
Expediting Analysis and Improving Fidelity of Big Data GenomicsExpediting Analysis and Improving Fidelity of Big Data Genomics

Olivia ChoudhuryOlivia Choudhury

Publication DatePublication Date

07-07-2017

LicenseLicense

This work is made available under a All Rights Reserved license and should only be used in accordance with
that license.

Citation for this work (American Psychological Association 7th edition)Citation for this work (American Psychological Association 7th edition)

Choudhury, O. (2017). Expediting Analysis and Improving Fidelity of Big Data Genomics (Version 1).
University of Notre Dame. https://doi.org/10.7274/zp38w953f1h

This work was downloaded from CurateND, the University of Notre Dame's institutional repository.

For more information about this work, to report or an issue, or to preserve and share your original work,
please contact the CurateND team for assistance at curate@nd.edu.

mailto:curate@nd.edu

EXPEDITING ANALYSIS AND IMPROVING FIDELITY OF BIG DATA

GENOMICS

A Dissertation

Submitted to the Graduate School

of the University of Notre Dame

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

Olivia Choudhury

Scott J. Emrich, Director

Graduate Program in Computer Science and Engineering

Notre Dame, Indiana

July 2017

c© Copyright by

Olivia Choudhury

2017

All Rights Reserved

EXPEDITING ANALYSIS AND IMPROVING FIDELITY OF BIG DATA

GENOMICS

Abstract

by

Olivia Choudhury

Genomics, or the study of genome-derived data, has had widespread impact in

applications including medicine, forensic science, human evolution, environmental

science, and social science. The plummeting cost of genome sequencing in the last

decade has spurred an exponential growth of genomic data. The rate of data gen-

eration from these sequencing techniques has outpaced computing throughput, as

predicted by Moore’s Law, causing a major bottleneck in the rate of data processing

and analysis. Emerging genome data is also characterized by missing and erroneous

values, that reduce data fidelity and limit its applicability for downstream analysis.

This forms the basis of the following research questions: (i) Can we design frameworks

that can expedite data analysis and enable efficient utilization of computational re-

sources? (ii) Can we develop accurate and efficient algorithms to improve data fidelity

in genomic applications?

We address the first problem by developing a parallel data analysis framework

that accelerates large-scale comparative genomics applications. We identify that op-

timal data partitioning and caching significantly improve the performance of such

framework. We further construct a predictive model to estimate runtime configu-

rations that facilitate optimal utilization of cloud and cluster-based resources while

executing data-intensive applications.

Olivia Choudhury

The fidelity of genomic data derived from next-generation sequencing techniques

impacts downstream applications like genome-wide association study (GWAS) and

genome assembly. For imputation of missing genotype data, we design an accurate,

fast, and lightweight algorithm for both model (with a reference genotype panel) and

non-model (without a reference genotype panel) organisms. To correct erroneous long

reads generated by emerging sequencing techniques, we formulate a hybrid correction

algorithm that determines a correction policy based on an optimal combination of

base quality and similarity of aligned short reads. We extend the core algorithm by

proposing an iterative learning paradigm that further improves its performance.

Our proposed data analysis framework is accessible to the scientific community

and has been used to study the genomes of important plant species and malaria vector

mosquitoes. The predictive models exhibit high accuracy in determining optimal

parameters of operation on commercial cloud services like Amazon EC2 and Microsoft

Azure. Finally, the imputation and error correction algorithms outperform state-of-

the-art alternatives when tested on real data sets of plants, malarial mosquitoes, and

humans. Hence, in this thesis, we present novel solutions to expedite data-parallel

genomic applications while optimizing cloud and cluster-based resource utilization.

We also design novel, accurate, and efficient algorithms to impute missing data and

correct erroneous data in emerging genomic applications.

To my grandmother, Amita Mukherjee (1924 - 2001).

ii

CONTENTS

FIGURES . vi

TABLES . x

ACKNOWLEDGMENTS . xii

CHAPTER 1: INTRODUCTION . 1
1.1 Motivation And Problem Statement 1
1.2 Literature Review . 3

1.2.1 Data Analysis Framework For Expediting Comparative Ge-
nomics Applications . 3

1.2.2 Computational Resource Optimization For Executing Data-
Intensive Genomic Applications On Clusters And Clouds . . . 4

1.2.3 Imputation Of Missing Genotype Data In Model And Non-
Model Organisms . 5

1.2.4 Hybrid Correction Of Erroneous Long Reads Using Iterative
Learning . 6

1.3 Contributions In This Thesis . 7
1.4 Organization Of This Thesis . 7
1.5 Publications . 9
1.6 Availability Of Software . 10

CHAPTER 2: DATA ANALYSIS FRAMEWORK FOR EXPEDITING COM-
PARATIVE GENOMICS APPLICATIONS 11
2.1 Background . 11
2.2 Methods . 13

2.2.1 Overview Of Genome Alignment And BWA 13
2.2.2 Overview Of Variant Detection And HaplotypeCaller 14
2.2.3 Makeflow And Work Queue 14
2.2.4 Data Partitioning . 15
2.2.5 Workflow Fusion . 18

2.2.5.1 Full Workflow Caching 19
2.2.5.2 Elimination Of Choke Points 21
2.2.5.3 Merged Partitioning 22
2.2.5.4 Potential Issues Of Workflow Fusion 23

iii

2.3 Results And Discussion . 23
2.3.1 Optimal Data Partitioning . 24
2.3.2 Tool Improvement . 24
2.3.3 Pipeline Improvement . 28
2.3.4 Optimal Workflow Fusion . 29
2.3.5 Application Of The Data Analysis Framework 31

2.4 Conclusion . 34

CHAPTER 3: COMPUTATIONAL RESOURCE OPTIMIZATION FOR EX-
ECUTING DATA-INTENSIVE GENOMIC APPLICATIONS ON CLUS-
TERS AND CLOUDS . 35
3.1 Background . 35
3.2 Methods . 36

3.2.1 Design Of Application-Level Model 38
3.2.1.1 Model For Runtime 38
3.2.1.2 Model For Memory Usage 40

3.2.2 Design Of System-Level Model 41
3.2.2.1 Model For Runtime 41
3.2.2.2 Model For Memory Usage 44

3.3 Results And Discussion . 45
3.3.1 Thread-level Parallelism Through Multithreading 49
3.3.2 Task-level Parallelism Through Distributed Computing 49
3.3.3 Balancing Thread-level Parallelism And Task-level Parallelism 52
3.3.4 Using Optimal Number Of Computing Instances 52
3.3.5 Reducing Cost Of Operation 53

3.4 Conclusion . 55

CHAPTER 4: IMPUTATION OF MISSING GENOTYPE DATA IN MODEL
AND NON-MODEL ORGANISMS . 56
4.1 Background . 56
4.2 Methods . 58

4.2.1 ADDIT-NM: Imputation For Non-Model Organisms 58
4.2.1.1 Step 1: Quick Imputation Using Immediate Neighbors 60
4.2.1.2 Step 2: Similarity Computation For Each Missing

Genotype . 60
4.2.1.3 Step 3: Similarity Threshold Of Candidate Windows 61
4.2.1.4 Step 4: Adaptive Classification Of Trusted Candidates 62
4.2.1.5 Step 5: Priority-based Imputation Scheme 64

4.2.2 ADDIT-M: Imputation For Model Organisms 66
4.2.2.1 Step 1: Construction Of Training And Truth Sets

From Reference Panel 66
4.2.2.2 Step 2: Imputation Based On Identical Truth Values 68
4.2.2.3 Step 3: Quick Imputation 68
4.2.2.4 Step 4: Imputation Via Multi-class Supervised Learning 68

iv

4.3 Results And Discussion . 68
4.3.1 Testing ADDIT-NM . 68

4.3.1.1 Data Acquisition . 68
4.3.1.2 Comparative Analysis 70
4.3.1.3 Effectiveness Of Quick Imputation 71

4.3.2 Testing ADDIT-M . 72
4.3.2.1 Data Acquisition . 72
4.3.2.2 Comparative Analysis 74
4.3.2.3 When Should We Use QI? 74
4.3.2.4 Importance Of Multi-class Supervised Learning . . . 75

4.4 Conclusion . 77

CHAPTER 5: HYBRID CORRECTION OF ERRONEOUS LONG READS
USING ITERATIVE LEARNING . 82
5.1 Background . 82
5.2 Methods . 85

5.2.1 Overview . 85
5.2.2 The Core Algorithm . 85

5.2.2.1 Step 1: Quick Correction 85
5.2.2.2 Step 2: Optimization-based Correction 86

5.2.3 Improvement Of Correction Via Iterative Learning 88
5.2.3.1 Assignment Of Confidence 89
5.2.3.2 Realignment Based On High-Confidence Corrections 90
5.2.3.3 Termination Criteria 90

5.3 Results And Discussion . 91
5.3.1 Data Acquisition . 91
5.3.2 Computational Set-up . 92
5.3.3 Evaluation Metrics . 93

5.3.3.1 k -mer-based . 93
5.3.3.2 Alignment-based . 93
5.3.3.3 Assembly-based . 93

5.3.4 Comparative Analysis . 94
5.3.5 Effect Of Iterative Learning 97

5.4 Conclusion . 97

CHAPTER 6: SUMMARY AND FUTURE WORK 103
6.1 Summary . 103
6.2 Open Problems And Future Work . 106

BIBLIOGRAPHY . 107

v

FIGURES

1.1 Reduction of genome sequencing cost and inflation of genomic data
in the last decade. (A) Real cost (green dotted line) of sequening a
genome and estimated cost (pink line), based on Moore’s law. (B)
Number of genome sequences (blue line) and bases (black line) pro-
duced by sequencing platforms. 1

2.1 Genome alignment between sequences A and B showing matches (ver-
tical bars), mismatches, and indels (hyphens). 13

2.2 Framework of granularity-based and individual-based data partition-
ing approaches in BWA. For the test data set, N=715 for granularity-
based and N=50 for individual-based. At the end, output files (SAM
format) of BWA are joined to form a single file containing all the
alignment information. 17

2.3 Framework of granularity-based and individual-based data partition-
ing approaches in HaplotypeCaller. For the test data, N=715 for
granularity-based and N=50 for individual-based. The reference file
and each sorted and indexed BAM file are sent to a worker for execut-
ing GATK’s HaplotypeCaller. Outputs of HaplotypeCaller, in VCF
format, are joined to create a single output file. 17

2.4 Framework of alignment-based data partitioning approach in Haplo-
typeCaller. The reference file was split into bins and the SAM file was
split based on the contigs in the bins to which the reads aligned. Each
pair of smaller reference bin and its corresponding BAM file were then
sent to a worker to run GATK’s HaplotypeCaller. 18

2.5 Shared cache controller among two merged workflows, A and B. In
practice this is done using Work Queue, where all files in a Makeflow
are aggressively cached. When separate, the two workflows’ caches are
independent and can not be used between each other. However, when
the control of that cache is shared, previously transferred files can be
utilized. 19

2.6 Framework of the Full Workflow Caching Concept. The pipeline com-
prises the BWA step, intermediate conversion steps for adding read
groups, converting SAM files to their sorted and indexed formats, and
the GATK step. The reference used by GATK is the same as that
used in BWA, allowing for it to be cached at the worker and not sent
as additional traffic. 20

vi

2.7 Framework of the Choke Elimination Concept. As can be seen here,
the removal of intermediate data choke points allows computational
threads to progress further through the workflow without needing to
wait for slower threads to finish and communicate with the master.
This lowers the amount of data the master is required to deliver at
once and allows the transfers to be offset based on when they arrive. . 21

2.8 Framework of the Merged Partition Concept. As can be seen here,
the conversion step appears prior to the mapping, but could go either
before or after depending on what state the inputs need to be. It is
also useful to note how, though as simple map is used here, any process
that relates two partitioning methods could be added as long as it does
not require coalescing the full data set. 21

2.9 Left: Histogram of runtime for BWA is bimodal as it comprises two
steps: ALN (alignment) and SAMSE (generation of aligned output in
SAM format). Times are measured for 1430 tasks, with 715 attributing
to each step. Right: Histogram of runtime for GATK exhibits tight
coupling, except for a single heavy outlier. 27

2.10 Runtime behavior of granularity-based BWA using 100 workers. The
continuous line represents currently running tasks, the jagged appear-
ance is due to the manner in which tasks are distributed using Work
Queue. While distributing tasks, finished tasks wait to be collected
and are then sent out. This waiting causes the jaggedness. 28

2.11 Mechanism of data transfer for an environment without a shared file
system. The thick line denotes the number of tasks executing during
the given timeline for granularity-based BWA. The gray bars show
data transfer from master to worker nodes. The left axis measures
number of tasks running whereas the right axis measures the rate of
data transfer in MB/s. 28

2.12 Framework of the optimized pipeline incorporating granularity-based
BWA and alignment-based HaplotypeCaller. It also includes the in-
termediate stages of adding read groups to SAM files and converting
them to their sorted, indexed, and binary formats. 29

2.13 Comparison of available concurrency for Partition Fused, Choke Elim-
ination, and Cache Fused workflows. Available concurrency refers to
the tasks that are either ready to be run or running. Partition Fused
method increases the number of partitions, thereby allowing a higher
level of concurrency. 32

2.14 Comparison of average runtimes for different steps of coupling in cache
fused and partition fused workflows. The time spent in intermediate
steps and GATK are higher in cache fused than partition fused. It is
important to note that the number of partitions was 10 for cache fused
and 500 for partition fused. 32

vii

2.15 Genetic map of nothern red oak (Quercus rubra) corresponding to 12
chromosomes or linkage groups (LGs). Our proposed data analysis
framework was used to generate SNP-based markers for constructing
the map. 33

3.1 Runtimes predicted by application-level model (equation 3.1) for vary-
ing sizes of reference (R), query (Q), and number of threads (N) in
BWA, Bowtie2, and BLASR. Figures in the first row depict linear be-
havior of runtime with respect to varying reference size. Figures in the
second row show the linear dependence of runtime on the size of query
data. Figures in the third row confirm that although runtime reduces
with more threads, the corresponding speedup is not proportional, as
supported by Amdahl’s law [13]. 46

3.2 Memory usage predicted by application-level model (equation 3.4) for
varying reference size (R) and number of threads (N) in BWA, Bowtie2,
and BLASR. The memory consumed by the applications is directly
proportional to the reference size and number of threads used. 47

3.3 Runtimes predicted by system-level model (equation 3.7) for varying
number of tasks (K) and threads (N) used by each task. As the number
of tasks increases, the runtime gradually decreases unless it reaches an
optimal K and N , beyond which the performance is again degraded.
This is due to the overhead of splitting, starting up, and joining a
given workload. 48

3.4 Memory usage at the master predicted by system-level model (equa-
tion 3.17). The memory footprint of the master server depends on the
data to be split and the data to be joined (R and Q). 48

3.5 Distribution of values of the coefficients in the regression models (equa-
tions (3.1), (3.4), (3.13), and (3.17)). Each histogram contains 10000
values of a coefficient obtained while training each model 10000 times.
As the distributions follow the gaussian curve, the mean and variance
completely characterize the distributions. The calculated SD is low,
showing our model is robust for these training data. 51

3.6 Impact of multithreading (thread-level parallelism) and distributed
computing (task-level parallelism) on the execution time of a data-
intensive workload. Selecting a good runtime configuration can opti-
mize resource utilization. This graph shows that for the test workload,
using 90 tasks and 4 cores yields optimal results. 53

4.1 ADDIT-NM for non-model organisms: (A) quick impute (QI) step.
(B) Selection of candidate windows with d = 5. (C) Selection of trusted
candidates using maximum likelihood. (D) Illustration of priority im-
pute via window similarity (left) and allele frequency (right). 78

viii

4.2 ADDIT-M for model organisms: A. Construction of truth (green dot-
ted rectangle), training (blue dashed rectangle) and testing (black
dashed-dot rectangle) sets from query sample (top pink block) and
reference panel (gray blocks) for model organisms, assuming d = 7.
B. Training procedure for supervised learning algorithm L. C. Impu-
tation procedure using trained classifier L. 79

4.3 Illustration of the number of quick imputations (QI) in ADDIT-NM:
blue, quick imputation error (QI Error): green, priority-based impu-
tations (PI): dark red, and priority-based imputation error (PI Error):
purple, for the non-model organisms: grape, apple, and maize. 80

4.4 Distribution of algorithm steps (identical truths, quick impute, and
multi-class classification via SVM) used for imputation of ADDIT-M
with and without the quick impute step in human data. The light blue
lower blocks denote the percent of missing data that are imputed via
each step in the ADDIT-M formalism for model organisms. The upper
dark blue blocks denote the error (%) corresponding to each of those
steps. 81

5.1 Illustration of Steps 1 and 2 of HECIL’s core algorithm. The orange
rectangle denotes an erroneous long read and the purple rectangles
represent aligned short reads. (A) Illustration of Quick Correction
with high consensus (B) Illustration of Optimization-based Correction.
The green dashed box depicts the objective function values, from which
the optimal short read (green rectangle) is selected for correction. . . 84

5.2 Illustration of iterative learning procedure with the HECIL core algo-
rithm as the error correction method. 89

5.3 Distribution of k -mer frequency (k=17) in Anopheles funestus, flow-
cell #16. The x and y-axes denote k -mer frequency and count of
frequency, respectively. The continued blue line and dashed red line
represent k -mers generated from short reads (SR) and original long
reads (Original LR), respectively. As discussed in Section 5.3.3.1, the
dotted yellow line indicates an increase in valid or corrected k -mers
along with reduced low frequency k -mers. The error k -mers, shown in
purple dot-dashes, mostly comprise low frequency k -mers. 94

5.4 Improvement of evaluation metrics for different data sets with iterative
learning (up to 5 iterations). Note that number of k -mers and number
of unique k -mers are monotonically decreasing with increasing number
of iterations, whereas the other metrics consistently show monotonic
increment. 96

ix

TABLES

2.1 COMPARISON OF RUNTIMES FOR DIFFERENT APPROACHES
OF DATA PARTITIONING IN BWA 25

2.2 COMPARISON OF RUNTIMES FOR DIFFERENT APPROACHES
OF DATA PARTITIONING IN GATK’S HAPLOTYPECALLER . . 25

2.3 GRANULARITY-BASED BWA REQUIRES LESS TIME WHEN MORE
WORKERS ARE IN USE . 26

2.4 RUNTIMES OF THE STEPS IN THE OPTIMIZED PIPELINE . . . 30

2.5 COMPARISON OF RUNTIMES FOR SEQUENTIAL, PARALLEL,
AND DIFFERENT SCHEMES OF WORKFLOW FUSION EXECU-
TION OF THE PIPELINE . 30

3.1 MAPE OF APPLICATION-LEVEL AND SYSTEM-LEVEL MOD-
ELS OF RUNTIME AND MEMORY WITH VARYING PARAME-
TERS . 50

3.2 PERFORMANCE FOR DIFFERENT CONFIGURATIONS BASED
ON AMAZON EC2 AND MICROSOFT AZURE-BASED PRICING 54

4.1 LIST OF SYMBOLS USED IN THE ADDIT-NM ALGORITHM DE-
SCRIPTION . 59

4.2 PRIORITY LEVEL FOR POSSIBLE COMBINATIONS OF DECI-
SION WEIGHTS DURING STEP 5 OF ADDIT-NM 66

4.3 COMPARISON OF THE PERFORMANCE OF ADDIT-NM WITH
BEAGLE, LINKIMPUTE, AND IMPUTE2 69

4.4 COMPARISON OF ADDIT-NM WITH AND WITHOUT QI 71

4.5 COMPARISON WITH BEAGLE ON HUMAN DATA 73

4.6 PERFORMANCE WITH AND WITHOUT THE QUICK IMPUTE
STEP FOR ADDIT-M ON HUMAN DATA 76

4.7 PERFORMANCE COMPARISON FOR BEAGLE, ADDIT-M, AND
ADDIT-NM ON HUMAN DATA . 76

5.1 COMPARISON OF ALIGNMENT BASED METRICS 99
5.2 COMPARISON OF ASSEMBLY BASED PARAMETERS 100
5.3 COMPARISON OF METRICS WITH DOWNSAMPLING 101

x

5.4 COMPARISON OF RUNTIME AND MAXIMUM MEMORY FOOT-
PRINT . 102

xi

ACKNOWLEDGMENTS

Genes don’t think about what constitutes good or evil. They don’t care whether we

are happy or unhappy. We’re just means to an end for them. The only thing they

think about is what is most efficient for them.

— Haruki Murakami, 1Q84

I would like to thank Dr. Scott Emrich for his support and guidance as my

PhD advisor. He has helped me grow as an independent researcher, and present my

research in an articulate manner. I am grateful to my committee members Dr. Kevin

Bowyer, Dr. Jeanne Romero-Severson, and Dr. Douglas Thain for the invaluable

feedback that helped shape this thesis. I am deeply indebted to the Eck Institute for

Global Health (EIGH) for their generous support that enabled me to disseminate my

research and improve my work through wonderful interactions at various academic

venues.

I have been lucky to have had brilliant labmates like Dr. Lauren Assour, Dr.

Irena Lanc, Aaron Steele, Dr. Andrew Thrasher, Dr. Wei Zhang, Colin Teberg,

Shenglong Zhu, and Gabe Wright. I have had a great experience working with our

collaborators in the Department of Biology at University of Notre Dame: Dr. Arpita

Konar, Dr. Rachel Love, Rachel Wiltshire, and Dr. Candice Lumibao. You have

all helped me grasp the biological underpinning of the research problems and the

underlying nuances. I am also thankful to Nicholas Hazekamp, Dr. Sandra Gesing,

Dr. Joseph Sarro, Dr. Benjamin Tovar, Dr. Haiyan Meng, Dr. Dinesh Rajan, and

Dr. Li Yu for helpful conversations and collaborations.

xii

I owe my sincere gratitude to William Stern and Scott Symes, with whom I had

the pleasure of working during my internship at IBM Watson in summer 2015. I

feel fortunate for getting the opportunity to work at the Broad Institute of MIT and

Harvard with Dr. Daniel Neafsey, Dr. Seth Redmond, Dr. Aimee Taylor, and Dr.

Angela Early. I would also like to thank Dr. Rajat K. De at the Indian Statistical

Institute, Kolkata, for introducing me to the field of bioinformatics.

I want to thank Graduate Society of Women Engineers (GradSWE) and Graduate

Student Union (GSU) at University of Notre Dame for giving me an opportunity to

serve for the graduate student community.

A hearty thank you to all my friends. To Tariq Iqbal, Dr. Fazle Faisal, Robert

Perricone, Salvador Aguinaga, Maryam Moosaei, and John Bernhard for the group

study sessions. To Dr. Michael Gonzales, Dr. Cory Hayes, Dr. Vipin Vijayan,

Siyuan Jiang, and Mark Costanzo for the game nights. To Valentina Geri, Katherine

Ramos, Nunzia Pirro, and Valentina Damioli for the relaxing evenings and rudi-

mentary Spanish/Italian. To Shinjini Chattopadhyay and Krishna Namboothiri for

pampering me with good food. To Meenakshi Chatterjee, Shanika Hapuarachchi,

and Dilshan Godaliyadda for the impromptu holiday plans. To Shriya Banerjee and

Supratim Chaudhury for many intriguing conversations. To Dr. Dipanwita Das-

gupta, Rusha Chatterjee, and Aastha Nigam for always being there for me.

A special thank you to Dr. Ankush Chakrabarty for being the best friend and

mentor one could ask for. Most importantly, I would like to thank my parents: Anand

Choudhury and Bhaswati Choudhury for encouraging me to pursue my dreams, in-

stilling the value of sincerity and honesty, and setting an exceptional example to grow

as an individual.

xiii

CHAPTER 1

INTRODUCTION

1.1 Motivation And Problem Statement

Genome data analysis is the key to deciphering research problems in the areas

of medicine [69, 108], evolution [24, 59], environmental science [48, 128], forensic

studies [62, 71], and social science [44, 50].

No. of Sequences
No. of Bases

1 e13

1 e6

1 e7

1 e8

1 e9

1 e10

1 e11

1 e12

N
o.

 o
f S

eq
ue

nc
es

1 e15

1 e8

1 e9

1 e10

1 e11

1 e12

1 e13

1 e14

N
o.

 o
f B

as
es

2002 2004 2006 2008 2010 2012 2014 2016
Year

2002 2004 2006 2008 2010 2012 2014 2016
100

1K

100M

10M

1M

100K

10K

C
os

t
($

)

Prediction by Moore’s Law
Sequencing cost

Year

(A) Reduced Sequencing Cost (B) Genomic Data Growth

Figure 1.1: Reduction of genome sequencing cost and inflation of genomic data in the
last decade. (A) Real cost (green dotted line) of sequening a genome and estimated
cost (pink line), based on Moore’s law. (B) Number of genome sequences (blue line)
and bases (black line) produced by sequencing platforms.

1

genomics by generating genome data at an unprecedented rate, thereby facilitating

previously inconceivable scientific discoveries [104, 125]. However, the rate of data

generation has outpaced computing throughput, as predicted by Moore’s Law [113],

causing a major hurdle in efficient analysis of large-scale genome data (Figure 1.1).

Furthermore, data generated from emerging sequencing platforms are often rife

with missing and specious values, causing a significant decline in its fidelity and appli-

cability for subsequent analysis. For instance, quality of inferred knowledge obtained

from genome-wide association study (association of mutations with traits, such as

disease susceptibility) is undermined due to missing genotypes in the input data.

De novo genome assembly, another downstream application, produce low-quality as-

semblies due to the use of error-prone data derived from PacBio Sequencing [45]

and Oxford Nanopore Sequencing [27]. Hence, expediting analysis and improving

fidelity of large-scale genome data are imperative in advancing the pace and quality

of innovations in the domain of genomics.

• The first research problem investigated in this thesis is to develop efficient data
analysis frameworks to expedite big data genomics and predictive models to op-
timize its required computational resources.

• The second problem investigated in this thesis is to design accurate and efficient
imputation and error correction algorithms to improve fidelity of genome data.

According to the classical definition of “big data”, the above-mentioned research

problems closely relate to addressing the challenges associated with big data anal-

ysis: volume, velocity, and veracity. The solutions presented in this thesis can be

potentially adapted in other fields of big data analysis.

2

Next-generation sequencing (NGS) techniques have revolutionalized the field of

1.2 Literature Review

1.2.1 Data Analysis Framework For Expediting Comparative Genomics Applica-

tions

Genome mapping and assembly, the two important applications in compara-

tive genomics, have traditionally been refactored with Message Passing Interface

(MPI) [39] and MapReduce frameworks [40]. ClustalW-MPI [94] adopts MPI to

build a scalable algorithm for multiple sequence alignment. CloudBurst [123] is one

of the early applications that implements the seed-and-extend genome mapping al-

gorithm on a Hadoop-based framework [4]. When tested on billions of reads, typical

of current large-scale genomics projects, it incurs higher computation time and re-

sources than other cloud-based variant detection tools like Crossbow [82]. However,

the underlying method of Crossbow does not support some desired features, such as

allowing gaps in sequence alignment. SEAL [117], another genome alignment tool,

uses MapReduce for parallelization of tasks.

Although MPI enables execution of tasks in parallel, it involves complex software

development for refactoring tools [120]. Hadoop’s MapReduce-based framework does

not readily allow tuning of runtime parameters, a requirement of many applications.

Also, dynamic scaling of resources based on workload is a tedious process in Hadoop

due to the tight coupling between compute runtime and data storage layers [101, 141].

Finally, its performance degrades when computational resources are harnessed from

a heterogeneous system [145].

We develop an efficient data analysis framework that supports the above-mentioned

features by leveraging the Makeflow language [144] and Work Queue master-worker

framework [20]. We propose various strategies of data partitioning to determine an

optimal scheme that reduces computational overhead incurred by large-scale work-

loads. We explore different methods of workflow fusion that further expedites data

3

analysis. Finally, we illustrate the application of this framework in analyzing multiple

real data sets, particularly in constructing a high-quality genetic map of the northern

red oak tree, the first of its kind.

1.2.2 Computational Resource Optimization For Executing Data-Intensive Genomic

Applications On Clusters And Clouds

Analysis of large-scale data, particularly in areas like bioinformatics [139], high

energy physics [47], and biometrics [114], demands high computational time and re-

sources. Scientists often resort to commercial clouds or clusters to process such data.

Among the existing infrastructures, Hadoop-based methods such as G-Hadoop [140]

allows efficient data analysis using multiple clusters that are distributed across data

centers. Dryad [67] provides a programming framework and distributed execution

engine for directed acyclic graph (DAG)-based workloads. CIEL [115] extends its

programming and execution models to support dynamic data dependencies and ar-

bitrary data-dependent control flows. Scheduling techniques reported in [23, 53, 118]

reduce computational burden of large workloads in a distributed system.

As noted in [70], predictive models play a vital role in efficient management and

operation of workloads in a distributed system. The authors in [66], [54] also high-

light its importance in optimizing computational resource usage. However, none of

the above-mentioned frameworks support a predictive model to estimate an optimal

runtime configuration that can reduce resource utilization in a distributed environ-

ment. We develop a hybrid model that predicts optimal runtime configuration (num-

ber of threads, number of tasks, etc.) for a given class of applications to minimize

cluster and cloud-based resource usage. Although earlier studies [8, 43, 106] have

explored the applicability of machine learning algorithms in estimating resource uti-

lization, our proposed model supports applications that allow multithreading as well

as distributed computing. We reduce resource utilization and cost of operation by

4

finding the trade-off between parallelism achieved from multithreading (thread-level

parallelism) and distributed computing (task-level parallelism).

1.2.3 Imputation Of Missing Genotype Data In Model And Non-Model Organisms

Early work on genotype imputation leveraged the principle of Expectation Max-

imization (EM) [41], which is computationally prohibitive for large-scale data sets.

More recent tools such as IMPUTE2 [64], generate approximate coalescent models

and hidden Markov models (HMMs) from genotypes for subsequent stochastic EM-

based algorithms. PHASE [130] uses Markov chain Monte-Carlo (MCMC) algorithm

to explore possible combinations of haplotypes [95]. The combinatorial explosion in-

herent in MCMC limits its applicability to small datasets [18]. FastPHASE [124], a

faster variant of PHASE, implements a parsimonious clustering of haplotypes and is

more amenable to medium-sized samples. For large datasets, this algorithm uses a

subset of haplotypes, resulting in performance degradation. To overcome this chal-

lenge in large samples, Beagle [16] employs HMM to find haplotype clustering at

individual loci.

Majority of the leading imputation tools, such as IMPUTE2, PHASE, and Beagle,

rely on reference genotype panels and a genetic map, thereby limiting itself to only

model organisms. Due to the availability of reference panels, machine learning-based

methods like artificial neural networks have been used to solve similar problems in

model organisms [131]. For non-model organisms (without reference panels), LinkIm-

pute [112], based on a variant of k-nearest neighbor interpolation, is currently the

only imputation tool available. However, it is sluggish and exhibits limited accuracy

when used in large data sets.

ADDIT, our proposed imputation tool, is the first of its kind to be applicable to

both model and non-model organisms. For the former, its imputation policy is based

on data-driven learning algorithm that considers cases with more than two putative

5

values or alleles, as opposed to the existing bi-classification methods. For non-model

organisms, it provides a fast, accurate, and lightweight approach of imputation with-

out requiring additional data sources.

1.2.4 Hybrid Correction Of Erroneous Long Reads Using Iterative Learning

Existing error correction methods for long reads can be categorized as self-correction

or hybrid correction algorithm. HGAP [29], a self-correction tool, selects the longest

reads as seeds and aligns all other reads to them. During a preassembly stage, the

seed reads are converted to more accurate reads that can then be used for downstream

analysis. As this approach solely relies on long reads for correction, it requires the

reads to have very high coverage, typically on the order of 50X. Given the higher cost

of long read sequencing, such high coverage may not always be practical.

Hybrid error correction tools like LSC [14], PacBioToCA [76], proovread [56],

LoRDEC [121], and CoLoRMap [57] leverage alignment information from accurate

short reads sequenced from the same or highly similar individuals. LSC and PacBioToCA

largely follow a consensus-based (majority vote) correction approach. proovread also

exploits aligned information from short reads for correction, although it uses itera-

tive mapping to achieve higher senstitivity. LoRDEC constructs a de Bruijn graph

from k -mers of the short reads. For an erroneous region on the long read, it finds an

optimal overlapping path in the de Bruijn graph to determine a corrected long read.

CoLoRMap aligns short and long reads to build an overlap graph. The shortest path

in the graph that minimizes edit distance between the aligned regions is then used for

correction. Nanocorr, the error correction tool for Oxford Nanopore reads, deploys a

dynamic programming approach for computing the longest-increasing-subsequences

(LIS) and overlaps to find a consensus sequence.

Majority voting and optimal path-based approaches, however, may not generate

an optimal solution for every erroneous base, especially when more localized data

6

(e.g., quality and possible variant information between different individuals) from

the alignments are available. The authors in [73] have emphasized the importance

of incorporating quality values while correcting noisy sequence data. HECIL, our

proposed hybrid error correction algorithm, incorporates such localized information

while determining the correction policy. Also, to the best of our knowledge, this is

the first time an iterative learning paradigm has been used wherein low-confidence

corrections (determined by less reliable alignments during processing) can be further

investigated and updated using previously corrected regions of the long reads.

1.3 Contributions In This Thesis

The contributions of this thesis include:

• developing a framework for efficient analysis of data-intensive comparative ge-
nomics applications;

• designing various strategies of data partitioning and workflow fusion to expedite
data analysis on a distributed system;

• building a highly accurate predictive model that determines optimal runtime
configuration for large-scale applications supporting multithreading and dis-
tributed computing;

• constructing ADDIT, the first novel algorithm for imputing missing genotypes
in both model and non-model organisms;

• illustrating superior performance of ADDIT against state-of-the-art tools on
real data sets, including humans;

• devising HECIL, a novel hybrid error correction algorithm that introduces an
iterative learning approach;

• demonstrating superior performance of HECIL against state-of-the-art tech-
niques in real data sets, including important malaria vector mosquito Anopheles
funestus.

1.4 Organization Of This Thesis

The rest of the thesis is organized as follows.

7

In Chapter 2, we present the design and implementation of a parallel framework

for comparative genomics applications [33]. We propose various methods of data

partitioning and workflow fusion to reduce the computational overhead incurred while

processing massive genomic data on a distributed system. We validate the efficacy of

our framework on two most important comparative genomics applications: genome

mapping and variant detection. When tested on real data sets, our framework reduced

the computation time from 12 days to under 2 hours.

In Chapter 3, we build a hybrid model to predict optimal runtime configurations

for executing large workloads on clusters and clouds [34]. It constructs an application-

specific model to estimate runtime and memory usage, which is then embedded in a

more generic system-level model. We implement regression-based methods to design

its two-tiered structure. We illustrate predictive capability of the model with respect

to runtime, speedup, and cost of operation. We show that for applications enabling

both multithreading and distributed computing, it is crucial to balance thread-level

and task-level parallelisms, that is, find a sweet spot. This ensures efficient usage of

computational resources while processing massive data on clusters and clouds.

In Chapter 4, we devise ADDIT [35, 36], a highly accurate, fast, and lightweight

algorithm to impute missing genotype data in model (with a reference data set)

and non-model (without a reference data set) organisms. For model organisms, we

implement a multi-class supervised learning method to extricate relevant information

from reference data panels that enhances imputation accuracy. However, due to

the lack of reference data in non-model organisms, we design a novel data-driven

technique of imputation wherein adaptive windows and trust metrics are utilized to

incorporate underlying local and global information. We demonstrate that for real

data sets of humans and plants, ADDIT consistently outperforms state-of-the-art

techniques in terms of imputation accuracy, runtime, and memory usage.

In Chapter 5, we develop HECIL, a novel hybrid algorithm for correction of er-

8

roneous long reads. We align highly accurate short reads, generated from the same

individuals or colony, to the error-prone long reads and determine positions of dis-

agreement or error. We assign a trust metric to evaluate reliability of the underlying

short reads before leveraging them for correction. We introduce an iterative learning

approach, wherei low-confidence corrections are further investigated and corrected

based on updated context of partially corrected long reads obtained from previous

iterations. We measure the efficacy of HECIL with respect to k -mer-based, alignment-

based, and assembly-based evaluation metrics. A comparative study with state-of-

the-art hybrid correction algorithms on real data sets of E. coli, S. cerevisiae, and the

malaria vector mosquito A. funestus, reveals that HECIL generates more accurate

long reads for higher quality downstream applications like de novo assembly.

In Chapter 6, we summarize the contributions of this research and discuss the

open problems arising from it.

1.5 Publications

The following publications resulted from this thesis:

• O. Choudhury, A. Chakrabarty, S. Emrich. A Hybrid Error Correction Al-
gorithm for Long Reads with Iterative Learning. Submitted, Bioinformatics,
2017.

• O. Choudhury, A. Chakrabarty, S. J. Emrich. Highly accurate and effcient data-
driven methods for genotype imputation. IEEE/ACM Transactions on Compu-
tational Biology and Bioinformatics, PP(99):1-1, 2017. ISSN 1545-5963. doi:
10.1109/TCBB.2017.2708701.

• A. Konar, O. Choudhury, T. McCleary, S. Schlarbaum, O. Gailing, M. Cogge-
shall, S. Emrich, M. Staton, M. Pfrender, J. Carlson, J. Romero-Severson.
High-quality genetic mapping with ddRADseq in the non-model tree Quercus
rubra. Accepted, BMC Genomics, 2017.

• N. Hazekamp, N. Kremer-Herman, B. Tovar, H. Meng, O. Choudhury, S. Em-
rich, D. Thain. Combining Static and Dynamic Storage Management for Data
Intensive Scientific Workflows. Accepted with revision, IEEE Transactions on
Parallel and Distributed Systems, 2017.

9

• O. Choudhury, A. Chakrabarty, S. Emrich. HAPI-Gen: Highly Accurate Phas-
ing and Imputation of Genotype Data. ACM Conference on Bioinformatics,
Computational Biology, and Health Informatics, 2016.

• A. Konar, O. Choudhury, O. Gailing, M. Coggeshall, M. Staton, S. Emrich, J.
Carlson, J. Romero-Severson. A Genetic Map for the Lobatae. lnternational
Oaks, No. 27, 2016.

• O. Choudhury, N. Hazekamp, D. Thain, S. Emrich. Accelerating Comparative
Genomics Workflows in a Distributed Environment with Optimized Data Par-
titioning and Workflow Fusion. Scalable Computing: Practice and Experience
16(1), 2015.

• O. Choudhury, D. Rajan, N. Hazekamp, S. Gesing, D. Thain, S. Emrich. Bal-
ancing Thread-level and Task-level Parallelism for Data-Intensive Workloads
on Clusters and Clouds. IEEE International Conference on Cluster Comput-
ing, 2015.

• N. Hazekamp, J. Sarro, O. Choudhury, S. Gesing, S. Emrich, D. Thain. Scaling
Up Bioinformatics Workflows with Dynamic Job Expansion: A Case Study
Using Galaxy and Makeflow. IEEE International Conference on eScience, 2015.

• O. Choudhury, N. Hazekamp, D. Thain, S. Emrich. Accelerating Comparative
Genomic Workflows in a Distributed Environment with Optimized Data Par-
titioning. C4Bio at IEEE/ACM International Symposium on Cluster, Cloud,
and Grid Computing, 2014.

1.6 Availability Of Software

• The data analysis framework described in Chapter 2 is available on Github:
https://github.com/cooperative-computing-lab/cctools/tree/master/apps/makeflow_bwa

https://github.com/cooperative-computing-lab/cctools/tree/master/apps/makeflow_gatk

• The source code of ADDIT described in Chapter 4 is available on Github:
https://github.com/NDBL/ADDIT

• The source code of HECIL described in Chapter 5 is available on Github:
https://github.com/NDBL/HECIL

10

https://github.com/cooperative-computing-lab/cctools/tree/master/apps/makeflow_bwa
https://github.com/cooperative-computing-lab/cctools/tree/master/apps/makeflow_gatk
https://github.com/NDBL/ADDIT
https://github.com/NDBL/HECIL

CHAPTER 2

DATA ANALYSIS FRAMEWORK FOR EXPEDITING COMPARATIVE

GENOMICS APPLICATIONS

The following manuscripts describe the work in this chapter.

• O. Choudhury, N. Hazekamp, D. Thain, S. Emrich. Accelerating Comparative
Genomics Workfows in a Distributed Environment with Optimized Data Par-
titioning and Workfow Fusion. Scalable Computing: Practice and Experience
16(1), 2015.

• O. Choudhury, N. Hazekamp, D. Thain, S. Emrich. Accelerating Comparative
Genomic Workfows in a Distributed Environment with Optimized Data Par-
titioning. C4Bio at IEEE/ACM International Symposium on Cluster, Cloud,
and Grid Computing, 2014.

2.1 Background

Next-generation sequencing (NGS) techniques have had widespread impact in

fields such as molecular medicine, evolution, human migration, DNA forensics, and

agriculture [119]. They generate high-throughput DNA fragments, called ‘reads’, that

are crucial in several downstream analysis pipelines [109]. The surge in the rate of

data generation demands high computational resources for subsequent analysis. Due

to the disparity in sequencing throughput and computational capability, the major

research bottleneck lies in the speed of processing such massive biological data. For

instance, genome alignment and variant detection, the two most important applica-

tions in comparative genomics, often require weeks or months to process large-scale

NGS data. A potential approach to reduce computational overhead is to design effi-

cient algorithms or data structures that can prune the search space of operation [91].

11

However, due to the massive size of NGS data and the high computational resource

required for its analysis, designing a parallel data analysis framework that can harness

resources from distributed systems is a more tractable solution.

In the last few years, many alignment and variant discovery tools have imple-

mented sophisticated algorithms to reduce computational resource requirement and

runtime for analyzing massive genome data [74, 80, 83, 93, 97, 99]. The extent of

parallelism that can be achieved from multithreading is often limited. For instance,

Burrows Wheeler Aligner (BWA) [88], one of the fastest and most accurate align-

ment tools currently available, was only able to cause a 5x improvement in speedup

for analyzing our test data set (50 oak samples) using multithreading. Similarly, the

popular variant detection tool from GATK’s HaplotypeCaller [42] required 12 days

to determine variants in our test data.

As the underlying algorithms of both tools support coarse-grained parallelism,

the trade-off between accuracy and speedup can be mitigated by creating a parallel

framework or workflow [79]. Such a workflow can harness resources from distributed

systems by dividing the workload into multiple independent tasks and executing the

tasks in parallel. In this regard, one of the key factors in achieving a considerable

speedup is efficient partitioning of data at the preliminary stage of the workflow. We

also identify that merging independent yet interrelated workflows can benefit from

efficient caching of data, thereby further improving performance. Hence, we explore

different strategies of data partitioning and workflow fusion to determine the optimal

design of our framework.

12

2.2 Methods

2.2.1 Overview Of Genome Alignment And BWA

Millions of short reads generated by NGS techniques are compared to the genome

of a model organism, known as the reference genome, for downstream analysis.

Genome alignment is the method of comparing query sequences to a reference genome

to determine the level of similarity between the two. Figure 2.1 illustrates alignment

of sequence A to sequence B, where the vertical bars denote positions of matches

and the hyphens represent insertions or deletions, commonly known as indels. De-

pending on data size, alignment may take several days of computation. For instance,

short read alignment tools like MAQ [92] and SOAP [96] typically require more than

5 CPU-months and 3 CPU-years, respectively, for aligning 140 billion basepairs of

data [86].

Figure 2.1: Genome alignment between sequences A and B showing matches (vertical
bars), mismatches, and indels (hyphens).

Burrows Wheeler Aligner (BWA), one of the widely used alignment tools, imple-

ments Burrows Wheeler Transform (BWT) algorithm [21] to align short queries to

reference genomes. It is lightweight, supports paired-end mapping, gapped alignment,

and can work with various formats such as ILLUMINA [37] and ABI SOLiD [58]. By

default, it generates alignment information in Sequence Alignment Map (SAM) for-

13

mat, which is convenient for further analysis such as visualization of alignment and

variant detection [93]. Although it supports multithreading, the speedup attained

from it is limited while processing large data sets.

2.2.2 Overview Of Variant Detection And HaplotypeCaller

Variants or mutations are nucleotides in query sequences that differ from the ref-

erence genome by a single base pair or a comparatively longer interval. In Figure 2.1,

at the fifth position of the aligned sequences there occurs a mismatch or single nu-

cleotide polymorphism (SNP). SNPs can account for the variation in traits among

different individuals. They can also serve as markers in genome wide association

studies (GWAS) and help in identifying genes associated with traits such as disease

susceptibility. The performance of a variant calling tool is largely dependent on the

quality and coverage of the data.

For our experiments, we use the state-of-the-art variant detection tool GATK’s

HaplotypeCaller. HaplotypeCaller creates an index for the input data and then

locates variations between the query and reference. Once a difference is detected, it

performs local assemblies to fill gaps or correct mistakes. In spite of its accuracy, the

high computation time makes it prohibitive for large data sets.

2.2.3 Makeflow And Work Queue

Makeflow [10] is a workflow engine that defines a workflow in a directed acyclic

graph (DAG) format. Being similar to Make, for each task, it requires a list of its

input files, output files, dependencies, and the underlying command. Since both

implicit and explicit requirements of the tasks are defined in the rules, the tasks can

be sent to any platform that supports the executable. It is also fault tolerant as it

can resume running the tasks after a crash.

Work Queue [19] is a master-worker job execution engine that can harness re-

14

sources from clusters, clouds, and grids. Once tasks are defined using Makeflow,

execution is started by creating and broadcasting a Work Queue master. The master

waits for workers and distributes tasks among them. Workers are created either at

a local machine, or by submitting multiple workers at once to a batch system like

Condor or SGE. Once the workers connect to the master, tasks are sent to the work-

ers. The associated data are transported and cached at the workers. This caching

strategy requires the data to be sent only once to each worker. It must be noted that

although in a single workflow caching is beneficial, at the termination of the work-

flow the caches must be cleared for the purpose of security and efficient use. Hence,

to achieve maximum benefit from caching, interrelated workflows can be merged to

reduce the overhead of frequent data transfer across the network.

2.2.4 Data Partitioning

In distributed computing, a large workload is decomposed into multiple smaller,

independent tasks that can be executed in parallel. Data partitioning refers to the

method of splitting data in the given workload for parallel execution. We conceptually

divide the steps of genome alignment and variant detection, and use the Makeflow

language to define the taks and their dependencies. Makeflow can utilize resources

from various systems, including multicore machines, batch systems like Sun Grid

Engine (SGE) [51], and Condor Pool [100] to execute the tasks. For our experiments,

we set up Makeflow to use the Work Queue master-worker framework as an alternative

scalable infrastructure that can process data across clusters, clouds, and grids. Work

Queue also handles all data transfers and can cache files when running jobs remotely.

We identify that a key feature for assuring improved runtime during parallelization

is efficient partitioning of data. We explore different approaches of data partitioning

for BWA and HaplotypeCaller and compare each combination using Work Queue-

derived resources.

15

• For granularity-based partitioning in BWA, we test the workflow by varying
the granurality, that is, number of partitions, and the size of each partition.
We determine the optimal granularity value or partition size to be the one
which incurs lowest runtime. For our query data comprising 140 million reads,
splitting it into smaller chunks such that each contained 200000 reads proved
to be the optimal choice. This resulted in 715 smaller files, which were then
used for running BWA.

• For individual-based partitioning in BWA, we use coarser granularity by dividing
the pooled data into multiple files, each corresponding to a sample or individual.
As our data consists of genomic sequences from 50 individuals, we divide it into
50 files based on individual names.

Figure 2.2 illustrates the framework for implementing these data partitioning

apparoaches in BWA. The split function refers to the creation of smaller query files

based on a granularity value (for granularity-based partitioning) or individual names

(for individual-based partitioning). In both cases, we assign the task of running BWA

on each pair of small query data and reference data to a Work Queue worker. At the

completion of alignment, we add read group and platform information to each BWA

output (SAM file) and compress them into their sorted and indexed binary versions

(BAM) for compatibility with the next step, that is, GATK’s HaplotypeCaller.

In the next phase of the pipeline, we test three methods of partitioning aligned

data for variant detection using HaplotypeCaller.

• For granularity-based partitioning, similar to BWA, we split the aligned data
on the basis of an optimal granularity value.

• For individual-based partitioning, we split the aligned data based on individual
names, resulting in 50 smaller files.

• For the new approach, called alignment-based partitioning, we partition the file
(BAM) containing aligned output. We first split the reference genome into
multiple smaller files, each containing a fixed number of unique contigs. For
each small reference file, we split the pooled BAM file such that each small
BAM file would contain alignment information of reads corresponding to the
contigs of that particular reference subset.

16

Figure 2.2: Framework of granularity-based and individual-based data partitioning
approaches in BWA. For the test data set, N=715 for granularity-based and N=50
for individual-based. At the end, output files (SAM format) of BWA are joined to
form a single file containing all the alignment information.

Figure 2.3: Framework of granularity-based and individual-based data partitioning
approaches in HaplotypeCaller. For the test data, N=715 for granularity-based and
N=50 for individual-based. The reference file and each sorted and indexed BAM file
are sent to a worker for executing GATK’s HaplotypeCaller. Outputs of Haplotype-
Caller, in VCF format, are joined to create a single output file.

Figure 2.3 depicts the workflow for executing HaplotypeCaller using granularity-

based and individual-based approaches. Figure 2.4 shows alignment-based data par-

titioning implemented in HaplotypeCaller. For each approach, we execute Haplotype-

Caller on a pair of smaller sorted BAM file and the reference sequence on a Work

17

Figure 2.4: Framework of alignment-based data partitioning approach in Haplotype-
Caller. The reference file was split into bins and the SAM file was split based on the
contigs in the bins to which the reads aligned. Each pair of smaller reference bin and
its corresponding BAM file were then sent to a worker to run GATK’s Haplotype-
Caller.

Queue worker. The output of HaplotypeCaller contains variant information in VCF

format [38]. In the final step of the pipeline, we concatenate individual VCF files

into a single VCF file containing variants for the entire population.

2.2.5 Workflow Fusion

We define workflow fusion as the idea of using information about the software and

the computing systems, which are involved in the execution of a workflow, to acceler-

ate a set of sequential but interrelated workflows. These cross workflow optimizations

fuse the previously independent workflows into one. Though this causes less flexi-

bility in how the workflows are used, the improvements can be worthwhile. As we

look at ways in which workflow fusion can benefit performance, it can be noted that

different methods require different levels of knowledge of the workflows and difficulty

in the depth of fusion. We explore full workflow caching (requires concatenation of

multiple Makeflow files), choke elimination (requires efficient partitioning of multiple

18

workflows), and full fusion (requires merging of two divergent partitioning techniques

for acceleration).

2.2.5.1 Full Workflow Caching

A basic approach of workflow fusion is full workflow caching. This method relies

on a single manager of tasks and data that allows for better data management.

Although Work Queue aggressively caches all files that are sent to a worker, caching

does not occur between independent workflows. By merging the workflows, we take

full advantage of previously cached data that are useful for multiple steps. Figure 2.5

shows the organization of the cache controller, and how merging them unifies the

controller. This is the most basic form of workflow fusion, as all that is needed is to

merge two Makeflow files together and check that the reference, input, and output

files are consistent to maintain the logical flow of the newly created workflow.

Figure 2.5: Shared cache controller among two merged workflows, A and B. In prac-
tice this is done using Work Queue, where all files in a Makeflow are aggressively
cached. When separate, the two workflows’ caches are independent and can not
be used between each other. However, when the control of that cache is shared,
previously transferred files can be utilized.

19

In this form of workflow fusion, we rely on the workflow execution engine for

performance improvement. This method is the easiest to implement, and its benefits

can be seen at all levels of workflow fusion, as illustrated in Figure 2.6. This benefit,

however, is negated if files are modified between workflows. For example, the base

reference is split during alignment-based partitioning for GATK, and is no longer

recognized by Work Queue as a cached file. Although initially alignment-based GATK

benefitted from limiting the amount of transferred data [32], this approach requires

sending each subset of the reference, thereby losing the advantage of caching. Thus,

combining two workflows presents challenges when the previously used partitioning

scheme is no longer the optimal solution of the fused workflow.

Figure 2.6: Framework of the Full Workflow Caching Concept. The pipeline com-
prises the BWA step, intermediate conversion steps for adding read groups, converting
SAM files to their sorted and indexed formats, and the GATK step. The reference
used by GATK is the same as that used in BWA, allowing for it to be cached at the
worker and not sent as additional traffic.

20

Figure 2.7: Framework of the Choke Elimination Concept. As can be seen here, the
removal of intermediate data choke points allows computational threads to progress
further through the workflow without needing to wait for slower threads to finish and
communicate with the master. This lowers the amount of data the master is required
to deliver at once and allows the transfers to be offset based on when they arrive.

Figure 2.8: Framework of the Merged Partition Concept. As can be seen here, the
conversion step appears prior to the mapping, but could go either before or after
depending on what state the inputs need to be. It is also useful to note how, though
as simple map is used here, any process that relates two partitioning methods could
be added as long as it does not require coalescing the full data set.

2.2.5.2 Elimination Of Choke Points

A choke point is simply a location in the workflow that requires all threads of com-

putation to converge. Similar to a barrier operation in traditional parallel computing,

21

choke points hinder computation by stopping all concurrency until the slowest serial

task completes. The effort of eliminating these choke points is the second approach of

workflow fusion. When eliminating choke points, an effort is made to alleviate traffic

where data converges on a single node and is redistributed in some form. Although

caching can limit some of the outgoing traffic from later partitioning steps, there is

still considerable traffic that is incurred while sending data in and out of these choke

points.

As choke point elimination strives to take advantage of files already distributed,

it is important to understand how to convert the results of the previous workflow

into inputs of the next workflow. Such transformations are crucial, since they can be

applied directly to the data. A clear example of a transformation is the sorting of

aligned results prior to starting variant calling. Prior to fusion, all of these processes

are sequentially completed, but performing a transform as part of the prior step

allows avoiding expensive traffic to converge the data on one system.

This is done most clearly by utilizing the partitions of the previous workflow as

the partitions of the subsequent workflow, as shown in Figure 2.7. Using established

partitioning eliminates intermediate partition transfers, and allows independent par-

titions to continue executing without waiting for slower branches. The cost of this

approach is that both workflows must be able to utilize this partition with acceptable

performance. If the two different workflows do not share a common suitable parti-

tioning scheme, we can utilize the information about the workflows to potentially

find a more appropriate hybrid method.

2.2.5.3 Merged Partitioning

Finding a hybrid partitioning scheme requires knowledge about how different

workflows interact and therefore how they could be optimally partitioned. Unfortu-

nately, it is not always obvious how to do such divisions. For example, alignment-

22

based partitioning is best for GATK but this requires performing alignments using

BWA. One compromise is to maintain BWA partitions utilizing individual-based

partitioning in BWA, and then partioning each individual utilizing alignment-based

method. Although this is a basic method to merge partitioning schemes, the idea

can be extended to any method that relates one set of inputs to another, as shown

in Figure 2.8.

When successful, applying these ideas to a set of workflows alleviates the time

and stress on the system, while allowing faster machines to process more without

having to wait and proceed in lock step with remaining tasks.

2.2.5.4 Potential Issues Of Workflow Fusion

Although performance is often improved by merging multiple workflows together,

there are several pitfalls. The first is that as the workflows become more intertwined,

debugging becomes more difficult to monitor, understand, and fix. Undetected fail-

ures in different states produce incorrect output, which could have occurred at any

of the fused processes. This issue can be exacerbated when workflows operate at dif-

ferent stages concurrently. For this reason a clear understanding of what errors may

occur within the different processes and how to handle them is paramount. The sec-

ond pitfall is some methods of partitioning, or combinations of partitioning methods,

may not accelerate the workflow or be feasible due to dependencies (e.g., alignment-

based GATK drawn from BWA output). When this occurs, more time must be spent

in understanding and writing appropriate transformations.

2.3 Results And Discussion

For our experiments, we align and detect variants in 50 samples of Quercus rubra

(northern red oak), sequenced by ILLUMINA HiSeq RAD data [111]. The compu-

tational set-up consists of a cluster of 26 machines, each with 8 cores and 32 GB

23

RAM. To illustrate the base runtime, BWA requires about 4 hours to complete the

alignment procedure sequentially, and GATK’s HaplotypeCaller requires 12 days to

detect SNPs and indels. Runtime for BWA does not include the time for indexing

the reference, which can be done once and reused for each alignment task.

2.3.1 Optimal Data Partitioning

First, we explore the methods of data partitioning for BWA: granularity-based

and individual-based. For the test data set, granularity-based partitioning performs

well, by only requiring 13 minutes to parse the entire data into 715 partitions. This

is expected as the input data is simply decomposed into contiguous, non-overlapping

subsets based on the optimal granularity size. On the other hand, individual-based

method incurs an additional time to look up the set of barcode information for

identifying the individual or sample names, based on which partitioning is done.

It requires 18 minutes to create 50 partitions. A comparison of runtimes can be seen

in Table 2.1.

Next, we test different partitioning methods proposed for GATK. Granularity-

based approach partitions the aligned output of BWA in less than an hour. Individual-

based requires 27 minutes to create 50 partitions corresponding to 50 individuals.

Alignment-based partitioning splits the reference and alignment file into 10 partitions

based on the underlying alignment information. This method requires 15 minutes.

A comparison of results can be seen in Table 2.2.

2.3.2 Tool Improvement

Table 2.1 presents the runtimes for BWA using different data partitioning ap-

proaches. Alignment and concatenation stages of granularity-based and individual-

based approaches require similar time. The step of splitting the query in individual-

24

TABLE 2.1

COMPARISON OF RUNTIMES FOR DIFFERENT APPROACHES OF

DATA PARTITIONING IN BWA

BWA Runtime (DD:HH:MM:SS)

Partitioning Split Align Concatenation Total

Individual 18:39 17:58 22:26 59:23

Granular 13:23 21:11 21:10 55:44

TABLE 2.2

COMPARISON OF RUNTIMES FOR DIFFERENT APPROACHES OF

DATA PARTITIONING IN GATK’S HAPLOTYPECALLER

GATK Runtime (DDd HH:MM:SS)

Partitioning
Coupling Variant

Concat Total
Split Other Calling

Individual 27:35 3:59:10 2d 5:18:23 9:00 2d 9:54:08

Granular 52:34 7:06:25 41:51 5:30 8:46:20

Alignment 15:41 1:03:47 24:36 4:00 1:48:04

based partitioning is slower due to higher look up time in searching the barcode

information. As seen in Table 2.2, for HaplotypeCaller, preparation of input involves

splitting the aligned data (SAM format) from BWA, adding intermediate information

(read groups) and converting each subset to its sorted and indexed format. The cor-

responding runtime for alignment-based partitioning is significantly lower than the

other approaches.

25

TABLE 2.3

GRANULARITY-BASED BWA REQUIRES LESS TIME WHEN MORE

WORKERS ARE IN USE

Runtime (HH:MM:SS)

Workers
Data 1 Data 2

Time Speedup Efficiency Time Speedup Efficiency

2 3:01:57 1.94 0.97 8:46:13 1.80 0.90

5 1:14:30 4.77 0.95 3:33:45 4.45 0.89

10 1:08:42 5.19 0.51 1:48:10 8.78 0.87

20 59:00 5.98 0.29 55:34 17.23 0.86

50 57:06 6.19 0.12 33:17 28.27 0.57

100 56:00 6.30 0.06 20:52 47.41 0.47

Based on these results, we infer granularity-based data partitioning to be the best

strategy for BWA. We test its runtime behavior, particularly speedup and efficiency,

by scaling up the number of workers used in the experimental set-up. Table 2.3

presents the framework’s performance in response to workers, ranging between 2

and 100. Using more workers does not guarantee a proportionate improvement in

speedup. For our test data and machine configuration, it does not scale linearly

beyond 20 workers. The primary reason is the overhead incurred in data transfer,

especially sending the reference, query, and index files to each worker. In Figure 2.9,

we show the histogram of runtime for executing 715 tasks in each stage (bwa aln and

samse) of BWA. It explains the overall behavior of granularity-based BWA tasks.

Figure 2.10 provides a more detailed visualization of the runtime behavior of BWA

when using 100 workers. The number of tasks submitted and completed follow a

similar pattern until the former reaches a plateau denoting submission of all tasks.

26

Figure 2.11 demonstrates data transfer from the master to workers over the network.

This is a desirable feature in an environment without a shared file system, as in our

case. The transferred data can be cached at the workers and reused for later stages

of the pipeline.

As seen in Table 2.2, for HaplotypeCaller, alignment-based approach is most ef-

ficient. Here, while splitting the aligned data, we optimize the method of searching

reference sequence for variants. Instead of exploring the entire reference file, we re-

strict the algorithm to a specific subset of the file that is guaranteed to bear pertinant

information. In this process, we also get rid of nuisance entry for unaligned data,

thereby further filtering the search space. Finally, we enable reduction in data trans-

fer as now only a subset of the reference needs to be processed at each worker, not

the entire set of reference sequences.

 0
 5

 10
 15
 20
 25
 30

 0 5 10 15 20 25 30 35 40

P
e

rc
e

n
t

o
f

T
a

s
k
s

Task Execution Time (Minutes)

ALN: 24:04 ± 1:57SAMSE: 12:05 ± 2:58

 0
 5

 10
 15
 20
 25
 30

 0 5 10 15 20 25 30

P
e
rc

e
n
t
o
f
T

a
s
k
s

Task Execution Time (Minutes)

Ave: 8:05 ± 5:39

Figure 2.9: Left: Histogram of runtime for BWA is bimodal as it comprises two steps:
ALN (alignment) and SAMSE (generation of aligned output in SAM format). Times
are measured for 1430 tasks, with 715 attributing to each step. Right: Histogram of
runtime for GATK exhibits tight coupling, except for a single heavy outlier.

27

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5 10 15 20 25 30

T
a
s
k
 b

y
 S

ta
te

Time (Minutes)

Running
Waiting

Complete
Submitted

Figure 2.10: Runtime behavior of granularity-based BWA using 100 workers. The
continuous line represents currently running tasks, the jagged appearance is due to
the manner in which tasks are distributed using Work Queue. While distributing
tasks, finished tasks wait to be collected and are then sent out. This waiting causes
the jaggedness.

 0

 20

 40

 60

 80

 100

 120

07:10

07:12

07:14

07:16

07:18

07:20

07:22

07:24

07:26

07:28

07:30

07:32

 0

 20

 40

 60

 80

 100

T
a
s
k
s
 R

u
n
n
in

g

D
a
ta

 T
ra

n
s
fe

r
(M

B
/s

)

Time (HH:MM)

Data Transfer Tasks Running

Figure 2.11: Mechanism of data transfer for an environment without a shared file
system. The thick line denotes the number of tasks executing during the given
timeline for granularity-based BWA. The gray bars show data transfer from master
to worker nodes. The left axis measures number of tasks running whereas the right
axis measures the rate of data transfer in MB/s.

2.3.3 Pipeline Improvement

Based on the above results, we combine granularity-based BWA and alignment-

based HaplotypeCaller to generate an optimized data analysis pipeline for genome

28

data, as shown in Fig. 2.12. Table 2.4 provides the runtimes specific to our pipeline

(using 100 Work Queue workers) in a heterogeneous, distributed system. It shows the

breakdown of runtimes for individual components of the pipeline. Efficient data par-

titioning followed by parallelization of tasks reduces runtime of each phase, resulting

in an overall improvement from 12 days to under 3 hours.

Figure 2.12: Framework of the optimized pipeline incorporating granularity-based
BWA and alignment-based HaplotypeCaller. It also includes the intermediate stages
of adding read groups to SAM files and converting them to their sorted, indexed, and
binary formats.

2.3.4 Optimal Workflow Fusion

The first method that we perform is a full cache fused workflow. This is done by

concatenating the Makeflow files for each workflow. Following this, all intermediate

conversion processes are added, and the fused makeflow is run utilizing Work Queue.

Table 2.5 compares the times for running the pipeline in a sequential order against

the parallel implementation of our proposed framework.

The second approach is choke point elimination, that is implemented with a com-

mon partitioning scheme. We utilize Makeflows written for individual-based parti-

29

TABLE 2.4

RUNTIMES OF THE STEPS IN THE OPTIMIZED PIPELINE

Runtime (MM:SS)

BWA

Split Query 13:23

Parallelized BWA 21:11

Concat SAM 21:10

Coupling

Split Ref and SAM 15:41

Add RGs 11:10

SAM to BAM 52:37

GATK
Parallelized GATK 24:36

Concat VCF 4:00

Total 2:43:48

TABLE 2.5

COMPARISON OF RUNTIMES FOR SEQUENTIAL, PARALLEL, AND

DIFFERENT SCHEMES OF WORKFLOW FUSION EXECUTION OF

THE PIPELINE

Runtime (HH:MM:SS)

BWA Coupling GATK Total

Sequential 4:04:00 6:50:41 12d 00:00:00 12d10:54:41

Parallel 55:44 1:23:28 24:36 2:43:48

CF 2:42:49 2:42:49

CF + CE 2d 8:43:46 2d 8:43:46

CF + CE + PF 1:55:37 1:55:37

30

tioning in BWA and GATK. This method requires almost 2 and a half days,(Table

2.5), which is on the same scale as BWA and GATK’s separate makeflow using

individual-based partitioning. This implementation improves coupling of workflows

by eliminating the join-split sequence used in the pipeline and cache fused approach.

However, the results are much slower, due to GATK’s sluggish performance on this

partition method.

The final method is full partition merging of BWA and GATK. We begin with

the Makeflow of individual-based BWA and remove the concatenation step. Each

individual is then split using alignment-based method. Each new split has the in-

termediate processes performed. It adds a significant amount of tasks, with only a

small amount of additional overhead, as the inputs are smaller. This method reduces

the overall runtime to less than 2 hours (Table 2.5). This is an improvement over the

best results obtained from optimal data partitioning alone. Hence, optimal caching

and higher level of concurrency cause a significant improvement in performance (Fig-

ure 2.13). Figure 2.14 further illustrates the significant difference between coupling

steps of cache fused and partition fused approaches of workflow fusion.

2.3.5 Application Of The Data Analysis Framework

Our data analysis framework is being used to study the genomes of multiple

organisms, including the economically and ecologically valuable plant species Quercus

rubra (northern red oak). It is an important plant in forest communities, spanning

across a wide range of ecosystems. Oak forests are threatened by diseases, pests,

and poor management practices. Development of a dense genetic map of Q. rubra

will help in understanding the impact of these challenges and devising potential

measures to combat them. A genetic map is an inference of the linear order of

specific DNA sequences based on the observed recombination events in the progeny

of known parents or grandparents. They are used to relate genotypes to phenotypes

31

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100 120 140 160 180

C
o
n
c
u
rr

e
n
c
y

Time (Minutes)

2d 8:43:46

Cache Fused
Choke Elimination

Partition Fused

Figure 2.13: Comparison of available concurrency for Partition Fused, Choke Elim-
ination, and Cache Fused workflows. Available concurrency refers to the tasks that
are either ready to be run or running. Partition Fused method increases the number
of partitions, thereby allowing a higher level of concurrency.

0

10

20

30

40

50

60

SAM
 to BAM

Sort
Add R

G

Index BAM

G
ATK

A
v
e

ra
g

e
 R

u
n

ti
m

e
 (

M
in

tu
e

s
)

Process

Cache Fused
Partition Fused

Figure 2.14: Comparison of average runtimes for different steps of coupling in cache
fused and partition fused workflows. The time spent in intermediate steps and GATK
are higher in cache fused than partition fused. It is important to note that the number
of partitions was 10 for cache fused and 500 for partition fused.

32

create a high-quality, dense genetic map of Q. rubra, the first map for the section of

oaks, the Lobatae. (Figure 2.15). This map will be useful in recognizing the genetic

structure responsible for its adaptive evolution and tolerance to stress.

PIE_0208.96
GA0C1112.40

REO_43324.39
GA1G1324.50

REO_11149.96

GA0I0156.93

REO_4570.00

REO_48619.52

2N1227.23
REO_52330.33
PIE_16432.51
REO_29134.64
FIR_09539.26

FIR_03048.78
1C1650.52

GOT_00464.87

REO_4980.00

REO_03111.66
CHC_381513.16
REO_31417.36
2F0320.24

REO_08128.80
GOT_06630.52

FIR_04839.65
REO_30639.68
FIR_110_M243.98
FIR_06546.18

1J1455.28
3B2456.37

REO_41668.17
GA1F0771.23

POR_02378.54
REO_38084.45
GA2N0386.07

GA0C2195.18

REO_2595.62

WAG_06514.91

REO_03530.09
PIE_10134.58
PIE_09937.93

1J2044.77

3H0167.37
3A0569.23

WAG_02382.35

REO_2693.23
FIR_0514.20

2I1134.74
1F1038.34
2J2342.56

PIE_02748.37

2F2354.98

PIE_0280.00

FIR_02611.39

1P1019.09

REO_28828.27
3F1732.44

GA0M0752.57

GOT_06776.37

PIE_0025.35
REO_4895.72

PIE_22830.70
WAG_01636.29

2P2455.86

PIE_18362.98
3J1263.61
PIE_17667.78

GA1J119.85

REO_45527.69
REO_26432.74
POR_00634.14

REO_08744.77

3G220.00

REO_2636.98
1H0615.48
REO_36619.61
REO_36819.63
PIE_10021.42
REO_33925.27
REO_01025.74
REO_44333.87
FIR_05340.16
REO_40841.17

3O1254.94

REO_11419.29

FIR_10431.16

GOT_0630.00

GA1M1811.32

FIR_02721.69
REO_37623.59
REO_37924.69

3A2335.02
2K2039.05
GA1F0244.58

GA1D0952.68
FIR_110_M152.81
2O2459.86

VIT_14278.13
REO_18080.44
GOT_04084.18

FIR_02190.57

PIE_0390.00
GOT_0094.42
1P187.42

FIR_00814.37
REO_08319.95
PIE_12622.42
REO_08523.35

PIE_23645.95

LG1 LG6LG5LG4LG3LG2

LG12LG7 LG11LG10LG9LG8

Figure 2.15: Genetic map of nothern red oak (Quercus rubra) corresponding to 12
chromosomes or linkage groups (LGs). Our proposed data analysis framework was
used to generate SNP-based markers for constructing the map.

The genetic map of Q. rubra and the methods used in its construction have been

published in the following peer-reviewed journals:

• A. Konar, O. Choudhury, T. McCleary, S. Schlarbaum, O. Gailing, M. Cogge-
shall, S. Emrich, M. Staton, M. Pfrender, J. Carlson, J. Romero-Severson.
High-quality genetic mapping with ddRADseq in the non-model tree Quercus

33

and to map the contigs from whole genome sequencing data to linkage groups. We

use our proposed framework to identify variants or SNP-based markers necessary to

rubra. Accepted, BMC Genomics, 2017.

• A. Konar, O. Choudhury, O. Gailing, M. Coggeshall, M. Staton, S. Emrich,
J. Carlson, J. Romero-Severson. A Genetic Map for the Lobatae. lnternational
Oaks, No. 27, 2016.

2.4 Conclusion

Analysis of massive genome data requires days or weeks of computation. The ex-

tent of performance improvement that can be achieved from sophisticated algorithms,

data structures, or multithreading is often limited. Designing a framework that can

efficiently process large-scale data by harnessing resources from clusters, clouds, and

grids is a more tractable solution for this problem.

Here, we design an optimal pipeline or data analysis framework for the widely

used genomics applications: genome alignment and variant detection. To construct

this framework, we propose and explore various strategies of data partitioning and

workflow fusion. Through a comparative study, we determine optimal methods of

partitioning and workflow fusion, which significantly improve performance of the

framework when tested on real data sets. For the test data and applications, the

optimal framework reduce the processing time from 12 days to under 2 hours. The

efficacy of this framework encouraged us to apply it in several genomic projects,

particularly in studying genomic data of complex organisms like malarial mosquitoes

and plant species.

34

CHAPTER 3

COMPUTATIONAL RESOURCE OPTIMIZATION FOR EXECUTING

DATA-INTENSIVE GENOMIC APPLICATIONS ON CLUSTERS AND CLOUDS

The following manuscript describes the work in this chapter.:

• O. Choudhury, D. Rajan, N. Hazekamp, S. Gesing, D. Thain, S. Emrich. Bal-
ancing Thread-level and Task-level Parallelism for Data-Intensive Workloads
on Clusters and Clouds. IEEE International Conference on Cluster Comput-
ing, 2015.

3.1 Background

Determining an optimal runtime configuration of parallel and distributed appli-

cations is a challenging task. To tune an application on a particular system, the

end-user is confronted with a wide array of controls: number of machines, number

of cores per task, partitioning the data, task scheduling strategies, and so forth. It

is customary in academic papers to perform an exhaustive exploration of these pa-

rameters, and then select a configuration which is optimal under some limited set of

circumstances. Any change to the machines, network, or workload itself could result

in poor performance, often orders of magnitude worse than what is achievable. From

the user’s perspective, running an application multiple times to obtain a performance

curve is a tedious process.

Therefore, when designing distributed applications, our objective should be to

achieve acceptable performance the first time by avoiding extremely bad configura-

tions. It is impossible to provide a comprehensive model for programs of arbitrary

structure (this is simply the halting problem). Fortunately, users in a given area of

35

study often use similar computational patterns over and over again, which gives us

an opportunity to develop a model that is highly effective within a given application

domain. For example, in the realm of bioinformatics applications, many tools have

the form of a database search: a program performs a search for a query pattern

within a database of genomic strings. These tools are typically transformed into par-

allel applications by partitioning the query and/or the database, and then running

multiple instances of the local multithreaded program in parallel.

We present a regression model-based technique to infer optimal runtime con-

figurations and predict execution time and resource consumption for data-intensive

workloads. We perform black-box analysis of the multithreaded program (computa-

tional kernel) to determine its runtime and memory usage relative to sizes of query,

database, and local concurrency. Once obtained, this model is embedded in a more

generic model of the distributed system that incorporates data partitioning, data

movement, and the trade-off between local and distributed concurrency.

We show the effectiveness of our proposed approach in three commonly used

bioinformatics applications BWA [89], Bowtie2 [81], and BLASR [26] that are widely

used in production to study cancer [143] and variation-detection in general [98]. In

all the cases, our proposed models accurately predict execution time and memory

footprint. The optimal configurations identified by the models also enable cost-

efficient utilization of commercial cloud-based resources like Amazon EC2 [1] and

Microsoft Azure [2].

3.2 Methods

We develop models to estimate the behavior, particularly runtime and memory

usage, of applications when executed in a distributed system. For our experiments, we

use the short read alignment tools BWA, Bowtie2 and the long read aligner BLASR

as generalized test applications. Millions of next generation sequencing (NGS) [127]

36

data, called reads, are generated by high-throughput sequencing techniques. The

reads are aligned or compared to the genome of a related species, known as the refer-

ence genome, for further biological analysis. BWA and Bowtie2 implement Burrows

Wheeler Transform (BWT) [22] method of data compression to align short reads,

usually hundred bases long, to a reference sequence. We use the genome of mosquito

Culex quinquefasciatus [107] as reference and simulate sequences as query data for

BWA and Bowtie2. The reference genome contains 3171 contigs and is 562 MB in

size. The primary advantage of simulating sequences is the ability to generate arbi-

trarily large queries for testing the model. We chose the query data to be 10x the

reference based on a previous large-scale mosquito variant discovery project [116].

BLASR, on the other hand, aligns Single Molecule Sequencing (SMS) reads of size

thousands of bases with high insertion and deletion errors to a reference genome. We

use the Anopheles gambiae S form genome [84] containing 13042 scaffolds and size

230 MB as reference and PacBio sequenced real data set of size 1 GB as query for

BLASR.

We develop a distributed version of the test applications using Work Queue [20],

a master-worker framework that is flexible in varying different parameters, such as

number of tasks, memory usage, cores used by each task when executed across a

distributed system. We use a 12-core machine with 64 GB memory, x86 architecture

as the master server and computing resources through the Sun Grid Engine (SGE)

batch system as workers. The computing nodes in the grid engine were based on a

shared computing platform and allowed running other applications. Our proposed

model comprises two tiers - an application-level to describe the performance of user-

level applications, and a generic system-level to predict the behavior of a distributed

system when executing the applications. As the first model is application-specific,

for all the test tools, it requires prior information about the sizes of reference and

query data, and number of threads used to execute in multithreaded mode. The

37

second stage of the model requires granularity value that is defined as the number

of tasks the workload is divided into when executed across a distributed system. It

also depends on the underlying available resources, namely number of CPU cores,

memory size, disk size, and network bandwidth.

For the application-level model, we record runtimes and memory consumed by

BWA, Bowtie2, and BLASR for different configurations of input size and threads. We

collect 343 data points by varying reference size, query size, and number of threads.

Similarly, for the system-level model we vary number of tasks and number of cores

used by each task to obtain data for runtime and memory usage. We randomly

select 2
3
rd of the data for training the models and the rest for testing. We design

regression models for runtime and memory usage based on the parameters that define

the applications’ behavior. Equations (3.1) and (3.4) are the application-level models

for runtime and memory, respectively. Equations (3.13) and (3.17) define the system-

level models for time and memory, respectively.

From the training set of 230 data points, we randomly select unique subsets of

size 100 each. For each subset, we train the regression models to compute the values

of regression coefficients β∗, γ∗, η∗ and φ∗ in equations (3.3), (3.6), (3.16), and (3.19),

respectively. We use these regression coefficients in the test data and compare model-

predicted values with empirical values to measure its prediction accuracy.

3.2.1 Design Of Application-Level Model

3.2.1.1 Model For Runtime

Let R,Q be the sizes of the reference and query sequences (in GB), respectively

and N be defined as the number of cores used for its execution. The runtime of

a BWA, Bowtie2 or BLASR task, denoted as T (R,Q,N), can be described by the

following equation,

38

T (R,Q,N) = β1
RQ

N
+ β2 (3.1)

where β =

[
β1 β2

]>
are regression coefficients for the model. The scalar β2 signifies

the fraction of the program that cannot be parallelized, as discussed in detail in

section 3.3.1.

We briefly describe the method for obtaining optimal β as follows. Suppose the

ith measurement of runtime is denoted by T (Ri, Qi, Ni). Then we define,

T =

T (R1, Q1, N1)

...

T (Rn, Qn, Nn)

 ,

where T ∈ Rn contains n measurements. Corresponding to each measurement, sup-

pose we select basis functions of the form {RQ
N
, 1}. Then the ith equation for runtime

generated with the data Ri, Qi, Ni is written as,

T (Ri, Qi, Ni) = β1
RiQi

Ni

+ β2

With n such measurements, we construct the following matrix,

H
¯ 1 =

R1Q1

N1
1

...
...

RnQn

Nn
1

Note that H

¯ 1 ∈ Rn×2 The following linear regression equation can now be posed,

T = H1β (3.2)

39

It is known [30] that the solution to this equation is given by,

β∗ = H†1T , (3.3)

where H†1 = (H>1 H1)
−1H>1 is the Moore-Penrose pseudo-inverse [9]. Note that β∗

denotes the optimal regression coefficients for our model in equation (3.1).

3.2.1.2 Model For Memory Usage

As the memory-usage of BWT-based aligners is independent of the number of

reads to be aligned or the size of the query data [90], we observe that the memory

consumption of our test applications is not considerably impacted by the query input.

Hence, using previous notations, the model to estimate the memory usage of BWA,

Bowtie2, BLASR can be designed by the following equation,

M(R,N) = γ1R + γ2N (3.4)

where γ =

[
γ1 γ2

]>
are regression coefficients.

Similar to the model for time, we can write the following:

M =

M(R1, N1)

...

M(Rn, Nn)

 ,

M(Ri, Ni) = γ1Ri + γ2Ni

H
¯ 2 =

R1 N1

...
...

Rn Nn

 .

40

Here, H2 ∈ Rn×2. Similar to equations (3.2) and (3.3):

M = H2γ (3.5)

γ∗ = H†2M (3.6)

3.2.2 Design Of System-Level Model

Following the design of the application-level model, we develop a model to under-

stand the behavior when the initial workload is executed across a distributed system.

In this case, the workload is first split into a number of smaller, independent tasks,

each of which is then sent to and executed on the nodes of a cloud, cluster, or grid en-

vironment. The model to estimate system-level behavior is a generic model in which

we can plug in the characteristics, that is, number of tasks and number of nodes used

by each task, of the application-level model. The model for runtime also depends on

the underlying hardware specifications, like speed of the processor, speed and size of

the memory, speed and size of the disk.

3.2.2.1 Model For Runtime

Suppose TS is the time taken to locally split a workload into a given number of

tasks. Let TIn be the time the master server spends in transferring all the dependen-

cies and inputs to the workers set across a distributed system and TOut be the time

required to send all the outputs back to the master. If TJ is the time for joining all

the output files at the master and TTasks defines the total time required to execute

K tasks, then the total runtime, Ttotal, of any workload executed across a distributed

system can be expressed as:

Ttotal = TS + TIn + TTasks + TOut + TJ (3.7)

41

Here, TTasks depends on the number of tasks K the initial workload is split into

and the number of cores N allocated for each task. Each task aligns a subset of

query (Q
K

) to the reference sequence R. Let us assume M is the number of available

machines and C is the number of cores present in each machine. We can define TTasks

as

TTasks = η3T

(
R,

Q

K
,N

)
× KN

MC
, (3.8)

where KN represents the total number of cores required for K tasks if each needs

N cores. MC indicates the total number of available cores. For a finite number of

usable cores P , we can determine optimal K and N to minimize TTasks. We can write

the ith equation for TTasks as:

TTasksi = η3T (R,
Q

Ki

, Ni)×
KiNi

MC
,

such that KiNi = P , and Ni ≤ C. We can constrain P as P ≤ MC, if the total

number of required resources is within the range of available resources, in which case

optimal parallelism can be attained. On the other hand, if P > MC, that is, the

workload requires more resources than what is readily available, resources can be re-

used, which often limits the extent of parallelism. Thus, a key feature in minimizing

the overall time Ttotal in equation (3.7) is to determine optimal values of K and N .

The times required for decomposing the workload (TS) and joining the individual

output files (TJ) at the master are dependent on the size of data being used in each

case and speed and size of the disk. We split the query into K smaller subsets

and align each to the reference sequence [31]. Once individual tasks are completed

successfully, the outputs are joined to generate results identical to the applications’

sequential implementation. The time for splitting a query of size Q into K partitions

is:

42

TS = η1
QK

D
(3.9)

where D is the disk read-write speed.

Let the size of output file returned to the master be denoted by O. Then we can

express TJ as:

TJ = η5
OK

D
(3.10)

TIn and TOut vary with the amount of data being transferred over the network

and the corresponding network bandwidth. For TIn, as the smaller query file (of size

Q
K

) is unique for each task, Q
K
×K or Q amount of data must be sent to the workers.

The shared reference file can be cached at the instances to reduce transfer time such

that new tasks re-using an instance can utilize the data. Given an infinite number

of machines, each containing C-cores, the number of machines required to execute K

tasks, each using N cores, is K
C
N

. Assuming the sizes of other dependency files to be

transferred is negligible compared to the input data and the total memory required

by all tasks using a given instance meets the upper bound of the memory available

at that instance, we can express TIn as:

TIn = η2(
Q

B
+
RKN

BC
) (3.11)

where B is the network bandwidth.

Similarly,

TOut = η4
O

B
(3.12)

Using equations (3.8)–(3.12), we can re-write equation (3.7) as (3.13). The com-

ponent T (R, Q
K
, N) in (3.13) is defined previously in (3.1).

For a given workload (R,Q), hardware specifications (B,D), machine configura-

43

τ = η1
QK

D
+ η2(

Q

B
+
RKN

BC
) + η3T (R,

Q

K
,N)× KN

MC
+ η4

O

B
+ η5

OK

D
(3.13)

τi = η1
QKi

D
+ η2(

Q

B
+
RKiNi

BC
) + η3T (R,

Q

Ki

, Ni)×
KiNi

MC
+ η4

Oi

B
+ η5

OiKi

D
(3.14)

tion (M,C), and available resources (P = KiNi), we detrmine optimized values of K

and N such that the overall completion time is minimized.

Similar to the previous cases, we can write the following:

T ′ =

Ttotal1

...

Ttotaln

 ,

H
¯ 3 =

K1 K1N1 T (R, Q

K1
, N1)K1N1 O1 O1K1

...
. . .

...

Kn KnNn T (R, Q
Kn
, Nn)KnNn On OnKn

Here H

¯ 3 ∈ Rn×5. Thus,

T ′ = H3η, (3.15)

where η =

[
η1 . . . η5

]>
are the regression coefficients. The optimal coefficients are

given by

η∗ = H†3T ′. (3.16)

3.2.2.2 Model For Memory Usage

In order to harness resources from a distributed system, a workload, in this case

the query sequence, is first split at the master machine. The memory requirement

of this procedure is proportional to the query size. Once all the tasks are executed

at the workers, the outputs are sent back to the master for joining. For this, the

44

memory usage depends on the amount of data being joined, alternatively on the sizes

of query and reference sequences. Thus, the memory needed at the master server

MMaster(R,Q) can be defined as:

MMaster(R,Q) = φ1R + φ2Q (3.17)

where φ =

[
φ1 φ2

]>
are regression coefficients.

As shown above,

M′ =

MMaster(R1, Q1)

...

MMaster(Rn, Qn)

 ,
MMaster(Ri, Qi) = φ1Ri + φ2Qi

H
¯ 4 =

R1 Q1

...
...

Rn Qn

 .
Here, H4 ∈ Rn×2.

M′ = H4φ. (3.18)

φ∗ = H†4M′. (3.19)

The memory required by each worker can be computed using equation (3.4).

3.3 Results And Discussion

The optimal coefficients, namely, β∗, γ∗, η∗, and φ∗ are computed using equa-

tions (3.3), (3.6), (3.16), and (3.19), respectively. These values are then used to

estimate the runtime and memory usage of application-level and system-level models

for the test data set. Finally, the estimated values are compared with the empirical

45

values to measure the accuracy of the models. Figure 3.1 presents model-predicted

runtimes of the application-level model for varying configurations of reference size

(R), query size (Q), and number of threads (N). Figure 3.2 shows model-predicted

memory usage of the application-level model for varying parameters. Similarly, Fig-

ure 3.3 and Figure 3.4 demonstrate model-estimated runtime and memory consump-

tion, respectively, of the system-level model for varying number of tasks and cores

allocated to each task.

 0

 5

 10

 15

 20

 25

 0 100 200 300 400 500 600 700

T
im

e
 (

H
rs

.)

Reference Size (MB)

Q=14GB, N=4
Q=10GB, N=2

Q=8GB, N=1

 0

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500 600 700

T
im

e
 (

H
rs

.)

Reference Size (MB)

Q=14GB, N=4
Q=10GB, N=2

Q=8GB, N=1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150 200 250 300

T
im

e
 (

H
rs

.)

Reference Size (MB)

Q=1GB, N=4
Q=700MB, N=2
Q=500MB, N=1

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12 14 16

T
im

e
(H

rs
.)

Query Size (GB)

R=560MB, N=2
R=400MB, N=1
R=200MB, N=3

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14 16

T
im

e
(H

rs
.)

Query Size (GB)

R=560MB, N=2
R=400MB, N=1
R=200MB, N=3

 0

 2

 4

 6

 8

 10

 12

 14

 0 200 400 600 800 1000 1200 1400

T
im

e
(H

rs
.)

Query Size (MB)

R=230MB, N=2
R=200MB, N=1
R=100MB, N=3

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12 14 16

T
im

e
 (

H
rs

.)

Number of Threads

R=560MB, Q=14GB
R=300MB, Q=8GB
R=100MB, Q=6GB

(a) BWA

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12 14 16

T
im

e
 (

H
rs

.)

Number of Threads

R=560MB, Q=14GB
R=300MB, Q=8GB
R=100MB, Q=6GB

(b) Bowtie2

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14 16

T
im

e
 (

H
rs

.)

Number of Threads

R=230MB, Q=1GB
R=150MB, Q=800MB
R=100MB, Q=500MB

(c) BLASR

Figure 3.1: Runtimes predicted by application-level model (equation 3.1) for varying
sizes of reference (R), query (Q), and number of threads (N) in BWA, Bowtie2, and
BLASR. Figures in the first row depict linear behavior of runtime with respect to
varying reference size. Figures in the second row show the linear dependence of
runtime on the size of query data. Figures in the third row confirm that although
runtime reduces with more threads, the corresponding speedup is not proportional,
as supported by Amdahl’s law [13].

46

 0

 5000

 10000

 15000

 20000

 0 100 200 300 400 500 600 700

M
em

o
ry

 (
M

B
)

Reference Size (MB)

Q=14GB, N=6
Q=14GB, N=4
Q=14GB, N=1

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 100 200 300 400 500 600 700

M
em

o
ry

 (
M

B
)

Reference Size (MB)

Q=14GB, N=6
Q=14GB, N=4
Q=14GB, N=1

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 50 100 150 200 250 300

M
em

o
ry

 (
M

B
)

Reference Size (MB)

Q=1GB, N=6
Q=1GB, N=4
Q=1GB, N=1

 0

 5000

 10000

 15000

 20000

 25000

 0 2 4 6 8 10 12 14 16

M
em

o
ry

 (
M

B
)

Number of Threads

Q=14GB, R=560MB
Q=14GB, R=400MB
Q=14GB, R=200MB

BWA

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 2 4 6 8 10 12 14 16
M

em
o

ry
 (

M
B

)
Number of Threads

Q=14GB, R=560 MB
Q=14GB, R=400 MB
Q=14GB, R=200 MB

Bowtie2

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 2 4 6 8 10 12 14 16

M
em

o
ry

 (
M

B
)

Number of Threads

Q=1GB, R=230 MB
Q=1GB, R=150 MB
Q=1GB, R=100 MB

BLASR

Figure 3.2: Memory usage predicted by application-level model (equation 3.4) for
varying reference size (R) and number of threads (N) in BWA, Bowtie2, and BLASR.
The memory consumed by the applications is directly proportional to the reference
size and number of threads used.

We randomly select 10000 unique subsets (out of
(
230
100

)
possibilities) of size 100

each from the training set of 230 data points. We use as many as 10000 subsets such

that, according to the Central Limit Theorem, we get a sufficiently large number of

iterations of random variables that follow the normal distribution, as shown later.

For each subset, we train the regression models and evaluate coefficients β∗, γ∗, η∗,

and φ∗. At the end of training, we obtain 10000 values for each coefficient. To test

the robustness of our proposed approach, given these training data, we present the

distribution of the values for each regression coefficient in Figure 3.5. It can be ob-

served that the histograms follow the normal or gaussian distribution where the mean

and variance clearly indicate the characteristics of the distribution. The standard de-

viation (SD) in each case is low, showing that our model is robust. In Table 3.1, we

present the Mean Absolute Percentage Error (MAPE) of each model when subjected

47

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250 300 350 400

T
im

e
 (

M
in

s.
)

Number of Tasks

R=562MB, Q=14G

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5 10 15 20

T
im

e
 (

M
in

s.
)

Number of Threads

R=562MB, Q=14GB

Figure 3.3: Runtimes predicted by system-level model (equation 3.7) for varying
number of tasks (K) and threads (N) used by each task. As the number of tasks
increases, the runtime gradually decreases unless it reaches an optimal K and N ,
beyond which the performance is again degraded. This is due to the overhead of
splitting, starting up, and joining a given workload.

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12 14 16

M
em

o
ry

 (
M

B
)

Query Size (GB)

R=562 MB

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600 700

M
em

o
ry

 (
M

B
)

Reference Size (MB)

Q=14 GB

Figure 3.4: Memory usage at the master predicted by system-level model (equa-
tion 3.17). The memory footprint of the master server depends on the data to be
split and the data to be joined (R and Q).

48

to different parameter configurations. The low errors indicate that our models can

accurately predict runtime and memory when compared to the empirical values of

the test set.

3.3.1 Thread-level Parallelism Through Multithreading

The runtime of a computation-heavy workload can reduce with the use of more

computing threads. This does not necessarily guarantee a proportionate improvement

in speedup. The plots in the last row of Fig. 3.1 show that although initially using

more threads reduce runtime, the rate of speedup is not linear. Beyond a certain

number, 4 in this case, additional threads do not improve the performance propor-

tionately. This runtime behavior is also supported by Amdahl’s law [13], which states

that the extent of parallelism is limited by the sequential fraction(s) of the program.

We consider this argument while developing the application-level model for runtime

estimation. In equation (3.1), the first part (RQ
N

) denotes the part of the program

that can be parallelized with multithreading, whereas the coefficient β2 signifies the

fraction of the program that cannot be parallelized, including the overhead of using

multiple threads.

3.3.2 Task-level Parallelism Through Distributed Computing

Data-intensive applications often adopt a distributed implementation wherein

data-parallel workloads are split into smaller, independent tasks to be run concur-

rently. As the number of tasks created for operation increases, the corresponding

runtime decreases as long as resources are available to run more tasks. After work-

load decomposition, the size of data in each task reduces, thereby lowering the exe-

cution time of each task. It is important to determine an optimal granularity value,

also known as the number of tasks, that would maximize overall performance while

49

TABLE 3.1

MAPE OF APPLICATION-LEVEL AND SYSTEM-LEVEL MODELS OF

RUNTIME AND MEMORY WITH VARYING PARAMETERS

Model Application
Configuration

MAPE(%)
Fix Vary

Application-level - Time

BWA

R Q,N 3.4

Q R,N 3.8

N R,Q 2.6

Bowtie2

R Q,N 1.6

Q R,N 2.2

N R,Q 1.3

BLASR

R Q,N 4.3

Q R,N 5.1

N R,Q 3.6

Application-level - Memory

BWA
R N 3.9

N R 3.3

Bowtie2
R N 2.6

N R 1.9

BLASR
R N 4.7

N R 4.2

System-level - Time
K R,Q,P 2.1

N R,Q,P 2.7

System-level - Memory
R Q 2.5

Q R 3.3

50

0.4 0.6 0.8 1 1.2 1.4
0

50

100

150

200

250

300

350

β
1

F
re

q
u
e
n
c
y

Mean: 0.82
SD: 0.11

−0.1 0 0.1 0.2 0.3 0.4
0

50

100

150

200

250

300

350

β
2

F
re

q
u
e
n
c
y

Mean: 0.15
SD: 0.05

5 10 15 20
0

50

100

150

200

250

300

350

γ
1

F
re

q
u
e
n
c
y

Mean: 12.28
SD: 1.74

900 1000 1100 1200 1300 1400
0

50

100

150

200

250

300

350

γ
2

F
re

q
u
e
n
c
y

Mean: 1133.4
SD: 61.5

110 120 130 140 150 160
0

50

100

150

200

250

300

350

η
1

F
re

q
u
e
n
c
y

Mean: 129.93
SD: 4.64

148 150 152 154 156 158 160
0

50

100

150

200

250

300

350

η
2

F
re

q
u
e
n
c
y

Mean: 154
SD: 1.2

2.25 2.3 2.35
0

50

100

150

200

250

300

350

η
3

F
re

q
u
e
n
c
y

Mean: 2.3
SD: 0.01

1.6 1.65 1.7 1.75 1.8
0

50

100

150

200

250

300

350

η
4

F
re

q
u
e
n
c
y

Mean: 1.7
SD: 0.02

100 150 200 250
0

50

100

150

200

250

300

350

η
5

F
re

q
u
e
n
c
y

Mean: 169.15
SD: 13.07

0.015 0.02 0.025 0.03 0.035 0.04 0.045
0

50

100

150

200

250

300

350

φ
1

F
re

q
u
e
n
c
y

Mean: 0.029
SD: 0.003

5 6 7 8 9 10

x 10
−3

0

50

100

150

200

250

300

350

φ
2

F
re

q
u
e
n
c
y

Mean: 0.007
SD: 0.0004

Figure 3.5: Distribution of values of the coefficients in the regression models (equa-
tions (3.1), (3.4), (3.13), and (3.17)). Each histogram contains 10000 values of a
coefficient obtained while training each model 10000 times. As the distributions
follow the gaussian curve, the mean and variance completely characterize the distri-
butions. The calculated SD is low, showing our model is robust for these training
data.

51

factoring in the overhead incurred during splitting the workload, transferring data

across the network, and carefully merging the individual outputs. The system-level

model discussed in equation (3.13) considers the effect of increasing tasks on system

behavior. This can also be seen in Figure 3.3 where beyond a certain sweet spot, the

benefit of increased parallelism is outweighed by the underlying overhead.

3.3.3 Balancing Thread-level Parallelism And Task-level Parallelism

While decomposing a workload into multi-core tasks, it is important to find an op-

timal number of tasks such that maximum parallelism can be attained. It is also cru-

cial to use optimal number of threads such that maximum efficiency can be achieved.

As discussed in section 3.3.1, although the use of more threads or cores reduces the

overall runtime of an application, the efficiency is not considerably improved. For

a given configuration (number of cores and RAM) of computing nodes, there lies a

sweet spot for splitting the workload to run on a distributed system. Following the

discussion in Section 3.3.2, for a given number of resources P , such that KiNi = P ,

where Ki is the number of tasks and Ni is the number of cores used by each task for

the ith measurement, we should select optimal values of K and N in order to optimize

the overall runtime and inherent costs of splitting tasks, transferring data, and merg-

ing outputs. Figure 3.6 illustrates how runtime varies with the number of tasks and

the number of threads or cores used by each task, as captured by our model. For the

given test workload, using 90 tasks with 4 cores per task is the optimal configuration.

3.3.4 Using Optimal Number Of Computing Instances

For considerably large number of tasks, it might be appealing to use as many

computing nodes or instances as possible to reduce completion time. Assuming a

single computing instance is associated with each task, if the number of tasks is

lower than the number of available instances, all the tasks can be executed in a

52

30 36 40 45 60 72 90 120180360

1
2

3
4

5
6

8
9

10
12

0

50

100

150

200

No. of tasksNo. of threads/task

T
im

e
(m

in
s.

)

T
im

e
(m

in
s.

)

40

60

80

100

120

140

160

180

Figure 3.6: Impact of multithreading (thread-level parallelism) and distributed com-
puting (task-level parallelism) on the execution time of a data-intensive workload.
Selecting a good runtime configuration can optimize resource utilization. This graph
shows that for the test workload, using 90 tasks and 4 cores yields optimal results.

single round after transferring. On the other hand, if the number of tasks is higher

than the number of available instances, the workload requires multiple rounds. In

such cases the amount of transferred data can be reduced if shared data between

tasks is cached, as is possible in our implementation. Thus, data transfer should be

considered, specifically in workloads such as cancer sequencing where the reference

genome is large and can benefit from caching.

3.3.5 Reducing Cost Of Operation

Many cloud computing services allow users to select resources with differing base

cost. Services like Amazon EC2 offers pay-as-you-go scheme where it charges cus-

tomers based on instance hours used for multiple instances. Customers must ensure

53

less utilization of resources as well as shorter duration of usage to minimize cost.

For instance, although the hourly price of an 8-core instance is higher than a 4-core

instance, the speedup obtained from the former may reduce the overall billing usage,

and prove to be more cost-efficient. We should also consider the case where customers

have to pay for the entire instance hour, although the resources were used for a frac-

tion of it. Hence, the optimization of different parameters governing the operation of

tasks directly leads to cost saving. In Table 3.2, we compare the speedup and com-

putation cost for executing the test workload using our model-estimated optimized

parameters and set of default parameters. We evaluate costs of harnessing resources

from popular utility services like Amazon EC2 and Microsoft Azure. The results

show that the optimal configuration (90 tasks and 4 cores) estimated by the model

generates maximum speedup and minimum cost of operation.

TABLE 3.2

PERFORMANCE FOR DIFFERENT CONFIGURATIONS BASED ON

AMAZON EC2 AND MICROSOFT AZURE-BASED PRICING

Tasks (K) Cores (N) MP Time Speedup AEE Cost MAE Cost

360 1 70 6.6 50.4 64.8

180 2 38 12.3 25.2 32.4

90 4 24 19.5 18.9 32.4

45 8 27 17.3 18.9 32.4

54

3.4 Conclusion

We address the challenge of optimizing computational resource utilization for ex-

ecuting large workloads on distrubuted systems. To achieve this, we discuss the

importance of balancing thread-level parallelism (through multithreading) and task-

level parallelism (through distributed computing). We show that although using

more cores or threads of execution reduces completion time of a workload, speedup

is not proportionately improved. It also incurs higher memory consumption. Decom-

posing a workload into multiple concurrent tasks seems beneficial due to increased

parallelism; however, care should be taken in determining the number of tasks and

number of threads allocated to each task. Similarly, utilization of more computing

nodes does not guarantee improved performance. Cloud services like Amazon EC2

offers pay-as-you-go scheme, wherein inefficient utilization of computing instances

can significantly increase the cost of operation. To mitigate these problems, it is

imperative to determine and adopt optimal parameters of operation.

Our proposed predictive models estimate optimal runtime configurations that

reduce resource utilization while executing large-scale applications, particularly in

the domain of big data genomics. Its hybrid structure consists of an application-

specific layer that is incorporated into a generic system-level layout. The models

exhibit high predictive capability in determining parameters that optimize runtime,

speedup, and cost of using commercial cloud services.

55

CHAPTER 4

IMPUTATION OF MISSING GENOTYPE DATA IN MODEL AND

NON-MODEL ORGANISMS

The following manuscripts describe the work in this chapter.:

• O. Choudhury, A. Chakrabarty, S. J. Emrich. Highly accurate and efficient
data-driven methods for genotype imputation. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, PP(99):1-1, 2017. ISSN 1545-5963.
doi: 10.1109/TCBB.2017.2708701.

• O. Choudhury, A. Chakrabarty, S. Emrich. HAPI-Gen: Highly Accurate Phas-
ing and Imputation of Genotype Data. ACM Conference on Bioinformatics,
Computational Biology, and Health Informatics, 2016.

4.1 Background

High-throughput techniques like whole genome sequencing, whole exome sequenc-

ing, and genome-wide single nucleotide polymorphism (SNP) microarrays are gen-

erating huge volumes of genotype data. To associate phenotypes, such as disease

susceptibility, with underlying genotypes, there has been a rapid growth of phasing-

based inference formalisms. Phasing is particularly useful in genome-wide associa-

tion studies (GWAS) [61] to infer linked alleles on a chromosome. Other downstream

analyses include identifying recombinant breakpoints [75], deducing history of human

demographics [135], and modeling cis-regulation of gene expression [133].

Missing genotype data is a major hindrance to phasing. This is a result of in-

herent shortcomings of the underlying techniques that generate such data. Previous

efforts have shown that genotype imputation can improve phasing quality in genetic

56

association studies by up to 10% [129]. Although we focus on imputation as a pre-

cursor to phasing, secondary benefits of formulating data-driven imputation methods

include generating higher fidelity genetic maps and improved metagenomic analysis

(see for example, [49, 142]).

A majority of the existing imputation methods require a panel of reference geno-

types and a physical or genetic map. The absence of such a reference panel, as

in non-model organisms, makes the problem of imputation and phasing much more

difficult using currently available software. We address this gap with a lightweight

framework, referred to as ADDIT-NM, for fast and accurate imputation in non-model

organisms that relies only on the underlying statistics of the genotype data. A pre-

liminary version of ADDIT-NM has been reported in [35]. We also demonstrate that

the model organism specific variant of ADDIT, referred to as ADDIT-M, can extract

available information in the reference panels via supervised learning to significantly

improve imputation accuracy. We perform an extensive, comparative numerical study

of ADDIT against the leading imputation tools, such as Beagle [17], IMPUTE2 [63]

(for model and non-model organisms) and LinkImpute [112] (for non-model organ-

isms). The comparison results are compiled using real data of varying sizes, varying

proportions of missing genotypes, and varying sizes of reference panels (for model

organisms). In these comparisons, ADDIT consistently outperforms the other tools

in terms of speed, memory, and accuracy.

Our primary contributions include:

• the formulation of data-driven, lightweight imputation algorithms for both
model and non-model organisms with high speed and accuracy;

• the incorporation of both local and global information by utilizing adaptive
windows and trust metrics;

• the exploitation of adjacent genotype data to significantly expedite imputation
under certain conditions;

• the employment of multi-class supervised learning algorithms to extricate in-
formation from reference panels of model organisms to enhance the imputation

57

process.

4.2 Methods

In this section we present a detailed description of our proposed ADDIT algorithm.

For ADDIT-NM, the imputation framework is segregated into multiple steps (Steps 1–

5), and justification for each step is provided in section 4.2.1. Note that the algorithm

in Section 4.2.1 is described in detail in [35]. For ADDIT-M, we present a windowed,

multi-class supervised learning-based imputation algorithm in section 4.2.2.

Let N be the number of samples in a given population and M0 be the total number

of missing genotypes in the entire population. Let Gj
q denote the genotype at the jth

position of the qth sample. Here, q ∈ {1, . . . , N} and j ∈ {1, . . . ,M}. Let Iq be the

set of potential imputable genotypes at Gj
q. We denote a window centered at Gj

q by

W(Gj
q, d), where d is the window length and the window contains (d− 1)/2 elements

on either side of the central element Gj
q. We use Hamming distance to measure

the similarity between two windows of identical length. For example, the Hamming

distance between ‘111000’ and ‘100010’ is three. Let |A| represent the cardinality of

a set A. A list of important notation/symbols used in the subsequent discussion can

be found in Table 4.1.

4.2.1 ADDIT-NM: Imputation For Non-Model Organisms

For non-model organisms, ADDIT-NM uses adaptive windows and likelihoods to

estimate missing values. An overall schematic of ADDIT-NM is provided in Fig-

ure 4.1.

58

TABLE 4.1

LIST OF SYMBOLS USED IN THE ADDIT-NM ALGORITHM

DESCRIPTION

Symbol Meaning

number of

N # samples in given population

M0 total # missing genotypes

M # missing genotypes with distinct neighbors

q query sample

Gj
k genotype at jth position of kth sample

W(c, d) window of length d centered at c

Cq set of candidate windows for query window q

{Cq}Mq=1 family of Cq for all M query windows

ρH Hamming distance

θ similarity score

θmin similarity threshold

Tq set of trusted candidates for query window q

{Tq}Mq=1 family of Tq for all M query windows

ωf decision weight based on allele frequency

ωs decision weight based on window similarity

Iq set of imputable genotypes for query sample q

iq element of Iq

P(iq) priority level of iq according to Table 4.2

59

4.2.1.1 Step 1: Quick Imputation Using Immediate Neighbors

Suppose Gj
q is a missing genotype. We begin by performing a quick impute (QI)

step by imputing the central value to either of its two neighboring alleles if Gj−1
q =

Gj+1
q ; this is described in Algorithm 1 and illustrated in Figure 4.1A. The QI step is

Algorithm 1 Quick imputation using immediate neighbors

Require: Genotype data with M0 missing values
Require: Window length, d

1: for each missing Gj
q do

2: if Gj−1
q = Gj+1

q then
3: Quick impute Gj

q ← Gj+1
q

4: end if
5: end for

effective in substantially reducing the search space during imputation, if the likelihood

of double recombination in adjacent alleles is low.

4.2.1.2 Step 2: Similarity Computation For Each Missing Genotype

For a missing value Gj
q in the query sample, we create a query window of

length d, denoted W(Gj
q, d). We construct windows of identical length centered at

the jth position of each of the remaining population samples, which we call sample

windows, denoted W(Gj
k, d), where k ∈ {1, . . . , q − 1, q + 1, . . . , N}.

We now exclude those sample windows that have missing data at Gj
k. The subset

of sample windows with no missing data at Gj
k is hereby referred to as the candidate

set Cq for the missing genotype Gj
q (Figure 4.1B). Each sample window is given a

similarity score using

θi = d− ρH
(
W(Gj

q, d),W(Gj
i , d)

)
(4.1)

60

Algorithm 2 Similarity computation for each missing genotype

Require: M missing genotypes with distinct neighbors
1: for each missing Gj

q with distinct neighbors do
2: Construct query window W(Gj

q, d)
3: for each k ∈ {1, . . . , N} except q do
4: if Gj

k is not missing data then
5: Cq ← add W(Gj

k, d) to the set of candidate windows
6: end if
7: end for
8: for i = each candidate window in Cq do
9: θi ← similarity score using (4.1)

10: end for
11: end for
12: return set of candidate windows for M missing genotypes, {Cq}Mq=1

13: return set of similarity scores for all candidate windows, {θq}Mq=1

where ρH is the Hamming distance between the query window and the ith sample

window. Iterating over the remaining set of missing genotypes after the QI step, we

acquire a set of candidate windows, {Cq}Mq=1 with a corresponding set of similarity

scores {θq}Mq=1.

4.2.1.3 Step 3: Similarity Threshold Of Candidate Windows

Consider a histogram of similarity scores for the collection of candidate windows

denoted as H(θ). A maximum likelihood

θmin = arg max
θ
H(θ) (4.2)

is used to compute a similarity threshold, the procedure for which is provided in

Algorithm 3.

It is important to note that the value of θmin is computed considering all can-

didate windows of the M missing genotypes remaining after Step 1. The inherent

globality in our formulation offers various advantages: First, it avoids bias induced

by local candidate windows with low similarity scores. For example, suppose that

61

Algorithm 3 Similarity threshold of candidate windows

Require: {Cq}Mq=1, {θq}Mq=1 from Algorithm 2
1: for r = 1 to d− 1 do
2: H(θ) ← frequency of windows in all candidate sets {Cq}Mq=1 with similarity

score r
3: end for
4: θmin ← arg maxθH(θ)
5: return Similarity threshold, θmin

local candidate windows for a particular missing genotype have similarity scores be-

tween 2 and 7, with window length d = 11. Also consider that the entire sample

population contains windows (with identical d) of similarity scores between 2 and 10

with most windows having scores > 6. If we compute θmin based on local candidates

only, then θlocalmin is (say) 4. However, using the globally-derived similarity threshold

θmin, we obtain θglobalmin = 6 because the global sample population has more candidate

windows with higher similarity scores. If we were to impute a value based on θlocalmin ,

then we would enable windows with lower similarity scores to have an effect on the

decision, which is undesirable, as it is likely to recommend an erroneous imputed

value. Instead, using θglobalmin filters out these low-similarity candidates, resulting in

more accurate imputation. Finally, our method avoids diluting information; using

candidate windows retains relevant local information with embedded global trends of

these data. This improves imputation accuracy while lowering required computation.

We will next leverage the notion of the similarity threshold to categorize candidate

windows as trusted or untrusted.

4.2.1.4 Step 4: Adaptive Classification Of Trusted Candidates

For the qth query window we construct a set of trusted candidates, denoted Tq.

A candidate window is said to be a trusted candidate if its similarity score is at least

the similarity threshold θmin (as shown in Figure 4.1C). Note that Tq cannot be empty

for the choice of θmin in (4.2). This claim can be proven by contradiction, given that

62

there is at least one candidate window for a given window length d > 2. Suppose Tq

is empty for a given θmin := arg maxθH(θ). This implies that there is no candidate

window whose similarity score is at least θmin. Clearly, this is a contradiction because

the set of candidate windows is not empty, so at least one candidate window must

have similarity score θmin in order to ensure that it is the maximizer of the histogram

H(θ). Therefore, Tq must be non-empty for this choice of θmin.

We refer to this method as adaptive because it allows each Tq to have a vari-

able number of trusted candidate windows, unlike existing frameworks such as those

employing k-nearest neighbor algorithms. This is advantageous because it exploits

only the most similar windows for subsequent imputation. To take into account both

window similarity and repetitiveness of the central allele, we introduce the following

priority-based weighting scheme.

Algorithm 4 Adaptive classification of trusted candidates

Require: Set of candidates {Cq}Mq=1 with similarity values {θq}Mq=1, obtained in Al-
gorithm 2; similarity threshold, θmin

1: for each missing genotype Gj
q do

2: Cq ← set of candidate windows for Gj
q

3: for each candidate window in Cq do
4: θ ← similarity score of candidate window
5: if θ ≥ θmin then
6: Tq ← add candidate window to the set of trusted candidates
7: end if
8: end for
9: end for

10: return All M sets of trusted candidates, {Tq}Mq=1

63

4.2.1.5 Step 5: Priority-based Imputation Scheme

Recall that Iq is the set of potential imputable genotypes at Gj
q. For each im-

putable genotype iq ∈ Iq, we assign decision weights based on two criteria: (i)

the frequency of iq at the central element over all trusted candidate windows in Tq;

and (ii) the similarity score of trusted candidate windows containing iq in the central

position (refer to Figure 4.1D). The window similarity decision weight ωs indicates

the reliability of T
iq
q for imputing the missing genotype with iq. The allele frequency

decision weight ωf signifies the likelihood of iq, even if the corresponding trusted

candidates have low similarity scores with respect to the query window. The deci-

sion weights are designed to handle potential bias towards highly frequent genotypes

found in trusted candidates with low similarity scores. Mathematically, the decision

weights are written as:

ωf (iq) =
Fiq
|Tq|

, (4.3a)

ωs(iq) =
1

Fiq

∑
k∈T iq

q

d− ρH
(
W(Gj

q, d),W(Gj
k, d)

)
d− 1

, (4.3b)

where Fiq is the frequency of iq at the central position of the trusted candi-

dates, T iqq ⊂ Tq is the set of trusted candidates with iq in the central position, and

ρH
(
W(Gj

q, d),W(Gj
k, d)

)
is the Hamming distance between the query window and

each window W(Gj
k, d) ∈ T iqq .

We categorize the values of ωf (iq) and ωs(iq) as high, medium, or low. For this

categorization, we use data in the histogram obtained in Step 3 as follows. We first

eliminate all windows with similarity scores below θmin as in Step 3. Thus, the lowest

allowable similarity score is θmin, which motivates us to classify < θmin/d as low. Let

θmax be the highest similarity score on the histogram with non-zero frequency. Then

64

we classify high as > θmax/d. Note that θmax/d < 1 since the maximal similarity is

d− 1. All decision weights in the range [θmin/d, θmax/d] are considered medium. For

each imputable genotype iq, we determine its priority level P(iq) using the rules in

Table 4.2.

Within Table 4.2, the priorities are set such that higher weights are given to

imputable genotypes supported by highly similar trusted candidates irrespective of

ωf . This is motivated by the fact that, in haplotypes, we expect highly similar sam-

ples over local regions to exhibit identical inheritance of genotypes. If the trusted

candidates have medium similarity, then we check ωf . This is because the trusted

candidates cannot be completely relied upon to generate a correct imputed geno-

type. Instead, we also rely on a likelihood-based estimate embedded into ωf . For

an imputable genotype with medium ωs, if its corresponding ωf is high, then that

holds more priority than medium or low ωf . We will assign even less priority to the

genotypes that have high or medium frequencies with low ωs for similar reasons as

discussed above. Finally, we will assign the least priority to a genotype if its sup-

porting trusted candidates are of low similarity and low frequency. For such cases,

we investigate the remaining genotypes in Iq.

We impute the genotype iq with the highest priority level. If there is a clash of

priorities, either value can be imputed. This is written mathematically as:

îq = arg min
iq∈Iq
P(iq), (4.4)

where îq is the imputed genotype. The pseudo-code for this step is presented in

Algorithm 5.

65

TABLE 4.2

PRIORITY LEVEL FOR POSSIBLE COMBINATIONS OF DECISION

WEIGHTS DURING STEP 5 OF ADDIT-NM

ωs ωf Priority based on P

High - Window Similarity 1

Med High Allele Frequency 2

Med Med/Low Window Similarity 3

Low High/Med Allele Frequency 4

Low Low - 5

Algorithm 5 Priority-based imputation scheme

Require: Set of trusted candidates Tq for query window W(Gj
q, d)

Require: Set of imputable genotypes Iq
1: for each imputable genotype iq ∈ Iq do

2: T iqq ← trusted candidates with iq in the central position
3: ωf (iq), ωs(iq)← decision weights using eqn. (4.3)
4: Categorize ωf and ωs as ‘high’, ‘medium’, or ‘low’
5: P(iq)← priority level according to Table 4.2
6: end for
7: îq ← using eqn. (4.4)
8: return Imputation decision, îq

4.2.2 ADDIT-M: Imputation For Model Organisms

4.2.2.1 Step 1: Construction Of Training And Truth Sets From Reference Panel

Let Ntrain be the number of training samples collected to train a supervised learn-

ing machine L, and Rj
k denote the jth position of the kth reference sample. Recall

that Gj
q is the missing value in the query sample at the jth position, and d is a

positive integer that denotes the number of features of the training set.

For each Gj
q, we begin by constructing a truth set, Sjtruth ∈ RNtrain , and training

66

set, Sjtrain ∈ RNtrain×(d−1): these will be used by a classifier L to inform the imputation

process. The truth set Sjtruth is constructed using Ntrain genotypes from the reference

panel that do not have missing data at the jth position, that is:

Sjtruth =

[
Rj

1 Rj
2 · · · Rj

Ntrain

]
.

The training set construction (feature selection) is more involved. One cannot

select a training set containing reference data with indices belonging to a window of

length d centered at Rj
k for k = 1, 2, . . . , Ntrain, because the corresponding testing set

(a window of length d centered at Gj
q) could contain missing data, which may result in

low-quality predictions. Instead the training set is selected from the reference panels

corresponding to indices in the neighborhood ofGj
q that do not contain missing values.

This can be written more rigorously as

Sjtrain =

Rm1
1 Rm2

1 · · · R
md−1

1

Rm1
2 Rm2

2 · · · R
md−1

2

...
...

. . .
...

Rm1
Ntrain

Rm2
Ntrain

· · · R
md−1

Ntrain

,

where {mi}d−1i=1 is a set of indices representing d−1 nearest neighbors to Gj
q containing

no missing values. The corresponding test set is given by

Sjtest =

[
Gm1
q Gm2

q · · · G
md−1
q

]
.

The formation of the training, testing, and truth set is illustrated in Figure 4.2A.

67

4.2.2.2 Step 2: Imputation Based On Identical Truth Values

Clearly, if all the labels in the truth set Sjtruth are identical, there is no need to

train the classifier L. In such a case, the imputed value is the label in Sjtruth.

4.2.2.3 Step 3: Quick Imputation

This is an optional step, which performs effectively for data exhibiting a low

degree of double recombination in adjacent positions. The implementation of this

step has been previously discussed in Step 1 of Section 4.2.1.

4.2.2.4 Step 4: Imputation Via Multi-class Supervised Learning

If the conditions in the earlier steps are not satisfied, this implies that the truth

set Sjtruth contains more than one unique label. In fact, Sjtruth could contain multiple

labels; for example, three labels if the genotypes are encoded with {0, 1, 2}. The

learning machine L is, therefore, referred to as a multi-class learning machine [11].

The multi-class classifier L learns from the training set Sjtrain and the corresponding

multi-class truth values Sjtruth, and can consequently be used to predict the value of

Gj
q using the test set Sjtest. This procedure is illustrated in Figure 4.2B–C.

4.3 Results And Discussion

4.3.1 Testing ADDIT-NM

4.3.1.1 Data Acquisition

We test ADDIT-NM on three benchmark plant datasets considered in [112] (see

Table 4.3 for details). In summary, we use genotype by sequencing (GBS) data

from members of the grape genus Vitis generated by Illumina Hi-Seq and mapped

to its reference genome [6, 68]. Some SNPs based on missing values, heterozygosity,

68

TABLE 4.3

COMPARISON OF THE PERFORMANCE OF ADDIT-NM WITH

BEAGLE, LINKIMPUTE, AND IMPUTE2

Dataset
Samples # SNPs # Missing

Method
Error Runtime Memory

(N) Genotypes (M0) (%) (s) (MB)

Grape 77 8506 2000

Beagle 11.0 16 371

LinkImpute 9.5 28 3465

IMPUTE2 13.4 18 19

ADDIT-NM 2.6 14 7

Apple 711 8404 10000

Beagle 7.6 424 804

LinkImpute 7.4 104 6941

IMPUTE2 9.2 98 45

ADDIT-NM 5.3 86 17

Maize 4300 43695 10000

Beagle 18.7 16585 927

LinkImpute 18.1 7608 11333

IMPUTE2 21.4 7492 686

ADDIT-NM 8.7 7233 378

and minor allele frequency (MAF) as in [112] are discarded. A similar apple dataset

generated from members of the genus Malus is acquired from the 1995 accession from

the US Department of Agriculture repository in Geneva, NY. The samples are double-

digested with restriction enzymes and sequenced with Illumina Hi-Seq. The reads are

mapped to the reference genome of Malus domestica version 1.0 [138]. Similar to the

above grape data, variants are also filtered. Finally, we consider a large maize (corn)

dataset available at the International Maize and Wheat Improvement Center [60] to

verify the scalability of our proposed algorithm. For this dataset, a pre-processing

stage eliminates bi-allelic SNPs with < 20% missing data, minor allele frequencies

(MAF) of > 1%, and samples with > 20% missing values.

69

4.3.1.2 Comparative Analysis

We implement ADDIT-NM and compare its performance with contemporary im-

putation algorithms such as Beagle 3.3.2, LinkImpute, and IMPUTE2. Performance

metrics used for this comparison include (i) percentage of genotype imputation er-

rors; (ii) runtime; and (iii) memory usage. The results of this comparative study

are tabulated in Table 4.3. It is clear that ADDIT-NM significantly outperforms

the competition. For example, the genotype errors of grape and maize imputation

are less than half the minimum of the errors produced by the other methods. The

runtime of ADDIT-NM is consistently small, at times an order of magnitude smaller

than the corresponding runtimes of Beagle and/or LinkImpute. Importantly, this

large speed-up does not result in prohibitive use of memory. This is demonstrated

by a 2–3 order-of-magnitude reduction of memory usage in comparison with Beagle

or LinkImpute, and significantly less memory (around half or less) as IMPUTE2.

As discussed in [18], Beagle is more accurate than IMPUTE2 for large sample

sizes. IMPUTE2 implements pre-phasing, wherein genotypes are first phased and

then haplotypes are imputed. This reduces runtime and memory usage at the cost

of accuracy. LinkImpute requires similar runtime as Beagle, although it has slightly

higher accuracy. It incurs high computational overhead since it uses a genome-wide

similarity search based on k-nearest neighbor imputation (kNNi) [137]. Contrary

to these, ADDIT-NM relies on an adaptive number of reliable trusted candidate

windows, which helps in increasing imputation accuracy. It also can significantly

reduce runtime and memory use via an initial pruning of the search space that we

call quick imputation. Unlike Beagle and IMPUTE2, we do not require a large

genotype panel, which further reduces the lookup time and memory required and

makes ADDIT-NM applicable to less studied organisms.

70

4.3.1.3 Effectiveness Of Quick Imputation

A major reason for the computational efficiency of ADDIT-NM is due to the quick

imputation step. To illustrate the performance of each imputation stage (that is,

quick versus priority-based imputation), we refer the reader to Figure 4.3. We observe

that the number of quick imputes (QI) is significant for each dataset. However, the

corresponding number of quick impute errors (QI Error) are small. For the grape,

apple, and maize datasets, 1 out of 1487 (< 0.1%), 210 out of 6326 (< 4%), and 168

out of 6078 (< 3%) genotypes, respectively, are incorrectly imputed in the QI stage.

Figure 4.3 also contains information regarding the number of priority imputations

(PIs) and their corresponding imputation errors (PI Error). For the real datasets,

the proportion of PI Errors is low, ranging from < 10% in apple and grape, to

< 17% in maize. This trend suggests that for these plant data, the QI step can

be exploited because it combines high computational speeds along with a relatively

lower imputation error rate.

TABLE 4.4

COMPARISON OF ADDIT-NM WITH AND WITHOUT QI

Dataset
Error (%) Runtime (min) Memory (MB)

QI No QI QI No QI QI No QI

Grape 2.6 3.0 0.2 1.1 7 7

Apple 5.3 5.5 1.4 4.9 17 17

Maize 8.7 9.0 120.6 417.0 378 378

71

This is further supported by comparing imputation performance of ADDIT-NM

with and without the QI step (Table 4.4). We observe that the maximum memory

used for both the configurations are identical for all datasets, and the error percentage

is comparable; a minuscule increase in the number of errors is noted when the quick

impute step is skipped. The most noteworthy result obtained from this investigation

is the runtime differences: the lack of the quick impute step results in higher execution

time for each dataset, particularly for larger datasets, as expected.

4.3.2 Testing ADDIT-M

We also test the performance of ADDIT-M on human model organism data. We

use the multi-class support vector machine (MC-SVM) as an exemplar supervised

learning algorithm. The MC-SVM is implemented via Python’s scikit-learn mod-

ule. The rationale behind choosing the SVM as our supervised learning method is

its ability to handle high-dimensional data using the kernel-trick, its efficiency with

smaller-sized training sets [65], and its effectiveness in the imputation problem, as

reported in the comparative study [110].

4.3.2.1 Data Acquisition

For testing ADDIT-M, we obtain genotype data of phase 3 human chromosome

20 from the 1000 Genomes Project [5]. This data comprises 2504 individuals from

26 populations. We select a subset comprising 8 populations (GBR, TSI, CHS, STU,

GIH, LWK, CHB, IT) and randomly mask 1%, 2%, and 5% of the data for subsequent

imputation. We further use 75%, 90%, and 95% of the remaining phase 3 data as

reference panels for running Beagle and IMPUTE2 and as the training set for the

learning algorithm of ADDIT-M.

72

TABLE 4.5

COMPARISON WITH BEAGLE ON HUMAN DATA

(A) Fixed Training Set (75%)

Missing (%) Method Error (%) Runtime(s) Mem(GB)

1
Beagle 6.6 1900 3.8

ADDIT-M 1.0 58.7 1.0

2
Beagle 8.1 2040 3.8

ADDIT-M 2.5 64.5 1.0

5
Beagle 11.0 2080 3.8

ADDIT-M 2.8 88.7 1.0

(B) Fixed Missing Genotypes (5%)

Training Size (%) Method Error (%) Runtime(s) Mem(GB)

95
Beagle 2.6 2200 3.5

ADDIT-M 1.9 94.1 1.1

90
Beagle 5.1 2160 3.8

ADDIT-M 2.6 91.7 1.1

75
Beagle 11.0 2080 3.8

ADDIT-M 2.8 88.7 1.0

73

4.3.2.2 Comparative Analysis

To test our proposed ADDIT-M imputation algorithm, we again consider the

overall imputation error percent, total runtime, and maximum memory used. For

our experiments, since IMPUTE2 required at least 130× computation time higher

than Beagle (also shown in [17]), we only consider Beagle for comparison with the

now optional QI step of ADDIT-M (see previous section) turned off.

The results of our comparative study is tabulated in Table 4.5(A) and (B). In

Table 4.5(A), we demonstrate the effect of increasing the proportion of missing val-

ues. We randomly fix 75% of the data as the reference panel containing no missing

data, and mask the remaining data by 1%, 2%, and 5%. We note that ADDIT-M

consistently requires less memory (about 1/4th) and demonstrates speedups of two

orders of magnitude. Additionally, the overall imputation error percent is consider-

ably lower for ADDIT-M. In Table 4.5(B), we demonstrate results for 5% missing

data when the training set size varies amongst 95%, 90% and 75%. As expected, de-

creasing the number of training samples worsens the performance of the supervised

learning algorithm: the total error percent for ADDIT-M gradually increases from

1.9% to 2.8%. Note that the error percent of Beagle exhibits a more accelerated

increase with reduction of training size relative to our proposed approach.

4.3.2.3 When Should We Use QI?

As mentioned before, the effectiveness of QI is most pronounced when the adjacent

alleles exhibit a low degree of double recombination. Although ADDIT-M with QI

completes roughly 7% faster on the human data obtained from [5], it does perform

worse (see Table 4.6) using a 75% training set and 5% missing data. In Figure 4.4,

we illustrate the distribution of imputation errors over the three decision-making

steps of ADDIT-M: the identical truth value (Step 2), QI (optional Step 3), and

supervised learning based imputation (Step 4). Since we have a high level of trust

74

in the reference genotype panel, we give Step 2 the highest priority in terms of

determining the imputed value. Thus, the percentage of values imputed in Step 2

remains unaltered with and without QI. It is clear from the figure that the QI step

only affects the other 70% of the missing values: specifically 17% of the missing

genotypes are eligible for QI. Of these 17%, 10% are imputed incorrectly. The SVM

performance, both with and without QI, are very similar and exhibit 4% imputation

error (this is because the training samples are identical for both runs). It follows that

for these data QI performs relatively worse as compared to using available reference

data. Thus we do not recommend the QI step unless adjacent alleles exhibit low

degrees of double recombination.

4.3.2.4 Importance Of Multi-class Supervised Learning

We believed that using a supervised learning algorithm would enhance imputation

accuracy. As a result, we expect that Beagle and ADDIT-M will outperform ADDIT-

NM by exploiting the information embedded in the reference genotype panel. This

is indeed the case, as deduced from Table 4.7. Among the two imputation tools for

model organisms, ADDIT-M outperformed Beagle in terms of imputation accuracy,

runtime, and memory. A considerable subset of the query data was filtered for iden-

tical truth (IT) and quick impute (QI)-based deduction, that lead to accurate and

expedited imputation. For the remaining set of missing values, the supervised learn-

ing approach enabled accurate imputations. The results presented in Table 4.7 show

that for model organisms, utilizing genotype information in reference panel, as in the

case of Beagle and ADDIT-M, provide more accurate imputations.

Hence, we present ADDIT, the first algorithm for genotype imputation in model

and non-model organisms, based on accurate and efficient window-based data-driven

approaches. We test our proposed methods on real data sets of humans and plants

and demonstrate that for varying sizes of data and training samples, proportions

75

of missing genotypes, ADDIT consistently outperforms leading tools like Beagle,

IMPUTE2, and LinkImpute.

TABLE 4.6

PERFORMANCE WITH AND WITHOUT THE QUICK IMPUTE STEP

FOR ADDIT-M ON HUMAN DATA

Dataset
Error (%) Runtime (s) Memory (GB)

QI No QI QI No QI QI No QI

Human 3.8 2.8 84.1 90.4 1.0 1.0

TABLE 4.7

PERFORMANCE COMPARISON FOR BEAGLE, ADDIT-M, AND

ADDIT-NM ON HUMAN DATA

Tools Error (%) Runtime (s) Memory (GB)

Beagle 11.0 2080 3.8

ADDIT-M 2.8 90 1.3

ADDIT-NM 14.6 1064 0.06

76

4.4 Conclusion

Genotype imputation is an essential precursor for improving the quality of haplo-

type phasing in applications like genome-wide association studies. Although model

organisms can resort to available reference genotype panel for imputation, the prob-

lem becomes more challenging for non-model organisms that lack such reference

data. Here, we present ADDIT, an accurate and efficient window-based data-driven

approaches for imputation of missing genotypes in both model and non-model or-

ganisms. We test our proposed methods on real datasets of non-model and model

organisms, including humans. For varying sizes of data, proportions of missing geno-

types, and sizes of training samples, our method consistently performs better than

the leading tools like Beagle, IMPUTE2, and LinkImpute.

Although the multiclass classifier approach used in ADDIT-M generated accurate

imputations, there still remains a scope to investigate other data-driven supervised

learning approaches in Step 4 of section 4.2.2. One can further analyze the per-

formance of our imputation tools when plugged in to different phasing algorithms.

Finally, a natural extension of genotype imputation is the devlopment of an accurate

haplotype phasing mechanism for downstream analysis. In this regard, one can em-

ploy a graph-based phasing approach [132] or further explore sophisticated hidden

Markov model-based algorithms.

77

𝐺𝑞
𝑗

𝐺𝑞
𝑗+1

𝐺𝑞
𝑗−1 A

B

Candidate

Window

Query

Window

Quick Impute

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fr
eq

ue
nc

y

Similarity score of candidate windows

Trusted Candidates C

DWindow Similarity Allele Frequency

0 0 1 ? 1 2 2

0

0

0

2

2

0

0

0

0 0 1 1 1 2 2

0 0 1 1 1 2 2

0 0 1 1 1 2 2

0 0 1 1 1 2 2

1

Less similar trusted candidates

Imputable Value: Imputable Value:

0 0 1 ? 1 2 2

Figure 4.1: ADDIT-NM for non-model organisms: (A) quick impute (QI) step. (B)
Selection of candidate windows with d = 5. (C) Selection of trusted candidates using
maximum likelihood. (D) Illustration of priority impute via window similarity (left)
and allele frequency (right).

78

𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 𝑚6𝐺𝑞
𝑗

Truth Set, 𝒮truth

Training Set, 𝒮train

	ℒ

B

Test Set, 𝒮test 	ℒ Imputed Value

C

A

Predict
Learn

Training Set

Truth Set

Test Set

Figure 4.2: ADDIT-M for model organisms: A. Construction of truth (green dotted
rectangle), training (blue dashed rectangle) and testing (black dashed-dot rectangle)
sets from query sample (top pink block) and reference panel (gray blocks) for model
organisms, assuming d = 7. B. Training procedure for supervised learning algorithm
L. C. Imputation procedure using trained classifier L.

79

Grape

QI QI Error PI PI Error
0

500

1000

N
um

be
r

of

Apple

QI QI Error PI PI Error
0

2000

4000

6000

N
um

be
r

of

Maize

QI QI Error PI PI Error
0

2000

4000

6000

N
um

be
r

of

Figure 4.3: Illustration of the number of quick imputations (QI) in ADDIT-NM: blue,
quick imputation error (QI Error): green, priority-based imputations (PI): dark red,
and priority-based imputation error (PI Error): purple, for the non-model organisms:
grape, apple, and maize.

80

0%

10%

20%

30%

40%

50%

60%

70%

80%

Identical Truth
(No QI)

Identical Truth
(QI)

Quick Impute
(No QI)

Quick Impute
(QI)

Multiclass SVM
(No QI)

Multiclass SVM
(QI)

Imputation Step Imputation Error (%)

Figure 4.4: Distribution of algorithm steps (identical truths, quick impute, and multi-
class classification via SVM) used for imputation of ADDIT-M with and without the
quick impute step in human data. The light blue lower blocks denote the percent of
missing data that are imputed via each step in the ADDIT-M formalism for model
organisms. The upper dark blue blocks denote the error (%) corresponding to each
of those steps.

81

CHAPTER 5

HYBRID CORRECTION OF ERRONEOUS LONG READS USING ITERATIVE

LEARNING

The following manuscript describes the work in this chapter.

• O. Choudhury, A. Chakrabarty, S. Emrich. A Hybrid Error Correction Algo-
rithm for Long Reads with Iterative Learning. Submitted, Bioinformatics, 2017

5.1 Background

Second-generation sequencing technologies, namely Illumina [15] and 454 pyrose-

quencing [105], have fueled the use of sequencing-driven scientific research by inexpen-

sively generating highly accurate ‘reads’ or DNA sequence fragments. The trade-off

is that the reads are relatively shorter, and thus not ideal for more difficult de novo

tasks such as complex genome assembly and the reconstruction of full length mRNA

isoforms [14].

Third-generation sequencing techniques introduced by Pacific Biosciences [45, 78]

and more recently Oxford Nanopore [27, 46, 102] generate longer reads – thousands

of bp on average and as high as 23,000 bp [76]. Further, these sequencing methods

are not subject to the amplification and compositional biases often experienced with

second-generation sequencing [28, 122]. Long reads also can overcome challenges

associated with some repetitive regions and large transcript isoforms if they are longer

than the problematic region(s). Their primary trade-off is the generated long reads

are much less accurate with estimated error rates as high as 20% with PacBio [134,

136] and 35% using Oxford Nanopore [52].

82

A number of correction methods have been developed to address these high error

rates. The self-correction tool HGAP [29], for example, computes multiple alignments

of high coverage long reads to determine corrections. Alternative hybrid correction

tools like LSC [14], PacBioToCA [76], LoRDEC [121], proovread [56], and CoL-

oRMap [57] utilize accurate, high quality short reads that were generated from the

same or related samples to identify and make corrections. Nanocorr [52], the hybrid

error correction tool designed to correct Oxford Nanopore reads, uses high quality

Illumina MiSeq reads.

The currently available methods, however, may not generate an optimal solution

for every erroneous base, especially when more localized information (quality and

possible variant information between individuals) from the alignments is available.

For example, the authors in [73] have emphasized the importance of incorporating

quality values while correcting noisy sequence data. Although proovread involves

an iterative mapping step where disjoint subsets of the short reads are mapped to

improve sensitivity, an iterative approach where low-confidence corrections are further

investigated has not been studied before.

Here, we present HECIL, a new hybrid error correction algorithm that determines

an optimal correction policy over a convex combination of decision weights based on

base quality and mapping identity of the aligned short reads. It also employs a novel

iterative learning approach that leverages updated context from prior iterations in

current iterative correction. We test HECIL on real prokaryotic and eukaryotic

datasets: the bacteria Escherichia coli, the fungus Saccharomyces cerevisiae, and one

of the most important malaria vectors Anopheles funestus. We compare its perfor-

mance with the state-of-the-art hybrid error correction tools proovread, LoRDEC,

and CoLoRMap. For an overwhelming majority of evaluation metrics HECIL out-

performs the competing tools. The optional extension of iterative learning-based

correction further improves its accuracy by a significant margin.

83

The contributions of this work include:

• development of a hybrid error correction algorithm that incorporates underlying
information (base quality and mapping identity) of short reads;

• assessment of reliability of aligned short reads before leveraging them for error
correction;

• design of an iterative learning approach that introduces a confidence metric to
each correction for further investigation;

• better performance than state-of-the-art error corrections tools when tested
on real, heterozygous, low-coverage data sets, including the important malaria
vector Anopheles funestus ;

G

G

G

G

C

G

(A) (B)

Figure 5.1: Illustration of Steps 1 and 2 of HECIL’s core algorithm. The orange
rectangle denotes an erroneous long read and the purple rectangles represent aligned
short reads. (A) Illustration of Quick Correction with high consensus (B) Illustra-
tion of Optimization-based Correction. The green dashed box depicts the objective
function values, from which the optimal short read (green rectangle) is selected for
correction.

84

5.2 Methods

5.2.1 Overview

Our proposed algorithm, HECIL, works under the assumption that we can access

long and short reads from the same colony. That is, we assume that all reads (long and

short) are derived from highly similar individuals: this ensures that the short reads are

reliable sources of information to inform the correction procedure. This assumption is

standard amongst all hybrid error correction algorithms, see for example [14, 57]. We

begin by aligning the given set of short reads to the long reads. For each alignment,

we compute normalized weights using base quality information and alignment identity

of the underlying short reads. The short read that maximizes the sum of weights is

used for correction; in this manner, we tend to select higher quality short reads that

have a suitable degree of overlap with the corresponding region in the long read.

We bolster our correction framework by formulating an iterative learning paradigm

to achieve higher accuracy. In the iterative learning framework, the core algorithm

discussed above is run iteratively, with each iteration learning from the data sifted

through in the prior iteration. Specifically, at each iteration, we assign each correc-

tion with a corresponding confidence value. This enables us to flag low-confidence

corrections, which can be re-corrected in subsequent iterations by leveraging addi-

tional information obtained from high-confidence corrected subregions of the long

reads. Although multiple iterations increase total computation time, they cause a

significant improvement in accuracy.

5.2.2 The Core Algorithm

5.2.2.1 Step 1: Quick Correction

We begin by performing alignment in order to detect the location of errors on

the long reads and determine the set of putative corrections. As suggested in [56,

85

57], we obtain these alignments using BWA-MEM [87]. Following alignment, we

mark the positions of disagreement (mismatches, insertions, and deletions) on long

reads as questionable or erroneous. For each erroneous position on the long read, we

investigate the set of short reads that align to it. If an erroneous base aligns to a

single short read, or there is a strong consensus (determined by a threshold η ∈ (0, 1]

selected by the user), we replace the base on the long read with the respective aligned

base of the short read. This is illustrated in Figure 5.1A. By performing this step, we

quickly correct erroneous bases with high confidence, which leads to a reduction in

the search space for the next step. Note that this step is inspired by the effectiveness

of the majority voting method proposed in [14]. However, unlike majority voting,

which requires a consensus of > 50%, we adopt a stricter threshold of η > 0.9, and

perform quick correction only if the consensus is above this high threshold. We will

explain why such a high value of η is required in the following subsection.

5.2.2.2 Step 2: Optimization-based Correction

For the remaining identified erroneous bases, we use an optimization-based correc-

tion framework. Let L(i, j) be the jth erroneous base corresponding to the ith long

read. Suppose N short reads align to the erroneous base L(i, j), and {Sk(i, j)}Nk=1

denote the set of aligning short reads.

For each k = 1, 2, . . . , N , we assign two normalized weights ω̂kq (i, j) and ω̂ks (i, j).

The weight ωq(i, j) is determined by extracting the PHRED quality score which is

readily available from FASTQ files. The normalized quality weight is then computed

using

ω̂kq (i, j) :=
ωkq (i, j)

max1≤k≤N ωkq (i, j)
.

Next, we evaluate the normalized similarity weight ω̂ks (i, j) by computing the align-

ment identity, defined as the number of exact matches of the short read Sk(i, j) to the

86

long read L(i, j), divided by the length of the short read. It is important to mention

that all short reads are of equal length.

For each short read, we compute a cost function by taking a convex combination

of the two weights

Jk(i, j) =
1

2

(
ω̂kq (i, j) + ω̂ks (i, j)

)
.

We then solve the following optimization problem

k? = arg max
1≤k≤N

(
ω̂kq (i, j) + ω̂ks (i, j)

)
. (5.1)

which yields the index k? of the short read Sk?(i, j) with the maximum combined

quality and similarity weight1. Note that the optimal cost for each L(i, j) is denoted

by Jk?(i, j). Subsequently, we replace the erroneous base L(i, j) on the long read with

the corresponding base of the short read Sk?(i, j). This is illustrated in Figure 5.1(B).

For highly heterozygous samples (e.g., mosquitoes), low frequency bases in aligned

short reads may indicate inherent variation, not necessarily sequencing errors. Cor-

rection algorithms that solely rely on a consensus call or majority vote often discard

these heterogenous alleles. The optimization in Step 2 of HECIL is not biased

by bases which have high frequency, and hence, is better able to capture variation

between similar individuals. This is corroborated by the results obtained from test-

ing HECIL on the highly heterozygous mosquito data set of Anopheles funestus in

Section 5.3.

At this junction, we can explain the rationale behind choosing a high consensus

threshold for Step 1. If one achieves perfect consensus (η = 1.0) of the short reads,

then all short reads recommend the same base for correction. In such a scenario,

implementing Step 2 is redundant, because it will arrive at the same conclusion after

1In case there is a conflict amongst maximizers, the short read with highest quality is selected
to be the winner.

87

computing weights over multiple short reads. Thus, Step 1 can be used to preempt

computations that would otherwise be incurred in Step 2. Relaxing the value of η

to within (0, 1) results in higher number of quick corrections, but the probability

of agreeing with the outcome of Step 2 is 1 − η, implying that η should be chosen

close to 1. We must mention that this does not imply that the consensus value is

the correct base for correction purposes, merely that, given the short read data, we

can avoid unnecessary computations with high probability using this high-threshold

majority vote step.

Another important point to note is that the weighting factors, quality and simi-

larity, are not contending objectives; that is, a high quality read does not necessitate

high similarity. Thus, we have to consider a combination of these weights as in

equation (5.1) rather than formulating the problem in a multi-objective optimization

framework and searching for Pareto-optimal solutions.

5.2.3 Improvement Of Correction Via Iterative Learning

We employ the terminology iterative learning from the control theory literature,

namely, from the principle of iterative learning control proposed in [72]; see [7] for an

excellent survey. The definition of iterative learning that best explains our motivation

in this work is found in [12]: iterative learning considers systems that repetitively

perform the same task with a view to sequentially improving accuracy. The same task

in our proposed framework refers to the core algorithm of HECIL.

Although this formalism bears a resemblance to the “on-line learning” framework

in the machine learning literature [126], where data for improving the hypothesis be-

comes available iteratively, there is a key difference. The difference is that in iterative

learning, the data used to improve the hypothesis is a product of the outcomes of the

prior hypothesis and a metric assigned to the quality of these outcomes. Conversely,

in on-line learning, the sequentially available data stream is usually generated by an

88

exogenous system.

Herein, we explain how we use iterative learning to improve error corrections

at the ` th iteration by learning from high-confidence corrections in the (` − 1)th

iteration. The overall iterative learning scheme is illustrated in Figure 5.2.

Run core
algorithm

Termination
criterion
reached?

Stop

No

Short
reads

Long
reads

Perform
alignment

Low-
confidence
corrections

YesAssign
confidence

metric

High-
confidence
corrections

Update low-confidence
corrections in long reads
using high-confidence

corrections

Iterative Learning

Figure 5.2: Illustration of iterative learning procedure with the HECIL core algo-
rithm as the error correction method.

5.2.3.1 Assignment Of Confidence

For each L(i, j) in the ` th iteration, suppose the corresponding optimal cost ob-

tained by solving (5.1) be denoted by J
(`)
k? (i, j), and let µ(`) denote the α-percentile

computed over all these optimal costs. We usually select α > 0.8 so that a small per-

89

centage of the optimal corrections are considered to be of high confidence. Choosing

α small could increase the likelihood of spurious corrections tainting the realignment

stage, described next.

5.2.3.2 Realignment Based On High-Confidence Corrections

This is the most crucial stage for embedding information from high-confidence

corrections into subsequent iterations. At each iteration, we compute confidence

values as discussed above. We correct the long read at the sites L(i, j) where the

corresponding optimal short read Sk?(i, j) exhibits high confidence. We learn from

this embedded information in successive iterations by re-aligning the updated long

reads to the short reads. As we use alignment information to determine the optimal

correction policy for long reads, after each iterative correction, the updated long reads

exhibit higher consensus or similarity with the short reads.

Note that, for each iteration, the updated context of L(i, j) may generate different

sets of aligned short reads, leading to different sets of normalized weights ωkqij and ωkqij .

This is why the confidence threshold µ(`) is recomputed based on the statistics of the

optimal costs, not fixed for all iterations. The sites on the long read corresponding to

low-confidence short reads are left uncorrected in the current iteration. In the next

iteration, these low-confidence sites are corrected via the core algorithm.

5.2.3.3 Termination Criteria

We propose two criteria for termination. The first criterion is based on the num-

ber of unique k -mers calculated after each iterative correction. If the difference in

the number of k -mers between two successive iterations is below a given threshold

ε, then we terminate. A particular advantage of selecting this evaluation metric

for determining the termination condition is that it offers a robust, reference-free

approach [25].

90

The second criterion involves pre-calculating the number of iterations n ∈ N

required to generate at least M ′ high-confidence corrections from M erroneous po-

sitions. We consider corrections to be of high-confidence if they are in the top α-

percentile of the optimal short reads. By definition of percentiles, this implies that

(1− α)× 100% of the short reads are retained as high-confidence corrections, while

α×100% of the short reads are discarded. Therefore, after the first iteration, αM low-

confidence short reads remain for the next iteration of learning and error correction.

In general, the number of low-confidence short reads remaining after n iterations will

be αnM . If the user requires at least M ′ high-confidence corrections to be made iter-

atively, one needs to select n that satisfies M ′ < (1−αn)M . In such a case, algebraic

manipulations yield the following bound on the required number of iterations

n >
1

logα
log

∣∣∣∣1− M ′

M

∣∣∣∣. (5.2)

Note that both logarithm terms are negative.

If either of these two criteria is triggered, we terminate the iterative learning

procedure.

5.3 Results And Discussion

5.3.1 Data Acquisition

We test the performance of HECIL on three datasets of varying size: the bacterial

genome of E. coli, the fungal genome of S. cerevisiae, and the malarial vector genome

of A. funestus. We explore PacBio-sequenced long reads, Illumina-sequenced short

reads, and reference genomes of E. coli and S. cerevisiae, as suggested in the supple-

91

mentary material of [57]. Long reads2 of E. coli are filtered to exclude reads shorter

than 100 bp. The final set contains 33,360 reads that total 98 million bases (Mbp).

The corresponding short reads (accession ID: ERR022075) comprise 22,720,100 reads

that are 202 bp long. The strain K-12 substr. MG1655 is used for our alignment-

based validation of HECIL. To test S. cerevisiae data we use 1,758,169 long reads,

with 1,402 Mbp3 and 4,503,422 short reads (accession ID: SRR567755). The reference

genome of strain S288C is 12.2 Mbp in size. We obtain long reads for A. funestus4,

comprising data from 44 flowcells, ranging between 59,937 and 244,754 reads. Due

to the high computational time required by proovread and CoLoRMap to correct the

reads of all flowcells, we present a comparative analysis based on a random selection

of three: flowcells 1, 4, and 16. Short sequences (accession ID: SRR630594) con-

sists of 37,797,235 reads. The reference genome of strain Fumoz (GenBank assembly

accession: GCA 000349085.1) is used for validating the correction algorithms.

5.3.2 Computational Set-up

The experiments were run on Dell PowerEdge R815 servers with AMD Opteron

processor 6378, Quad 16 core 2.4 GHz CPU, 32 cores, 512 GB RAM, and 2 x 300 GB

15K RPM SAS drives. We use the Unix time command to record the runtime and

maximum memory footprint of each tool. To compare our proposed algorithm against

the state-of-the-art, we compute fine-grained (k -mer) and coarse-grained evaluation

metrics for each dataset. For the coarse-grained metrics, we consider alignment-based

and assembly-based results. For mapping the long reads to its corresponding reference

genome, we use BLASR [26] due to its capability in detecting longer alignments.

2
https://github.com/PacificBiosciences/DevNet/wiki/E-coli-K12-MG1655-Hybrid-Assembly

3
https://github.com/PacificBiosciences/DevNet/wiki/Saccharomyces-cerevisiae-W303-Assembly-Contigs

4
https://gembox.cbcb.umd.edu/seqdata/afun_new_raw.tgz

92

https://github.com/PacificBiosciences/DevNet/wiki/E-coli-K12-MG1655-Hybrid-Assembly
https://github.com/PacificBiosciences/DevNet/wiki/Saccharomyces-cerevisiae-W303-Assembly-Contigs
https://gembox.cbcb.umd.edu/seqdata/afun_new_raw.tgz

5.3.3 Evaluation Metrics

5.3.3.1 k -mer-based

We use the popular k -mer counting tool Jellyfish [103] to compute the number

of unique k -mers, obtained after each error correction algorithm. For a given DNA

sequence, k -mers are overlapping substrings of length k. Unlike short reads, errors

in long reads are uniformly distributed across their length. As the probability of a

random error occurring multiple times is low, long reads result in large number of

unique k -mers. The authors in [25] reported that the set of common k -mers between

the highly accurate short reads and the erroneous long reads were crucial in improving

the quality of data for downstream analysis. Therefore, a correction algorithm that

reduces the number of k -mers and unique k -mers while increasing the number of valid

k -mers is desirable. Figure 5.3 gives an illustrative example of this idea using the

results of A. funestus, flowcell #16.

5.3.3.2 Alignment-based

After each method of correction, we align corrected long reads to its reference

genome using BLASR [26]. In addition to computing the number of aligned reads

and aligned bases, we evaluate percentage of matched bases by the ratio of total

number of matched bases and length of sequences in the long reads. We calculate

percent identity (PI) by the ratio of matches to alignment length. We also determine

the number of aligned reads with percent identity above a given threshold (say, 90%).

5.3.3.3 Assembly-based

One of the most important downstream applications of long reads is de novo

genome assembly. For this purpose, we use the assembler Canu [77], specifically

designed for noisy long reads. We then use QUAST [55] to evaluate the quality of

93

Figure 5.3: Distribution of k -mer frequency (k=17) in Anopheles funestus, flowcell
#16. The x and y-axes denote k -mer frequency and count of frequency, respec-
tively. The continued blue line and dashed red line represent k -mers generated from
short reads (SR) and original long reads (Original LR), respectively. As discussed
in Section 5.3.3.1, the dotted yellow line indicates an increase in valid or corrected
k -mers along with reduced low frequency k -mers. The error k -mers, shown in purple
dot-dashes, mostly comprise low frequency k -mers.

genome assembly. We measure the total number of contigs, length of the longest

contig, and total length, i.e., total number of bases in the assembly. We also report

the values of N50 (length for which the collection of all contigs of that length or

longer covers at least half an assembly), and NG50 (length for which the collection

of all contigs of that length or longer covers at least half the reference genome).

5.3.4 Comparative Analysis

We compare the performance of HECIL with existing hybrid error correction

tools such as proovread-2.14.0, LoRDEC-0.6, and CoLoRMap. We use the above-

mentioned k -mer-based, alignment-based, and assembly-based metrics to assess the

efficacy of each approach. The comparative results for k -mer-based and alignment-

based parameters are presented in Table 5.1. We report the parameters before cor-

rection (original) and after each method of error correction. As discussed earlier,

correction of long reads would reduce the total number of k -mers and unique number

94

of k -mers. Long reads corrected by HECIL generate the lowest number of k -mers,

with the exception of the data set A. funestus - flowcell 4, where it is still comparable

to the best results obtained from proovread. An increase in valid k -mers indicates

higher consensus to the accurate short reads, hence higher accuracy of the corrected

long reads. For all data sets, HECIL consistently produces more valid k -mers. To

evaluate the alignment-based metrics, we align the original and corrected long reads

of each data set to its corresponding reference genome. HECIL results in highest

number of aligned bases and reads, leading to highest quality of alignment.

We present the results of assembly-based metrics in Table 5.2. For E. coli and

yeast, HECIL generates more contiguous assembled long reads, compared to the

existing tools, except CoLoRMap. The size of the longest contig and the number of

bases in the assembled data are highest for our proposed approach. Furthermore,

the standard assembly quality parameters like N50, and NG50 have highest values

for HECIL. As discussed in [57], CoLoRMap performs better than proovread and

LoRDEC, when tested on E. coli and S. cerevisiae. HECIL outperforms the other

correction tools, with the exception of flowcell #4 of mosquito data set, where it still

exhibits comparable performance with respect to proovread. However, for alignment-

based metrics, it performs better than proovread in generating higher quality de novo

assembly.

Although performance of hybrid correction algorithms largely depends on the set

of high coverage short reads, we devise additional experiments to show that this is

not a significant constraint for HECIL. We downsample short reads by randomly

selecting 50%, 25%, and 12% of the data to be used for correction. In E. coli, this

results in a subset of short reads for correction with an average coverage of 62x, 33x,

and 18x, respectively. In Table 5.3, we present k -mer-based and alignment-based

parameters from correcting long reads of E. coli with the downsampled short reads

using HECIL. We observe that although higher coverage of underlying short reads

95

1 2 3 4 5
8.33e+07

8.43e+07

k-

m
er

s

E.
coli

1 2 3 4 5
2.62e+09

2.63e+09
S.
cerevisiae

1 2 3 4 5
7.77e+08

7.79e+08
A.
funestus
#1

1 2 3 4 5
2.27e+08

2.30e+08
A.
funestus
#4

1 2 3 4 5
2.79e+08

2.82e+08
A.
funestus
#16

1 2 3 4 5
7.76e+07

7.87e+07

un
iq

ue
 k

-m
er

s

1 2 3 4 5
1.87e+09

1.87e+09

1 2 3 4 5
6.48e+08

6.50e+08

1 2 3 4 5
2.04e+08

2.05e+08

1 2 3 4 5
2.48e+08

2.50e+08

1 2 3 4 5
3.13e+04

3.14e+04

al

ig
ne

d
 L

R

1 2 3 4 5
3.46e+05

3.46e+05

1 2 3 4 5
1.90e+05

1.91e+05

1 2 3 4 5
5.92e+04

5.93e+04

1 2 3 4 5
7.38e+04

7.41e+04

1 2 3 4 5
8.76e+07

8.88e+07

al

ig
ne

d
 b

as
es

1 2 3 4 5
1.25e+09

1.25e+09

1 2 3 4 5
6.76e+08

6.78e+08

1 2 3 4 5
2.36e+08

2.37e+08

1 2 3 4 5
2.82e+08

2.84e+08

1 2 3 4 5
88.40

89.80

%
 m

at
ch

ed
 b

as
es

1 2 3 4 5
85.60

86.50

1 2 3 4 5
85.10

87.90

1 2 3 4 5
87.20

89.30

1 2 3 4 5
86.10

87.50

1 2 3 4 5
Iteration

5.41e+03

5.49e+03

P
I >

 9
0

1 2 3 4 5
Iteration

7.26e+04

7.27e+04

1 2 3 4 5
Iteration

4.98e+04

5.10e+04

1 2 3 4 5
Iteration

2.25e+04

2.26e+04

1 2 3 4 5
Iteration

2.38e+04

2.39e+04

Figure 5.4: Improvement of evaluation metrics for different data sets with iterative
learning (up to 5 iterations). Note that number of k -mers and number of unique
k -mers are monotonically decreasing with increasing number of iterations, whereas
the other metrics consistently show monotonic increment.

generates better results, we still achieve comparable results while using lower coverage

reads. We further determine assembly-based parameters from the lowest coverage

(18x or 12%) short reads, as shown in Table 5.2. It is evident that HECIL still

outperforms the other tools and is least affected by the diminished coverage of short

reads. Hence, HECIL can be potentially used to attain good results in projects that

do not have high coverage short read data readily available (e.g., larger eukaryotic

genomes processed mostly with long reads).

In Table 5.4, we compare the runtimes and maximum memory usage incurred

in correcting each data set using proovread, LoRDEC, CoLoRMap, and HECIL.

Runimes and maximum memory were recorded using the time command in Unix.

proovread, LoRDEC, and CoLoRMap were run with 16 threads. The workload of

HECIL was split into 20 concurrent tasks, that were run in parallel. Computa-

tion time of hybrid error correction methods is mainly dominated by the underlying

96

steps of generating intermediate data. For instance, a prerequisite of proovread,

CoLoRMap, and HECIL is the mapping of short reads to the long reads, that ac-

counts for a significant fraction of the overall runtime. Similarly, LoRDEC and

CoLoRMap construct a graph data structure, which demands high computational

resources. However, LoRDEC uses the efficient GATB library [3], which lowers the

overhead, as shown in Table 5.4. Quick correction, the first step of HECIL, prunes

the search space before running the core algorithm. Although our tool incurs higher

computation time than LoRDEC, it is significantly faster than the other correction

methods and generates overall higher quality corrected long reads.

5.3.5 Effect Of Iterative Learning

As the runtime of HECIL is comparable to the fastest tool (Table 5.4), we lever-

age our proposed iterative learning scheme to further improve its correction accuracy.

We select a high-confidence cut-off of 85 percentile, that is, α = 0.85. The results ob-

tained after each iterative correction of HECIL is presented in Figure 5.4. For each

data set (each column), we observe that the evaluation metrics: number of k -mers,

number of unique k -mers, number of aligned long reads, number of aligned bases, per-

cent of matched bases, and number of long reads with percent identity higher than

90%, improve after each iteration, until one of the termination criteria is reached.

For the termination criteria, we select |ε| as 0.02 and choose M ′/M = 0.5, which,

using (5.2) results in at least n = 5 iterations. Hence, the iterative learning-based

extension of HECIL further improves corrected read quality.

5.4 Conclusion

Third-generation sequencing techniques, particularly Single-Molecule Real-Time

(SMRT) sequencing, is revolutionizing modern biology by generating considerably

97

longer DNA sequences with lower amplification errors when compared to its second-

generation counterparts. The usefulness of current long read data, however, is re-

stricted due to karge amount of sequencing error. Thus, it is crucial to apply correc-

tion methods prior to applications like de novo genome assembly.

Here we propose a novel approach of hybrid error correction, called HECIL,

which corrects erroneous long reads based on optimal combination of base quality

and mapping identity of aligned short reads. We further propose an iterative learning

framework that leverages information from prior iterations in successive iterative cor-

rections. When tested on real data sets of E. coli, yeast, and the malarial mosquito

Anopheles funestus, HECIL exhibits better performance than the state-of-the-art

error correction tools proovread, LoRDEC, and CoLoRMap, for an overwhelming

majority of evaluation metrics. The low computation time of HECIL enabled us

to achieve superior performance within acceptable time. To the best of our knowl-

edge, an iterative strategy for improving correction quality via informed realign-

ment is proposed in this work for the first time. The method shows potential using

the HECIL core algorithm, but can also be seamlessly integrated with other error

correction algorithms.

98

TABLE 5.1:

COMPARISON OF ALIGNMENT BASED METRICS

Data Evaluation Metric Original proovread LoRDEC CoLoRMap HECIL (Iteration 1)

E. coli

k -mers 87,200,204 84,416,389 86,425,411 86,588,771 84,294,561
unique k -mers 81,523,648 78,925,288 80,708,419 80,399,425 78,693,704
valid k -mers 14,531,881 11,463,127 10,240,970 15,026,950 15,973,826
aligned reads 31,071 23,453 30,837 31,271 31,332
aligned bases 86,642,500 71,320,858 79,365,407 83,344,272 87,582,014
% matched bases 76.9 87.9 85.2 87.5 88.4

reads with PI > 90% 4,190 1,742 4,832 4,430 5,408

S. cerevisiae

k -mers 2,630,997,642 2,627,421,712 2,626,738,639 2,628,138,521 2,626,390,081
unique k -mers 1,870,396,869 1,871,451,237 1,868,238,946 1,869,232,456 1,867,828,519
valid k -mers 36,904,129 32,436,294 30,534,546 37,797,300 39,452,743
aligned reads 224,694 222,976 221,692 223,641 346,242
aligned bases 1,229,724,663 1,205,706,114 1,171,490,123 1,207,729,568 1,247,616,674
% matched bases 78.8 83.1 83.4 85.6 85.6

reads with PI > 90% 70,346 27,342 70,529 42,136 72,562

A. funestus

k -mers 809,767,884 778,931,843 782,845,319 783,270,385 778,574,946
unique k -mers 692,831,731 649,989,172 653,931,808 662,366,838 649,764,906
valid k -mers 211,908,809 172,074,427 229,625,736 222,195,325 242,957,349

aligned long reads 190,217 94,536 190,240 190,166 190,229
(Flowcell # 1) # aligned bases 671,881,278 401,850,047 655,072,426 660,848,583 676,055,060

% matched bases 84.0 81.4 83.1 82.1 85.1
reads with PI > 90% 30,487 4,096 36,364 13,220 49,810

A. funestus

k -mers 240,722,003 229,582,178 231,586,667 233,953,119 229,611,352
unique k -mers 216,327,700 205,053,236 205,883,182 206,986,374 205,064,188
valid k -mers 80,612,612 72,716,589 82,568,831 81,027,437 83,788,157

aligned long reads 59,163 32,726 59,165 59,159 59,177
(Flowcell # 4) # aligned bases 231,326,514 149,049,154 234,098,182 233,435,402 235,620,667

% matched bases 86.3 83.2 87.0 85.6 87.2
reads with PI > 90% 20,253 2,094 22,042 12,526 22,483

A. funestus

k -mers 295,751,035 282,128,190 283,971,486 286,819,483 281,523,755
unique k -mers 265,998,542 250,267,133 252,291,701 254,293,778 249,528,780
valid k -mers 96,317,177 86,396,798 106,713,483 101,431,900 109,954,860

aligned long reads 73,779 43,530 73,757 73,750 73,790
(Flowcell # 16) No. of aligned bases 278,976,792 190,054,632 280,699,552 280,831,201 282,244,589

% matched bases 84.3 82.7 85.6 84.5 86.1
reads with PI > 90% 22,111 2,164 22,945 10,418 23,771

99

TABLE 5.2:

COMPARISON OF ASSEMBLY BASED PARAMETERS

Data Evaluation Metric Original proovread LoRDEC CoLoRMap HECIL (Iteration 1)

E. coli

contigs 182 26 24 19 19
Largest contig 69,266 605,792 920,903 1,089,140 1,223,474
Total length 3,508,197 4,629,719 4,623,137 4,624,793 4,838,971

N50 24,663 231,774 226,456 239,066 256,830
NG50 17,847 231,774 226,456 239,066 294,635

Contigs 182 29 28 24 20

E. coli
Largest contig 69,266 567,484 885,819 813,262 1,204,631

(Downsampled)
Total length 3,508,197 4,235,031 4,068,085 4,036,161 4,596,013

N50 24,663 189,712 179,638 184,367 232,826
NG50 17,847 212,621 190,621 210,913 267,311

S. cerevisiae

contigs 26 32 28 24 24
Largest contig 1,543,990 1,537,979 1,552,711 1,555,857 1,558,190
Total length 12,341,981 12,485,995 12,497,078 12,315,869 12,435,702

N50 777,602 777,713 818,962 932,935 1,018,591
NG50 777,602 777,713 818,962 932,935 1,538,190

A. funestus

contigs 256 64 65 107 62
Largest contig 33,452 17,794 35,499 38,298 100,425
Total length 3,149,449 135,454 764,805 831,010 5,229,535

(Flowcell # 1) N50 13,989 12,703 14,033 9,265 14,403
NG50 33,452 17,794 35,499 38,298 100,425

A. funestus

contigs 61 60 60 59 59
Largest contig 61,535 22,554 56,919 40,286 70,241
Total length 852,550 100,624 453,058 581,736 900,293

(Flowcell # 4) N50 16,571 15,731 15,783 16,362 16,618
NG50 61,535 22,554 56,919 40,286 70,241

A. funestus

contigs 86 63 68 77 59
Largest contig 34,761 19,301 37,300 34,147 37,851
Total length 506,571 101,672 514,942 503,179 557,165

(Flowcell # 16) N50 11,367 12,445 12,275 11,797 12,633
NG50 34,761 19,301 37,300 34,147 37,851

100

TABLE 5.3

COMPARISON OF METRICS WITH DOWNSAMPLING

Data Evaluation Metric All SRs 50% SRs 25% SRs 12% SRs

E. coli

k -mers 84,294,561 84,121,231 83,986,262 83,909,706

unique k -mers 78,693,704 78,292,463 78,097,941 78,008,319

valid k -mers 15,973,826 15,889,155 15,737,641 15,576,317

aligned reads 31,332 31,328 31,322 31,318

aligned bases 87,582,014 87,359,227 87,288,475 87,196,236

% matched bases 88.4 88.4 88.3 88.3

PI 99.7 99.7 99.7 99.6

reads with PI > 90% 5,408 5,358 5,298 5,223

101

TABLE 5.4

COMPARISON OF RUNTIME AND MAXIMUM MEMORY

FOOTPRINT

Data Method Runtime (hh:mm:ss) Memory (GB)

E. coli

proovread 6:15:37 11.4

LoRDEC 38:53 6.2

CoLoRMap 2:48:23 28.9

HECIL 58:37 8.4

S. cerevisiae

proovread 20:54:15 14.5

LoRDEC 3:43:12 6.1

CoLoRMap 7:57:49 38.2

HECIL 4:34:07 9.6

A. funestus

proovread 76:13:47 8.8

LoRDEC 35:08:13 3.1

(Flowcell # 1) CoLoRMap 90:50:12 23.4

HECIL 41:16:28 7.4

A. funestus

proovread 36:32:25 7.3

LoRDEC 11:25:05 6.7

(Flowcell # 4) CoLoRMap 32:18:30 20.7

HECIL 15:04:39 6.2

A. funestus

proovread 20:07:43 7.1

LoRDEC 12:54:57 3.0

(Flowcell # 16) CoLoRMap 34:21:50 23.6

HECIL 15:49:33 6.1

102

CHAPTER 6

SUMMARY AND FUTURE WORK

6.1 Summary

Significant reduction in the cost of genome sequencing has led to an exponential

growth of genome data, typically on the order of Giga basepairs (Gbp) per machine

day. The pace of analyzing these ever-increasing data is limited by the rate of com-

puting throughput. On the other hand, fidelity of such data is often degraded due

to high volumes of missing and erroneous values. To mitigate the first challenge,

we develop efficient frameworks that expedite analysis of big genome data. In this

context, we also design hybrid predictive models to reduce cluster and cloud-based

resource utilization when processing such data. To address the second challenge, we

formulate novel data-driven algorithms to impute missing data and correct erroneous

values in genomic applications.

Cluster, cloud, and grid computing have been extensively used to accelerate anal-

ysis of large-scale data. In Chapter 2, we show that efficient partitioning of data

and merging of related workflows, in a distributed computing setup, can significantly

improve the rate of data analysis. We propose three approaches of data partitioning:

granularity, individual, and alignment-based partitioning to determine the optimal

design of the workflow. We also observe that merging sequential but interrelated

workflows can benefit from caching and further improve runtime. We propose full

workflow caching, choke-eliminated, and merged partition-based methods of work-

flow fusion to enhance the level of concurrency during data processing. We test the

103

efficiency of our framework on the two most important applications in comparative

genomics: genome alignment and variant detection. With optimal data partitioning

and workflow fusion strategies, our framework significantly reduced the runtime of

data analysis from 12 days to less than 2 hours, when tested on a data set of size

50 GB. We further demonstrate its utility in studying genomes of real data sets,

particularly the ecologically and economically important northern red oak plant.

Commercial cloud services have gained much prominence in offering computa-

tional resources to manage and analyze large-scale projects in various domains of

research. However, for harnessing such resources, end-users have to determine the

runtime configurations, such as number of tasks, number of threads allocated to each

task, data partitioning strategy, and so forth. In Chapter 3, we design a hybrid pre-

dictive model that estimates an optimal configuration to reduce runtime and cost of

operation while executing large workloads on clusters and clouds. We incorporate

regression-based technique to design an application-specific model that is embed-

ded into a more generic system-level model. For a given class of applications that

support both multithreading and distributed computing, this multi-tiered model in-

fers optimal configurations to balance thread-level and task-level parallelisms. The

model exhibits high predictive capability and enables optimal resource utilization for

services like Amazon Elastic Compute Cloud and Microsoft Azure.

Genome wide association study (GWAS) is an approach of associating genetic

variations with certain dieaseses. In the era of personalized medicine, GWAS offers

a promising avenue for customized treatment of disease. It relies on the method of

haplotype phasing for detecting linked genes on the chromosome. The quality of

phasing is often degraded due to missing genotype data. Existing imputation tech-

niques for missing genotypes are either sluggish or require external reference data set,

not available for non-model organisms. In Chapter 4, we develop ADDIT (Accurate

Data-Driven Imputation Technique): an accurate, fast, lightweight genotype impu-

104

tation algorithm that is applicable for both model and non-model organisms. For

non-model organisms, we employ adaptive windows and trust metrics to include lo-

cal and global context while determining the missing value. For model organisms, we

use multi-class supervised learning algorithm to extricate information from the un-

derlying reference panels. We test the efficacy of ADDIT relative to state-of-the-art

imputation methods. When tested on real plant and human data sets, for varying

sizes of data, proportions of missing genotypes, and sizes of training samples, AD-

DIT consistently outperforms the leading tools Beagle, IMPUTE2, and LinkImpute

in terms of imputation accuracy, runtime, and memory footprint.

Third-generation sequencing techniques like PacBio and Oxford Nanopore pro-

duce long reads with reduced amplification errors. Despite the several advantages of

long reads in downstream analysis, their applicability is limited due to high error rate.

In Chapter 5, we present HECIL (Hybrid Error Correction using Iterative Learning),

a novel algorithm for hybrid correction of erroneous long reads. It determines an er-

ror correction policy by selecting accurate aligned short reads that exhibit optimal

combination of base quality and similarity to erroneous long reads. We perform a

comparative study against state-of-the-art hybrid error correction algorithms on real

data sets including E. coli, S. cerevisiae, and the malaria vector mosquito A. funes-

tus. HECIL exhibits superior performance in an overwhelming majority of evaluation

metrics. We also introduce a confidence-based iterative learning framework to fur-

ther improve correction accuracy. At each iteration, it uses updated context of long

reads from previous iterations to further investigate low-confidence corrections. We

demonstrate that the iterative learning formulation results in consistent improvement

of HECIL’s correction capabilities with each iteration, and significantly outperforms

competing methods.

105

6.2 Open Problems And Future Work

The data analysis framework presented in Chapter 2 can be extended to har-

ness resources from public cloud for large data sets. In addition to the runtime and

memory models in Chapter 3, designing an energy model would be a relevant ex-

tension. While designing the system-level predictive models, considering the nodes’

behavior such as failure profile and response time would make it more robust. A

natural extension of ADDIT and HECIL would be a multithreaded implementation

of the tools that can also support distributed computing to achieve higher speedup.

Although the multiclass classifier approach used in ADDIT-M generates accurate

imputations, there still remains a scope to investigate other data-driven supervised

learning approaches in Step 4 of the ADDIT-M algorithm. To determine the termi-

nation criterion for iterative learning in HECIL we propose the use of k -mer-based

metrics. A more generic reference-free method of variant detection, as shown in [85],

is a potential alternative approach. Finally, since a bulk of the computation time

of HECIL is incurred during alignment of short and long reads, a more efficient

method of generating the aligned information can reduce runtime of the iterative

stage of correction.

106

BIBLIOGRAPHY

1. Amazon Elastic Compute Cloud. https://aws.amazon.com/ec2/. [Online;

accessed 19-July-2014].

2. Windows Azure Cloud Platform. http://www.windowsazure.com. [Online;

accessed 19-July-2014].

3. GATB library. http://gatb-core.gforge.inria.fr. [Online; accessed 17-

February-2017].

4. Apache Hadoop. http://hadoop.apache.org. [Online; accessed 19-July-2014].

5. 1000 Genomes Project Consortium and others. A global reference for human

genetic variation. Nature, 526(7571):68–74, 2015.

6. A.-F. Adam-Blondon, O. Jaillon, S. Vezzulli, A. Zharkikh, M. Troggio, R. Ve-

lasco, J. Martinez-Zapater, et al. Genome sequence initiatives. Genetics, Ge-

nomics, and Breeding of Grapes, pages 211–234, 2011.

7. H.-S. Ahn, Y. Chen, and K. L. Moore. Iterative learning control: Brief survey

and categorization. IEEE Transactions on Systems, Man, and Cybernetics, Part

C (Applications and Reviews), 37(6):1099–1121, 2007.

8. R. Albers, E. Suijs, and P. H. de With. Triple-C: Resource-usage prediction

for semi-automatic parallelization of groups of dynamic image-processing tasks.

In Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE International

Symposium on, pages 1–8. IEEE, 2009.

9. A. Albert. Regression and the Moore-Penrose pseudoinverse. Elsevier, 1972.

107

https://aws.amazon.com/ec2/
http://www.windowsazure.com
http://gatb-core.gforge.inria.fr
http://hadoop.apache.org

10. M. Albrecht, P. Donnelly, P. Bui, and D. Thain. Makeflow: A portable abstrac-

tion for data intensive computing on clusters, clouds, and grids. In Proceedings

of the 1st ACM SIGMOD Workshop on Scalable Workflow Execution Engines

and Technologies, page 1. ACM, 2012.

11. M. Aly. Survey on multiclass classification methods. Neural Networks, pages

1–9, 2005.

12. N. Amann, D. H. Owens, and E. Rogers. Iterative learning control for discrete-

time systems with exponential rate of convergence. IEE Proceedings-Control

Theory and Applications, 143(2):217–224, 1996.

13. G. M. Amdahl. Validity of the single processor approach to achieving large

scale computing capabilities. In Proceedings of the April 18-20, 1967, spring

joint computer conference, pages 483–485. ACM, 1967.

14. K. F. Au, J. G. Underwood, L. Lee, and W. H. Wong. Improving PacBio long

read accuracy by short read alignment. PloS one, 7(10):e46679, 2012.

15. D. R. Bentley. Whole-genome re-sequencing. Current opinion in genetics &

development, 16(6):545–552, 2006.

16. B. L. Browning and S. R. Browning. A fast, powerful method for detecting

identity by descent. The American Journal of Human Genetics, 88(2):173–182,

2011.

17. B. L. Browning and S. R. Browning. Genotype imputation with millions of

reference samples. The American Journal of Human Genetics, 98(1):116–126,

2016.

18. S. R. Browning and B. L. Browning. Haplotype phasing: existing methods and

new developments. Nature Reviews Genetics, 12(10):703–714, 2011.

108

19. P. Bui, D. Rajan, B. Abdul-Wahid, J. Izaguirre, and D. Thain. Work queue+

python: A framework for scalable scientific ensemble applications. In Workshop

on Python for High Performance and Scientific Computing at SC11, 2011.

20. P. Bui, D. Rajan, B. Abdul-Wahid, J. Izaguirre, and D. Thain. Work queue+

python: A framework for scalable scientific ensemble applications. In Workshop

on python for high performance and scientific computing at sc11, 2011.

21. M. Burrows and D. Wheeler. A block-sorting lossless data compression algo-

rithm. 1994.

22. M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algo-

rithm. 1994.

23. R. Buyya and M. Murshed. Gridsim: A toolkit for the modeling and simu-

lation of distributed resource management and scheduling for grid computing.

Concurrency and computation: practice and experience, 14(13-15):1175–1220,

2002.

24. R. L. Cairn, M. Stoneking, and A. . Wilson. Mitochondrial dna and human

evolution. Nature, 325(3), 1987.

25. A. B. Carvalho, E. G. Dupim, and G. Goldstein. Improved assembly of noisy

long reads by k-mer validation. Genome Research, 26(12):1710–1720, 2016.

26. M. J. Chaisson and G. Tesler. Mapping single molecule sequencing reads us-

ing basic local alignment with successive refinement (BLASR): application and

theory. BMC bioinformatics, 13(1):238, 2012.

27. G. M. Cherf, K. R. Lieberman, H. Rashid, C. E. Lam, K. Karplus, and M. Ake-

son. Automated forward and reverse ratcheting of DNA in a nanopore at 5-A

precision. Nature biotechnology, 30(4):344–348, 2012.

109

28. C.-S. Chin, J. Sorenson, J. B. Harris, W. P. Robins, R. C. Charles, R. R. Jean-

Charles, J. Bullard, D. R. Webster, A. Kasarskis, P. Peluso, et al. The origin

of the Haitian cholera outbreak strain. New England Journal of Medicine, 364

(1):33–42, 2011.

29. C.-S. Chin, D. H. Alexander, P. Marks, A. A. Klammer, J. Drake, C. Heiner,

A. Clum, A. Copeland, J. Huddleston, E. E. Eichler, et al. Nonhybrid, finished

microbial genome assemblies from long-read SMRT sequencing data. Nature

methods, 10(6):563–569, 2013.

30. E. K. Chong and S. H. Zak. An introduction to optimization, volume 76. John

Wiley & Sons, 2013.

31. O. Choudhury, N. Hazekamp, D. Thain, and S. Emrich. Accelerating Compar-

ative Genomics Workflows in a Distributed Environment with Optimized Data

Partitioning. In C4Bio at CCGrid.

32. O. Choudhury, N. Hazekamp, D. Thain, and S. Emrich. Accelerating com-

parative genomics workflows in a distributed environment with optimized data

partitioning. C4Bio for CCGrid, 2014.

33. O. Choudhury, N. Hazekamp, D. Thain, and S. Emrich. Accelerating com-

parative genomics workflows in a distributed environment with optimized data

partitioning and workflow fusion. Scalable Computing: Practice and Experience,

16(1):53–70, 2015.

34. O. Choudhury, D. Rajan, N. Hazekamp, S. Gesing, D. Thain, and S. Emrich.

Balancing thread-level and task-level parallelism for data-intensive workloads

on clusters and clouds. In Cluster Computing (CLUSTER), 2015 IEEE Inter-

national Conference on, pages 390–393. IEEE, 2015.

110

35. O. Choudhury, A. Chakrabarty, and S. J. Emrich. Hapi-gen: Highly accurate

phasing and imputation of genotype data. In Proceedings of the 7th ACM In-

ternational Conference on Bioinformatics, Computational Biology, and Health

Informatics, pages 78–87. ACM, 2016.

36. O. Choudhury, A. Chakrabarty, and S. J. Emrich. Highly accurate and efficient

data-driven methods for genotype imputation. IEEE/ACM Transactions on

Computational Biology and Bioinformatics, PP(99):1–1, 2017. ISSN 1545-5963.

doi: 10.1109/TCBB.2017.2708701.

37. P. J. Cock, C. J. Fields, N. Goto, M. L. Heuer, and P. M. Rice. The Sanger

FASTQ file format for sequences with quality scores, and the Solexa/Illumina

FASTQ variants. Nucleic acids research, 38(6):1767–1771, 2010.

38. O. Danecek, A. Auton, G. Abecasis, C. A. Albers, E. Banks, M. A. DePristo,

R. E. Handsaker, G. Lunter, G. T. Marth, S. T. Sherry, et al. The variant call

format and vcftools. Bioinformatics, 27(15):2156–2158, 2011.

39. A. Darling, L. Carey, and W.-c. Feng. The design, implementation, and evalu-

ation of mpiBLAST. proceedings of ClusterWorld, 2003:13–15, 2003.

40. J. Dean and S. Ghemawat. MapReduce: simplified data processing on large

clusters. Communications of the ACM, 51(1):107–113, 2008.

41. A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from

incomplete data via the EM algorithm. Journal of the Royal Statistical Society.

Series B (methodological), pages 1–38, 1977.

42. M. DePristo, E. Banks, R. Poplin, K. Garimella, J. Maguire, C. Hartl, A. Philip-

pakis, G. del Angel, M. Rivas, M. Hanna, et al. A framework for variation

discovery and genotyping using next-generation DNA sequencing data. Nature

genetics, 43(5):491–498, 2011.

111

43. R. Duan, F. Nadeem, J. Wang, Y. Zhang, R. Prodan, and T. Fahringer. A

hybrid intelligent method for performance modeling and prediction of workflow

activities in grids. In Proceedings of the 2009 9th IEEE/ACM International

Symposium on Cluster Computing and the Grid, pages 339–347. IEEE Computer

Society, 2009.

44. R. P. Ebstein, S. Israel, S. H. Chew, S. Zhong, and A. Knafo. Genetics of human

social behavior. Neuron, 65(6):831–844, 2010.

45. J. Eid, A. Fehr, J. Gray, K. Luong, J. Lyle, G. Otto, P. Peluso, D. Rank, P. Bay-

bayan, B. Bettman, et al. Real-time DNA sequencing from single polymerase

molecules. Science, 323(5910):133–138, 2009.

46. M. Eisenstein. Oxford Nanopore announcement sets sequencing sector abuzz,

2012.

47. J. Ekanayake, S. Pallickara, and G. Fox. Mapreduce for data intensive scientific

analyses. In eScience, 2008. eScience’08. IEEE Fourth International Conference

on, pages 277–284. IEEE, 2008.

48. R. Ekblom and J. Galindo. Applications of next generation sequencing in molec-

ular ecology of non-model organisms. Heredity, 107(1):1–15, 2011.

49. K. A. Frazer, D. G. Ballinger, D. R. Cox, D. A. Hinds, L. L. Stuve, R. A.

Gibbs, J. W. Belmont, A. Boudreau, P. Hardenbol, S. M. Leal, et al. A second

generation human haplotype map of over 3.1 million SNPs. Nature, 449(7164):

851–861, 2007.

50. J. Freese. Genetics and the social science explanation of individual outcomes 1.

American Journal of Sociology, 114(S1):S1–S35, 2008.

112

51. W. Gentzsch. Sun grid engine: Towards creating a compute power grid. In Clus-

ter Computing and the Grid, 2001. Proceedings. First IEEE/ACM International

Symposium on, pages 35–36. IEEE, 2001.

52. S. Goodwin, J. Gurtowski, S. Ethe-Sayers, P. Deshpande, M. C. Schatz, and

W. R. McCombie. Oxford Nanopore sequencing, hybrid error correction, and

de novo assembly of a eukaryotic genome. Genome research, 25(11):1750–1756,

2015.

53. R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella. Multi-

resource packing for cluster schedulers. In ACM SIGCOMM Computer Com-

munication Review, volume 44, pages 455–466. ACM, 2014.

54. R. L. Grossman. The case for cloud computing. IT professional, 11(2):23–27,

2009.

55. A. Gurevich, V. Saveliev, N. Vyahhi, and G. Tesler. QUAST: quality assessment

tool for genome assemblies. Bioinformatics, 29(8):1072–1075, 2013.

56. T. Hackl, R. Hedrich, J. Schultz, and F. Förster. proovread: large-scale high-

accuracy PacBio correction through iterative short read consensus. Bioinfor-

matics, 30(21):3004–3011, 2014.

57. E. Haghshenas, F. Hach, S. C. Sahinalp, and C. Chauve. CoLoRMap: Cor-

recting Long Reads by Mapping short reads. Bioinformatics, 32(17):i545–i551,

2016.

58. O. Harismendy, P. C. Ng, R. L. Strausberg, X. Wang, T. B. Stockwell, K. Y.

Beeson, N. J. Schork, S. S. Murray, E. J. Topol, S. Levy, et al. Evaluation of

next generation sequencing platforms for population targeted sequencing stud-

ies. Genome Biol, 10(3):R32, 2009.

113

59. M. Hasegawa, H. Kishino, and T.-a. Yano. Dating of the human-ape splitting

by a molecular clock of mitochondrial dna. Journal of molecular evolution, 22

(2):160–174, 1985.

60. S. Hearne, C. Chen, E. Buckler, and S. Mitchell. Unimputed GBS derived SNPs

for maize landrace accessions represented in the SeeD-maize GWAS panel, 2014.

[Online; accessed 21-February-2016].

61. L. A. Hindorff, P. Sethupathy, H. A. Junkins, E. M. Ramos, J. P. Mehta, F. S.

Collins, and T. A. Manolio. Potential etiologic and functional implications of

genome-wide association loci for human diseases and traits. Proceedings of the

National Academy of Sciences, 106(23):9362–9367, 2009.

62. M. M. Holland and T. J. Parsons. Mitochondrial dna sequence analysis-

validation and use for forensic casework. Forensic science review, 11(1):21–50,

1999.

63. B. Howie, C. Fuchsberger, M. Stephens, J. Marchini, and G. R. Abecasis. Fast

and accurate genotype imputation in genome-wide association studies through

pre-phasing. Nature Genetics, 44(8):955–959, 2012.

64. B. N. Howie, P. Donnelly, and J. Marchini. A flexible and accurate genotype

imputation method for the next generation of genome-wide association studies.

PLoS Genet, 5(6):e1000529, 2009.

65. C.-W. Hsu and C.-J. Lin. A comparison of methods for multiclass support vector

machines. IEEE transactions on Neural Networks, 13(2):415–425, 2002.

66. S. Ibrahim, B. He, and H. Jin. Towards pay-as-you-consume cloud computing.

In Services Computing (SCC), 2011 IEEE International Conference on, pages

370–377. IEEE, 2011.

114

67. M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed data-

parallel programs from sequential building blocks. In ACM SIGOPS operating

systems review, volume 41, pages 59–72. ACM, 2007.

68. O. Jaillon, J.-M. Aury, B. Noel, A. Policriti, C. Clepet, A. Casagrande,

N. Choisne, S. Aubourg, N. Vitulo, C. Jubin, et al. The grapevine genome

sequence suggests ancestral hexaploidization in major angiosperm phyla. Na-

ture, 449(7161):463–467, 2007.

69. M. Janitz. Next-generation genome sequencing: towards personalized medicine.

John Wiley & Sons, 2011.

70. S. A. Jarvis, D. P. Spooner, H. N. L. C. Keung, J. Cao, S. Saini, and G. R.

Nudd. Performance prediction and its use in parallel and distributed computing

systems. Future Generation Computer Systems, 22(7):745–754, 2006.

71. M. A. Jobling and P. Gill. Encoded evidence: Dna in forensic analysis. Nature

Reviews Genetics, 5(10):739–751, 2004.

72. S. Kawamura, F. Miyazaki, and S. Arimoto. Iterative learning control for robotic

systems. In Proc. of IECON, volume 84, pages 393–398, 1984.

73. D. R. Kelley, M. C. Schatz, and S. L. Salzberg. Quake: quality-aware detection

and correction of sequencing errors. Genome biology, 11(11):R116, 2010.

74. D. C. Koboldt, K. Chen, T. Wylie, D. E. Larson, M. D. McLellan, E. R. Mardis,

G. M. Weinstock, R. K. Wilson, and L. Ding. VarScan: variant detection in

massively parallel sequencing of individual and pooled samples. Bioinformatics,

25(17):2283–2285, 2009.

75. A. Kong, G. Masson, M. L. Frigge, A. Gylfason, P. Zusmanovich, G. Thorleifs-

son, P. I. Olason, A. Ingason, S. Steinberg, T. Rafnar, et al. Detection of sharing

115

by descent, long-range phasing and haplotype imputation. Nature Genetics, 40

(9):1068–1075, 2008.

76. S. Koren, M. C. Schatz, B. P. Walenz, J. Martin, J. T. Howard, G. Ganapathy,

Z. Wang, D. A. Rasko, W. R. McCombie, E. D. Jarvis, et al. Hybrid error

correction and de novo assembly of single-molecule sequencing reads. Nature

biotechnology, 30(7):693–700, 2012.

77. S. Koren, B. P. Walenz, K. Berlin, J. R. Miller, N. H. Bergman, and A. M.

Phillippy. Canu: scalable and accurate long-read assembly via adaptive k-mer

weighting and repeat separation. bioRxiv, page 071282, 2017.

78. J. Korlach, K. P. Bjornson, B. P. Chaudhuri, R. L. Cicero, B. A. Flusberg,

J. J. Gray, D. Holden, R. Saxena, J. Wegener, and S. W. Turner. Real-time

DNA sequencing from single polymerase molecules. Methods in enzymology,

472:431–455, 2010.

79. I. Lanc, P. Bui, D. Thain, and S. Emrich. Adapting bioinformatics applica-

tions for heterogeneous systems: a case study. Concurrency and Computation:

Practice and Experience, 2012.

80. B. Langmead and S. L. Salzberg. Fast gapped-read alignment with Bowtie 2.

Nature methods, 9(4):357–359, 2012.

81. B. Langmead and S. L. Salzberg. Fast gapped-read alignment with Bowtie 2.

Nature methods, 9(4):357–359, 2012.

82. B. Langmead, M. C. Schatz, J. Lin, M. Pop, and S. L. Salzberg. Searching for

SNPs with cloud computing. Genome biology, 10(11):R134, 2009.

83. B. Langmead, C. Trapnell, M. Pop, S. L. Salzberg, et al. Ultrafast and memory-

116

efficient alignment of short DNA sequences to the human genome. Genome Biol,

10(3):R25, 2009.

84. M. Lawniczak, S. Emrich, A. Holloway, A. Regier, M. Olson, B. White, S. Red-

mond, L. Fulton, E. Appelbaum, J. Godfrey, et al. Widespread divergence be-

tween incipient Anopheles gambiae species revealed by whole genome sequences.

Science, 330(6003):512–514, 2010.

85. R. M. Leggett, R. H. Ramirez-Gonzalez, W. Verweij, C. G. Kawashima, Z. Iqbal,

J. D. Jones, M. Caccamo, and D. MacLean. Identifying and classifying trait

linked polymorphisms in non-reference species by walking coloured de Bruijn

graphs. PloS one, 8(3):e60058, 2013.

86. T. J. Ley, E. R. Mardis, L. Ding, B. Fulton, M. D. McLellan, K. Chen, D. Dool-

ing, B. H. Dunford-Shore, S. McGrath, M. Hickenbotham, et al. Dna sequencing

of a cytogenetically normal acute myeloid leukaemia genome. Nature, 456(7218):

66–72, 2008.

87. H. Li. Aligning sequence reads, clone sequences and assembly contigs with

BWA-MEM. arXiv preprint arXiv:1303.3997, 2013.

88. H. Li and R. Durbin. Fast and accurate short read alignment with Burrows–

Wheeler transform. Bioinformatics, 25(14):1754–1760, 2009.

89. H. Li and R. Durbin. Fast and accurate short read alignment with Burrows–

Wheeler transform. Bioinformatics, 25(14):1754–1760, 2009.

90. H. Li and R. Durbin. Fast and accurate long-read alignment with Burrows–

Wheeler transform. Bioinformatics, 26(5):589–595, 2010.

91. H. Li and N. Homer. A survey of sequence alignment algorithms for next-

generation sequencing. Briefings in bioinformatics, 11(5):473–483, 2010.

117

92. H. Li, J. Ruan, and R. Durbin. Mapping short dna sequencing reads and calling

variants using mapping quality scores. Genome research, 18(11):1851–1858,

2008.

93. H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth,

G. Abecasis, R. Durbin, et al. The sequence alignment/map format and SAM-

tools. Bioinformatics, 25(16):2078–2079, 2009.

94. K.-B. Li. ClustalW-MPI: ClustalW analysis using distributed and parallel com-

puting. Bioinformatics, 19(12):1585–1586, 2003.

95. N. Li and M. Stephens. Modeling linkage disequilibrium and identifying recom-

bination hotspots using single-nucleotide polymorphism data. Genetics, 165(4):

2213–2233, 2003.

96. R. Li, Y. Li, K. Kristiansen, and J. Wang. Soap: short oligonucleotide alignment

program. Bioinformatics, 24(5):713–714, 2008.

97. R. Li, Y. Li, X. Fang, H. Yang, J. Wang, K. Kristiansen, and J. Wang. SNP

detection for massively parallel whole-genome resequencing. Genome research,

19(6):1124–1132, 2009.

98. R. Li, Y. Li, X. Fang, H. Yang, J. Wang, K. Kristiansen, and J. Wang. SNP

detection for massively parallel whole-genome resequencing. Genome research,

19(6):1124–1132, 2009.

99. R. Li, C. Yu, Y. Li, T.-W. Lam, S.-M. Yiu, K. Kristiansen, and J. Wang.

SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics,

25(15):1966–1967, 2009.

100. M. Litzkow, M. Livny, and M. Mutka. Condor-a hunter of idle workstations. In

118

Distributed Computing Systems, 1988., 8th International Conference on, pages

104–111. IEEE, 1988.

101. T. Magdon-Ismail, M. Nelson, R. Cheveresan, D. Scales, A. King, P. Vandrovec,

and R. McDougall. Toward an elastic elephant enabling hadoop for the cloud.

VMware Tech. J, 2013.

102. E. A. Manrao, I. M. Derrington, A. H. Laszlo, K. W. Langford, M. K. Hopper,

N. Gillgren, M. Pavlenok, M. Niederweis, and J. H. Gundlach. Reading DNA

at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA

polymerase. Nature biotechnology, 30(4):349–353, 2012.

103. G. Marçais and C. Kingsford. A fast, lock-free approach for efficient parallel

counting of occurrences of k-mers. Bioinformatics, 27(6):764–770, 2011.

104. E. R. Mardis. The impact of next-generation sequencing technology on genetics.

Trends in genetics, 24(3):133–141, 2008.

105. M. Margulies, M. Egholm, W. E. Altman, S. Attiya, J. S. Bader, L. A. Bemben,

J. Berka, M. S. Braverman, Y.-J. Chen, Z. Chen, et al. Genome sequencing

in microfabricated high-density picolitre reactors. Nature, 437(7057):376–380,

2005.

106. A. Matsunaga and J. A. Fortes. On the use of machine learning to predict the

time and resources consumed by applications. In Proceedings of the 2010 10th

IEEE/ACM International Conference on Cluster, Cloud and Grid Computing,

pages 495–504. IEEE Computer Society, 2010.

107. K. Megy, S. J. Emrich, D. Lawson, D. Campbell, E. Dialynas, D. S. Hughes,

G. Koscielny, C. Louis, R. M. MacCallum, S. N. Redmond, et al. VectorBase:

improvements to a bioinformatics resource for invertebrate vector genomics.

Nucleic acids research, page gkr1089, 2011.

119

108. C. Meldrum, M. A. Doyle, and R. W. Tothill. Next-generation sequencing for

cancer diagnostics: a practical perspective. Clin Biochem Rev, 32(4):177–195,

2011.

109. M. L. Metzker. Sequencing technologiesthe next generation. Nature reviews

genetics, 11(1):31–46, 2010.

110. A. Mikhchi, M. Honarvar, N. E. J. Kashan, and M. Aminafshar. Assessing and

comparison of different machine learning methods in parent-offspring trios for

genotype imputation. Journal of theoretical biology, 399:148–158, 2016.

111. M. R. Miller, J. P. Dunham, A. Amores, W. A. Cresko, and E. A. Johnson.

Rapid and cost-effective polymorphism identification and genotyping using re-

striction site associated dna (rad) markers. Genome Research, 17(2):240–248,

2007.

112. D. Money, K. Gardner, Z. Migicovsky, H. Schwaninger, G.-Y. Zhong, and

S. Myles. LinkImpute: Fast and Accurate Genotype Imputation for Nonmodel

Organisms. G3: Genes, Genomes, Genetics, 5(11):2383–2390, 2015.

113. G. E. Moore et al. Cramming more components onto integrated circuits. Pro-

ceedings of the IEEE, 86(1):82–85, 1998.

114. C. Moretti, J. Bulosan, D. Thain, and P. J. Flynn. All-pairs: An abstraction for

data-intensive cloud computing. In Parallel and Distributed Processing, 2008.

IPDPS 2008. IEEE International Symposium on, pages 1–11. IEEE, 2008.

115. D. G. Murray, M. Schwarzkopf, C. Smowton, S. Smith, A. Madhavapeddy, and

S. Hand. CIEL: a universal execution engine for distributed data-flow comput-

ing. In Proc. 8th ACM/USENIX Symposium on Networked Systems Design and

Implementation, pages 113–126, 2011.

120

116. D. E. Neafsey, G. K. Christophides, F. H. Collins, S. J. Emrich, M. C. Fontaine,

W. Gelbart, M. W. Hahn, P. I. Howell, F. C. Kafatos, D. Lawson, et al. The evo-

lution of the anopheles 16 genomes project. G3: Genes— Genomes— Genetics,

3(7):1191–1194, 2013.

117. L. Pireddu, S. Leo, and G. Zanetti. SEAL: a distributed short read mapping

and duplicate removal tool. Bioinformatics, 27(15):2159–2160, 2011.

118. K. Ranganathan and I. Foster. Decoupling computation and data scheduling in

distributed data-intensive applications. In High Performance Distributed Com-

puting, 2002. HPDC-11 2002. Proceedings. 11th IEEE International Symposium

on, pages 352–358. IEEE, 2002.

119. J. Reis-Filho. Next-generation sequencing. Breast Cancer Res, 11(Suppl 3):S12,

2009.

120. A. Rosset, L. Spadola, and O. Ratib. OsiriX: an open-source software for nav-

igating in multidimensional DICOM images. Journal of digital imaging, 17(3):

205–216, 2004.

121. L. Salmela and E. Rivals. LoRDEC: accurate and efficient long read error

correction. Bioinformatics, page btu538, 2014.

122. E. E. Schadt, S. Turner, and A. Kasarskis. A window into third-generation

sequencing. Human molecular genetics, 19(R2):R227–R240, 2010.

123. M. C. Schatz. CloudBurst: highly sensitive read mapping with MapReduce.

Bioinformatics, 25(11):1363–1369, 2009.

124. P. Scheet and M. Stephens. A fast and flexible statistical model for large-

scale population genotype data: applications to inferring missing genotypes and

121

haplotypic phase. The American Journal of Human Genetics, 78(4):629–644,

2006.

125. S. C. Schuster. Next-generation sequencing transforms today’s biology. Nature

methods, 5(1):16, 2008.

126. S. Shalev-Shwartz. Online learning and online convex optimization. Foundations

and Trends in Machine Learning, 4(2):107–194, 2012.

127. J. Shendure and H. Ji. Next-generation dna sequencing. Nature biotechnology,

26(10):1135–1145, 2008.

128. S. Shokralla, J. L. Spall, J. F. Gibson, and M. Hajibabaei. Next-generation

sequencing technologies for environmental dna research. Molecular ecology, 21

(8):1794–1805, 2012.

129. C. C. Spencer, Z. Su, P. Donnelly, and J. Marchini. Designing genome-wide as-

sociation studies: sample size, power, imputation, and the choice of genotyping

chip. PLoS Genetics, 5(5):e1000477, 2009.

130. M. Stephens, N. J. Smith, and P. Donnelly. A new statistical method for hap-

lotype reconstruction from population data. The American Journal of Human

Genetics, 68(4):978–989, 2001.

131. Y. V. Sun and S. L. Kardia. Imputing missing genotypic data of single-nucleotide

polymorphisms using neural networks. European Journal of Human Genetics,

16(4):487–495, 2008.

132. S. T O’Neil and S. J. Emrich. Haplotype and minimum-chimerism consensus

determination using short sequence data. BMC genomics, 13(Suppl 2):S4, 2012.

133. H. Tao, D. R. Cox, and K. A. Frazer. Allele-specific KRT1 expression is a

complex trait. PLoS Genetics, 2(6):e93, 2006.

122

134. J. F. Thompson and P. M. Milos. The properties and applications of single-

molecule DNA sequencing. Genome biology, 12(2):217, 2011.

135. S. A. Tishkoff, E. Dietzsch, W. Speed, A. J. Pakstis, J. R. Kidd, K. Cheung,

B. Bonne-Tamir, A. S. Santachiara-Benerecetti, P. Moral, M. Krings, et al.

Global patterns of linkage disequilibrium at the CD4 locus and modern human

origins. Science, 271(5254):1380–1387, 1996.

136. K. J. Travers, C.-S. Chin, D. R. Rank, J. S. Eid, and S. W. Turner. A flexible and

efficient template format for circular consensus sequencing and SNP detection.

Nucleic acids research, page gkq543, 2010.

137. O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani,

D. Botstein, and R. B. Altman. Missing value estimation methods for DNA

microarrays. Bioinformatics, 17(6):520–525, 2001.

138. R. Velasco, A. Zharkikh, J. Affourtit, A. Dhingra, A. Cestaro, A. Kalyanaraman,

P. Fontana, S. K. Bhatnagar, M. Troggio, D. Pruss, et al. The genome of the

domesticated apple (Malus domestica Borkh). Nature genetics, 42(10):833–839,

2010.

139. L. Wang, D. Chen, R. Ranjan, S. U. Khan, J. KolOdziej, and J. Wang. Parallel

processing of massive EEG data with MapReduce. In Parallel and Distributed

Systems (ICPADS), 2012 IEEE 18th International Conference on, pages 164–

171. Ieee, 2012.

140. L. Wang, J. Tao, R. Ranjan, H. Marten, A. Streit, J. Chen, and D. Chen.

G-Hadoop: MapReduce across distributed data centers for data-intensive com-

puting. Future Generation Computer Systems, 29(3):739–750, 2013.

141. T. White. Hadoop: The definitive guide. ” O’Reilly Media, Inc.”, 2012.

123

142. C. J. Willer, S. Sanna, A. U. Jackson, A. Scuteri, L. L. Bonnycastle, R. Clarke,

S. C. Heath, N. J. Timpson, S. S. Najjar, H. M. Stringham, et al. Newly

identified loci that influence lipid concentrations and risk of coronary artery

disease. Nature Genetics, 40(2):161–169, 2008.

143. D. Wu, C. M. Rice, and X. Wang. Cancer bioinformatics: A new approach to

systems clinical medicine. BMC bioinformatics, 13(1):71, 2012.

144. L. Yu, C. Moretti, A. Thrasher, S. Emrich, K. Judd, and D. Thain. Harnessing

parallelism in multicore clusters with the all-pairs, wavefront, and makeflow

abstractions. Cluster Computing, 13(3):243–256, 2010.

145. M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica. Improving

MapReduce performance in heterogeneous environments. In OSDI, volume 8,

page 7, 2008.

This document was prepared & typeset with pdfLATEX, and formatted with
nddiss2ε classfile (v3.2013[2013/04/16]) provided by Sameer Vijay and updated

by Megan Patnott.

124

	Abstract
	CONTENTS
	FIGURES
	TABLES
	ACKNOWLEDGMENTS
	CHAPTER 1: INTRODUCTION
	1.1 Motivation And Problem Statement
	1.2 Literature Review
	1.2.1 Data Analysis Framework For Expediting Comparative Genomics Applications
	1.2.2 Computational Resource Optimization For Executing Data-Intensive Genomic Applications On Clusters And Clouds
	1.2.3 Imputation Of Missing Genotype Data In Model And Non-Model Organisms
	1.2.4 Hybrid Correction Of Erroneous Long Reads Using Iterative Learning

	1.3 Contributions In This Thesis
	1.4 Organization Of This Thesis
	1.5 Publications
	1.6 Availability Of Software

	CHAPTER 2: DATA ANALYSIS FRAMEWORK FOR EXPEDITING COMPARATIVE GENOMICS APPLICATIONS
	2.1 Background
	2.2 Methods
	2.2.1 Overview Of Genome Alignment And BWA
	2.2.2 Overview Of Variant Detection And HaplotypeCaller
	2.2.3 Makeflow And Work Queue
	2.2.4 Data Partitioning
	2.2.5 Workflow Fusion
	2.2.5.1 Full Workflow Caching
	2.2.5.2 Elimination Of Choke Points
	2.2.5.3 Merged Partitioning
	2.2.5.4 Potential Issues Of Workflow Fusion

	2.3 Results And Discussion
	2.3.1 Optimal Data Partitioning
	2.3.2 Tool Improvement
	2.3.3 Pipeline Improvement
	2.3.4 Optimal Workflow Fusion
	2.3.5 Application Of The Data Analysis Framework

	2.4 Conclusion

	CHAPTER 3: COMPUTATIONAL RESOURCE OPTIMIZATION FOR EXECUTING DATA-INTENSIVE GENOMIC APPLICATIONS ON CLUSTERS AND CLOUDS
	3.1 Background
	3.2 Methods
	3.2.1 Design Of Application-Level Model
	3.2.1.1 Model For Runtime
	3.2.1.2 Model For Memory Usage

	3.2.2 Design Of System-Level Model
	3.2.2.1 Model For Runtime
	3.2.2.2 Model For Memory Usage

	3.3 Results And Discussion
	3.3.1 Thread-level Parallelism Through Multithreading
	3.3.2 Task-level Parallelism Through Distributed Computing
	3.3.3 Balancing Thread-level Parallelism And Task-level Parallelism
	3.3.4 Using Optimal Number Of Computing Instances
	3.3.5 Reducing Cost Of Operation

	3.4 Conclusion

	CHAPTER 4: IMPUTATION OF MISSING GENOTYPE DATA IN MODEL AND NON-MODEL ORGANISMS
	4.1 Background
	4.2 Methods
	4.2.1 ADDIT-NM: Imputation For Non-Model Organisms
	4.2.1.1 Step 1: Quick Imputation Using Immediate Neighbors
	4.2.1.2 Step 2: Similarity Computation For Each Missing Genotype
	4.2.1.3 Step 3: Similarity Threshold Of Candidate Windows
	4.2.1.4 Step 4: Adaptive Classification Of Trusted Candidates
	4.2.1.5 Step 5: Priority-based Imputation Scheme

	4.2.2 ADDIT-M: Imputation For Model Organisms
	4.2.2.1 Step 1: Construction Of Training And Truth Sets From Reference Panel
	4.2.2.2 Step 2: Imputation Based On Identical Truth Values
	4.2.2.3 Step 3: Quick Imputation
	4.2.2.4 Step 4: Imputation Via Multi-class Supervised Learning

	4.3 Results And Discussion
	4.3.1 Testing ADDIT-NM
	4.3.1.1 Data Acquisition
	4.3.1.2 Comparative Analysis
	4.3.1.3 Effectiveness Of Quick Imputation

	4.3.2 Testing ADDIT-M
	4.3.2.1 Data Acquisition
	4.3.2.2 Comparative Analysis
	4.3.2.3 When Should We Use QI?
	4.3.2.4 Importance Of Multi-class Supervised Learning

	4.4 Conclusion

	CHAPTER 5: HYBRID CORRECTION OF ERRONEOUS LONG READS USING ITERATIVE LEARNING
	5.1 Background
	5.2 Methods
	5.2.1 Overview
	5.2.2 The Core Algorithm
	5.2.2.1 Step 1: Quick Correction
	5.2.2.2 Step 2: Optimization-based Correction

	5.2.3 Improvement Of Correction Via Iterative Learning
	5.2.3.1 Assignment Of Confidence
	5.2.3.2 Realignment Based On High-Confidence Corrections
	5.2.3.3 Termination Criteria

	5.3 Results And Discussion
	5.3.1 Data Acquisition
	5.3.2 Computational Set-up
	5.3.3 Evaluation Metrics
	5.3.3.1 k-mer-based
	5.3.3.2 Alignment-based
	5.3.3.3 Assembly-based

	5.3.4 Comparative Analysis
	5.3.5 Effect Of Iterative Learning

	5.4 Conclusion

	CHAPTER 6: SUMMARY AND FUTURE WORK
	6.1 Summary
	6.2 Open Problems And Future Work

	BIBLIOGRAPHY

