University of Notre Dame
Browse

File(s) under permanent embargo

Studies of MBE-Grown Single and Multiple AlN/GaN Heterojunctions

thesis
posted on 2007-12-18, 00:00 authored by Yu Cao
The large polarization difference between AlN and GaN provides extremely high electron densities at the interface of AlN/GaN heterojunctions. In this work the growths of high-quality single AlN/GaN heterojunctions with RFMBE are reported, which leads to high-conductivity two-dimensional electron gases. The sheet densities can be tuned from ~5* 1012/cm2 to ~5*1013/cm2 by varying the AlN thickness from 2 - 7 nm. A critical thickness is observed beyond which biaxial strain relaxation and cracking of AlN occurs, and a degradation of carrier mobility is seen to occur at extremely high sheet densities. High-mobility windows are identified with different growth rates. Record low sheet resistances in the range of ~148 å_åü/sq has been achieved. Interface roughness scattering and strain relaxation are identified as the factors preventing lower sheet resistances at present. At low temperature, Shubnikov-de-Haas oscillations have been observed for the first time in single AlN/GaN heterojunctions. The MBE growth for multiple AlN/GaN heterojunctions are also studied. The electron energy states are calculated in the AlN/GaN superlattices which inductivelyto obtain give the miniband structures, for the design of intersubband emitters of detectors. Propagation of longitudinal acoustic phonons through AlN/GaN superlattices is simulated. Finally, phonon filters and phonon cavities are designed for efficient thermal engineering from nitride active layers.

History

Date Modified

2017-06-05

Research Director(s)

Debdeep Jena

Committee Members

Greg Snider Debdeep Jena Huili Xing Thosmas Kosel

Degree

  • Master of Science in Electrical Engineering

Degree Level

  • Master's Thesis

Language

  • English

Alternate Identifier

etd-12182007-152802

Publisher

University of Notre Dame

Program Name

  • Electrical Engineering

Usage metrics

    Masters Theses

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC