University of Notre Dame
Browse

The Geometry of the Euler and the Navier-Stokes Equations

Download (754.42 kB)
thesis
posted on 2018-04-04, 00:00 authored by Leandro Lichtenfelz

The first chapter of this thesis is devoted to the study of the Euler equations of hydrodynamics as geodesic equations on the infinite-dimensional group of volume-preserving diffeomorphisms of a compact two-dimensional manifold M. We prove that the set of conjugate vectors for the L2 exponential map contains an open and dense subset, called regular conjugate vectors, which forms a smooth, codimension one submanifold of the tangent space. We then proceed to obtain several normal forms for this map in a neighborhood of a regular conjugate vector. These results apply, more generally, for infinite-dimensional Riemannian manifolds with Fredholm exponential maps. In particular, they are true for any finite-dimensional Riemannian manifold, and some are new even in this context.

In the second chapter we study the Cauchy problem for the Navier-Stokes equations on a hyperbolic manifold of dimension three. Our main result is that the problem is ill-posed, in the sense that there are smooth initial data in the Leray-Hopf class for which there are non-unique Leray-Hopf solutions.

History

Date Created

2018-04-04

Date Modified

2018-10-30

Defense Date

2018-03-27

Research Director(s)

Gerard Misiolek

Degree

  • Doctor of Philosophy

Degree Level

  • Doctoral Dissertation

Program Name

  • Mathematics

Usage metrics

    Dissertations

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC