University of Notre Dame
Browse

File(s) under permanent embargo

Reaction of Hyperthermal Oxygen Ions with Graphite and Polyhedral Oligosilsequioxane (Poss) Monolayers

thesis
posted on 2011-04-13, 00:00 authored by Xin Liu
The reaction of 5-20 eV O+ with highly oriented pyrolytic graphite (HOPG) is investigated under ultrahigh vacuum (UHV) conditions. Ion induced modifications of HOPG are characterized in situ by X-ray photoelectron spectroscopy (XPS) and temperature programmed desorption (TPD) at various stages during exposure to O+. The incident energy of O+ ions is found to be positively correlated with the rate of oxygen uptake and negatively correlated with oxygen coverage in the steady state. In addition, three oxygen containing species are detected on HOPG, namely, C-O-C, O=C and HO-C=O. The variation of these species on graphite is monitored as a function of O+ dose and heating temperature.

Ion-induced modifications of the graphite surface are monitored ex-situ by scanning tunneling microscopy (STM) with a variety of doses of impinging ions. The probability of defect initiation at room temperature is estimated and compared between O+ and Ne+ ions with different incident energies. Graphite etching efficiency is also compared between 5-eV O+ and O atom.

A monolayer of mercaptopropylisobutyl-POSS on Au(111) is characterized by STM and atomic force microscope (AFM). Ion induced modifications of the POSS monolayer are monitored in situ by XPS. During O+ exposure, isobutyl side groups are continuously depleted from the surface, while the silicon concentration is kept constant and SiO2 is formed on the Au substrate. After prolonged O+ exposure, the gold surface eventually becomes oxidized but the oxide can be removed by annealing at 180 oC. The oxidation resistance of the POSS monolayer is compared with that of a dodecanethiol/Au(111) self-assembled monolayer (SAM).

History

Date Modified

2017-06-02

Defense Date

2011-04-12

Research Director(s)

Dennis Jacobs

Committee Members

Dan Gezelter Alex Kandel Ken Kuno

Degree

  • Doctor of Philosophy

Degree Level

  • Doctoral Dissertation

Language

  • English

Alternate Identifier

etd-04132011-233334

Publisher

University of Notre Dame

Additional Groups

  • Chemistry and Biochemistry

Program Name

  • Chemistry and Biochemistry

Usage metrics

    Dissertations

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC