Notre Dame Research

Search CurateND

Search criteria:

Department or Unit: Notre Dame Research remove × Type of Work: Dataset OR Article remove ×
Clear all

List of files deposited in CurateND that match your search criteria

  • Author(s):
    E. I. Moiseev, F. I. Zubov, A. M. Mozharov, M. V. Maximov, N. A. Kalyuzhnyy, S. A. Mitairov, M. M. Kulagina, S. A. Blokhin, K. E. Kudyavtsev, A. N. Yablonskiy, S. V. Morozov, Y. Bernikov, S. Rouvimov, A. E. Khukov, N. V. Kryzhanovskaya
    Abstract:

    GaAs-based microdisk lasers with an active region representing a dense array of indium-rich islands (InGaAs quantum well-dots) were studied using direct small-signal modulation. We demonstrate that using dense arrays of InGaAs quantum well-dots enables uncooled high-frequency applications with a GHz-range bandwidth for microdisk lasers. A maximum 3 dB modulation frequency of 5.9 GHz was found in the microdisk with a radius of 13.5 μm operating without a heatsink for cooling. A modulation curr…

    Date Published:
    2019-06
    Record Visibility:
    Public
  • Author(s):
    D. V. Lebedev, A. M. Mintairov, A. S. Vlasov, V. Yu. Davydov, M. M. Kulagina, S. I. Troshkov, A. A. Bogdanov, A. N. Smirnov, A. Gocalinska, G. Juska, E. Pelucchi, J. Kapaldo, S. Rouvimov, J. L. Merz
    Abstract:

    The emissivity of unstrained quantum-dimensional InP/AlInAs nanostructures and their lasing properties in microdisk cavities prepared by wet etching have been studied. For as-prepared structures, it has been found that they radiate owing to quantum-dimensional InP islands 50–300 nm in diameter. At temperatures below 160 K, whispering gallery modes have been observed in the microdisks. Experimental data on the PL intensity for microcavity modes versus the pump power, which were obtained at liq…

    Date Published:
    2017
    Record Visibility:
    Public