Numerical Macaulification in Arbitrary Codimension
An ideal J is said to be numerically c-ACM (NACM) if R/J has the Hilbert function of some codimension c ACM subscheme of P^n. We exhibit algorithm which takes an arbitrary ideal and produces, via a finite sequence of basic double links, an ideal which is numerically c-ACM. An immediate consequence of this result is that every even liaison class of equidimensional codimension c subschemes of P^n contains elements which are NACM. This was first proved for the codimension two case by Migliore and Nagel, but was an open question in higher codimension.
Let L denote the even liaison class of three skew lines in P^4, and let L_S be denote the even liaison class of three skew lines on a smooth hypersurface S in P^4 of degree at least two. We also give a complete description of the sequences of basic double links which (in S) produce curves which are NACM. We conclude by showing that the subset of L_S consisting of NACM subschemes, which we denote by M_S, fails to have the Lazarsfeld-Rao property.
History
Date Created
2018-07-04Date Modified
2018-11-09Defense Date
2018-05-11CIP Code
- 27.0101
Research Director(s)
Juan C. MiglioreDegree
- Doctor of Philosophy
Degree Level
- Doctoral Dissertation
Alternate Identifier
1051772011Library Record
4943587OCLC Number
1051772011Additional Groups
- Mathematics
Program Name
- Mathematics