Spatial-Temporal Methods and Models for Climate Prediction and Uncertainty Quantification
Facing increasing societal and economic pressure, many countries have established strategies to develop renewable energy portfolios, whose penetration in the market can alleviate the dependence on fossil fuels. In the case of wind, there is a fundamental question related to the resilience, and hence profitability, of future wind farms to a changing climate, given that current wind turbines have lifespans of up to thirty years. In this work we develop a new non-Gaussian method to adjust assimilated observational data to simulations and to estimate future wind, predicated on a trans-Gaussian transformation and a cluster-wise minimization of the Kullback–Leibler divergence. Future winds abundance will be determined for Saudi Arabia, a country with a recently established plan to develop a portfolio of up to 16 GW of wind energy. Further, we estimate the change in profits over future decades using additional high-resolution simulations, an improved method for vertical wind extrapolation and power curves from a collection of popular wind turbines. We find an overall increase in daily profit of $272,000 for the wind energy market for the optimal locations for wind farming in the country.
The transition from non-renewable to renewable energies represents a global societal challenge, and developing a sustainable energy portfolio is an especially daunting task for developing countries where little to no information is available regarding the abundance of renewable resources such as wind. Weather model simulations are key to obtain such information when observational data are scarce and sparse over a country as large and geographically diverse as Saudi Arabia. However, output from such models is uncertain, as it depends on inputs such as the parametrization of the physical processes and the spatial resolution of the simulated domain. In such situations, a sensitivity analysis must be performed and the input may have a spatially heterogeneous influence of wind. In this work, we propose a latent Gaussian functional analysis of variance (ANOVA) model that relies on a nonstationary Gaussian Markov random field approximation of a continuous latent process. The proposed approach is able to capture the local sensitivity of Gaussian and non-Gaussian wind characteristics such as speed and threshold exceedances over a large simulation domain, and a continuous underlying process also allows us to assess the effect of different spatial resolutions. Our results indicate that (1) the non-local planetary boundary layer scheme and high spatial resolution are both instrumental in capturing wind speed and energy (especially over complex mountainous terrain), and (2) the impact of planetary boundary layer scheme and resolution on Saudi Arabia's planned wind farms is small (at most 1.4%). Thus, our results lend support for the construction of these wind farms in the next decade.
With undeniable evidence of the undergoing changing climate, obtaining high-resolution maps of precipitation data can provide key insights to stakeholders to assess sustainable access to water resources at the urban scale. Mapping a nonstationary, sparse process such as precipitation at very high spatial resolution requires the interpolation of global datasets at the location where ground stations are available with statistical models able to capture complex non-Gaussian global space-time dependence structures. In this work, we propose a new approach based on capturing the spatial dependence of a latent Gaussian process via a locally deformed Stochastic Partial Differential Equation (SPDE) with a buffer allowing for a different spatial structure across land and sea. The finite volume approximation of the SPDE, coupled with Integrated Nested Laplace Approximation ensures feasible Bayesian inference for tens of millions of observations. The simulation studies showcase the improved predictability of the proposed approach against stationary and no-buffer alternatives. The proposed approach is then used to yield high-resolution simulations of daily precipitation across the United States.
History
Date Modified
2023-04-20CIP Code
- 27.9999
Research Director(s)
Stefano CastruccioDegree
- Doctor of Philosophy
Degree Level
- Doctoral Dissertation
Alternate Identifier
1376464214OCLC Number
1376464214Program Name
- Applied and Computational Mathematics and Statistics