Near-field Scanning Microwave Microscopy and its Applications in Characterization of Dielectric Materials
The development of near-field SMM and its application in characterization of dielectric ceramics are presented in this work. The local surface dielectric properties of a variety of bulk specimens were characterized with SMM, while their microstructures were characterized with backscattered electron scanning electron microscopy (SEM) and polarized optical microscopy. The compositions and phases were identified by energy dispersive spectroscopy (EDS) analysis and X-ray powder diffraction (XRD). The local dielectric properties variations causing the contrast in SMM images were correlated to the local microstructures and chemical variations, such as defects, nonstoichiometric compositions, solid-solution, phase separations, and so on.
SMM characterization has been used to detect defects in single crystals, such as twinning structure in a LaAlO3 single crystal; to present topographic and grain boundary effects in bulk polycrystalline yttria stabilized zirconia (YSZ); to differentiate chemical variations, such as oxygen-deficient 'cored' titania crystal, and Zn/Co varied BZCN312 matrices; to characterize inhomogeneities of dielectric properties in a co-fired CMT30/CMT40 ceramic; to discover a new phase with unknown dielectric properties, such as BZCN816 phase in BZCN312 matrices; to investigate stabilized components, such as La2/3TiO3 phase stabilized by LaAlO3 phase; to study solid solution, such as LT3-LAO solid solution and LAO-STO solid solution; to study phase separation and development, LaAlO3-TiO2 and CaTiO3-MgTiO3 diffusion couples; to observe critical feature size effect, such as in CT-MT eutectic system; and to rank the dielectric constant of dielectric materials in these demonstrated systems.
All of theses studies indicate that near-field scanning microwave microscopy is a powerful nondestructive technique to characterize local dielectric properties variations, and relate them to local microstructure and chemical variations. It permits one to easily study the dielectric properties of bulk ceramic materials.
History
Date Modified
2017-06-02Defense Date
2006-06-20Research Director(s)
Steven A. BuechlerCommittee Members
Patrick J. Fay Howard A. Blackstead Paul J. McGinn Albert E. MillerDegree
- Doctor of Philosophy
Degree Level
- Doctoral Dissertation
Language
- English
Alternate Identifier
etd-06272006-163137Publisher
University of Notre DameProgram Name
- Chemical Engineering