edge-degree distribution satisfies ρj = ǫj,m

for some m (here, ǫj,m is the Kronecker-delta function, i.e., it is a time-sequence

indexed by j that takes on value 1 for j = m, and 0 for all other j). The left-

edge degree distribution λi is obtained from the coefficients of an appropriately-

truncated Taylor series expansion of 1− (1− x)1/m about x = 0. Specifically, it is
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shown in [6] that there exists a sequence of right-regular d.d. pairs (λ(m), ρ(m)) of

rate R, indexed by the right degree m, with the property that:

(i) the overhead δm satisfies limm→∞ δm = 0,

(ii) the average left degree is given by a
(m)
l = 1−R

log(1/R)
·
(

log 1
δm

+ ∆m(R)
)

, where

limm→∞ ∆m(R) ≈ 1.78.

From the above, it can be inferred that for every 0 < R < 1, there exists a

family of right-regular d.d. pairs (λδ, ρδ), indexed by the overhead1 δ, with average

left degree

al =
1 − R

log(1/R)

(

log(1/δ) + ∆δ(R)
)

, (3.32)

where limδ→0 ∆δ(R) ≈ 1.78.

Summarizing, Tornado codes designed with right-regular d.d. pairs are asymp-

totically optimal ([6]) in the sense that they satisfy the lower bound on al up to

a constant additive term, whose contribution can be neglected as δ→0. Further,

the average left degree al decreases with decreasing code-rate in the limit as δ→0.

In the following, we shall assume that Tornado codes based on right-regular

d.d. pairs are employed in all protocols, including the coding-only scheme. How-

ever, our results also hold for any family of d.d. pairs that satisfies the lower bound

(3.31) on the average left degree in a similar or tighter sense than right-regular

d.d. pairs.

The hybrid-C scheme exploits the above property of right-regular distributions

and is described as follows:

1. As in the hybrid-B scheme, s transmits ni = βik code bits in round i,

1Strictly speaking, there may not exist right-regular d.d. pairs for every (R, δ) pair. A
solution is to employ time-sharing between two d.d. pairs that exist for (R, δ1) and (R, δ2), with
δ1 < δ < δ2.
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0 ≤ i ≤ N − 1, and d acknowledges ni(1 − ǫ − D) unerased bits (i.e., feeds

back their addresses) among ni(1− ǫ) non-erasures, using an optimum rate-

distortion code with distortion D (0 ≤ D ≤ 1 − ǫ).

2. The feedback from round i is used in round i+1 as follows: the n′
i = ni(D+ǫ)

unacknowledged code bits of round i are used to generate β ′n′
i parities (akin

to a parity layer of a Tornado code), using a right-regular d.d. pair designed

for rate R′ and overhead δ. Here β ′ = ǫ′/(1 − δ), ǫ′ = ǫ/(D + ǫ) and

R′ = 1 − β ′.

These β ′n′
i parities help recover up to ǫ′n′

i = ǫni erasures in round i. (It is

easily verified that β ′n′
i = βni = βi+1k.)

3. In the final round N − 1, the βN−1k parities generated similarly as above

are communicated to d using the feedback-only protocol.

Thus, the size of the encoding set and the number of parities generated in each

round i above is the same as in the hybrid-B protocol. The chief difference lies

in the fact that the average left degree a′
l of the encoding set is now smaller, for

δ small enough, as the effective rate R′ at which each parity layer is encoded has

decreased. The dependence of a′
l on R′ and δ is given by (3.32).

The coding complexity for this protocol has the same form as hybrid-B, with

the only difference being that the average left-degree is changed to a′
l:

CC =
k

1 − β
·
(

(D + ǫ)a′
l − β

)

. (3.33)
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The fractional complexity is evaluated in the limit as δ→0:

cC = lim
δ→0

CC

CFEC

= lim
δ→0

(D + ǫ)a′
l − β

al − β

= lim
δ→0

(D + ǫ) · 1−R′

log(1/R′)

(

log(1/δ) + ∆δ(R
′)
)

− β

1−R
log(1/R)

(

log(1/δ) + ∆δ(R)
)

− β
(3.34)

=
log(1 − ǫ)

log(1 − ǫ′)
. (3.35)

In going from (3.34) to (3.35), we have used the fact that log(1/δ) ≫ ∆δ(·),

R ≈ 1 − ǫ and R′ ≈ 1 − ǫ′ when δ ≪ 1. It can be shown that cC < cB for a fixed

value of D, using the series expansion log(1 − x) =
∑∞

i=1 xi/i:

log(1 − ǫ)

log(1 − ǫ′)
=

ǫ

ǫ′
·

( 1 +

∞
∑

i=2

ǫi/i

1 +
∞
∑

i=2

ǫ′i/i

)

<
ǫ

ǫ′
(because ǫ < ǫ′)

= D + ǫ (= cB). (3.36)

Since the feedback strategy is unchanged from the hybrid-B scheme, the frac-

tional feedback remains the same for the hybrid-C protocol:

fC =
R̃(D)

h(ǫ)
. (3.37)

It is easily shown that limD→0 cC = 0. Hence, cC→0 as fC approaches 1. Thus,

there is no residual complexity in the limit of complete feedback, unlike the hybrid-

B protocol.
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A plot of cC versus fC for different values of ǫ is shown in Fig. 3.7. Also shown

are the corresponding plots for hybrid-B. The hybrid-C scheme shows significant

improvement over hybrid-B, especially with increasing ǫ and increasing f. For

ǫ < 0.01, both schemes perform similarly, and for ǫ > 0.5, hybrid-C performs

poorly compared to time-sharing.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c

f

 

 
Hybrid−C:  ε = 0.1
Hybrid−B:  ε = 0.1
Hybrid−C:  ε = 0.2
Hybrid−B:  ε = 0.2
Hybrid−C:  ε = 0.3
Hybrid−B:  ε = 0.3
Time−sharing

Figure 3.7. Performance of the hybrid-C protocol
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3.8 Hybrid-D: Partial feedback of erasure locations

In the hybrid protocols considered so far, feedback is used to pinpoint the

locations of a subset of unerased bits. In the following, we describe a protocol in

which a portion of the erasure locations are reported to the source via feedback.

The main idea here is to reduce coding complexity by simply re-transmitting bits

known to be erased, as opposed to encoding them. Such a protocol might be

appropriate in a scenario where the erasure probability is quite large and the

simplicity of re-transmission is an attractive option.

As with non-erasure locations in the hybrid-B protocol, a rate-distortion the-

oretic formulation is possible for the problem of efficiently encoding and feeding

back a subset of the erasure locations. As before, suppose the channel outcomes

associated with m transmissions over a BEC are represented by an m-tuple x

∈ {0, 1}m, where 0 denotes a non-erasure and 1 an erasure. Let these channel

outcomes be encoded with some distortion as the m-tuple y ∈ {1,U}m, where,

as before, U represents an unacknowledged channel outcome (either erasure or

non-erasure), while 1 represents an erasure. The vector y is fed back to s after

appropriate compression. The following rules apply for encoding y:

1. An element of y can equal 1 only if the corresponding element in x is also a

1, i.e., non-erasures cannot be represented as erasures.

(As will be seen later, this condition is necessary to prevent re-transmission

of unerased bits, which would lead to waste of forward channel resources

resulting in a gap to capacity.)

Consequently, all non-erasures are unacknowledged in y.

2. The total number of erasures (1’s) in x that are unacknowledged (reported
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as U) in y is upper-bounded by mD, where D is some fixed distortion

parameter that takes on values in the interval [0, ǫ].

Formally, let y and x be related as y = g(x), where g(·) denotes the encoding

function, i.e., g : {0, 1}m → {1,U}m. The per-letter distortion measure is given

by:

D′(x, y) =



































0, if x = 1, y = 1,

1, if x = 1, y = U ,

∞, if x = 0, y = 1,

0, if x = 0, y = U .

(3.38)

Analogous to the hybrid-B case, we can define the sum-distortion measure between

the vectors x and y, and the average per-letter distortion d̄g associated with

encoding function g(·). Then, imposing the condition d̄g ≤ D on the encoding

function g(·) enforces the encoding rules outlined above.

For g(·) satisfying the distortion constraint d̄g ≤ D, a similar result as Theorem

1 holds, showing that the smallest achievable entropy for the encoded sequence

y = g(x) is given by the rate-distortion function R̃′(D):

R̃′(D) = min
pY |X(y|x): E(D′(X,Y ))≤D

I(X; Y ). (3.39)

(Here, X and Y are Bernoulli random variables with Pr(X = 1) = ǫ, and the

expectation E(D′(X, Y )) is over the joint distribution of X and Y .)

Further, in a similar manner as how (3.25) was derived, it can be shown that

R̃′(D) = (1 − ǫ + D) log2

1

1 − ǫ + D
− D log2

1

D
+ ǫ log2

1

ǫ
. (3.40)

In sum, by using an optimum rate-distortion code with rate R̃′(D) at d, the

44



encoded vector y can be fed back to s using m · R̃′(D) bits, such that at most mD

erasures in x are unacknowledged in y.

We now describe the hybrid-D protocol for a fixed distortion D ∈ [0, ǫ]:

1. In round i, 0 ≤ i ≤ N −1, s transmits ni = γik code bits, where γ is defined

below (round 0: message bits). Of the niǫ erasures that occur, d feeds back

the locations of ni(ǫ−D) erased bits using an optimum rate distortion code

as described above.

2. The feedback from round i is used in round i + 1 as follows: the code bits

of round i are partitioned into two sets Fi and Ci. The set Fi comprises

the ni(ǫ−D) acknowledged erasures, and Ci consists of the remaining n′
i =

ni(1 − ǫ + D) bits, which include niD unacknowledged erasures. The bits

in Fi are simply retransmitted in round i + 1. However, the bits in Ci are

encoded and transmitted as follows. The effective erasure rate among the

bits in Ci is ǫ′′ = D/(1−ǫ+D). Let β ′′ = ǫ′′/(1−δ′), for some δ′ > 0. Then,

as in the hybrid-C scheme, the n′
i bits of Ci are encoded to produce β ′′n′

i

Tornado parities using a right-regular d.d. pair designed for rate R′′ = 1−β ′′

and overhead δ′. So the total number of bits transmitted in round i + 1 is:

ni+1 = (ǫ − D)ni + β ′′n′
i

= (ǫ − D)ni +
D

(1 − ǫ + D) · (1 − δ′)
· (1 − ǫ + D)ni

= γ · ni (3.41)

where

γ = ǫ − D +
D

1 − δ′
. (3.42)
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Figure 3.8. Hybrid-D scheme: Encoding process

3. In the final round N − 1, s generates γN−1k code bits as above, and these

are communicated to d using the feedback-only protocol.

The encoding process is illustrated in Fig. 3.8.

The total number of bits transmitted by s is given by k/(1 − γ); since γ→ǫ

as δ′→0, this scheme too approaches capacity. To equalize the total number of

forward transmissions in this scheme and the preceding schemes, the overhead δ′

must be chosen so that the condition γ = β is satisfied, where β = ǫ/(1− δ). This

leads to:

ǫ − D +
D

1 − δ′
=

ǫ

1 − δ
,

or ǫ ·
( 1

1 − δ
− 1
)

= D ·
( 1

1 − δ′
− 1
)

, (3.43)

from which it follows that δ′ ≥ δ since D ≤ ǫ. Further, in the limit of small δ and

δ′, we can use the approximation 1
1−x

− 1 ≈ x above to obtain δ′ ≈ ǫ
D
· δ.
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Since a right regular d.d. pair is used for code construction, the average left

degree a′′
l , rate R′′ of the d.d. pair and overhead δ′ are related according to (3.32).

Unlike the hybrid-C scheme, the average left degree a′′
l in this case is larger than

in the coding-only protocol, because R′′ > R.

The average right degree a′′
r is given by a′′

r = a′′
l /β

′′. The encoding (and

decoding) complexity associated with round i + 1 is β ′′n′
i(a

′′
r − 1). Summing over

all the rounds yields

N−2
∑

i=0

β ′′n′
i(a

′′
r − 1) =

N−2
∑

i=0

β ′′(1 − ǫ + D) · ni(a
′′
r − 1)

=
N−2
∑

i=0

(1 − ǫ + D) · γik · (a′′
l − β ′′)

= (1 − ǫ + D) · k ·
1 − γN−1

1 − γ
· (a′′

l − β ′′). (3.44)

Neglecting γN−1 for large N and setting γ = β, the coding complexity for the

hybrid-D scheme is given by:

CD =
k

1 − β
· (1 − ǫ + D) ·

(

a′′
l − β ′′

)

. (3.45)

The fractional complexity is again evaluated in the limit as δ→0, noting that δ
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and δ′ are related according to (3.43):

cD = lim
δ→0

CD

CFEC

,

= (1 − ǫ + D) · lim
δ→0

a′′
l − β ′′

al − β
,

= (1 − ǫ + D) · lim
δ→0

1−R′′

log(1/R′′)

(

log(1/δ′) + ∆δ′(R
′′)
)

− β ′′

1−R
log(1/R)

(

log(1/δ) + ∆δ(R)
)

− β
,

= (1 − ǫ + D) · lim
δ→0

1−R′′

log(1/R′′)

(

log(1/δ) + log(D/ǫ) + ∆δ′(R
′′)
)

− β ′′

1−R
log(1/R)

(

log(1/δ) + ∆δ(R)
)

− β
,

= (1 − ǫ + D) ·
ǫ′′

− log(1 − ǫ′′)
·
− log(1 − ǫ)

ǫ
,

=
D

ǫ
·

log(1 − ǫ)

log(1 − ǫ′′)
. (3.46)

Here, we have used the approximation δ′ ≈ ǫ
D

δ for small δ, and the fact that

ǫ′′ = D
1−ǫ+D

.

The amount of feedback needed in round i (0 ≤ i ≤ N−2) is given by ni·R̃
′(D).

Neglecting the feedback in round N−1 (for large N), the total amount of feedback

required for the hybrid-D scheme is given by:

FD =
k

1 − β
· R̃′(D). (3.47)

(Here, we have again set γ = β.)

Evaluating the fractional feedback as δ→0 yields

fD =
R̃′(D)

h(ǫ)
. (3.48)

In Fig. 3.9, plots of cD versus fD are shown for different values of ǫ. This

protocol performs poorly for a large range of ǫ (up to 0.8). However, in contrast
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with earlier schemes, the performance of the hybrid-D scheme is seen to improve

with increasing ǫ. For ǫ > 0.9, the performance is better than the time-sharing

and hybrid-C schemes for a wide range of (c, f) values.
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Figure 3.9. Performance of the hybrid-D protocol
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Observe the relatively large “residual” fractional complexity in Fig. 3.9 when

fD = 1, i.e., when the distortion D = 0. This arises from the behavior of the

average left degree a′′
l in the hybrid-D scheme, as D→0 (which results in ǫ′′→0

and the effective code-rate R′′→1). The exact value of cD in the limit as D→0

can be shown to be 1−ǫ
ǫ

log 1
1−ǫ

.

Note that an alternative to the coding approach in the hybrid-D protocol is

to employ a similar approach as in the hybrid A and B protocols, wherein the

Tornado code is not adapted according to the distortion in the feedback. In other

words, we could use the same Tornado code as in the coding-only protocol (of rate

R = 1 − ǫ/(1 − δ) ), such that erasures acknowledged in each round are simply

omitted from the encoding process in the next round, and the erased bits are

themselves re-transmitted separately. While this method can potentially reduce

the encoding/decoding complexity, it requires the total number of transmissions

from the source to be much larger than k/(1 − β). Consequently, this scheme

cannot achieve capacity and is hence not considered here.

3.9 Hybrid-E: A generalization of hybrid-C and hybrid-D schemes

In this protocol, we generalize the feedback strategies used in hybrid-C and

hybrid-D protocols, so that a subset of both erasure and non-erasure locations are

conveyed to the source. The rate distortion formulation for this case involves two

distortion measures.

As before, let the channel outcomes of m transmissions be represented by x

∈ {0, 1}m (0: non-erasure, 1: erasure). Let these channel outcomes be encoded as

y = h(x) ∈ {0, 1,U}m, where unacknowledged channel outcomes (U) occur in

addition to erasures (1) and non-erasures (0). The vector y is fed back to s after
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appropriate compression. The rules in encoding y are:

1. Non-erasures cannot be reported as erasures, and vice versa.

2. The total number of non-erasures and erasures that are unacknowledged

(reported as U) in y are upper-bounded by mD0 and mD1, respectively.

Here D0 ∈ [0, 1 − ǫ] and D1 ∈ [0, ǫ] are fixed distortion parameters.

Formally, the per-letter distortion measures are given by:

D0(x, y) =























1, if x = 0, y = U ,

∞, if x = 1, y = 0,

0, otherwise.

(3.49)

and

D1(x, y) =























1, if x = 1, y = U ,

∞, if x = 0, y = 1,

0, otherwise.

(3.50)

Let d̄0,h and d̄1,h denote the corresponding average per-letter distortions associated

with the encoding function h(·). Then, the conditions d̄0,h ≤ D0 and d̄1,h ≤ D1

on h(·) enforce the above encoding rules.

The rate-distortion function in this case is defined as

R̃(D0, D1) = min
pY |X(y|x): E(Di(X,Y ))≤Di, i∈{0,1}

I(X; Y ). (3.51)

where X and Y are Bernoulli random variables with Pr(X = 1) = ǫ.

For the case of multiple (vector) distortion criteria, it can be shown that a

result similar to Theorem 1 holds [37], i.e., the smallest achievable entropy for the

encoded sequence y = h(x) is given by mR̃(D0, D1). Hence, this is the smallest
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number of bits needed to feed back m channel outcomes, such that at most mD0

non-erasures and mD1 erasures are unacknowledged. Further, it can be shown

that the rate-distortion function evaluates to:

R̃(D0, D1) = h(ǫ) + (D0 + D1) log2

1

D0 + D1
− D0 log2

1

D0
− D1 log2

1

D1

= h(ǫ) − (D0 + D1) · h
( D0

D0 + D1

)

(3.52)

(See Appendix B for a derivation.)

We now describe the hybrid-E protocol for a fixed distortion pair (D0, D1),

with D0 ∈ [0, 1 − ǫ] and D1 ∈ [0, ǫ]:

1. In round i, 0 ≤ i ≤ N −1, s transmits ni = γ̃ik code bits (round 0: message

bits), where γ̃ is defined below. Of the ni channel outcomes, d feeds back

the locations of ni(1−ǫ−D0) unerased bits and ni(ǫ−D1) erased bits, using

an optimum rate distortion code of rate R̃(D0, D1) as described above.

2. In round i + 1, the feedback from round i is used to partition the code bits

of round i into three sets Ei, Ri and Ui. The set Ei consists of the ni(ǫ−D1)

acknowledged erasures, Ri comprises the ni(1 − ǫ− D0) acknowledged non-

erasures, and the remaining n′
i = ni(D0 +D1) unacknowledged bits make up

Ui.

The bits in Ei are simply retransmitted in round i + 1. The bits in Ri do

not participate in round i+1, as they have already been received by d. The

bits in Ui are encoded and transmitted as follows.

The effective erasure rate among the bits in Ui is ǫ̃ = D1/(D0 + D1). Let

β̃ = ǫ̃/(1−δ̃), for some δ̃ > 0. Then, as in the hybrid C and D schemes, the n′
i

bits of Ui are encoded to produce β̃n′
i Tornado parities using a right-regular
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d.d. pair designed for rate R̃ = 1 − β̃ and overhead δ̃.

So the total number of bits transmitted in round i + 1 is:

ni+1 = (ǫ − D1)ni + β̃n′
i

= (ǫ − D1)ni +
D1

(D0 + D1) · (1 − δ̃)
· (D0 + D1)ni

= γ̃ · ni (3.53)

where

γ̃ = ǫ − D1 +
D1

1 − δ̃
. (3.54)

(Note the similarity between the above expression and that for γ in (3.42)

for the hybrid-D scheme.)

3. In the final round N − 1, s generates γ̃N−1k code bits as above, and these

are communicated to d using the feedback-only protocol.

As in the hybrid-D scheme, in order to utilize the same total number of transmis-

sions as all preceding hybrid schemes, we set γ̃ = β. This gives rise to a similar

condition between δ̃ and δ as (3.43). Again, for small δ, this simplifies to δ̃ ≈ ǫ
D1

δ.

The average left degree ãl, rate R̃ and overhead δ̃ are related according to

(3.32). Further, the average left and right degrees are related as ãl = β̃ãr. Then,

similar to the case of the hybrid-D scheme, it can be shown that the coding

complexity of the hybrid-E scheme is given by:

CE =
k

1 − β
· (D0 + D1) ·

(

ãl − β̃
)

, (3.55)
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and the fractional complexity can be shown to be:

cE = lim
δ→0

CE

CFEC

,

=
D1

ǫ
·
log(1 − ǫ)

log(1 − ǫ̃)
,

=
D1

ǫ
·

log(1 − ǫ)

log(1 − D1/(D0 + D1))
. (3.56)

Likewise, the total amount of feedback required for the hybrid-E scheme (when

N is large) is:

FE =
k

1 − β
· R̃(D0, D1). (3.57)

and evaluating the fractional feedback as δ→0 yields

fE =
R̃(D0, D1)

h(ǫ)
. (3.58)

Note that cE and fE each depend on both D0 and D1. It remains to determine

the optimal (D0, D1) pair for each value of fE, so that the corresponding cE is

minimized.

In order to perform the above optimization, we employ the following change

of variables, viz, p , D1/(D0 + D1) and D = D0 + D1. Consequently, D1 = Dp

and D0 = D(1−p). Then, the rate-distortion function in (3.52) can be re-written

in terms of D and p as:

R̃(D, p) = h(ǫ) − D · h(p). (3.59)
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Further, the fractional complexity and fractional feedback in terms of (D, p) are

cE =
log 1

1−ǫ

ǫ
·

D · p

log 1
1−p

, (3.60)

fE = 1 −
D · h(p)

h(ǫ)
. (3.61)

Now, the problem of determining the optimal (D, p) pair, that minimizes cE for a

fixed value of fE, may be cast as follows.

Minimize D · g(p) subject to D · h(p) = κ, where

g(p) =
p

log 1
1−p

(3.62)

and κ is some constant in the interval [0, h(ǫ)].

This problem is solved in Appendix C. We present the solution here.

Let p∗ denote the unique value of p that minimizes f(p) , g(p)/h(p); this is

given by p∗ ≈ 0.692. Also, let D̃(κ) denote the unique solution of the equation

D · h(ǫ/D) = κ, and D̂(κ) the unique solution of D · h((1− ǫ)/D) = κ, when each

exists. Then, the optimal (D, p) is given by:

1. For ǫ ≤ p∗,

(D, p) =



















( κ

h(p∗)
, p∗

)

, for 0 ≤ κ ≤ h(p∗)
p∗

ǫ,
(

D̃(κ),
ǫ

D̃(κ)

)

, for h(p∗)
p∗

ǫ < κ ≤ h(ǫ).
(3.63)
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2. For ǫ > p∗,

(D, p) =



















( κ

h(p∗)
, p∗

)

, for 0 ≤ κ ≤ h(p∗)
1−p∗

(1 − ǫ),
(

D̂(κ), 1 −
1 − ǫ

D̂(κ)

)

, for h(p∗)
1−p∗

(1 − ǫ) < κ ≤ h(ǫ).
(3.64)

In interpreting the above results, we first note that the two extreme values of

κ, viz., κ = 0 and κ = h(ǫ), correspond to fE = 1 and fE = 0, respectively (since

D · h(p) = κ).

Now, suppose ǫ < p∗. Then, from (3.63), when κ < h(p∗)
p∗

ǫ, it is optimal to split

the total distortion D, between erasure and non-erasure locations, in the fixed

proportion (p∗, 1− p∗) . For fixed p, note that both fE and cE are proportional to

D. Consequently, cE varies linearly with fE for this range of κ. When κ > h(p∗)
p∗

ǫ,

from (3.63), it is optimal to set the distortion in the erasure-locations to the

maximum possible value, i.e., D1 = Dp = ǫ; the distortion in the non-erasure

locations is then given by D0 = D − ǫ. Thus, for this range of κ, none of the

erasure locations are conveyed to the source. Consequently, the hybrid-E protocol

essentially coincides with the hybrid-C protocol in this regime.

Likewise, when ǫ > p∗, the total distortion is again split in the fixed proportion

(p∗, 1 − p∗), between erasures and non-erasures, for κ < h(p∗)
1−p∗

(1 − ǫ). Hence, cE

again varies linearly with fE in this regime. For κ > h(p∗)
1−p∗

(1 − ǫ), it is optimal

to set the distortion D0 = D(1 − p) = 1 − ǫ, i.e., to not feed back any of the

non-erasure locations. Hence, the hybrid-E protocol coincides with the hybrid-D

protocol in this regime.

The variation of cE with fE is illustrated in Figures 3.10(a) and 3.10(b), for

the two cases ǫ < p∗ and ǫ > p∗, respectively.

56



It is seen that, for ǫ < p∗, the curve for the optimized hybrid-E protocol is

also the convex hull of the curves for the hybrid-C and time-sharing protocols. In

particular, for some threshold value f0, the hybrid-E curve follows hybrid-C when

fE < f0; on the other hand, for fE > f0, the variation of cE with fE is linear. This

is consistent with our earlier analysis. Further, it is easy to see that the linear

portion of the hybrid-E curve can be replicated by simply time-sharing between

the hybrid-C scheme, with fC = f0, and the feedback-only protocol.

Likewise, when ǫ > p∗, the resulting hybrid-E curve is the convex hull of the

hybrid-D and time-sharing curves. Again, for some threshold f1, the hybrid-E

and hybrid-D curves coincide for fE < f1 , beyond which the hybrid-E curve is

linear. This linear portion can be replicated by time-sharing between the hybrid-D

scheme with fD = f1 and the feedback-only protocol.

Although not shown, the hybrid-E curve coincides with the time-sharing scheme

for ǫ = p∗. Therefore, while in essence, the hybrid-E protocol represents a sin-

gle unified approach to the hybrid-C and hybrid-D schemes, its performance is

“achievable” using either one of the two schemes.

3.10 Summary

In this chapter, we introduced different types of hybrid protocols based on

Tornado codes. The main idea behind these protocols is to use a limited amount

of feedback in order to reduce encoding and decoding complexity. The first three

hybrid strategies – A, B and C – accomplished this by feeding back to the sender

a subset of the non-erasure locations among prior transmissions, so that these

unerased bits may be omitted from the coding process in the current round. The

hybrid-D scheme used feedback to convey a subset of erasure locations, so that the
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Figure 3.10: Performance of the hybrid-E protocol.
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corresponding erased bits may be re-transmitted without being subject to coding.

The final hybrid-E scheme employed a combination of both kinds of feedback.

The next chapter deals with some practical aspects of these protocols, related

to both coding and feedback.
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CHAPTER 4

HYBRID ARQ PROTOCOLS – SOME PRACTICAL CONSIDERATIONS

4.1 Introduction

In this chapter, we investigate some practical aspects of the hybrid protocols in-

troduced in Chapter 3. The main issues addressed here are: 1) the performance of

Tornado codes with non-zero overhead, 2) incomplete decoding of Tornado codes,

resulting from stopping sets, and 3) practical feedback mechanisms, including the

design of low-complexity lossy compression (rate-distortion) schemes. Towards

this end, our goal is to provide preliminary solutions to some of the problems

that may arise in practice, and guidelines that can assist in making these hybrid

protocols more amenable to implementation.

We conclude this chapter with another hybrid scheme that is a variation of the

hybrid-B scheme – a variation that adapts the feedback strategy according to the

actual structure of the Tornado code used.

4.2 Tornado codes with finite non-zero overhead

In Chapter 3, the performance of the hybrid schemes C,D and E was evaluated

in the limit as the overhead δ of the underlying Tornado code went to 0. How-

ever, this requires that the average left and right degrees al and ar of the code

bits grow unbounded, leading to unbounded encoding and decoding complexity.
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Therefore, to keep the complexity manageable, in practice, we need to design Tor-

nado codes with a small but non-zero overhead. In this section, we explore how

this choice influences the complexity-feedback tradeoff curves derived in Chapter

3. In particular, we illustrate the results for the hybrid-C scheme.

Recall that, while the results for the hybrid-C (as well as D and E) schemes

in Chapter 3 were derived assuming right-regular d.d. pairs for the underlying

Tornado code, they also hold for any family of d.d. pairs that is optimal in the

sense of achieving the lower bound (3.31) on the average left degree al. However,

the results presented in this section specifically make use of right-regular d.d.

pairs.

For the hybrid-C scheme, recall that right-regular d.d. pairs need to be de-

signed for erasure probability ǫ′ and overhead δ. Given ǫ′, we start by constructing

a sequence of right-regular d.d. pairs (λ(m), ρ(m)) of overhead δm, indexed by the

right degree m, using a modification1 of Algorithm 1 in [6]. From this construction,

it is observed that {δm}m≥1 form a decreasing sequence, which is in agreement with

the results of [6]. In order to obtain the desired overhead δ, we can time-share

between two right-regular d.d. pairs (λ(m′), ρ(m′)) and (λ(m′+1), ρ(m′+1)), chosen

such that their overheads satisfy δm′ ≥ δ ≥ δm′+1. This is illustrated in Appendix

D. Note that the resulting d.d. pair is not strictly right-regular, in the sense that

the right degrees can be either m′ or m′ + 1.

It is now possible to evaluate the complexity of the hybrid-C scheme using the

average left and right degrees of code bits obtained via the above approach. For a

fixed value of δ = 0.01, Fig. 4.1 illustrates the corresponding fractional complexity

cC versus fractional feedback fC curves. In comparison with the case when δ = 0,

1When specialized to right-regular d.d. pairs, the algorithm described in [6] takes as inputs
m and the rate R′, and outputs the d.d. pair (λ(m), ρ(m)) along with the overhead δ. Our
modification is to input the erasure probability ǫ′ instead of the rate.

61



it is seen that these curves are very similar and even marginally better as ǫ is

increased. The marginal improvement comes from the fact that, when computing

cC in the limit δ→0, we neglected the contribution of β in comparison with al and

a′
l in (3.34). For δ = 0.01, not neglecting the contribution of β reduces the value

of cC further.

Here, it should be kept in mind that, for each value of δ (i.e., 0 and 0.01), the

fractional complexity cC is evaluated relative to the coding-only protocol using

a baseline Tornado code that has the same overhead δ. Hence, the complexity-

feedback curves for the two values of δ are obtained with respect to two different

baseline coding-only schemes.

In sum, the “promised” tradeoff curves in chapter 3 for δ→0 are achievable

even for small non-zero values of δ such as δ = 0.01.

4.2.1 Comparison with other capacity achieving block codes

As outlined earlier, besides Tornado codes, there are other classes of c.a. block

codes for the erasure channel, such as systematic irregular-repeat-accumulate

(SIRA) codes ([7]), non-systematic irregular-repeat-accumulate (NSIRA) codes

([9]), and accumulate-repeat-accumulate (ARA) codes ([10]). In particular, ARA

and NSIRA codes have the property that their encoding and decoding complexity

remains bounded as their gap to capacity δ (similar to the overhead parameter for

Tornado codes) approaches 0.

It is therefore of interest to compare the complexity of Tornado codes for small

values of δ, with the asymptotically constant complexity (as δ→0) of ARA and

NSIRA codes. For ARA and NSIRA codes, we choose degree-3 check-regular (CR-

3) and degree-3 bit-regular (BR-3) codes, as outlined in Table I of [10]; these are
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Figure 4.1. Performance of the hybrid-C protocol using a right-regular
Tornado code with overhead δ = 0.01

representative of the corresponding c.a. classes of codes.

The coding complexity in [10] is computed as the number of edges in the Tanner

graph representing the code (normalized by the number of message bits), which is

related but not identical to the metric we use, i.e., the number of XOR operations

needed to encode and decode. Hence, we need to re-compute the complexities of

ARA and NSIRA codes in terms of the number of XORs needed per codeword,

per message bit; the results are outlined in Table 4.1, along with the range of ǫ
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for which each code achieves capacity.

The coding complexities of right-regular Tornado codes, for δ 6= 0, as well as

the asymptotic complexities of NSIRA and ARA codes (as δ→0) are compared in

Fig. 4.2. As expected, the coding complexity for Tornado codes increases as δ is

reduced. For δ = 0.001, the complexity is significantly higher than that of NSIRA

and ARA codes. As δ is increased to about 0.01 ∼ 0.02, this gap is reduced, and

the complexities are comparable over a wide range of ǫ. The widest gap occurs for

small ǫ (< 0.08), when the complexity of Tornado codes with δ = 0.02 is about a

factor of 1.5 times larger than that of the NSIRA BR-3 codes.

TABLE 4.1

COMPLEXITY OF ARA AND NSIRA CODES, MEASURED AS THE

TOTAL NUMBER OF XOR OPERATIONS NORMALIZED BY THE

MESSAGE SIZE k

Code Ensemble Type Range of ǫ Complexity

NSIRA Check-regular 3 (0, 0.95)
3

1 − ǫ

NSIRA Bit-regular 3 (0, 1
13

) 3

ARA Check-regular 3 (0.616, 1) 1 +
3ǫ

1 − ǫ

ARA Bit-regular 3 (0, 0.348) 4
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In summary, there is a natural complexity penalty associated with using Tor-

nado codes as opposed to other c.a. block codes with bounded complexity, espe-

cially for small overheads (∼ 0.001) and for small ǫ (< 0.1). If larger overheads

(between 0.01 and 0.05) are permissible in practice for this range of ǫ, then this

“complexity-gap” for Tornado codes may be significantly reduced.
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Figure 4.2. Coding complexity of NSIRA, ARA and Tornado codes, as a
function of the erasure probability ǫ
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4.3 Stopping sets in Tornado codes

It is well-known [4] that the decoding algorithm for Tornado codes (i.e., the

belief-propagation algorithm) fails to recover a set of erased left nodes belonging

to a bipartite graph in the cascade, if this set constitutes a stopping set [22], i.e.,

a set of left nodes whose every neighbor on the right is connected to at least two

left nodes in this set. In particular, it is shown in [4] that stopping sets among

the erased bits in a Tornado code occur with positive probability (independent of

the blocklength), if the minimum left degree of the bipartite graph is less than 3.

Since the d.d. pairs derived in [4] support a left degree of 2, the resulting

Tornado codes do contain stopping sets. This is countered in [4] by “artificially”

increasing the minimum left degree (over that specified by the d.d. pair) by sup-

plementing the bipartite graph with a small additional set of right nodes along

with additional edges from each left node to this set. This, however, has the ef-

fect of increasing coding complexity significantly for finite non-zero values of the

overhead δ.

The right-regular d.d. pairs used in Section 4.2 also support a minimum left

degree of 2, and consequently give rise to stopping sets in Tornado codes con-

structed using them. As an alternative to the above technique, used in [4], which

increases the coding complexity, we propose using feedback to recover undecoded

erasures resulting from stopping sets. In particular, it follows from [4, Proposition

2] that for sufficiently large blocklengths, the fraction of unrecovered erasures due

to stopping sets can be set to an arbitrarily small constant value. Consequently,

these erased bits can be communicated to the destination using simple ARQ, at

the cost of a small increase in the amount of feedback.

The amount of feedback needed to recover erased bits forming a stopping set
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can be further reduced using selective-feedback techniques, as outlined in [21]. In

particular, re-transmitting an appropriately chosen (erased) bit within the stop-

ping set can help the decoder to “break-through” the stopping set-barrier and

continue decoding till the next (smaller) stopping set is encountered. Thus, the

amount of feedback needed for re-transmission requests can be reduced (signifi-

cantly) from a number equal to the size of the initial stopping set, to simply the

number of times the decoder encounters smaller stopping sets, starting from the

same initial set.

4.4 Towards practical rate-distortion codes

In Chapter 3, we have assumed the existence of optimum rate-distortion codes

that achieve the rate-distortion curve, when formulating the feedback strategies

for hybrid B, D and E schemes. In theory, the existence of codes with performance

approaching the rate-distortion curve is guaranteed by non-constructive, random-

coding arguments [36]. In practice, deterministic code constructions with low-

complexity encoding and decoding algorithms are necessary for implementation.

The problem of designing such “practical” rate-distortion codes to achieve

(optimal) lossy compression for different sources and distortion criteria has been

studied by several researchers in the past. In particular, low-complexity channel

codes, such as low-density generator matrix (LDGM) and low-density parity-check

(LDPC) codes have been useful in constructing good rate-distortion codes. For the

memoryless binary symmetric source and Hamming distortion criterion, LDGM

and LDPC codes have been used to achieve the rate-distortion curve [38], [39].

These results have also been generalized to memoryless asymmetric binary sources

with a bounded distortion criterion in [40], [41], [42]. Recall, however, that our
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rate-distortion formulations deal with asymmetric binary sources with unbounded

distortion criteria.

We describe in the following a simple, but sub-optimal, code construction based

on sparse-bipartite graphs that may be substituted for the rate-distortion code

used in the feedback of the hybrid B (or hybrid C) protocol. This scheme consists

of a simple pre-coding operation, with encoding/decoding complexity that is linear

in blocklength, followed by a standard lossless compressor. Though this does

not achieve the rate-distortion function, it is seen to improve on the quantized-

feedback strategy of the hybrid-A scheme in certain regimes. In particular, for

small ǫ (∼ 0.01), this scheme achieves compression rates up to within 10% of the

rate-distortion bound (far superior to the quantized-feedback scheme) for a wide

range of distortions.

Consequently, this demonstrates the existence of low-complexity compression

schemes that can be used to obtain complexity-feedback performance close to that

of the hybrid-B protocol, in certain regimes.

4.4.1 A bipartite-graph based lossy compression scheme

As formulated in Section 3.6, we wish to encode the vector representing the

channel outcomes x ∈ {0, 1}m (0: non-erasure, 1: erasure) as the distorted vector

y ∈ {0,U}m (0: non-erasure, U : unacknowledged channel outcome), such that the

number of non-erasures in x reported as U in y is at most mD, and no erasure

in x is reported as a non-erasure in y. The vector y is communicated by the

destination d to the source s, conveying partial information about the channel

outcomes.

To accomplish this, we first encode x as z ∈ {0, 1}mR̂, for some R̂ ∈ (0,∞), and
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then establish a mapping from z to y. Consequently, it suffices to communicate z

to s, instead of y. The relationships between x and z, and between y and z are

determined by a randomly constructed bi-regular bipartite graph G.

The graph G consists of m left nodes and mR̂ right nodes, where each left

node is of degree l and each right node of degree r. Every left node is connected to

l right nodes chosen uniformly at random from the set of mR̂ right nodes; likewise,

each right node is connected to r randomly chosen left nodes. As with Tornado

codes, note that l and r are related by l = R̂ · r.

In order to generate z from x, we first map all the bits in x to left nodes in

G, and all bits in z to the right nodes. Now, each bit in z is evaluated as the

logical-OR of all the bits of x that it is connected to on the left, i.e., a bit of z

is marked as a 1 if it is connected to at least one bit in x that is a 1.

To obtain y from z, we simply replace x with y for the left nodes in G (in the

same order), such that y is now connected to z in the same way as x. Now, a

position in y is marked 0 if it is connected to at least one bit of z that is 0; else,

that position in y is set to U . The encoding process is illustrated in Fig. 4.3.

Let the notation ai be used for the ith element of a vector a. Then, the above

encoding process for z and y ensures that if xi = 1, then yi = U , as the common

connections to xi and yi in z all evaluate to 1.

Let q denote the probability that a bit in z is a 1. Therefore, q = 1− (1− ǫ)r.

Likewise, let p = Pr(yi = U), for any i. It follows that yi = U under one of

two conditions: either (i) xi = 1, as explained above, or (ii) xi = 0 and all its

connections in z evaluate to 1. Let the l connections of xi in z be denoted ζ(xi, z).
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Thus, we have:

p = ǫ + (1 − ǫ) · Pr
(

⋂

j ∈ ζ(xi,z)

zj = 1
∣

∣

∣
xi = 0

)

= ǫ + (1 − ǫ) ·
∏

j ∈ ζ(xi,z)

Pr
(

zj = 1
∣

∣

∣
xi = 0

)

(4.1)

= ǫ + (1 − ǫ) ·
(

1 − (1 − ǫ)r−1
)l

(4.2)

In writing (4.1), we have assumed that the bits in x that are connected to ζ(xi, z)

are all distinct, except for xi itself. In graph-theoretic terms, this is equivalent to

xi not being part of a cycle of length 4. It is possible to construct such a graph

for which this is true with high probability, by increasing m with l and r held

constant; this results in a sparse bipartite graph.
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Figure 4.3. Encoding process for the graph-based lossy compression
scheme

Since the fraction of erasures in x is ǫ, the number of non-erasures in x that
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are reported as U in y is m(p − ǫ). Thus, the distortion D is given by:

D = p − ǫ

= (1 − ǫ) ·
(

1 − (1 − ǫ)r−1
)l

= (1 − ǫ) ·
(

1 − (1 − ǫ)r−1
)R̂r

. (4.3)

Hence, the distortion may be varied by changing the right degree r. Figure 4.4

shows the variation of the normalized distortion D/(1 − ǫ), as a function of the

right degree r for different values of R̂ and ǫ. It is seen that, in order to span the

entire range 0 ≤ D ≤ (1 − ǫ), larger values of r are required for larger R̂ (for a

given ǫ) and smaller ǫ (for a given R̂).

Now, in order to communicate z to the decoder (in this case, the source s), we

need at most R̂m · h(q) bits on average, since the entropy of z is bounded as:

H(z) ≤
R̂m
∑

i=1

H(zi)

= R̂m · h(q). (4.4)

Henceforth, we shall assume that this upper bound is tight. Thus, the rate of

compression RGC(D) achieved by this graph-based construction (for a distortion

D, given by (4.3)) is R̂ ·h(q). We now compare this rate against the rate-distortion

function R̃(D) in (3.25), for different values of ǫ.

In Fig. 4.5, the ratio RGC(D)/R̃(D) is plotted as a function of the distortion

D, for different values of R̂ and ǫ. Also shown is the performance of the quantized-

feedback strategy used in the hybrid-A protocol (reproduced from Fig. 3.6). It

is observed that, for the values of ǫ considered, the graph-based scheme performs
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Figure 4.4. Distortion introduced by the graph-based scheme as a
function of the right degree r.

better than the quantized feedback strategy, except at lower distortions. Further,

increasing R̂ is seen to yield better performance. Overall, the graph-based scheme

is seen to perform better at lower ǫ, in contrast with the quantized feedback

scheme, which achieves better compression at higher ǫ.

It is of interest to see how the above results translate into complexity-versus-

feedback performance. For this, consider the hybrid-B̃ protocol which is derived

from the hybrid-B protocol by simply replacing the rate-distortion code in its feed-

back with the graph-based compression scheme described here. The performance
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of this protocol vis-a-vis the hybrid A and B protocols is demonstrated in Fig.

4.6.

It is seen that for smaller values of fractional feedback, hybrid-B̃’s performance

is intermediate to that of hybrid-A and hybrid-B, whereas for larger fractional

feedback, it is poorer than both. This is consistent with our observations regarding

Fig. 4.5. Further, for a fixed value of R̂, the performance gains of hybrid-B̃

over hybrid-A are bigger for small ǫ (∼ 0.01); recall that the small-ǫ regime also

corresponds to a bigger gap between hybrid-A and hybrid-B schemes (Section 3.6).

Although not shown, for ǫ > 0.2, the performance of hybrid-B̃ is generally poorer

than hybrid-A.

Thus far, we have ignored the complexity of the final lossless compressor in

the graph-based scheme, as well as in the hybrid-A and feedback-only protocols.

In practice, the same class of lossless compression schemes could be chosen for all

protocols to ensure uniformity. Popular examples of such schemes include Huffman

coding, arithmetic coding, Lempel-Ziv compression, etc. [43]. Alternatively, if

very low compression complexity is desired, simple run-length encoding schemes

could also be used, at the cost of higher feedback overhead.

4.5 Adapting the feedback strategy based on the Tornado code

In this section, we discuss a variant of the hybrid-B scheme wherein the feed-

back is adapted based on the Tornado code used to encode at the source. In a

way, this is the dual to the approach in the hybrid-C scheme, where we adapted

the Tornado code to the amount of distortion in the fedback information.

In the hybrid-B protocol, the distortion is “uniformly spread” across all non-

erasure locations, i.e., the rate-distortion code does not prioritize certain unerased
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graph-based compression scheme.
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bits over others in acknowledging their locations. However, note that Tornado

codes typically have irregular d.d pairs, i.e., either the left nodes or the right

nodes or both sets can have more than one possible degree in the Tornado code

graph. In particular, when the left-node degree distribution spans more than one

degree, it may be advantageous to feed back unerased bits in a given round that

have higher left degrees, with lesser distortion. This is because, bits with higher

left degrees contribute more to the encoding complexity in the next round than

those with smaller left degrees. Thus, intuitively it makes sense to omit as many

large left-degree bits from the encoding process as possible.

Suppose the left edge-degree distribution is given by λ := {λi}∞i=1, and the left

node-degree distribution by L := {Li}
∞
i=1. Recall that Li denotes the fraction of

left nodes in each bipartite code graph that are of degree i, whereas λi represents

the fraction of edges that originate from left nodes of degree i. It is easily shown

[4] that L and λ are related as:

Li =
λi/i

∑

j λj/j
. (4.5)

Note that the parities transmitted in every round of the hybrid-B protocol have

the same left node-degree distribution L. The new code-adapted feedback strategy

is described as follows:

1. Choose a threshold parameter lT for the left degrees, and a pair of distortions

(DL, DH) for lower and higher left-degrees, that are non-negative and satisfy

DL + DH ≤ (1 − ǫ).

2. Sort the ni parities transmitted in round i according to increasing left de-

grees (from the perspective of encoding in round i + 1) as c1, c2, · · · , cni
,
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i.e., LDEG(c1) ≤ LDEG(c2) ≤ · · · ≤ LDEG(cni
), where LDEG(·) denotes

the left-degree. Let x1, x2 · · ·xni
denote the corresponding (sorted) channel

outcomes, using the conventional notation, i.e., xi = 0 denotes a non-erasure

and xi = 1 an erasure of ci.

3. Let mi , max1≤j≤ni
{LDEG(cj) ≤ lT}. The channel transmissions in round

i are partitioned into two vectors cL , [c1, · · · , cmi
] and cH , [cmi+1, · · · , cni

].

Thus, cL represents the set of code bits with low left degrees (≤ lT ) and cH

the set of bits with high left degrees (> lT )

The corresponding channel outcomes are given by xL , [x1, · · · , xmi
] and

xH , [xmi+1, · · · , xni
]. The vectors xL and xH are separately encoded and

communicated by d to s with distortions DL and DH in the non-erasure

locations, respectively, using optimum rate-distortion codes of rates R̃(DL)

and R̃(DH), as described in Section 3.6.

4. The encoding in round i + 1 is done in the same manner as the hybrid-B

protocol, with the acknowledged unerased bits in round i omitted from the

encoding process.

We refer to this variation of the hybrid-B protocol as the hybrid-C2 protocol. The

coding complexity and amount of feedback needed for this protocol are computed

as follows.

The fraction of Tornado code bits with left degree no bigger than lT is given

by θlT =
∑lT

j=1 Lj . Consequently, we have mi = niθlT . Let aL
l and aH

l denote the

average left degrees within the sets cL and cH, respectively. It follows that:

aL
l =

1

θlT

lT
∑

j=1

j · Lj , (4.6)
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and

aH
l =

1

1 − θlT

∞
∑

j=lT +1

j · Lj . (4.7)

Thus, the overall average left degree al of the Tornado code is given by:

al = θlT · aL
l + (1 − θlT ) · aH

l . (4.8)

Note that (DL + ǫ)mi bits in cL and (DH + ǫ)(ni − mi) bits belonging to cH

participate in encoding in round i + 1. The average right degree for round i + 1

parities is therefore given by:

a′
r =

(DL + ǫ)mia
L
l + (DH + ǫ)(ni − mi)a

H
l

βni

=
(DL + ǫ)θlT aL

l + (DH + ǫ)(1 − θlT )aH
l

β

=
DLθlT aL

l + DH(1 − θlT )aH
l + ǫal

β
. (4.9)

Since the coding complexity for round i + 1 is given by ni+1 · (a′
r − 1), the overall

coding complexity for the hybrid-C2 protocol is:

CC2 =
βk

1 − β
· (a′

r − 1)

=
k

1 − β
·
(

DLθlT aL
l + DH(1 − θlT )aH

l + ǫal − β
)

. (4.10)

The amount of feedback required in round i is:

mi · R̃(DL) + (ni − mi) · R̃(DH) = ni ·
(

θlT R̃(DL) + (1 − θlT )R̃(DH)
)

. (4.11)
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Hence, the total amount of feedback required by the hybrid-C2 protocol is:

FC2 =
k

1 − β
·
(

θlT R̃(DL) + (1 − θlT )R̃(DH)
)

. (4.12)

As a result, the fractional complexity and fractional feedback for the hybrid-C2

protocol are:

cC2 =
DLθlT aL

l + DH(1 − θlT )aH
l + ǫal − ǫ

al − ǫ
, (4.13)

fC2 =
θlT R̃(DL) + (1 − θlT )R̃(DH)

h(ǫ)
, (4.14)

where we have assumed that the overhead δ ≪ 1, and hence β ≈ ǫ.

In practice, the choice of (DL, DH , lT ) can be optimized2 for each value of

fC2, so as to minimize the corresponding cC2. The resulting complexity-feedback

performance depends on the actual d.d. pair chosen for implementing the Tornado

code. In the following, we demonstrate the performance gains that are achievable

vis-a-vis the “uniform distortion” strategy used in the hybrid-B protocol, if right-

regular d.d. pairs are used to construct the Tornado code.

Figure 4.7 illustrates the “optimized” performance of the hybrid-C2 protocol,

compared with the hybrid B and C protocols. For these complexity versus feed-

back curves, the overhead of the right-regular d.d. pairs was chosen to be δ = 0.01.

Not surprisingly, it is seen that the hybrid-C2 scheme performs uniformly better

than the hybrid B scheme for all values of ǫ and f. For small ǫ (∼ 0.01), the hybrid-

C2 scheme also outperforms hybrid-C. As ǫ is increased (∼ 0.2), the performance

gain relative to the hybrid-C scheme comes only in the low-feedback regime. Con-

sequently, with right-regular d.d. pairs, the performance of the hybrid-C2 and

2Note that, for fixed fC2, only two of these three parameters can be chosen independently.
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Figure 4.7. Performance of the hybrid-C2 protocol with right-regular
d.d. pairs designed for δ = 0.01

hybrid-C schemes are seen to be complementary to each other – the former works

better at lower feedback and the latter at higher feedback.
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CHAPTER 5

CAPACITY RESULTS FOR TWO WIRELESS RELAY NETWORKS WITH

ERASURE LINKS

5.1 Introduction

In this chapter, we consider the problem of reliable communication in two

classes of wireless relay networks – the multiple-access relay channel (MARC) and

the multiple-relay channel (MRC) – in the context when individual links in these

networks behave as memoryless erasure channels. In the M-source MARC (Fig.

5.1) , sources s1, . . . , sM convey information to the destination d with the aid of a

relay r. In the M-relay MRC (Fig. 5.2), relays r1, . . . , rM assist a single source s

in conveying information to a single destination d.

Since we deal with wireless networks, the medium is shared by the transmit-

ting nodes. We assume that this sharing is done in an orthogonal fashion, i.e.,

transmissions from different nodes are non-interfering. Our model of wireless era-

sure networks is influenced by similar models adopted in prior work, cf. [31] and

[32].

We enumerate cut-set outer bounds on the capacity regions for these networks

and demonstrate their achievability (under a side-information assumption), using

practical codes for the point-to-point erasure channel. The result is an explicit

characterization of the network’s capacity (region) - a characterization that of-
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Figure 5.1. The M-source multiple-access relay channel

fers useful insights into the networks’ optimal mode of operation under different

scenarios.

Recall that, the capacity results of [31] are derived for arbitrary wireless erasure

networks, and hence can be specialized to the MARC and MRC configurations

considered here. However, as noted earlier, in [31] the available bandwidth is allo-

cated equally among all transmitting nodes. In contrast, we do not pre-determine

the allocation of the wireless medium – rather, this extra degree of freedom is

exploited in selecting the bandwidth-allocation strategy that minimizes the total

usage of the wireless medium.

Consequently, the region of all achievable rates obtained here is a superset of

the region that follows from the results of [31]. Besides characterizing the optimal

bandwidth allocation strategy, our approach also allows us to obtain useful insights

regarding the utility of the relays under different channel conditions, for both

the MARC and the MRC. Finally, as noted before, our achievability results are

demonstrated using low-complexity capacity-achieving (c.a.) codes designed for
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Figure 5.2. The M-relay multiple-relay channel

the BEC (such as LDPC codes), in contrast with the random coding arguments

employed in [31].

5.1.1 Description of the channel model

As noted above, we assume that the transmitting nodes share the wireless

medium orthogonally. Specifically, a time-division-multiplexing (TDM) strat-

egy is adopted wherein medium access is restricted to non-overlapping time slots,

with at most one node transmitting in any given slot. Further, we assume that

each time slot carries exactly one bit.

The TDM assumption is merely for convenience of exposition and the results

may be suitably “re-derived” for other orthogonal medium access protocols. Also,

though we have assumed that the nodes transmit bits rather than packets, our

results can easily be generalized to packetized transmission by treating packets as

binary strings of fixed-length, and allowing one packet transmission per time-slot.

Further, bit-level XORs in the encoding process may be replaced with packet-level

XORs.
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The link between any two nodes in the network is a memoryless binary era-

sure channel (BEC) of known erasure probability. The erasure random processes

of different links are assumed to be independent of one other. Also, as noted

above, all the outgoing links of a given node constitute a broadcast channel, i.e.,

the same bit is transmitted on all the outgoing links.

Further, we assume that the destination d in both networks has access to

perfect side-information about the erasure outcomes on all links that occur

over the course of communication. For example, in the MRC, d knows exactly

which subset of relays received each transmission from s without erasures. In

practice, this side-information can be conveyed to d by the intermediate nodes

(relays), which can encode this information into the header of each received packet

and forward it to d, as outlined in [31]. For a sufficiently large packet-size, this

constitutes negligible overhead.

Finally, as depicted in Figure 5.1, the sources in the MARC cannot listen to

each others’ transmissions. Likewise, the relay’s transmissions are “inaudible” to

the sources. The same holds true for the MRC; further, each relay’s transmissions

cannot be heard by the other relays, as conveyed by Figure 5.2. Effectively, the

relays in the MRC operate in a parallel, independent fashion.

5.2 The erasure multiple-access relay channel

This section derives the capacity region of the erasure MARC with M sources

(CMARC) under the assumptions formulated in Section 5.1.1. Specifically, a closed-

form description for CMARC is obtained as a function of the channel parameters.

We first establish an outer bound COB to the capacity region (i.e., CMARC ⊆

COB) via standard cut-set arguments. The resulting cut-set bounds are cast as
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a problem in linear programming, which yields a closed-form description of the

boundary of COB as its solution. We then describe a coding scheme that achieves

all rate-combinations in COB, making use of capacity-achieving (c.a.) codes for

the point-to-point erasure channel.

5.2.1 Preliminaries

Consider the M-source erasure MARC in Figure 5.1, wherein each link is a

memoryless BEC with the following erasure probabilities:

• ǫid for the link from source si to the destination d (for i = 1, 2, . . .M);

• ǫir for the link from si to the relay r (for i = 1, 2, . . .M);

• ǫrd for the link from r to d.

A code for the M-source erasure MARC consists of:

• one encoder at each source, with the encoder at si mapping ki information

bits onto ni channel bits – i.e., fi : {0, 1}ki → {0, 1}ni for i = 1, 2, . . . , M .

• one encoder at the relay that accepts the (potentially erased) bits from each

source and produces an nr-bit codeword - i.e., fr : {0, 1, E}n1+n2+···+nM →

{0, 1}nr.

• a decoder at the destination that estimates the bits produced at each source

– i.e., g : {0, 1, E}n → {0, 1}k1 × {0, 1}k2 × · · · × {0, 1}kM , where n = n1 +

n2 + · · · + nM + nr is the total number of bits received by the destination.

(Note: In keeping with the assumption about side information, we assume

that g(·) may depend on the locations of the erasures on the source-to-relay

channels.)
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The rate of information transfer from si to d is Ri , ki/n, and so associated

with each code is a rate M-tuple (R1, R2, · · ·RM). The capacity region can then

be formally defined as follows.

Definition 1. A rate M-tuple (R1, R2, · · ·RM) is achievable on the erasure

MARC if there exists a sequence of codes with increasing n such that, for n suffi-

ciently large, the rate of information transfer from si to d can be made arbitrarily

close to Ri for each i = 1, . . .M , and the probability of decoder failure can be made

arbitrarily small.

The capacity region CMARC of the erasure MARC is the set of all achievable

rate-tuples.

The capacity region may alternatively be represented using the coordinates

(R, θ), where R =
∑M

i=1 Ri, θ= (θ1, · · · , θM) and θi = Ri/R, for i = 1, · · · , M . In

terms of {ki}M
i=1 and n, we have R =

∑M
i=1 ki/n, and θi = ki/

∑M
j=1 kj. Here, R is

the “sum-rate” of the code, and θ is the “rate-allocation” vector describing how

the sum-rate is divided among the sources. Note that θ can be any real vector

satisfying (i) θi ≥ 0, (ii)
∑M

i=1 θi = 1. Thus, the region CMARC is equivalently de-

scribed by the set of all valid rate-allocation vectors θ and the range of achievable

sum-rates R associated with each θ. In the ensuing sections, we derive an outer

bound COB to CMARC by computing an upper bound for the sum-rate R for each

rate-allocation vector θ.

We now develop the cut-set bounds used for the remainder of the section.

Define an S − D cut of the MARC to be a partition of the nodes of the MARC

into two sets S and D (= Sc), such that at least one source is contained in S and

the destination d is contained in D. Let kS denote the total information content

of all messages originating in S, i.e., kS =
∑

i:si∈S ki. Further, let the random
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variable NS denote the total number of bits transmitted successfully from S to

D – i.e., the total number of bits transmitted by nodes in S that are received

unerased by at least one node in D. Finally, let p
(n)
e (S) denote the probability

that d is unable to decode all the messages originating in S. Then, we have the

following result.

Lemma 1. Given {ki}M
i=1 and an S − D cut of the MARC, if {ni}M

i=1 and nr

are chosen such that E(NS) < kS , then there exists a constant β > 0 such that

p
(n)
e (S) ≥ β, where β is independent of {ki}M

i=1, {ni}M
i=1 and nr.

Proof. See Appendix E.

Thus, in order to achieve arbitrarily small probabilities of decoding failure, it

is necessary to choose {ni}M
i=1 and nr such that E(NS) ≥ kS for every S −D cut.

5.2.2 Outer bound on the capacity region of the two-source erasure MARC

Prior to solving for COB for the M-source MARC, we illustrate this procedure

for the two-source case, shown in Figure 5.3. Let k1 and k2 denote the information

content at sources s1 and s2, and let n1, n2 and nr denote the number of bits

transmitted by s1, s2 and r, respectively.

We characterize COB via an upper bound on the sum-rate R = (k1 + k2)/n for

each rate allocation θ. This corresponds to computing a lower bound on the total

number of transmissions n = n1 + n2 + nr required for fixed values of k1 and k2.

Note that, given k1 and k2, (n1, n2, nr) are subject to the cut-set bounds implied

by Lemma 1.

The cuts that we consider for the two-source MARC are shown in Figure 5.3.

For instance, cut C1 defines the partition S = {s1} and D = {s2, r, d}. For this
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Figure 5.3. The two-source erasure MARC

case, E(NS) = n1(1−ǫ1dǫ1r)
1. From Lemma 1, in order for d to decode s1’s message

with high probability, it is necessary that n1(1 − ǫ1dǫ1r) ≥ k1. Similar bounds

can be derived by applying Lemma 1 to the remaining cuts, as given below:

C1 : n1(1 − ǫ1rǫ1d) ≥ k1

C2 : n2(1 − ǫ2rǫ2d) ≥ k2

C1r : n1(1 − ǫ1d) + nr(1 − ǫrd) ≥ k1

C2r : n2(1 − ǫ2d) + nr(1 − ǫrd) ≥ k2

C12r : n1(1 − ǫ1d) + n2(1 − ǫ2d) + nr(1 − ǫrd) ≥ k1 + k2

Note that, in addition to the cuts in Figure 5.3, the cut C12 is also possible,

resulting in S = {s1, s2} and D = {r, d}. However, the corresponding cut-set

bound n1(1− ǫ1rǫ1d) + n2(1− ǫ2rǫ2d) ≥ k1 + k2 is already implied by the bounds

1Note that 1 − ǫ1dǫ1r is the probability that no bit is erased simultaneously on both s1 → r
and s1 → d (cf. the model proposed in [31])
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derived from C1 and C2. Hence, we do not explicitly consider C12. Analogously,

for the M-source case, we shall not consider cuts that result in S containing only

multiple sources (and no relay).

In addition to the cut-set bounds and the implied non-negativity of n1 and n2,

we also have the non-negativity constraint on nr:

Nr : nr ≥ 0

We now minimize n = n1 + n2 + nr subject to the above necessary conditions.

This has the form of a standard problem in linear programming (LP).

In particular, let N ⊂ R
3 denote the set of (n1, n2, n3) that satisfy the above

constraints; geometrically, N is a convex 3-dimensional polytope. It follows from

LP theory that the minimum value of n is attained at one of the vertices of N [44].

Each vertex of N is completely determined by specifying three adjacent faces of

N ; there are a total of 6 faces for N , each corresponding to one of the constraints

being met with equality. Thus, there are
(

6
3

)

= 20 possible combinations that may

intersect to give a vertex; of these, it can be verified that only the following four2

actually form vertices of N : C1C2C12r, C1C1rC12r, C2C2rC12r, and C1rC2rNr.

Thus, it suffices to evaluate n1 + n2 + nr at these four vertices to determine

the minimum. Note that the optimum vertex, i.e., the optimum (n1, n2, nr), is a

function of the channel parameters (i.e., erasure probabilities); in Section 5.2.3,

we illustrate a procedure that permits us to characterize this function explicitly for

the M-source case, using standard tools from LP theory. The results are outlined

below for the two-source case:

2The notation ‘CiCjNk’ means that the constraints labeled Ci, Cj and Nk are met with
equality.
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• ǫrd < min(ǫ1d, ǫ2d): The minimum is attained at C1C2C12r and the resulting

values of n1, n2 and nr are

n∗
1 =

k1

1 − ǫ1rǫ1d
,

n∗
2 =

k2

1 − ǫ2rǫ2d
,

n∗
r =

ǫ1d(1 − ǫ1r)

1 − ǫrd

n∗
1 +

ǫ2d(1 − ǫ2r)

1 − ǫrd

n∗
2. (5.1)

• ǫ2d < ǫrd < ǫ1d: The minimum is attained at C1C1rC12r and

n∗
1 =

k1

1 − ǫ1rǫ1d
,

n∗
2 =

k2

1 − ǫ2d
,

n∗
r =

ǫ1d(1 − ǫ1r)

1 − ǫrd
n∗

1. (5.2)

For the case ǫ1d < ǫrd < ǫ2d, the minimum is attained at C2C2rC12r and the

corresponding n∗
1, n∗

2 and n∗
r are obtained by symmetry.

• ǫrd > max(ǫ1d, ǫ2d) The minimum is attained at C1rC2rNr:

n∗
1 =

k1

1 − ǫ1d

,

n∗
2 =

k2

1 − ǫ2d

,

n∗
r = 0. (5.3)

Note that for the last case (wherein the r → d link is worse than either of the

source-destination links), the minimum value of n is attained by setting nr = 0,

i.e., by not using the relay at all. Similarly, when ǫ2d < ǫrd < ǫ1d, the optimal
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choice for nr depends only on k1 (via n1), suggesting that the relay should assist

only that source with a worse link to d than r itself. This principle holds in

general, as will be shown in Section 5.2.3.

We conclude this section with a description of COB for the case when ǫrd <

min(ǫ1d, ǫ2d), in terms of the sum-rate R and rate allocation θ. Let n∗ = n∗
1 +n∗

2 +

n∗
r . Then R ≤ (k1 + k2)/n

∗, and, noting that θi = ki/(k1 + k2) (i = 1, 2), we have:

R ≤
k1 + k2

2
∑

i=1

ki

1 − ǫirǫid
·

(

1 +
ǫid(1 − ǫir)

1 − ǫrd

)

=
1

2
∑

i=1

θi

1 − ǫirǫid

·

(

1 +
ǫid(1 − ǫir)

1 − ǫrd

) (5.4)

Thus, COB consists of all (R, θ) that satisfy (5.4).

5.2.3 Outer bound for the M-source MARC

We now derive COB for the general M-source case. Let the set of sources be

denoted S = {1, 2, · · · , M}. From Lemma 1, it follows that the following cut-set

bounds must be satisfied, if d is to decode all messages with high probability:

nr(1 − ǫrd) +
∑

j∈I
nj(1 − ǫjd) ≥

∑

j∈I
kj , ∀ I ⊆ S, (5.5)

ni(1 − ǫirǫid) ≥ ki, ∀ i ∈ S. (5.6)

Let S′ ⊆ S comprise the sources with a poorer link to d than the relay-to-

destination link, i.e., S′ , {j ∈ S : ǫjd > ǫrd}. Then, the following result holds.

Lemma 2. The minimization of n = nr +
∑

i∈S
ni subject to (5.5) and (5.6) yields
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the following solution:

n∗
i =















ki

1 − ǫidǫir

, i ∈ S′,

ki

1 − ǫid
, i 6∈ S′,

(5.7)

n∗
r =

1

1 − ǫrd
·
∑

i∈S′

n∗
i ǫid(1 − ǫir)

=
1

1 − ǫrd

·
∑

i∈S′

ki ·
ǫid(1 − ǫir)

1 − ǫidǫir

. (5.8)

Proof. For convenience, we assume that the sources are numbered in decreasing

order of source-destination erasure probabilities, i.e, if i < j then ǫid ≥ ǫjd. Also,

let M ′ = max{j : ǫjd > ǫrd}, so S′ = {1, 2, · · · , M ′}.

We first demonstrate that (5.7) and (5.8) are feasible - i.e., they satisfy (5.5)

and (5.6). It is easily seen that (5.6) is not violated by n∗
i chosen according to

(5.7). Further, for any I ⊆ S, let I ′ = I ∩ S′. Then,

n∗
r(1 − ǫrd) +

∑

j∈I
n∗

j(1 − ǫjd) =
∑

i∈S′

n∗
i ǫid(1 − ǫir) +

∑

j∈I
n∗

j (1 − ǫjd)

≥
∑

i∈I′

n∗
i ǫid(1 − ǫir) +

∑

j∈I
n∗

j (1 − ǫjd)

=
∑

i∈I′

n∗
i (1 − ǫidǫir) +

∑

j∈I\I′

n∗
j (1 − ǫjd)

=
∑

i∈I′

ki +
∑

j∈I\I′

kj (5.9)

which shows that (5.5) is satisfied.

The constraints (5.5) and (5.6) describe a convex (M+1)-dimensional polytope

PMARC . From LP theory, the minimum of n =
∑

i∈S
ni + nr occurs at one of the
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vertices of PMARC , where a vertex is specified by setting M + 1 of the constraints

in (5.5) and (5.6) to hold with equality.

Consider the following subset of M + 1 constraints:

ni(1 − ǫirǫid) ≥ ki, 1 ≤ i ≤ M ′, (5.10)

nr(1 − ǫrd) +

M ′+m
∑

j=1

nj(1 − ǫjd) ≥
M ′+m
∑

j=1

kj, 0 ≤ m ≤ M − M ′. (5.11)

We shall demonstrate that n is minimized when these constraints are met with

equality. We first transform (5.10) and (5.11) to equalities by introducing non-

negative slack variables {Xi}1≤i≤M ′, {Zm}0≤m≤M−M ′:

ni(1 − ǫirǫid) = ki + Xi, 1 ≤ i ≤ M ′, (5.12)

nr(1 − ǫrd) +
M ′+m
∑

j=1

nj(1 − ǫjd) =
M ′+m
∑

j=1

kj + Zm, 0 ≤ m ≤ M − M ′.(5.13)

For this system of equations, observe that the coefficient matrix of the vector

(n1, · · · , nM ′, nr, nM ′+1, · · · , nM) is lower triangular. Thus, (5.12) and (5.13) can

be easily solved for {ni}i∈S and nr, yielding:

ni =















ki

1 − ǫirǫid
+

Xi

1 − ǫirǫid
, 1 ≤ i ≤ M ′

ki

1 − ǫid
+

Zi−M ′ − Zi−M ′−1

1 − ǫid
, M ′ + 1 ≤ i ≤ M

(5.14)

nr =
1

1 − ǫrd

M ′
∑

j=1

kjǫjd(1 − ǫjr)

1 − ǫjrǫjd
+

Z0

1 − ǫrd

−
M ′
∑

j=1

Xj

1 − ǫjrǫjd
·
1 − ǫjd

1 − ǫrd
. (5.15)
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Then, we have:

nr +
M
∑

i=1

ni = f(k1, k2, · · · , kM) +
M ′
∑

i=1

Xi(ǫid − ǫrd)

(1 − ǫirǫid)(1 − ǫrd)

+

M−1
∑

j=M ′

Zj−M ′(ǫjd − ǫ(j+1)d)

(1 − ǫjd)(1 − ǫ(j+1)d)
+

ZM−M ′

1 − ǫMd
(5.16)

where f(· · · ) is independent of the slack variables. Since ǫid ≥ ǫjd for i < j and

ǫid > ǫrd for i ≤ M ′, the coefficients of {Xi}1≤i≤M ′ and {Zm}0≤m≤M−M ′ in the

above equation are non-negative. Thus, nr +
∑M

i=1 ni is minimized by setting

{Xi}1≤i≤M ′ and {Zm}0≤m≤M−M ′ to zero, which yields the solution in (5.7) and

(5.8).

Corollary 1. For the M-source MARC, CMARC ⊆ COB, where COB consists of all

(R, θ) satisfying

R ≤
1

∑

i∈S′

αiθi +
∑

j 6∈S′

βjθj

(5.17)

where

αi =
1

1 − ǫidǫir
·

(

1 +
ǫid(1 − ǫir)

1 − ǫrd

)

, i ∈ S
′, (5.18)

βj =
1

1 − ǫjd

, j 6∈ S
′. (5.19)

5.2.4 Achieving the outer bound

We now demonstrate that every (R, θ) in COB is achievable by fixing θ and

showing that the upper bound on the sum-rate R in (5.17) is achievable. More

precisely, given θ and the total number of message bits k (with ki = θik), it suffices
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to construct a coding scheme with {ni}i∈S and nr given by Lemma 2 that achieves

reliable transfer of the k message bits to d with high probability for sufficiently

large k.

The strategy employed here is to encode at the sources with capacity-achieving

(c.a.) codes for the BEC, followed by compress-and-forward (CF) encoding at the

relay to convey only the useful portion of the relay’s observations to d. As we have

seen, in practice, c.a. codes for the BEC such as Tornado codes ([4]) can achieve

rates within a factor 1 − δ of the capacity, where δ > 0 is a design parameter

that can be made arbitrarily small. So these codes have the property that, if the

message blocklength k is sufficiently large, any k/(1 − δ) ≈ k(1 + δ) unerased

code bits suffice to recover the message with high probability. For convenience,

we assume all “capacity approaching codes” operate at capacity, i.e., with δ = 0.

Further, we replace the (random) number of successful (unerased) transmissions

from any node to any group of nodes by the expected value of the same. These

assumptions make the notation simpler and do not change the results, which

address asymptotic rates.

The coding scheme is as follows. Each source si encodes and transmits its

message consisting of ki bits using a c.a. code of rate R̃i as follows:

• for i ∈ S′, R̃i = 1 − ǫirǫid, and ni =
ki

1 − ǫirǫid

,

• for i 6∈ S
′, R̃i = 1 − ǫid, and ni =

ki

1 − ǫid
.

(Recall that S′ indexes those sources with a worse direct link to the destination

than that of the relay.)

For any i 6∈ S′, the destination can (with high probability) decode si’s message

without assistance from the relay.
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So assume i ∈ S′; denote the number of code bits received unerased by r

and d from si as nir and nid, respectively. By assumption, nir = ni(1 − ǫir) and

nid = ni(1 − ǫid). Since c.a. codes are assumed, any ki unerased code bits from si

suffice to decode the corresponding message with high probability. Hence, d needs

an additional ki − nid = ǫidnir code bits to decode the message, a number equal

to the number of code bits received by r from si but not by d. Let the vector zi

denote the code bits received by r. The side-information assumption implies that

d knows a fraction 1− ǫid of zi. The unknown portion of zi can be communicated

by r as follows.

As a first step, r compresses zi by a factor ǫid such that any missing fraction

ǫid of zi can be recovered using the compressed bits; this can be accomplished in

several ways – e.g., encoding zi using the first layer of parities of a Tornado code

results in a low-complexity compression scheme. The compressed version of zi

may now be communicated to d using a c.a. code of rate 1− ǫrd, designed for the

r → d link. Thus, d can decode the missing portion of zi and hence the original

message.

For each i ∈ S′, the number of bits transmitted by r in this process is ǫidnir/(1−

ǫrd). Summing over all i in S′ results in (5.8). Thus, we have demonstrated a

coding technique to achieve all (R, θ) within COB.

Note that, in the above scheme, the relay encodes each source in S′ inde-

pendently. A slightly modified encoding strategy at the relay is to compress the

combined vector [zi]i∈S′ by a factor ǫ:

ǫ =

∑

i∈S′ nirǫid
∑

i∈S′ nir

, (5.20)

such that any missing fraction ǫ of the combined vector can be recovered from
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the compressed bits. These compressed bits can now be communicated to d and

suffice to decode the missing portions of all zi. The obvious advantage of this

approach is that the code bits received by the relay are jointly encoded into a

longer codeword for the same total number of transmitted bits, ensuring lower

probability of decoding error for finite blocklengths.

Thus, we have the following theorem.

Theorem 2 (Capacity region of the M-source erasure MARC). The capacity

region CMARC consists of all non-negative rate M-tuples (R1, · · · , RM) that satisfy

∑

i∈S′

αiRi +
∑

j 6∈S′

βjRj ≤ 1, (5.21)

for {αi}i∈S′ and {βj}j 6∈S′ defined in (5.18) and (5.19).

5.2.5 Comparison with earlier results

We now compare our results with those of [31] for the case of the two-source

MARC. Recall that [31] derives the capacity region of arbitrary wireless networks

with orthogonal erasure links of specified bandwidth; in particular, it is assumed

that every link is a binary erasure channel3 and that all links operate simulta-

neously. This effectively divides the available wireless spectrum equally among

all transmitting nodes, in contrast with our optimal allocation strategy for the

MARC based on the channel parameters.

So the rate region in [31] for the two-source MARC is contained within the

region described in Theorem 2. In particular, let CR1 denote the capacity region

described by Theorem 2, and CR2 the capacity region based on the results in [31,

3Alternatively, each link may be a packet erasure channel with a fixed packet size.
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Theorem 2]; then CR2 is the set of all rate pairs satisfying these constraints:

R1 ≤
1

3
· min(1 − ǫ1rǫ1d, 1 − ǫ1d + 1 − ǫrd),

R2 ≤
1

3
· min(1 − ǫ2rǫ2d, 1 − ǫ2d + 1 − ǫrd),

R1 + R2 ≤
1

3
·
(

1 − ǫ1d + 1 − ǫ2d + 1 − ǫrd

)

,

where we have included a factor of 1/3 in each bound to take into account the

fact that one-third of the total bandwidth is allocated to each of s1, s2 and r -

i.e., each node has access to only a third of all channel uses.

Figure 5.4 compares CR1 and CR2 for two different cases. When ǫ1r = ǫ2r =

0.3, ǫ1d = ǫ2d = 0.6 and ǫrd = 0.4, it is seen that CR2 is strictly contained within

CR1 – the resulting “gap” implying that equally apportioning bandwidth among

the three transmitters (at the two sources and the relay) is never optimal in this

scenario. On the other hand, when ǫrd is increased to 0.6 to equal the source-

destination erasure rates, the boundaries of CR1 and CR2 coincide in part; in

this regime, it is optimal for the three transmitting nodes to share the medium

equally.

More generally, for a symmetric two-source MARC with ǫ1d = ǫ2d = ǫsd and

ǫ1r = ǫ2r = ǫsr, it can be shown that equal allocation of bandwidth among the

transmitting nodes can result in the relay being either “over-utilized” or “under-

utilized.” In particular, the relay is over-utilized, i.e., allocated too many channel

uses, if either of the following conditions hold:

• the r → d link is of poorer quality than the source-destination links, i.e.,

ǫrd > ǫsd; or

• the maximum rate at which r can communicate with d exceeds the maximum
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Figure 5.4. A comparison of the rate regions CR1 (with optimal
bandwidth allocation) and CR2 (without optimal bandwidth allocation)

for the two-source MARC.
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rate at which r can receive useful information from the two sources, i.e.,

1 − ǫrd > 2ǫsd(1 − ǫsr).

Conversely, the relay is under-utilized if both ǫrd < ǫsd and 1− ǫrd < 2ǫsd(1− ǫsr).

In sum, equal bandwidth allocation can be optimal only if either ǫrd = ǫsd or

1 − ǫrd = 2ǫsd(1 − ǫsr).

5.3 The erasure multiple relay channel

We now compute the capacity of the erasure multiple relay channel (MRC)

with M relays. As with the MARC, an upper bound is first established using

cut-set arguments; this bound is then shown to be achievable using capacity ap-

proaching codes for the BEC. Finally, the capacity result is discussed for specific

examples of practical interest.

5.3.1 Preliminaries

Consider the M-relay erasure MRC in Figure 5.2. Each link is a memoryless

BEC with erasure probabilities given by:

• ǫsd for the link from the source s to the destination d;

• ǫsi for the link from the source s to relay ri (for i = 1, 2, . . .M);

• ǫid for the link from relay ri to the destination d (for i = 1, 2, . . .M).

We shall see that the relay-destination erasure probabilities play a crucial role in

determining the best communication strategy. So, for convenience of exposition,

we assume that the relays are numbered in non-decreasing order of their relay-

destination probabilities, i.e., for i < j, we have ǫid ≤ ǫjd.
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We now define a code for this channel. An encoder fs : {0, 1}k → {0, 1}ns maps

k message bits at the source onto ns channel bits; each relay ri observes a (possibly

erased) version of those channel bits and implements an encoder fi : {0, 1, E}ns →

{0, 1}ni. Then, the destination implements a decoder g : {0, 1, E}n → {0, 1}k to

recover the k-bit message based on the n = ns+
∑M

i=1 ni received bits4. The rate of

this code is k/n, and a rate R > 0 is said to be achievable if there exists a sequence

of codes with increasing n with rates approaching R and vanishing probability of

decoder failure. The capacity CMRC is the supremum of all achievable rates.

Proceeding to the cut-set bounds, define an S−D cut of the MRC as a partition

of its nodes into sets S and D (= Sc), such that s ∈ S and d ∈ D. Let NS denote

a random variable indicating the total number of bits transmitted successfully

(without erasure) from S to D, and p
(n)
e the probability that d is unable to decode

the k message bits. Then, Lemma 1 extends in a straightforward manner to the

MRC, yielding this result.

Lemma 3. Given an S − D cut of the MRC, if ns and {ni}
M
i=1 are chosen such

that E(NS) < k, then there exists β > 0, independent of k, ns and {ni}M
i=1, such

that p
(n)
e ≥ β.

5.3.2 Upper bound on the capacity of the erasure MRC

We now derive an upper bound on CMRC using Lemma 3. For fixed k, we

compute a lower bound on the total number of transmissions n required for reliable

communication, resulting in an upper bound on any achievable rate.

Let the set of relays be denoted R = {1, 2, · · · , M}. From Lemma 3, to

achieve an arbitrarily small probability of decoding failure, it is necessary that ns

4Once again, the side information assumption means that g(·) is also a function of the erasure
locations on the source-to-relay links.
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and {ni}M
i=1 satisfy E(NS) ≥ k for every S − D cut of the MRC. This translates

to the following set of conditions:

ns

(

1 − ǫsd

∏

i∈Ic

ǫsi

)

+
∑

j∈I
nj(1 − ǫjd) ≥ k, ∀ I ⊆ R. (5.22)

In addition to the above, there are M non-negativity constraints:

nm ≥ 0, 1 ≤ m ≤ M. (5.23)

As before, minimizing n = ns +
∑

i∈R ni subject to (5.22) and (5.23) is a standard

problem in LP. The convex polytope PMRC ⊂ R
M+1 described by (5.22) and (5.23)

has at most

(

2M + M

M + 1

)

possible vertices – each determined by solving a subset

of M + 1 constraints with equality. In the following, we determine which of these

vertices minimizes n as a function of the channel parameters.

In particular, consider the class of (M + 1)-tuples (ns, n1, · · · , nM) ∈ R
M+1

obtained as follows: for every ℓ = 0, 1 . . . , M , satisfy (5.23) with equality for

m ∈ {ℓ + 1, · · · , M} and satisfy (5.22) with equality for all I belonging to the set

{

{1, 2, . . . , M}, {2, . . . , M}, {3, . . . , M}, . . . , {ℓ + 1, . . . , M}
}

.

The cuts corresponding to these choices of I are illustrated in Figure 5.5. The

resulting set of points in R
M+1 constitute M + 1 vertices of PMRC , and the min-

imum value of n occurs at one of these vertices. We formalize this result in the

following.

Definition 2. For a given message length k, a channel allocation is an (M +

1)-tuple of non-negative real numbers (ns, n1, · · · , nM). The rate of a channel

102



r1

rM

s d

r1

rM

s d

rℓ

I = {1, . . . , M}

I = {2, . . . , M}

I = {ℓ + 1, . . . , M}

s d

rM

Figure 5.5. Cuts corresponding to the αℓ-channel allocation

103



allocation is the ratio k/(ns +
∑M

i=1 ni).

For 0 ≤ ℓ ≤ M , an αℓ-channel allocation is defined as the (M + 1)-tuple

(ns, n1, · · · , nM) satisfying these equalities:

ns

(

1 − ǫsd

m
∏

j=1

ǫsj

)

+

M
∑

j=m+1

nj(1 − ǫjd) = k, 0 ≤ m ≤ ℓ, (5.24)

nm = 0, ℓ < m ≤ M. (5.25)

Lemma 4. For 0 ≤ ℓ ≤ M , the αℓ-channel allocation is given by:

ns =
k

1 − ǫsd

∏ℓ
i=1 ǫsi

,

nm(1 − ǫmd) = nsǫsd(1 − ǫsm)
m−1
∏

i=1

ǫsi, 1 ≤ m ≤ ℓ,

nm = 0, m > ℓ, (5.26)

with rate given by

Cℓ =
1 − ǫsd

∏ℓ
i=1 ǫsi

1 + ǫsd ·
ℓ
∑

j=1

(1 − ǫsj

1 − ǫjd
·

j−1
∏

i=1

ǫsi

)

. (5.27)

Further, every αℓ-channel allocation is a vertex of PMRC , i.e., it satisfies (5.22)

and (5.23).

Proof. See Appendix F.

(Note: We make the usual assumption that a sum over an empty set is equal

to zero and a product over an empty set is unity, so, for example C0 = (1 − ǫsd ·

1)/(1 + ǫsd · 0) = 1 − ǫsd.)

Any coding scheme employing the αℓ-channel allocation has the following prop-
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erties:

1. The relays rℓ+1, · · · rM are unused.

2. For every S − D cut where D is of the form D = {r1, · · · , rm−1, d} where

m ≤ ℓ, the average number of unerased bits transferred from rm to d
(

= nm(1− ǫmd)
)

equals the average number of bits that were received by rm

from s, but not by any of the nodes in D.

The fact that the relays are ordered according to ǫid ≤ ǫjd for i < j induces

a particular ordering among the channel allocation rates Cℓ, described in the

following lemma.

Lemma 5. Suppose ℓ∗ is chosen as the smallest value of ℓ for which Cℓ attains

its maximum, i.e.,

ℓ∗ = min
{

arg max
0≤ℓ≤M

Cℓ

}

(5.28)

Then the following inequalities hold:

Cℓ ≤ Cℓ+1 ≤ (1 − ǫ(ℓ+1)d), for 0 ≤ ℓ ≤ ℓ∗ − 1, 1 ≤ ℓ∗ ≤ M (5.29)

Cℓ ≥ Cℓ+1 ≥ (1 − ǫ(ℓ+1)d), for ℓ∗ ≤ ℓ ≤ M − 1, 0 ≤ ℓ∗ ≤ M − 1 (5.30)

Further, when ℓ∗ 6= 0, we have the following strict inequality:

Cℓ∗−1 < Cℓ∗ < (1 − ǫℓ∗d) (5.31)

This lemma is proved in Appendix G. It is useful in proving the following

theorem.
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Theorem 3. Let ℓ∗ be chosen as in (5.28). Then, the channel allocation that

minimizes ns +
∑M

i=1 ni subject to (5.22) and (5.23) is given by the αℓ∗-channel

allocation.

Proof. By definition, the αℓ∗-channel allocation forms the solution to this subset

of (5.22) and (5.23) met with equality:

ns

(

1 − ǫsd

m
∏

j=1

ǫsj

)

+
M
∑

j=m+1

nj(1 − ǫjd) ≥ k, 0 ≤ m ≤ ℓ∗, (5.32)

nm ≥ 0, ℓ∗ < m ≤ M. (5.33)

We re-write (5.32) and (5.33) as equalities by introducing non-negative slack vari-

ables {Zm}
M
m=0:

ns

(

1 − ǫsd

m
∏

i=1

ǫsi

)

+

M
∑

j=m+1

nj(1 − ǫjd) = k + Zm, 0 ≤ m ≤ ℓ∗, (5.34)

nm = Zm, ℓ∗ < m ≤ M. (5.35)

It is now possible to solve (5.34) and (5.35) for ns, {nm}M
m=1 in terms of {Zm}M

m=0;

then, rewriting the objective function in terms of these slack variables leads to

ns +
M
∑

j=1

nj = ck +
M
∑

m=0

γmZm (5.36)

where, for ℓ∗ = 0 we have ck = k/(1 − ǫsd) and

γm =



















1

1 − ǫsd
, for m = 0,

ǫmd − ǫsd

1 − ǫsd
, for 1 ≤ m ≤ M,

(5.37)
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while for ℓ∗ ≥ 1 we have ck = k/Cℓ∗ and

γm =























































1

1 − ǫ1d
, for m = 0,

1

1 − ǫ(m+1)d
−

1

1 − ǫmd
, for 1 ≤ m ≤ (ℓ∗ − 1),

1

Cℓ∗
−

1

1 − ǫℓ∗d

, for m = ℓ∗,

1 −
1 − ǫmd

Cℓ∗
, for (ℓ∗ + 1) ≤ m ≤ M .

(5.38)

A detailed evaluation of ck and {γm}M
m=0 for the two cases is provided in Appendix

H.

When ℓ∗ = 0, observe that γ0 > 0. Also, {γm}M
m=1 are non-negative, because

C0 ≥ Cm ≥ 1 − ǫmd for 1 ≤ m ≤ M , from (5.30); since C0 = 1 − ǫsd, we have

ǫsd ≤ ǫmd.

Likewise, when ℓ∗ ≥ 1,

• γ0 > 0,

• {γm}
ℓ∗−1
m=1 are non-negative, as ǫmd ≤ ǫ(m+1)d by the ordering of the relays,

• γℓ∗ > 0 from (5.31),

• {γm}M
m=ℓ∗+1 are non-negative, as Cℓ∗ ≥ Cℓ ≥ (1 − ǫℓd) for ℓ ≥ ℓ∗ + 1, from

(5.30).

Since γm ≥ 0 for all m for both cases, ns +
∑M

j=1 nj is minimized when Zm = 0 for

all m, which yields the αℓ∗-channel allocation. From Lemma 4, the αℓ∗-channel

allocation satisfies (5.22) and (5.23), proving the theorem.

Corollary 2. The capacity of the M-relay erasure MRC is bounded as CMRC ≤

Cℓ∗.
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5.3.3 Achievability of the upper bound

We now show that the upper bound in Corollary 2 is achievable. Specifically,

for any ℓ (0 ≤ ℓ ≤ M), we construct a coding scheme using the αℓ-channel

allocation that achieves reliable communication at a rate arbitrarily close to Cℓ

for sufficiently large k.

As with the MARC results in Section 5.2.4, we employ capacity approaching

codes for the BEC and make the same simplifying assumptions – i.e., c.a. codes

operate at capacity, and the random number of erasures experienced (jointly) by

a node (group of nodes) is equal to its expected value.

The coding scheme is as follows. The k message bits are encoded at s using

a c.a. code of rate 1 − ǫsd

∏ℓ
i=1 ǫsi, consistent with the αℓ-channel allocation. Of

the ns = k/(1 − ǫsd

∏ℓ
i=1 ǫsi) transmitted bits, the number received unerased by

at least one node among d and the first m (≤ ℓ) relays is ns(1 − ǫsd

∏m
i=1 ǫsi).

Since c.a. codes are used, any k = ns(1 − ǫsd

∏ℓ
i=1 ǫsi) code bits transmitted

by s suffice to decode the message. Therefore, if every relay rm (for m ≤ ℓ)

communicates its received bits to d, then d can decode the message correctly,

This can be accomplished efficiently via an inductive encoding procedure at the

relays as follows.

We describe the encoding process at rm (m ≤ ℓ) under the hypothesis that the

preceding relays (r1, . . . , rm−1) have successfully communicated to d the bits they

received (unerased) from s. (This is trivially true for m = 1.) Denote the ns(1 −

ǫsm) code bits received by rm from s as the vector zm. The inductive hypothesis,

together with the side information that d has about the erasure locations on all

links, implies that d knows a fraction (1− ǫsd

∏m−1
i=1 ǫsi) of zm. Therefore, rm only

needs to communicate the remaining fraction ǫsd

∏m−1
i=1 ǫsi of zm to d. This can
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be accomplished with a compress-and-forward strategy at rm: (i) the vector zm

is first compressed by a factor ǫsd

∏m−1
i=1 ǫsi, making possible the recovery of any

unknown fraction ǫsd

∏m−1
i=1 ǫsi of zm (for example, using a Tornado code), (ii) the

compressed bits are then communicated perfectly to d over the rm → d link using

a c.a. code for the BEC of rate 1 − ǫmd. Thus, d now has decoded all the code

bits received by relays (r1, . . . , rm). The number of bits transmitted by rm in this

process is nm =
ns(1 − ǫsm)ǫsd

∏m−1
i=1 ǫsi

1 − ǫmd
, as required by the αℓ-channel allocation.

By induction, it follows that d can recover all the received code bits at re-

lays (r1, · · · , rℓ), which suffice to decode the source’s message. Thus, we have

constructed a reliable coding scheme using the αℓ-channel allocation, and so the

following result is obtained.

Theorem 4. The capacity of the M-relay erasure MRC is given by

CMRC = Cℓ∗ = max
0≤ℓ≤M

Cℓ. (5.39)

5.3.4 Unique optimality of the αℓ∗ channel allocation

We have demonstrated that the αℓ∗-channel allocation can be used to construct

a c.a. coding scheme for the erasure MRC. It is natural to ask if this allocation

is unique, i.e., whether there exist other channel allocations with the same rate

for which reliable coding schemes can be constructed. This is easily answered by

inspecting (5.36). Clearly, if γm > 0 for all m, the value of n = ns +
∑M

j=1 in

(5.36) is minimized only when Zm = 0 for all m, leading to the unique optimality

of the αℓ∗-channel allocation.

Therefore, from the observations in the proof of Theorem 3, it follows that the

following two conditions suffice to guarantee unique optimality:
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1. ǫmd < ǫ(m+1)d, for 1 ≤ m ≤ ℓ∗ − 1 (when ℓ∗ ≥ 1), i.e., there must exist a

unique ordering of the relays r1, · · · , rℓ∗−1 according to decreasing reliability

of the relay-destination links.

2. 1−ǫmd < Cℓ∗ , for ℓ∗+1 ≤ m ≤ M , i.e., the relay-destination capacities of

all unused relays in the αℓ∗-channel allocation must be strictly smaller than

the MRC capacity.

These conditions are also necessary for uniqueness; when they do not hold, it is

possible to construct c.a. coding schemes with channel allocations different from

the αℓ∗-channel allocation.

5.3.5 Interpreting the capacity result for the MRC

Recall that, in the context of the multiple access relay channel (MARC), the

relay r assisted a source si if and only if r had a better channel to d than si.

Does an analogous result hold for the MRC? The answer is, “Not quite” - as the

following lemma5 reveals.

Lemma 6. For any relay ri with ǫid > ǫsd, it holds that ni = 0 under the αℓ∗-

channel allocation, i.e., the optimal channel allocation does not make use of relays

with a worse channel to d than the source. However, the converse is not true, i.e.,

if ǫid < ǫsd, it is not necessary that ni > 0 under the αℓ∗-channel allocation.

Proof. Note that ni > 0 in the αℓ∗-channel allocation only if i ≤ ℓ∗. So, given

ǫid > ǫsd, we must show that i > ℓ∗. Suppose this were not true - i.e., that

i ≤ ℓ∗. It then follows from Lemma 5 that Ci ≤ 1 − ǫid and Ci ≥ Cj for all j < i:

in particular, Ci ≥ C0. From (5.27), note that C0 = 1 − ǫsd. Hence, we have

5In this section we assume that the αℓ∗ -channel allocation is uniquely optimal. In particular,
we assume there is a unique ordering of the relays satisfying ǫ1d < ǫ2d < · · · < ǫMd
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1 − ǫid ≥ Ci ≥ C0 = 1 − ǫsd, which contradicts our assumption that ǫid > ǫsd.

Therefore, it must hold that i > ℓ∗ and ni = 0.

For the converse, consider a two-relay MRC wherein the first relay has both

incoming and outgoing links that are lossless - i.e., ǫs1 = ǫ1d = 0. Then, for any

ǫsd > 0 and any ǫ2d > 0 – and, in particular, for 0 < ǫ2d < ǫsd – it is easily verified

that ℓ∗ = 1. Thus, it is shown by example that ǫid < ǫsd does not imply ni > 0

under the αℓ∗-channel allocation.

In fact, from Lemma 5 and the capacity result of Theorem 4, we have the

following:

1. For M ′ ≤ ℓ∗, the capacity of the MRC restricted to only the first M ′ relays

is CM ′. For M ′ > ℓ∗, the capacity is Cℓ∗ .

2. For any relay ri, if 1 − ǫid > Ci−1, then i ≤ ℓ∗; conversely, if 1 − ǫid < Ci−1,

then i > ℓ∗.

These observations are summarized in the following lemma, which generalizes

Lemma 6.

Lemma 7. For 1 ≤ i ≤ M , relay ri participates in the optimal coding scheme for

the M-relay MRC if and only if its link to the destination has a higher capacity

than the MRC consisting of all the previous i − 1 relays.

5.4 Some MRC examples

It is instructive to compute the range of possible values for CMRC for a given

value of ǫsd. The best case is the one in which all the links (except the direct

s → d link) are perfect - i.e., have an erasure probability of zero - and the worst

case corresponds to a situation where all the links (except the direct s → d link)
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are useless - i.e., have an erasure probability of one. The corresponding capacities

yield these bounds:

1 − ǫsd ≤ CMRC ≤
1

1 + ǫsd
. (5.40)

For small ǫsd, note that these bounds are fairly close.

5.4.1 Relays “close” to the source

Suppose that all the source-relay links are perfect, i.e., ǫsi = 0, which might

reflect relays positioned close to the source. Further, assume there is at least one

relay with a better link to d than s, i.e., ǫ1d < ǫsd. Then all relays possess identical

information about the source’s message, and, in the optimum channel allocation,

only the relay with the best link to d (i.e., r1) is used; indeed, it can be verified

that ns = k, n1 = ǫsdk/(1 − ǫ1d) and nj = 0 for j ≥ 2, which yields a capacity of

CMRC =
1 − ǫ1d

1 + ǫsd − ǫ1d
. (5.41)

5.4.2 Relays “close” to the destination

Now suppose that all the relay-destination links are perfect, i.e., ǫid = 0, and

all source-relay links have the same erasure probability: ǫsi = ǫ < 1, as shown in

Figure 5.6(a). This might represent a situation in which all the relays are located

close to d. Evaluating Cℓ for this case yields:

Cℓ =
1 − ǫsdǫ

ℓ

1 − ǫsdǫℓ + ǫsd
. (5.42)

Since Cℓ increases with ℓ, we conclude that ℓ∗ = M (i.e, all relays are used),
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and the capacity is given by

CMRC =
1 − ǫsdǫ

M

1 − ǫsdǫM + ǫsd

. (5.43)

As the number of relays increases, CMRC increases monotonically and converges

to the following value:

C∞ , lim
M→∞

CMRC =
1

1 + ǫsd
(5.44)

Note that this is equal to the upper bound in (5.40). Figure 5.6(b) shows the

variation of CMRC with ǫ for several values of M .

This result can be generalized, as follows:

1. Remove the assumption that the source-relay channels are identical; instead

just assume that 0 < ǫsi < 1 for each i. Then, Cℓ still increases with ℓ, and

so ℓ∗ = M and all the relays should be used. Further, for the asymptotic

case when M → ∞, if it is true that lim supi→∞ ǫsi < 1, then the limiting

value of CMRC is still given by (5.44).

2. Now, suppose further that the relay-destination channels are not lossless,

but identical with erasure probability ǫ′ < ǫsd. Then, it can still be shown

that Cℓ increases with ℓ and so it is optimal to use all the relays. However,

as M → ∞ with lim supi→∞ ǫsi < 1, the asymptotic capacity now behaves

as

C∞ =
1

1 + ǫsd/(1 − ǫ′)
. (5.45)

In summary, if all relays have statistically identical links to d which are better

than the direct link, then it is optimum to use all relays. Moreover, having a large
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(infinite) number of relays with perfect links to d is equivalent (capacity-wise) to

having a single relay with both a perfect link from s and a perfect link to d.

5.4.3 A two-relay MRC

Now consider the special case shown in Figure 5.7(a). The links r1 → d and

s → r2 are lossless, while ǫs1 = ǫ2d = ǫ. This is representative of a situation in

which r1 is located close to d and r2 is close to s.

In this “anti-symmetric” setting, it is interesting to characterize the roles

played by the two relays in the optimal strategy. For this, we evaluate {Cℓ}
2
ℓ=0

and determine ℓ∗ by finding their maximum. The result is given by

ℓ∗ =











1, for ǫ > ǫ∗,

2, otherwise,
(5.46)

where,

ǫ∗ =
1 + ǫsd

2ǫsd

−

√

(1 + ǫsd

2ǫsd

)2

− 1. (5.47)

Thus, there exists a threshold value for ǫ beyond which it is optimal to use

only relay r1. In this particular case, it can be shown that the threshold ǫ∗ lies in

the range: 0.75ǫsd ≤ ǫ∗ ≤ ǫsd. (The lower bound is tight for ǫsd = 2/3, and the

upper bound is tight for both ǫsd = 0 and 1.)

In Figure 5.7(b), the channel capacity is plotted as a function of ǫ for two

different values of ǫsd. For both cases, a “cusp” appears in the capacity at ǫ = ǫ∗,

reflecting the transition from using both relays to using only one. For ǫsd = 0.75,

the values of Cℓ for ℓ = 1, 2 are also plotted; the capacity is the “envelope” of

these two curves.

Now, let ζi denote the fraction of the total information delivered to d from
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relay ri in the optimal coding scheme, i.e.,

ζi =
# bits received by d from ri

k
, (i = 1, 2) (5.48)

Then, for the case when ǫ∗ > 1/2, an interesting fact is that

ζ1 > ζ2, for ǫ < 1/2,

ζ1 < ζ2, for 1/2 < ǫ < ǫ∗,

ζ1 > ζ2 = 0, for ǫ > ǫ∗.

In other words, while r1 may be used in more situations than r2, it is possible that

r2 is actually more “useful” than r1 in certain cases.

5.5 A note on erasure feedback

Suppose that, prior to the transmission of a bit in a given time slot, the state

of the transmission up to that point – specifically, a history of all the erasures

that have occurred – is available to all the nodes in the network. It turns out

that such feedback does not change the capacity results for either the MARC or

the MRC, a result that follows because the cut-set bounds for both channels are

essentially unchanged in the presence of erasure feedback. Consequently, since

the capacity (region) in the absence of feedback already coincides with the outer

bound (region) described by the cut-set bounds, the presence of feedback does not

improve capacity.

We now demonstrate that the cut-set bounds derived without feedback also

hold when there is erasure feedback. For reasons of simplicity in exposition, we

present the complete proof for the MRC and only sketch the analogous argument
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for the MARC.

We first describe a generic coding scheme for the MRC with feedback.

Definition 3. An (n, k) feedback-code for the M-relay erasure MRC with feed-

back consists of:

• An encoder that maps k message bits onto n code bits, transmitted over n

time slots shared without overlap by the source and M relays. The encoding

operation in the ith time slot consists of two operations:

1. First, one node is scheduled to transmit based on the erasure history

of all previous transmissions. The scheduling function is given by Si :

Ωi−1
ǫ → {s, r1, · · · , rM}, where Ωǫ describes the set of all possible era-

sure outcomes for a single transmission in the network. (So Ωǫ contains

2M+1 + M elements – 2M+1 possible erasure outcomes associated with

a transmission from s, and a single erasure outcome for each transmis-

sion from M different relays.)

2. The scheduled node then determines the code bit that is transmitted

during the ith time slot. The encoding function at s is given by F s
i :

{0, 1}k × Ωi−1
ǫ → {0, 1}. The encoding function at relay rj is given by

F j
i : {0, 1, E, φ}i−1 ×Ωi−1

ǫ → {0, 1}, where E and φ respectively denote

the erasure and absence of an incoming transmission.

• A decoder at the destination that estimates the source’s message via the

function g : {0, 1, E}n × Ωn
ǫ → {0, 1}k.

The rate of this code is R , k/n.

As before, a rate R is achievable for the MRC with feedback if there exists

a sequence of feedback-codes with increasing n with rates approaching R and
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vanishing probability of decoder failure, and the capacity C
(fb)
MRC is the supremum

of all achievable rates. Also, we retain the definitions of an S −D cut of the MRC

and the associated random variable NS from Lemma 3.

Lemma 8. Given an S −D cut of the MRC and an (n, k) feedback-code, if there

exists δ > 0 such that E(NS) < k(1 − δ), then the probability of decoder failure is

lower bounded as p
(n)
e > δ/2.

Proof. Knowing that a bit has been erased conveys no information about the value

of the erased bit, so the number of bits received by D from S in n transmissions

must still be at least k for successful decoding to be possible at d. In particular,

if NS < k, then the decoder fails with probability at least 1/2. Consequently,

similar to the case without feedback, we have:

p(n)
e ≥

1

2
· P(NS < k). (5.49)

Suppose there exists δ > 0 such that E(NS) < k(1−δ). From Markov’s inequality,

we have

P

(

NS ≥
E(NS)

1 − δ

)

≤ 1 − δ, (5.50)

and so P(NS < k) ≥ P

(

NS < E(NS)
1−δ

)

> δ which results in p
(n)
e > δ/2.

Since the number of transmissions from each node depends on the previous

erasure events, it follows that ns, n1, · · · , nM are random variables. Let n̄s , E(ns)

and n̄j , E(nj), 1 ≤ j ≤ M . Also, let λi,η denote the marginal probability that

node η is selected for transmission in the ith time slot, and qi,S the marginal

probability that a bit is transmitted unerased from S to D in the ith time slot.
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Then, it follows that

qi,S =
∑

η∈S
λi,η(1 − ǫη,D), (5.51)

where ǫη,D is the probability that a transmission from η is not received by any

node in D. This equality holds because the event that a node is scheduled to

transmit in the ith slot depends only on the erasure events of preceding time slots.

Then,

E(NS) =

n
∑

i=1

qi,S (5.52)

=
n
∑

i=1

∑

η∈S
λi,η(1 − ǫη,D) (5.53)

=
∑

η∈S
n̄η(1 − ǫη,D). (5.54)

Lemma 8 implies that for any δ > 0, in order for p
(n)
e ≤ δ/2 we require

E(NS) ≥ k′ for all S − D cuts, where k′ = k(1 − δ). From (5.54), it is seen

that this condition leads to the same inequalities (5.22) and (5.23), with ns and

{nj}M
j=1 replaced by their expectations n̄s and {n̄j}M

j=1, and k replaced by k′. Since

n̄s + n̄1 + · · ·+ n̄M = n, minimizing n subject to these constraints yields the result

that capacity with feedback is bounded as C
(fb)
MRC ≤ Cℓ∗/(1 − δ). Since p

(n)
e → 0

as n → ∞, this upper bound must hold for all δ > 0, and we have C
(fb)
MRC ≤ Cℓ∗.

Therefore, from our earlier achievability result, C
(fb)
MRC = Cℓ∗ – i.e., the capacity of

the erasure MRC does not increase in the presence of universal feedback of erasure

location information.

For the MARC, similar reasoning holds. In particular, one can define a

feedback-code for the MARC, and Lemma 1 can be extended in the same fashion

as Lemma 8 to show that for any S −D cut of the MARC, if E(NS) < kS(1 − δ)
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for some fixed δ > 0, then the probability of decoder failure is bounded as

p
(n)
e (S) > δ/2. Enforcing the condition E(NS) ≥ kS(1 − δ) on the feedback-

code yields the bounds (5.5) and (5.6) with {ni}M
i=1, nr replaced by their expected

values and {ki}M
i=1 replaced by {k′

i}
M
i=1 where k′

i = ki(1 − δ). Consequently, min-

imizing n subject to E(NS) ≥ kS(1 − δ) yields an upper bound on the sum rate

R (for fixed θ) that is equal to the upper bound (5.17) (without feedback) mul-

tiplied by a factor 1/(1 − δ). Letting δ → 0 yields the same outer bound region

as in Corollary 1. Thus, the capacity region of the erasure MARC also does not

increase in the presence of universal feedback of erasure location information.
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Figure 5.6. (a) An MRC with M relays close to the destination; (b) Plot
of capacity versus ǫ for ǫsd = 0.5 and different values of M .
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(b) Capacity as a function of ǫ for ǫsd = 0.5 and 0.75. The transition
point ǫ∗ indicates the value of ǫ at which optimal encoding transitions

from using both relays to using only only one.
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CHAPTER 6

CONCLUDING REMARKS

In this dissertation, we have addressed two problems pertaining to reliable

communication over packet erasure networks, viz., the design of hybrid ARQ pro-

tocols that allow us to trade-off between coding complexity and feedback, and

the characterization of the capacity region for two kinds of wireless erasure relay

networks – the MARC and the MRC.

6.1 Complexity-versus-feedback tradeoffs

For the point-to-point erasure channel, different hybrid ARQ protocols were

developed and their feedback-complexity performance analyzed vis-a-vis a bench-

mark time-sharing scheme. The underlying theme in these protocols is to feed

back the indices (locations) of a portion of the unerased/erased bits (packets),

in order to simultaneously reduce feedback requirements (relative to feedback-

only) and coding complexity (relative to coding-only). This is done based on the

following simple observations:

• Transmitted bits that are acknowledged to have been received successfully

(i.e., unerased) can be omitted in encoding future parities (used in the hybrid

A,B and C protocols)
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• Likewise, bits known to have been erased can simply be re-transmitted,

instead of being encoded into parities (used in the hybrid D protocol).

A combination of both forms of feedback, i.e., erasure and non-erasure locations,

is used in the hybrid-E protocol.

The performance of the different hybrid protocols leads to the following obser-

vations:

• Using optimum rate-distortion codes to minimize the amount of feedback

is most beneficial at small erasure probabilities (∼ 0.01 to 0.1); at larger

erasure rates, simpler sub-optimal feedback schemes can be used without

much penalty (hybrid-B versus hybrid-A).

• Protocols that use feedback for acknowledging a subset of non-erasures pro-

vide better tradeoffs with decreasing erasure probability (hybrid A,B,C and

C2). In contrast, using feedback for acknowledging erasures leads to better

performance as the erasure probability is increased (hybrid D).

• Adapting the code structure based on the amount of information fed back,

and conversely adapting the feedback strategy according to the code struc-

ture can bring about significant performance gains (hybrid-C and hybrid-C2

versus hybrid-B).

The protocols designed in this dissertation make use of Tornado codes that are

designed for a particular channel erasure probability ǫ, assumed to be known. In

practice, this information may not be available a priori. In that case, one possible

way of adapting these protocols is to have the destination feed back the observed

erasure rate (in each round); based on this, the transmitter can either choose the
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appropriate Tornado code from a “bank” of codes designed for different erasure

rates, or generate the code itself directly on-the-fly1.

The following issues present interesting avenues for further research on these

protocols:

• Non-ideal feedback: The protocols designed here assume that the feed-

back link is noiseless. In practice, this is not the case, and very low-rate

channel codes might be needed in order to make the feedback link appear

“virtually noiseless”. Alternatively, it is of interest to design hybrid pro-

tocols that are robust or exhibit “graceful degradation” when the feedback

is noisy: e.g., as over a packet erasure channel. Characterizing the perfor-

mance of such hybrid protocols relative to a feedback-only protocol in the

same situation is also of interest.

• Extension to codes with bounded complexity: As noted in Chapter

4, Tornado codes must be designed with a non-zero overhead in order to

have similar complexity to ARA and NSIRA codes (which have bounded

complexity at zero overhead). Since this leads to inefficient use of the for-

ward channel, it may be of interest to investigate (i) if codes with bounded

complexity exist, similar to ARA and NSIRA codes, that can be used with

these hybrid protocols, or (ii) if variations of these hybrid protocols exist

that can make use of ARA and NSIRA codes.

• Joint design of coding and feedback: As observed with the hybrid C and

C2 protocols, improved performance is obtained by respectively adapting the

1If the code is generated randomly on-the-fly, then a description of the code needs to be
communicated to the decoder (possibly within the header of each packet), which incurs additional
transmission overhead. However, if the encoder and decoder make use of the same pseudo-
random number generator (PRNG) to generate the code, the transmitter only needs to convey
the initial seed used by the PRNG to the decoder, which typically requires much lesser overhead.
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coding and feedback strategies. This poses the natural question of whether

it is possible to jointly design both the coding and the feedback schemes, in

order to achieve even better complexity-feedback tradeoffs.

• Unknown channel statistics: As mentioned above, the channel erasure

probability may not be known a priori. More generally, the erasure process

itself could have some unknown correlation; in contrast, our hybrid protocols

are designed for memoryless channels. Hence, in such situations, it is of

interest to design universal hybrid protocols, wherein both the coding as

well as feedback strategies can adapt to unknown/varying channel statistics.

6.2 Capacity results for the MARC and the MRC

In this dissertation, we characterized the limits of reliable communication for

two wireless network configurations – the MARC and the MRC – under the as-

sumption that individual links behave as memoryless erasure channels. In partic-

ular, the optimal channel allocation strategy for each network was derived as a

function of the network’s parameters and a capacity-achieving coding scheme was

constructed based on this strategy. Also, the capacity regions were shown to be

unchanged in the presence of global feedback of erasure locations.

The results demonstrate that, for the MARC, the relay assists a source s if

and only if the r → d link has larger capacity than the s → d link. With regard to

the single-source MRC, a given relay r is used in the optimal coding scheme if and

only if the capacity of the r → d link is larger than the capacity of a “reduced”

MRC consisting of only those relays with better links to d than r.

Since the MARC and the MRC constitute fundamental configurations, the

results presented here are potentially useful in the design of wireless network
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architectures. For instance, depending on how inter-node distances in a network

affect the reliability of transmission, the capacity results presented here could play

an important role in determining the geometry or layout of a network – such as

the placement/identification of relay nodes in a sensor or ad-hoc network.

The following constitute possible avenues for further investigation:

• Modeling erasures: As mentioned above, the capacity results presented

here could have architectural implications for wireless networks. For further

work in this direction, a good understanding of how a given physical noisy

channel may be mapped to a higher layer erasure model is required.

• Role of relays: Along the above lines, relays in a network may have two

roles: (i) improving network-layer reliability in terms of delivering a sequence

of packets (addressed in this dissertation), (ii) improving physical-layer re-

liability in delivering each individual packet, perhaps using cooperative di-

versity techniques [45], [46]. It is interesting to investigate if there exists an

optimal tradeoff between these two roles, which can maximize the overall

throughput.

• Lack of side-information: The capacity results presented in this disser-

tation assume the existence of perfect side information at the destination

about the erasure outcomes on all links in the network. To make this pos-

sible, it is necessary to encode this erasure information into the headers of

packets at the relay(s), prior to forwarding them. This may constitute a

significant overhead if the packet sizes are small. In this case, solving for

the capacity region and designing practical codes in the absence of this side

information becomes an important problem.
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APPENDIX A

COMPUTING THE RATE-DISTORTION FUNCTION R̃(D) FOR THE

HYBRID-B PROTOCOL

Recall that R̃(D) is defined as:

R̃(D) = min
pY |X(y|x): E(D(X,Y ))≤D

I(X; Y ), (A.1)

Since D(1, 0) = ∞, the condition E(D(X, Y )) ≤ D is satisfied for finite D only if

Pr(Y = 0|X = 1) = 0. Hence, the distribution pY |X(y|x) is completely character-

ized by p , Pr(Y = U|X = 0). Noting that Pr(X = 1) = ǫ, we have

Pr(Y = U) =
1
∑

i=0

Pr(X = i) · Pr(Y = U|X = i)

= (1 − ǫ)p + ǫ (A.2)

Therefore, the entropy of Y is given by H(Y ) = h((1 − ǫ)p + ǫ), where h(z) =

−z log(z) − (1 − z) log(1 − z) is the binary entropy function in nats. Further, we

have for the conditional entropy: H(Y |X) = (1 − ǫ) · h(p). Hence,

I(X; Y ) = H(Y ) − H(Y |X)

= h((1 − ǫ)p + ǫ) − (1 − ǫ) · h(p) (A.3)
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It is easily shown that d
dz

h(z) = log(1−z
z

). So,

d

dp
I(X; Y ) = (1 − ǫ) · log

(1 − (1 − ǫ)p − ǫ

(1 − ǫ)p + ǫ

)

− (1 − ǫ) · log
(1 − p

p

)

= (1 − ǫ) · log
( (1 − ǫ)p

(1 − ǫ)p + ǫ

)

(A.4)

< 0,

since the argument to log(·) is smaller than 1. Hence, I(X; Y ) is a decreasing

function of p.

The expected distortion is given by:

E(D(X, Y )) =
∑

x,y

Pr(X = x) · Pr(Y = y|X = x) · D(x, y)

= (1 − ǫ)p (A.5)

Therefore, the condition E(D(X, Y )) ≤ D translates to p ≤ D/(1 − ǫ) (< 1).

Consequently, I(X; Y ) is minimized subject to E(D(X, Y )) ≤ D when p = D/(1−

ǫ). Hence, the rate-distortion function (in nats) is given by:

R̃(D) = h(D + ǫ) − (1 − ǫ)h
( D

1 − ǫ

)

= (D + ǫ) log
1

D + ǫ
− D log

1

D
+ (1 − ǫ) log

1

1 − ǫ
, (A.6)

from which we obtain R̃(D) in bits, i.e., (3.25), by changing the natural logarithm

to log2(·).
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APPENDIX B

COMPUTING THE RATE-DISTORTION FUNCTION R̃(D0, D1) FOR THE

HYBRID-E PROTOCOL

Recall that R̃(D0, D1) is defined as:

R̃(D0, D1) = min
pY |X(y|x): E(Di(X,Y ))≤Di, i∈{0,1}

I(X; Y ). (B.1)

From the fact that D0(1, 0) = D1(0, 1) = ∞, the expected distortions remain

bounded only if Pr(Y = 0|X = 1) = Pr(Y = 1|X = 0) = 0. Hence, the

distribution pY |X(y|x) is completely characterized by p , Pr(Y = U|X = 0) and

q , Pr(Y = U|X = 1). Noting that Pr(X = 1) = ǫ, we have

Pr(Y = U) =
1
∑

i=0

Pr(X = i) · Pr(Y = U|X = i)

= p(1 − ǫ) + qǫ (B.2)

We shall evaluate the mutual information using the expansion I(X; Y ) = H(X)−

H(X|Y ). Note that H(X) = h(ǫ), where h(z) = −z log(z) − (1 − z) log(1 − z) is

the binary entropy function in nats.

Now, it is easily seen that Pr(X = 0|Y = 0) = Pr(X = 1|Y = 1) = 1.

Further, it can be verified that Pr(X = 1|Y = U) = qǫ
p(1−ǫ)+qǫ

. Hence,
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H(X|Y ) =
∑

y

Pr(Y = y) · H(X|Y = y)

= Pr(Y = U) · h
( qǫ

p(1 − ǫ) + qǫ

)

(B.3)

Thus,

I(X; Y ) = h(ǫ) −
(

p(1 − ǫ) + qǫ
)

· h
( qǫ

p(1 − ǫ) + qǫ

)

(B.4)

Now, let a = p(1 − ǫ) and b = qǫ. Then, minimizing I(X; Y ) is equivalent to

maximizing the following function

(a + b) · h
( a

a + b

)

= a log
1

a
+ b log

1

b
− (a + b) log

1

a + b
(B.5)

with respect to a and b.

It is easily verified that d
dz

(z log 1
z
) = log 1

z
− 1. Consequently, we have:

∂

∂a

[

(a + b) · h
( a

a + b

)]

= log
a + b

a
(B.6)

> 0 for all b

By symmetry, the partial derivative with respect to b is also positive for all a.

Therefore, I(X; Y ) is minimized by setting a and b to their maximum possible

values.

It is easily verified that the expected distortions are given by:
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E(D0(X, Y )) = p(1 − ǫ) = a (B.7)

E(D1(X, Y )) = qǫ = b (B.8)

Thus, the constraints on the expected distortions translate to a ≤ D0 and b ≤ D1.

Substituting the maximum values of a and b, we obtain the smallest value of

I(X; Y ). Hence, the rate-distortion function (in nats) is given by:

R̃(D0, D1) = h(ǫ) − (D0 + D1) · h
( D0

D0 + D1

)

(B.9)

= h(ǫ) + (D0 + D1) log
1

D0 + D1

− D0 log
1

D0

− D1 log
1

D1

The corresponding value of R̃(D0, D1) in bits is obtained by changing the natural

logarithm to log2(·).
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APPENDIX C

OPTIMAL (D, p) PAIR FOR THE HYBRID-E PROTOCOL

Prior to solving for the optimal (D, p) pair, we first outline the region of valid

(D, p) pairs. Since we have 0 ≤ D1 ≤ ǫ and 0 ≤ D0 ≤ 1 − ǫ, the following

constraints apply to (D, p):

1. For ǫ < 1/2, the set of valid (D, p) is described as follows:

{(D, p) : 0 ≤ D ≤ ǫ, 0 ≤ p ≤ 1}

∪ {(D, p) : ǫ ≤ D ≤ 1 − ǫ, 0 ≤ p ≤ ǫ/D}

∪ {(D, p) : 1 − ǫ ≤ D ≤ 1, 1 − 1−ǫ
D

≤ p ≤ ǫ
D
}

2. Similarly, for ǫ ≥ 1/2, the set of valid (D, p) is given by:

{(D, p) : 0 ≤ D ≤ 1 − ǫ, 0 ≤ p ≤ 1}

∪ {(D, p) : 1 − ǫ ≤ D ≤ ǫ, 1 − 1−ǫ
D

≤ p ≤ 1}

∪ {(D, p) : ǫ ≤ D ≤ 1, 1 − 1−ǫ
D

≤ p ≤ ǫ
D
}

These regions are plotted in Fig. C.1.

Hence, we need to determine the valid (D, p) pair that minimizes D · g(p)

subject to D · h(p) = κ, where g(p) = p/ log 1
1−p

and κ ∈ [0, h(ǫ)].

This is equivalent to the following problem: find p which minimizes f(p) ,

g(p)/h(p), subject to
(

D =
κ

h(p)
, p
)

being a valid pair. We solve this problem as
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Figure C.1: Region of valid (D, p) pairs.
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follows.

Let p∗ denote the value of p that minimizes f(p) over the entire interval 0 ≤

p ≤ 1, i.e.,

p∗ = arg min
0≤p≤1

f(p) (C.1)

Figure C.2 plots f(p) as a function of p – as seen, f(p) is convex with a single

minimum at p = p∗ ≈ 0.692. Therefore, whenever (D = κ/h(p∗), p∗) is valid,

it is the optimal choice. Also note that, for a given value of κ, we need to pick

D ≥ κ; otherwise D · h(p) = κ is infeasible (since h(p) ≤ 1).

In the following, for each value of κ, we first characterize the valid (D, p) pairs

that satisfy D · h(p) = κ and then identify the optimal pair in this set.
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Case 1: ǫ < 1/2

For this case, we shall make use of the fact that if we choose p ≥ ǫ, then it

always satisfies any lower bound that applies. (Note that the greatest lower bound

on p for any D is given by max(0, 1− (1− ǫ)/D); since 1− (1− ǫ)/D ≤ 1− (1− ǫ),

the lower bound is no larger than ǫ.)

Likewise, if we choose p ≤ ǫ/D, then p always satisfies any applicable upper

bound.

• Case 1.1: 0 ≤ κ ≤ h(p∗)
p∗

ǫ

We claim that D = κ/h(p∗) and p = p∗ is the optimal choice. As noted

earlier, it suffices to show that this is a valid (D, p) pair. Since p∗ > ǫ, any

lower bound on p is satisfied. Any upper bound is also satisfied because

ǫ/D = ǫh(p∗)/κ ≥ p∗, from the upper bound on κ.

• Case 1.2: h(p∗)
p∗

ǫ < κ ≤ 2ǫ

This is a valid interval because h(p∗)/p∗ ≈ 1.29. For this case, p ≤ ǫ/D is

necessary as D ≥ κ > ǫ. A valid (D, p) pair that satisfies Dh(p) = κ is given

by D = κ, p = 1/2: any lower bound on p is obviously satisfied; the upper

bound is also met because ǫ/D = ǫ/κ ≥ 1/2, as κ ≤ 2ǫ. Also, note that p ≥

p∗ is infeasible, as this leads to D = κ/h(p) ≥ κ/h(p∗) > h(p∗)
p∗

ǫ
h(p∗)

= ǫ/p∗,

which violates p ≤ ǫ/D.

From Fig. C.2, observe that f(p) decreases as p is increased from 1/2 to p∗,

and increases as p is reduced below 1/2. Therefore, the optimum choice of

p is given by its maximum valid value beyond 1/2. Now, as p is increased

from 1/2, D = κ/h(p) too increases, lowering the upper bound ǫ/D – thus,

the maximum valid value of p is obtained when it coincides with its upper
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bound, i.e., p = ǫ/D. Therefore let D̃(κ) denote the unique solution1 to

D · h(ǫ/D) = κ. Let p̃(κ) = ǫ/D̃(κ). Thus, (D̃(κ), p̃(κ)) is the optimal pair.

• Case 1.3: 2ǫ < κ ≤ h(ǫ)

This is also a valid interval because 2ǫ ≤ h(ǫ) for ǫ ≤ 1/2, with equality if

and only if ǫ = 0 or ǫ = 1/2.

Again, as in the previous case, p ≤ ǫ/D is necessary, as D > 2ǫ. In partic-

ular, this implies that p < 1/2. Consequently, from the reasoning for the

previous case, the optimum choice of p is given by its maximum valid value

below 1/2. For this case, suppose we choose p = ǫ, D = κ/h(ǫ) – this is a

valid choice as κ ≤ D = κ/h(ǫ) ≤ 1 and p = ǫ ≤ ǫ · h(ǫ)
κ

= ǫ/D.

For ǫ ≤ p < 1/2, h(p) is an increasing function of p. Since D = κ/h(p),

the upper bound on p: ǫ/D = ǫ · h(p)/κ also increases with p. However,

note that h(p) tends to “flatten” out as p approaches 1/2 – therefore, ǫ/D

eventually increases at a slower rate than p. Thus, the maximum value of

p is achieved when it meets the upper bound: this condition is given by

ǫ/D = ǫ · h(ǫ/D)/κ, which yields D · h(ǫ/D) = κ. As before, denote the

solution to this equation by D̃(κ), and let p̃(κ) = ǫ/D̃(κ). Then, the optimal

choice of D and p is again given by (D̃(κ), p̃(κ)).

Case 2: 1/2 ≤ ǫ ≤ p∗

Here again, we note that 1 − 1−ǫ
D

≤ ǫ. Hence, for any D, p = ǫ satisfies the

corresponding lower bound.

1For κ ≤ D ≤ 1, we have: κh(ǫ/κ) ≤ Dh(ǫ/D) ≤ h(ǫ). Thus, Dh(ǫ/D) = κ has a solution for
D ∈ [κ, 1]. The uniqueness follows from the fact that D ·h(ǫ/D) is a strictly increasing function
of D, for D ≥ ǫ. Since κ > ǫ, D · h(ǫ/D) is strictly increasing for D ∈ [κ, 1].
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• Case 2.1: 0 ≤ κ ≤ h(p∗)
p∗

ǫ

Suppose, we choose p = p∗ (thus, the lower bound is always met). Then,

D = κ/h(p∗). It is easily verified that ǫ/D ≥ p∗ = p. Consequently, this

choice of (D, p) is always valid and hence optimal.

• Case 2.2: h(p∗)
p∗

ǫ < κ ≤ h(ǫ)

Note that h(x)/x is a decreasing function of x for x ≥ 1/2; therefore, the

above interval is valid. Further, for this case, D ≥ κ =⇒ D > ǫ; therefore,

p is upper bounded as p ≤ ǫ/D.

Suppose we set p = ǫ. Then, D = κ/h(ǫ). Clearly, ǫ/D ≥ ǫ and the

upper bound is always met. Thus, this is a valid pair. Now, owing to the

behavior of f(p), it follows that the optimum value of p is determined by its

maximum valid value above ǫ. Further, if p is increased above ǫ, D = κ/h(ǫ)

also increases – therefore, the maximum valid value of p is reached when

p = ǫ/D. As before, let D̃(κ) denote the solution to D · h(ǫ/D) = κ, and

let p̃(κ) = ǫ/D̃(κ). Then, the optimal choice of (D, p) is once again given

by (D̃(κ), p̃(κ)).

Case 3: ǫ > p∗

• Case 3.1: 0 ≤ κ ≤ h(p∗)
1−p∗

(1 − ǫ)

Let p = p∗ and D = κ/h(p∗). Therefore, D ≤ 1−ǫ
1−p∗

, and hence 1−(1−ǫ)/D ≤

p∗ = p. Further p∗ < ǫ ≤ ǫ/D. Thus, the lower and upper bounds on p are

always met. Hence, this choice of (D, p) is optimal.

• Case 3.2: h(p∗)
1−p∗

(1 − ǫ) < κ ≤ h(ǫ)

It can be verified that h(x)/x is a decreasing function of x for all x. Thus,

137



h(1−p∗)
1−p∗

< h(1−ǫ)
1−ǫ

, which implies that the above interval is valid. Since D ≥ κ

and h(p∗)
1−p∗

> 1, it follows that D ≥ 1−ǫ, and hence, p must satisfy p ≥ 1− 1−ǫ
D

.

Further, since we need D = κ/h(p), the lower bound on p implies:

p ≥ 1 −
(1 − ǫ)h(p)

κ
(C.2)

> 1 −
(1 − p∗)h(p)

h(p∗)
(from the lower bound on κ)(C.3)

i.e.,
h(p)

1 − p
>

h(p∗)

1 − p∗
(C.4)

Since h(x)/x is monotone decreasing, the above implies that (1−p) < (1−p∗)

or p > p∗.

Suppose we choose p = ǫ (> p∗) and D = κ/h(ǫ). Then, it follows that

ǫ/D ≥ ǫ, and we also have 1 − (1 − ǫ)/D < ǫ; thus, both upper and lower

bounds on p are met and this is a valid choice. Now, the optimum choice of p

is given by its smallest valid value above p∗. As we decrease p below ǫ, since

p > p∗ > 1/2 at all times, h(p) increases. Consequently, with D = κ/h(p),

the lower bound 1−(1−ǫ)/D is also reduced. However, since h(p) “flattens”

out near p = 1/2, the smallest valid value of p is achieved when it meets the

lower bound. This yields p = 1−(1−ǫ)/D with D ·h(p) = κ, or equivalently,

D · h((1 − ǫ)/D) = κ. As in the earlier cases, it can be shown that this

equation has a unique solution, denoted D̂(κ); let p̂(κ) = 1 − (1 − ǫ)/D̂(κ).

Thus, (D̂(κ), p̂(κ)) is the optimal choice.

Summarizing, the optimal (D, p) is given by:
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1. For ǫ ≤ p∗,

(D, p) =



















( κ

h(p∗)
, p∗

)

for 0 ≤ κ ≤ h(p∗)
p∗

ǫ
(

D̃(κ),
ǫ

D̃(κ)

)

for h(p∗)
p∗

ǫ < κ ≤ h(ǫ)
(C.5)

2. For ǫ > p∗,

(D, p) =



















( κ

h(p∗)
, p∗

)

for 0 ≤ κ ≤ h(p∗)
1−p∗

(1 − ǫ)
(

D̂(κ), 1 −
1 − ǫ

D̂(κ)

)

for h(p∗)
1−p∗

(1 − ǫ) < κ ≤ h(ǫ)
(C.6)
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APPENDIX D

ACHIEVING THE DESIRED OVERHEAD δ BY TIME-SHARING

BETWEEN DIFFERENT D.D. PAIRS

Suppose we wish to encode k message bits into βk Tornado parities, such that

the resulting overhead is δ, i.e., β = ǫ/(1 − δ) for erasure probability ǫ. Further,

let (λ1, ρ1) and (λ2, ρ2) denote two d.d. pairs that achieve overheads δ1 and δ2,

respectively, with δ1 > δ > δ2.

A straightforward way to achieve the desired overhead is to appropriately time-

share between the two d.d. pairs. The message is split into two sets containing

αk and (1 − α)k bits, which are then separately encoded using the d.d. pairs

(λ1, ρ1) and (λ2, ρ2) to produce β1αk and β2(1 − α)k parities, respectively. Here,

β1 = ǫ/(1 − δ1) and β2 = ǫ/(1 − δ2). Thus, to achieve an overhead δ, we need to

choose α such that αβ1 + (1 − α)β2 = β. This translates to

1

1 − δ
=

α

1 − δ1
+

1 − α

1 − δ2
(D.1)

which results in

α =
δ − δ2

δ1 − δ2
·
1 − δ1

1 − δ
. (D.2)

Note that the overall average left and right degrees of the message and parities

are simply the time-shared averages of the corresponding values for the individual

d.d. pairs.
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APPENDIX E

CUTSET BOUNDS FOR THE MARC

We prove Lemma 1. If NS (the number of bits transmitted successfully from

S to D) is strictly less than kS (the number of information bits originating in S),

then the block error probability is at least 1/2, owing to the many-to-one nature

of the decoding rule. Consequently,

p(n)
e (S) ≥

1

2
· P(NS < kS) (E.1)

In the following, we show that if E(NS) < kS , then P(NS < kS) ≥ β, where

β > 0 is independent of {ki}M
i=1, {ni}M

i=1 and nr, thus proving the lemma.

Let {ni}
M
i=1 and nr be such that E(NS) < kS . For every node γ ∈ S, denote

the number of bits transmitted by γ as nγ ; each of those transmitted bits has a

probability pγ of being successfully received by at least one node in D, and so if

we let Nγ denote a random variable indicating the number of successful transmis-

sions then {Nγ}γ∈S are independently distributed binomial random variables with

parameters (nγ , pγ). Further, NS =
∑

γ∈S Nγ .

Assume that none of the random variables in {Nγ}γ∈S are degenerate1 - i.e.,

nγ > 0 and 0 < pγ < 1 for each γ ∈ S. For a non-degenerate binomial random

variable N with parameters (n, p), let m denote the median of N , i.e, m , min{i :

1If Nγ is degenerate for some γ ∈ S, then Nγ = E(Nγ) with probability one, and the proof
of the Lemma is still valid.
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P(N ≤ i) > 1/2}. It is well known that the mean and median of such a random

variable differ by less than one (cf. [47]), i.e., |E(N) − m| < 1; in particular,

⌊np⌋ + 1 ≥ m. Thus,

P
(

N ≤ E(N)
)

≥ P(N ≤ ⌊np⌋) (E.2)

= P(N ≤ ⌊np⌋ + 1) ·
⌊np⌋ + 1

n − ⌊np⌋
·
1 − p

p
(E.3)

≥ P(N ≤ ⌊np⌋ + 1) ·
np

n(1 − p) + 1
·
1 − p

p
(E.4)

≥ P(N ≤ ⌊np⌋ + 1) ·
1 − p

2 − p
(E.5)

>
1

2
·
1 − p

2 − p
. (E.6)

And so

P(NS < kS) ≥ P
(

NS ≤ E(NS)
)

(E.7)

≥
∏

γ∈S
P
(

Nγ ≤ E(Nγ)
)

(E.8)

>
∏

γ∈S

1

2
·
1 − pγ

2 − pγ

(> 0) (E.9)

which proves the lemma.
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APPENDIX F

THE αℓ-CHANNEL ALLOCATION FOR THE MRC

We prove Lemma 4. It is straightforward to verify that (5.26) is the solution

to (5.24) and (5.25):

1. {ni}M
i=ℓ+1 = 0 from (5.25),

2. ns is directly obtained from (5.24) with m = ℓ,

3. for 1 ≤ i ≤ ℓ, ni can be computed from the pair of equations of (5.24) with

m = i and m = (i − 1), by subtracting both sides of one equation from the

other.

The rate Cℓ can then be computed as the ratio k/(ns +
∑M

i=1 ni). We now show

that (5.26) satisfies (5.22).

For any I ⊆ R, let J = I ∩ {1, 2, · · · , ℓ} = {i1, i2, · · · iJ}, where J = |J | and

i1 < i2 < · · · < iJ . Also, let J ′ = Ic ∩ {1, 2, · · · , ℓ}. Then, it follows that

ns(1− ǫsd

∏

j∈Ic

ǫsj) +
∑

j∈I
nj(1− ǫjd) ≥ ns(1− ǫsd

∏

j∈J ′

ǫsj) +
∑

j∈J
nj(1− ǫjd). (F.1)

When J = φ, we have J ′ = {1, 2, · · · , ℓ}; therefore, it follows from (5.24) with

m = ℓ and (5.25) that the right-hand-side (RHS) of (F.1) is at least k. Likewise,

when J ′ = φ, we have J = {1, 2, · · · , ℓ} and it again follows from (5.24) with
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m = 0 and (5.25) that the RHS of (F.1) is no smaller than k. Thus, in both cases,

(5.22) is satisfied.

Now consider the case when neither J nor J ′ is empty. In this case:

∏

j∈J ′

ǫsj =

i1−1
∏

j=1

ǫsj ·
∏

j∈J ′,j>i1

ǫsj (F.2)

=

i1−1
∏

j=1

ǫsj ·
(

ǫsi1 + (1 − ǫsi1)
)

·
∏

j∈J ′,j>i1

ǫsj (F.3)

=

i2−1
∏

j=1

ǫsj ·
∏

j∈J ′,j>i2

ǫsj +

i1−1
∏

j=1

ǫsj · (1 − ǫsi1)
∏

j∈J ′,j>i1

ǫsj (F.4)

≤
i2−1
∏

j=1

ǫsj ·
∏

j∈J ′,j>i2

ǫsj + (1 − ǫsi1)

i1−1
∏

j=1

ǫsj (F.5)

Likewise,

i2−1
∏

j=1

ǫsj ·
∏

j∈J ′,j>i2

ǫsj =

i2−1
∏

j=1

ǫsj ·
(

ǫsi2 + (1 − ǫsi2)
)

·
∏

j∈J ′,j>i2

ǫsj (F.6)

≤
i3−1
∏

j=1

ǫsj ·
∏

j∈J ′,j>i3

ǫsj + (1 − ǫsi2)

i2−1
∏

j=1

ǫsj (F.7)

Therefore, by induction,

∏

j∈J ′

ǫsj ≤
ℓ
∏

j=1

ǫsj +

J
∑

m=1

(1 − ǫsim)

im−1
∏

j=1

ǫsj . (F.8)

This implies that

ns(1 − ǫsd

∏

j∈J ′

ǫsj) ≥ ns(1 − ǫsd

ℓ
∏

j=1

ǫsj) −
J
∑

m=1

nsǫsd(1 − ǫsim)
im−1
∏

j=1

ǫsj (F.9)
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Further, noting the values of {nj}j≤ℓ from (5.26), we have

∑

j∈J
nj(1 − ǫjd) =

J
∑

m=1

nim(1 − ǫimd) (F.10)

=

J
∑

m=1

nsǫsd(1 − ǫsim)

im−1
∏

j=1

ǫsj. (F.11)

Consequently,

ns(1 − ǫsd

∏

j∈J ′

ǫsj) +
∑

j∈J
nj(1 − ǫjd) ≥ ns(1 − ǫsd

ℓ
∏

j=1

ǫsj),

= k, (F.12)

where the last equality follows from (5.26). Thus, (F.1) and (F.12) imply that

(5.26) satisfies (5.22), concluding the proof.
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APPENDIX G

PROPERTIES OF THE αℓ-CHANNEL ALLOCATION RATES

We prove Lemma 5. We first prove the following propositions:

(a) Cℓ−1 ≤ Cℓ ⇐⇒ Cℓ−1 ≤ 1 − ǫℓd, 1 ≤ ℓ ≤ M

(b) Cℓ ≤ 1 − ǫℓd ⇐⇒ Cℓ−1 ≤ 1 − ǫℓd, 1 ≤ ℓ ≤ M

(c) Cℓ−1 ≤ 1 − ǫℓd =⇒ Cℓ−1 ≤ 1 − ǫ(ℓ−1)d, 2 ≤ ℓ ≤ M

Define Aℓ, Bℓ and Dℓ as follows:

Aℓ = 1 − ǫsd

ℓ
∏

i=1

ǫsi, 0 ≤ ℓ ≤ M (G.1)

Bℓ = 1 +

ℓ
∑

j=1

(ǫsd(1 − ǫsj)

1 − ǫjd
·

j−1
∏

i=1

ǫsi

)

, 0 ≤ ℓ ≤ M (G.2)

Dℓ = ǫsd(1 − ǫsℓ) ·
ℓ−1
∏

i=1

ǫsi 1 ≤ ℓ ≤ M (G.3)

Then, it follows that

Cℓ =
Aℓ

Bℓ

, 0 ≤ ℓ ≤ M (G.4)

Aℓ = Aℓ−1 + Dℓ, 1 ≤ ℓ ≤ M (G.5)

Bℓ = Bℓ−1 +
Dℓ

1 − ǫℓd
, 1 ≤ ℓ ≤ M. (G.6)
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Now, we have

Cℓ−1 ≤ Cℓ ⇐⇒
Aℓ−1

Bℓ−1

≤
Aℓ

Bℓ

⇐⇒
Aℓ−1

Bℓ−1

≤
Aℓ−1 + Dℓ

Bℓ−1 + Dℓ

1−ǫℓd

⇐⇒
Aℓ−1

Bℓ−1
≤ 1 − ǫℓd, for 1 ≤ ℓ ≤ M (G.7)

which proves (a). Note from (G.5) and (G.6) that

Bℓ = Bℓ−1 +
Aℓ − Aℓ−1

1 − ǫℓd

(G.8)

=
Aℓ + Bℓ−1 ·

(

(1 − ǫℓd) − Cℓ−1

)

1 − ǫℓd
for 1 ≤ ℓ ≤ M (G.9)

Thus,

Cℓ = (1 − ǫℓd) ·
Aℓ

Aℓ + Bℓ−1 ·
(

(1 − ǫℓd) − Cℓ−1

) (G.10)

which yields (b). Proposition (c) follows from the fact that ǫ(ℓ−1)d ≤ ǫℓd.

The proofs of (a), (b) and (c) also yield the following propositions:

(d) Cℓ−1 ≥ Cℓ ⇐⇒ Cℓ−1 ≥ 1 − ǫℓd, 1 ≤ ℓ ≤ M

(e) Cℓ ≥ 1 − ǫℓd ⇐⇒ Cℓ−1 ≥ 1 − ǫℓd, 1 ≤ ℓ ≤ M

(f) Cℓ ≥ 1 − ǫℓd =⇒ Cℓ ≥ 1 − ǫ(ℓ+1)d, 1 ≤ ℓ ≤ M − 1

(Note that (d) and (e) are not the exact contrapositives of (a) and (b).)

Now, from (a) and (c), it follows that:

Cℓ−1 ≤ Cℓ =⇒ Cℓ−1 ≤ 1 − ǫ(ℓ−1)d, 2 ≤ ℓ ≤ M (G.11)
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From (a) and (b), it follows that:

Cℓ ≤ 1 − ǫℓd ⇐⇒ Cℓ−1 ≤ Cℓ, 1 ≤ ℓ ≤ M (G.12)

By applying (G.11) and (G.12) recursively, it follows that:

Cℓ−1 ≤ Cℓ =⇒ Cj−1 ≤ Cj ≤ (1 − ǫjd),

1 ≤ j ≤ ℓ, 1 ≤ ℓ ≤ M (G.13)

Using the fact that Cℓ∗−1 < Cℓ∗ for ℓ∗ ≥ 1, we have (5.29).

Likewise, from (f) and (d), we have:

Cℓ ≥ 1 − ǫℓd =⇒ Cℓ ≥ Cℓ+1, 1 ≤ ℓ ≤ M − 1 (G.14)

From (d) and (e), we have:

Cℓ−1 ≥ Cℓ ⇐⇒ Cℓ ≥ 1 − ǫℓd, 1 ≤ ℓ ≤ M (G.15)

Again, applying (G.14) and (G.15) recursively yields

Cℓ−1 ≥ Cℓ =⇒ Cj−1 ≥ Cj ≥ (1 − ǫjd),

ℓ ≤ j ≤ M, 1 ≤ ℓ ≤ M (G.16)

Finally, since Cℓ∗ ≥ Cℓ∗+1 for ℓ∗ ≤ M − 1, we have (5.30).

For the case when ℓ∗ 6= 0, we know from the definition of ℓ∗ that Cℓ∗−1 < Cℓ∗.

Consequently, from (G.7), it follows that Cℓ∗−1 < (1− ǫℓ∗d). Using this in (G.10),

we have Cℓ∗ < (1 − ǫℓ∗d), leading to (5.31).
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APPENDIX H

EVALUATING THE SLACK COEFFICIENTS {γm}M
m=0 IN THE PROOF TO

THEOREM 3

We evaluate the coefficients {γm}
M
m=0 in (5.36) by solving for ns, {nm}

M
m=1 from

(5.34) and (5.35). We solve separately for the two cases ℓ∗ = 0 and ℓ∗ > 0.

Case 1: ℓ∗ = 0

For this case, {nm}m≥1are given by (5.35) to be nm = Zm for m = 1, 2, . . . , M.

Therefore, setting m = 0 in (5.34), we have:

ns =
k + Z0 −

∑M
j=1 Zj(1 − ǫjd)

1 − ǫsd

(H.1)

Thus, the objective function may be written as

ns +

M
∑

m=1

nm =
k

1 − ǫsd
+

Z0

1 − ǫsd
+

M
∑

m=1

Zm ·
ǫmd − ǫsd

1 − ǫsd
. (H.2)

This leads to (5.37).

Case 2: ℓ∗ ≥ 1

As in the previous case, {nm}m≥ℓ∗+1 are directly given by (5.35). Setting

m = ℓ∗ in (5.34), we have:

ns =
1

1 − ǫsd

∏ℓ∗

i=1 ǫsi

·
(

k + Zℓ∗ −
M
∑

j=ℓ∗+1

Zj(1 − ǫjd)
)

. (H.3)
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We can solve for {nm′}ℓ∗
m′=1 in terms of ns by subtracting (5.34) with m = m′

from (5.34) with m = m′ − 1:

nm′ =
1

1 − ǫm′d

·

(

nsǫsd(1− ǫsm′) ·
m′−1
∏

i=1

ǫsi +Zm′−1−Zm′

)

, 1 ≤ m′ ≤ ℓ∗. (H.4)

Thus, the objective function may be written as

ns +

M
∑

m=1

nm = ns ·

(

1 +

ℓ∗
∑

m=1

ǫsd(1 − ǫsm)

1 − ǫmd
·

m−1
∏

i=1

ǫsi

)

+

ℓ∗
∑

m=1

Zm−1 − Zm

1 − ǫmd

+
M
∑

m=ℓ∗+1

Zm (H.5)

Since ℓ∗ ≥ 1, we can write:

ℓ∗
∑

m=1

Zm−1 − Zm

1 − ǫmd
=

Z0

1 − ǫ1d
+

ℓ∗−1
∑

m=1

Zm

( 1

1 − ǫ(m+1)d

−
1

1 − ǫmd

)

−
Zℓ∗

1 − ǫℓ∗d
(H.6)

From this, on substituting for ns from (H.3) and recalling the definition of Cℓ from

(5.27), we finally have after some simplification:

ns +

M
∑

m=1

nm =
k

Cℓ∗
+

Z0

1 − ǫ1d
+

ℓ∗−1
∑

m=1

Zm

( 1

1 − ǫ(m+1)d
−

1

1 − ǫmd

)

+ Zℓ∗

( 1

Cℓ∗
−

1

1 − ǫℓ∗d

)

+
M
∑

m=ℓ∗+1

Zm

(

1 −
1 − ǫmd

Cℓ∗

)

(H.7)

This leads to (5.38).
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