Modern Computing Paradigms: Mobile Applications and Infrastructure as Code

Aaron Huus
Master's Thesis Defense
April 5th, 2013
Overview

- **Introduction**
- Haiti Infrastructure Surveyor (HIS)
 - Background
 - Related Work
 - Mobile Application
- Infrastructure as Code (IAC)
 - Background
 - Related Work
 - CRC Puppet Modules
- **Conclusion**
Introduction

- Modern Computing Paradigms
 - Mobile Applications and Infrastructure as Code
 - Waterfall method to an agile approach

- Haiti Infrastructure Surveyor Mobile Application
 - Use untrained Haiti community members to gather structural data
 - Civil engineers analyze the collected data to determine the risk of collapse
Introduction Cont'd

- Infrastructure as Code (IAC)
 - Create a constant computing environment for developers, testers, and system administrators
- Center for Research and Computing (CRC)
 - Automate the provisioning of physical and virtual machines
 - Create Puppet modules
Overview

- Introduction

- Haiti Infrastructure Surveyor (HIS)
 - Background
 - Related Work
 - Mobile Application

- Infrastructure as Code (IAC)
 - Background
 - Related Work
 - CRC Puppet Modules

- Conclusion
HIS – Background

- January 12, 2010
 - 7.0 Magnitude earthquake
 - Epicenter was Leogane
 - 15 km southwest of Port-au-Prince
 - 90% of buildings destroyed
 - 220,000 died in 30 seconds [1] (3 times the attendance at the 2013 Super Bowl)
 - 1.5 million people were instantly homeless and 3.5 million people were affected [1]
HIS – Why the Devastation?

- Epicenter located near major city and occurred 10km below the ground
- Inadequate structural infrastructure
 - Haiti is the poorest country in the western hemisphere
 - 80% of country lives below the poverty line [2]
 - Lack of educated personnel and resources to build structures “to code”
 - Lack of government support
HIS – Current Structures

- Unreinforced masonry construction
 - Lack of reinforcing steel
 - May take over 10 years to build
 - Perform poorly in earthquakes
- Yellow/Red tagged structures
- Semi-permanent structures
- Masonry structures with modifications
HIS – Yellow/Red Tagged Structures

- Attempts to repair condemned houses
- Reoccupy these structures
- Unsafe
HIS – Semi Permanent Shelters

- Stay while saving for a masonry home
- Temporary Fixes
- Decreased safety
 - Future Disasters
 - Theft
HIS – Masonry with Modifications

- Modifications
 - Amount of steel in the columns and walls
 - Quality of block used
- Very few
- Expensive
- Unclear if construction is being done safely
- Will modifications be effective?
HIS – Mobile Solution

- Document photographs and notes about a structure
- Upload to a remote server
 - Search/filter
 - Download
- Civil engineering research team performs structural analysis to determine if the building is at risk of collapse
- Respond with local resource solutions to improve stability

Motorola XT720s
Overview

- Introduction

- Haiti Infrastructure Surveyor (HIS)
 - Background
 - Related Work
 - Mobile Application

- Infrastructure as Code (IAC)
 - Background
 - Related Work
 - CRC Puppet Modules

- Conclusion
HIS – Crowdsourcing

- **Stardust@Home** [3]
 - Search for interstellar dust from any internet connected computer
 - User ‘score’ rankings

- **CamClickr** [4]
 - Catalog nesting behaviors of birds
 - Captured over 600,000 images

- **eBird** [5]
 - Document bird observations through a web-interface
 - March 2012 there was 3.1 million reported bird observations submitted
HIS – Data Obtainment

- **FrontlineSMS [6]**
 - Open source software to distribute and collect information via text messages
 - Used after Haiti earthquake to submit crisis alerts

- **GeoChat [7]**
 - Open source group communication tool
 - Helps team members communicate and keep track of what everyone else is working on

- **LocoBlog [8]**
 - Mobile blog application
 - Allows user to submit photos to a personal blog directly from a mobile device
Overview

■ Introduction

■ Haiti Infrastructure Surveyor (HIS)
 – Background
 – Related Work
 – Mobile Application

■ Infrastructure as Code (IAC)
 – Background
 – Related Work
 – CRC Puppet Modules

■ Conclusion
HIS - Mobile Application

- Developed using the waterfall method
 - Part of Fall 2012 CSE 60232 Software Engineering course
 - Requirements, Design, Development, Testing, Deployment, Maintenance
- 4 modules
 - Structure Selection
 - Questionnaire
 - Exterior Observations
 - Data Submission
HIS – Structure Selection

- Add structure
- Structure status
- List of created structures
- Preview thumbnail
HIS - Questionnaire

- 3 pages of questions
 - Text, dropdown, checkbox
 - Text/Number appropriate keyboard input
 - Future error checking
- State saved after each page submission
HIS – Exterior Observations

- 4 sides of a structure
- Status Indicators
 - Green Checkmark
 - Photo saved pop-up
 - Red X
- All 4 photos are required
HIS – Data Submission

- Context menu from long press
- Edit structure description
- Delete structure
- Upload to backend with spinning status bar
HIS – Backend Database

- Developed by an EPICS team at Notre Dame
 - Fall 2012: Basic functionality
 - Capture data from mobile application via POST
 - Insert data into database and display
 - PHP used
 - Spring 2013: Improving functionality
 - User interface
 - Filter / Search
 - Download
 - Security
HIS – Backend Database

HIS Database

| Surveyor * | Structure | phone | owned? | yearBuilt | Duration | builder | Steak? | nChildren | nAdults | nFloors | roofType | photoFront | notesFront | photoRight | notesRight | photoBack | notesBack | photoLeft | notesLeft |
|------------|-----------|-------------|--------|-----------|----------|---------|--------|-----------|---------|---------|----------|------------|------------|------------|------------|------------|-----------|-----------|-----------|-----------|
| aaron | Aaron | 15073542158 | 0 | 1988 | 3 | aaron | 0 | 2 | 2 | 1 | Metal | ![Image](photo1) | ![Image](notes1) | ![Image](photo2) | ![Image](notes2) | ![Image](photo3) | ![Image](notes3) | ![Image](photo4) | ![Image](notes4) |
| aaron | house 1 | 5073564258 | 0 | 1966 | 2 | joe | 0 | 2 | 2 | 0 | Metal | ![Image](photo1) | ![Image](notes1) | ![Image](photo2) | ![Image](notes2) | ![Image](photo3) | ![Image](notes3) | ![Image](photo4) | ![Image](notes4) |
| Brian Calcutt | house 1 | 2032577678 | 0 | 1992 | 3 | joe | 0 | 2 | 2 | 1 | Concrete Slab | ![Image](photo1) | ![Image](notes1) | ![Image](photo2) | ![Image](notes2) | ![Image](photo3) | ![Image](notes3) | ![Image](photo4) | ![Image](notes4) |
| Brian Calcutt | UGBC1 | 2032577678 | 0 | 1992 | 3 | joe | 0 | 2 | 2 | 1 | Concrete Slab | ![Image](photo1) | ![Image](notes1) | ![Image](photo2) | ![Image](notes2) | ![Image](photo3) | ![Image](notes3) | ![Image](photo4) | ![Image](notes4) |
| Brian Calcutt | Sorin Hall | 2032577678 | 0 | 1886 | 1 | Fr Edward Born, CSC | 0 | 145 | 8 | 4 | Other | ![Image](photo1) | ![Image](notes1) | ![Image](photo2) | ![Image](notes2) | ![Image](photo3) | ![Image](notes3) | ![Image](photo4) | ![Image](notes4) |
| dan | walmart | 1111111 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Select One | ![Image](photo1) | ![Image](notes1) | ![Image](photo2) | ![Image](notes2) | ![Image](photo3) | ![Image](notes3) | ![Image](photo4) | ![Image](notes4) |
| Dan Courtney | walmart | 1111111 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Select One | ![Image](photo1) | ![Image](notes1) | ![Image](photo2) | ![Image](notes2) | ![Image](photo3) | ![Image](notes3) | ![Image](photo4) | ![Image](notes4) |
| dave mix | mix house | 2315965555 | 0 | 1970 | 1 | contractor | 0 | 3 | 2 | 2 | Other | ![Image](photo1) | ![Image](notes1) | ![Image](photo2) | ![Image](notes2) | ![Image](photo3) | ![Image](notes3) | ![Image](photo4) | ![Image](notes4) |
| dave mix | mix house | 2315965555 | 0 | 1970 | 1 | contractor | 0 | 3 | 2 | 2 | Other | ![Image](photo1) | ![Image](notes1) | ![Image](photo2) | ![Image](notes2) | ![Image](photo3) | ![Image](notes3) | ![Image](photo4) | ![Image](notes4) |
| Dustin Mix | casa de dustin | 5555555555 | 0 | 2013 | 5 | Mic | 0 | 0 | 1 | 2 | Concrete Slab | ![Image](photo1) | ![Image](notes1) | ![Image](photo2) | ![Image](notes2) | ![Image](photo3) | ![Image](notes3) | ![Image](photo4) | ![Image](notes4) |

Showing 1 to 10 of 17 entries
HIS - Testing

- Tested with EPICS and civil engineering students on 3/28/2013
 - Summer 2013 trip to Uganda, Costa Rica, Ecuador, and Tanzania
 - Identified software bugs
HIS - Deployment

- 100 Motorola phones donated
- Deploy to citizens of Haiti
 - Community leader
 - Involved socially
- Currently manually installed on each phone
HIS – Future Work

- Host .apk file on private server
- Feature implementation
 - Additional questions
 - Optional photos
 - Upload all structures
- Continued testing
 - Error checking
 - Improved user interaction
 - Network speeds
Overview

- Introduction
- Haiti Infrastructure Surveyor (HIS)
 - Background
 - Related Work
 - Mobile Application
- Infrastructure as Code (IAC)
 - Background
 - Related Work
 - CRC Puppet Modules
- Conclusion
IAC - DevOps

Facilitates the relationship between development, quality assurance, and the operations team [9]
IAC – DevOps Hierarchy

- Development role
- Operations role
IAC – Infrastructure as Code

- Automation of configuration management
 - Changes may effect multiple computers
 - Development, test, and production environments
- Modular representations of systems
 - Software installed is customized to the project
 - Central repository of software components
Overview

- Introduction

- Haiti Infrastructure Surveyor (HIS)
 - Background
 - Related Work
 - Mobile Application

- Infrastructure as Code (IAC)
 - Background
 - Related Work
 - CRC Puppet Modules

- Conclusion
IAC – Machine Provisioning

 - Coordinate and scale service management and administration activities
 - Performed across multiple nodes

- SmartFrog [13]
 - Java-based software framework
 - Configure, deploy and manage distributed software systems
IAC – System Administration

- Test-Driven/Diagnostic approach [14]
 - System regulated by continual re-provisioning of the machine definition
 - If a system deviates from its model, then with proper automation it self-repairs
 - Autonomic computing: self-configure, self-heal, self-optimize, and self-protect
Overview

- Introduction
- Haiti Infrastructure Surveyor (HIS)
 - Background
 - Related Work
 - Mobile Application
- Infrastructure as Code (IAC)
 - Background
 - Related Work
 - CRC Puppet Modules
- Conclusion
IAC – Design Decisions

- Puppet, Chef, or CFEngine
 - CRC chose Puppet due to independent language syntax
 - Large developer community

- Virtual Machine or Physical Machines
 - Developers use VMs
 - Likely to break, easy to re-provision
 - CentOS
 - Production infrastructure may be a physical machine
IAC – Software Requirements

- VirtualBox
- Vagrant
- Veewee
- Puppet
- Jenkins
- Lettuce
IAC – VirtualBox [15]

- A cross-platform virtualization application
 - Developer to choose host OS in which he/she is most comfortable
 - Identical development environments
IAC – Vagrant

- Creates and configures lightweight, reproducible, and portable development environments
- Creation and maintenance of VMs
- Requires VirtualBox with potential future VMware compatibility
IAC – Veewee

- Initially used to create vagrant base box
- Configuration files
 - Definition.rb
 - Memory, HD size, ISO location
 - Postinstall.sh
 - Installs Puppet, Vbox Guest Additions
 - Preseed.cfg
 - Timezone, partitions size and type
- 28 predefined downloadable templates
IAC – Puppet [17]

- Google, Mozilla, Stanford University [18]
- Puppet client runs locally
- Puppet master server
 - Centralized location to store all puppet modules
 - Puppet clients are updated via check-ins with the puppet master
IAC – Jenkins [19]

- An extendable open source continuous integration server
- Deploy and obtain test results of developed infrastructure
- Ensure infrastructure configured as desired
IAC – Lettuce [20]

- Cucumber vs. Lettuce
 - Ruby
 - Python
- Behavior driven development tool
 - Write a unit test
 - Run the test
 - Test fails
 - Write additional code
 - Test passes
IAC - Hypothetical Situation

- You are a new developer and are told that you will be working on creating a new website.
 - Apache?
 - Hello world page
 - Include java?
 - OpenJDK
 - Oracle/Sun JDK
 - Configure firewall to allow port 80 connections
Developer’s Perspective
IAC – Vagrant

- Apache
 - Puppet module
 - `index.html` template
- Java module
 - OpenJDK
 - Oracle/Sun JDK
- Firewall module
 - Allow port 80 connections
 - Open other ports
- Checkout environment
IAC – Development Environment

- Apache_ENVIRONMENT
 - Vagrantfile
 - puppet
 - manifests
 - base.pp
 - modules
 - java
 - firewall
 - httpd
config.vm.box = "CentOS_63"

config.vm.network :hostonly, "192.168.33.10"
config.vm.forward_port 80, 8080

config.vm.provision :puppet do |puppet|
 puppet.manifests_path = "puppet/manifests"
 puppet.module_path = "puppet/modules"
 puppet.manifest_file = "base.pp"
end
IAC – Development Environment

- Apache_Environment
 - Vagrantfile
 - puppet
 - manifests
 - base.pp
 - modules
 - java
 - firewall
 - httpd
Installs apache web server
 include httpd

Installs java
 class {'java':
 java_version => '1.6.0_37',
 java_base => '/opt/java',
 }

Opens port 80 on firewall
 firewall { '056 INPUT allow web in and out':
 action => accept,
 proto => 'tcp',
 port => 80
 }
IAC – Development Environment

- Apache_Environment
 - Vagrantfile
 - puppet
 - manifests
 - base.pp
 - modules
 - java
 - firewall
 - httpd
IAC – httpd Puppet Module

- httpd
 - README
 - Manifests
 - params.pp
 - init.pp
 - files
 - templates
 - tests
 - init.pp
Include http params file

include httpd::params

Copies default index.html file

file { $httpd::params::index_to:
 ensure => file,
 source => $httpd::params::index_from,
 notify => Service['httpd']
}

Installs the httpd package

package { 'httpd':
 ensure => present,
 name => $httpd::params::httpd_name
}

Ensures service is running

service { 'httpd':
 ensure => running,
 name => $httpd::params::httpd_name,
 enable => true,
 subscribe => Package['httpd']
}
System Administrator’s Perspective
IAC – Client-Server Architecture

Node 1

Node 2

Node 3

Node 4

Node 5

Puppet Client

Puppet Master
node default {
}
...
node apache_server{

Installs apache web server
 include httpd

Installs java
 class {'java':
 java_version => '1.6.0_37',
 java_base => '/opt/java',
 }
...
}

IAC – Client-Server Advantages

- Central puppet module location
- Continuously updated every 30 minutes by default
- Easy to change configuration of an entire node
IAC – Created Puppet Modules

<table>
<thead>
<tr>
<th>Tool</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apache</td>
<td>HTTP server</td>
</tr>
<tr>
<td>Celery</td>
<td>Asynchronous task queue/job queue based on distributed message passing.</td>
</tr>
<tr>
<td>Compute Node</td>
<td>Base CentOS machine image</td>
</tr>
<tr>
<td>Fedora Commons</td>
<td>A general-purpose, open-source digital object repository system</td>
</tr>
<tr>
<td>Jenkins</td>
<td>An open-source continuous integration server with 300+ plugins to support all kinds of software development</td>
</tr>
<tr>
<td>Lettuce</td>
<td>Behavior Driven Development tool used to perform software testing</td>
</tr>
<tr>
<td>MongoDB</td>
<td>An open source document-oriented database system</td>
</tr>
</tbody>
</table>
IAC – Created Puppet Modules

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mySQL</td>
<td>An open source relational database management system</td>
</tr>
<tr>
<td>PostgreSQL</td>
<td>A object-relational database management system available for many platforms</td>
</tr>
<tr>
<td>Puppet Server</td>
<td>A server used to manage puppet clients through a client-server architecture</td>
</tr>
<tr>
<td>RabbitMQ</td>
<td>An open source message broker software that implements the AMQP standard</td>
</tr>
<tr>
<td>Redis</td>
<td>An open source, BSD licensed, advanced key-value store</td>
</tr>
<tr>
<td>Tomcat</td>
<td>An open source web server and servlet container</td>
</tr>
</tbody>
</table>
IAC – Future Work

- Continue the integration of IAC into development practices at the CRC
- Add additional puppet modules to central repository
- Look at continuous integration
- Test driven development with Lettuce
Overview

- Introduction
- Haiti Infrastructure Surveyor (HIS)
 - Background
 - Related Work
 - Mobile Application
- Infrastructure as Code (IAC)
 - Background
 - Related Work
 - CRC Puppet Modules
- Conclusion
Conclusion

- HIS Mobile Application
 - Improve structural safety in Haiti
 - Development process transition to agile development
 - Getting started documentation

- Infrastructure as Code
 - 13 puppet modules
 - Utilize puppet modules within current projects
 - Getting started with IAC presentation
Acknowledgements

- Dr. Gregory Madey
- Dr. Alexandros Taflanidis
- Dr. Tracy Kijewski-Correa
- Dr. Timothy Wright and the CRC
- EPICS Team
 - Dolff Hanke, Charles Jhin, Henry Kim, Jonathan Koch, Matthew Maguire, and Michael Powers
- Dr. Collin McMillan
References

References

References

[20] Lettuce. URL http://lettuce.it/
Questions?