CONSTANT Q-CURVATURE METRICS NEAR
THE HYPERBOLIC METRIC

A Dissertation

Submitted to the Graduate School
of the University of Notre Dame
in Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

by

Gang Li,

Matthew Gursky, Director

Graduate Program in Mathematics
Notre Dame, Indiana
April 2013
CONSTANT Q-CURVATURE METRICS NEAR
THE HYPERBOLIC METRIC

Abstract

by

Gang Li

Let \((M, g)\) be a Poincaré-Einstein manifold with a smooth defining function. We prove that there are infinitely many asymptotically hyperbolic metrics with constant \(Q\)-curvature in the conformal class of an asymptotically hyperbolic metric close enough to \(g\). These metrics are parametrized by the elements in the kernel of the linearized operator of the prescribed constant \(Q\)-curvature equation. A similar analysis is applied to a class of fourth order equations arising in spectral theory.
CONTENTS

ACKNOWLEDGMENTS ... iii

CHAPTER 1: INTRODUCTION ... 1

CHAPTER 2: SEMI-FREDHOLM PROPERTIES OF THE LINEARIZED OPERATOR ... 15

CHAPTER 3: THE NONLINEAR PROBLEM 34

CHAPTER 4: CONSTANT Q-CURVATURE METRICS FOR PERTURBED CONFORMAL STRUCTURES ... 45

CHAPTER 5: CRITICAL METRICS of REGULARIZED DETERMINANTS 51
 5.1 SUMMARY ... 59

BIBLIOGRAPHY ... 61
ACKNOWLEDGMENTS

Among people who have bettered my life in the last several years I wish especially
to thank my family for their love and encouragement, and the same to Ye Li, Yueh-
Ju Lin, Xiaoyang Chen, Edward Burkard, Peter Ulrickson, Nicole Kroeger, Nathan
Vander Werf, Renato Ghini Bettiol, John Harvey, Han Liu, Tiancong Chen, Jian
Ge, Yen-Chang Huang, Huijing Du, Jin Hao, Wenrui Hao, Santosh Kandel, Chunlei
Li, Jun Dan. For the mathematics they have taught me I am grateful to Professor
Rafe Mazzeo, Frederico Xavier, Qing Han, C. Robin Graham, Xiaobo Liu, Gábor
Szekelyhidi, Brain Hall, Samuel Evens, Liviu Nicolaescu, Arthur Lim, Mei-Chi Shaw,
Jeffrey Diller, Karsten Grove, Stephan Stolz, Bei Hu and Jianguo Cao. I would also
like to thank my formal advisor Professor Huicheng Yin in Nanjing University for
his encouragement and continuous support. Under his guidance, I have laid a good
foundation in PDE. I would like to cherish the memory to Professor Jianguo Cao.
May he rest in heaven with God and be at peace.

Finally, well deserving a paragraph of his own is Professor Matthew Gursky. For
my whole study in the last four years, he is the pilot. I have been deeply influenced
by his style in my research. His great patience in research moves me. I have no words
to express my gratitude.
CHAPTER 1

INTRODUCTION

In this thesis we will discuss the prescribed constant Q-curvature problem for asymptotically hyperbolic manifolds. We obtain the existence of a family of constant Q-curvature metrics in a small neighborhood of any Poincaré-Einstein metric, parametrized by elements in the null space of the linearized operator L in (1.0.4). Much of the analysis follows from Mazzeo’s microlocal analysis method for elliptic edge operators. Results in this setting have been proved for the scalar curvature equation, see [1].

An important problem in geometry is the existence of metrics with prescribed curvature. In this work we will consider a version of this problem where the metric is assumed to be in a fixed conformal class, and the curvature quantity is the Q-curvature.

Let (M^n, g) be an n-th dimensional Riemannian manifold. The conformal class of the metric g is the set of Riemannian metrics h on M so that $h = \rho g$ with a function $\rho > 0$.

A famous example of this is the Yamabe problem. Denote R_g and R_h as the scalar curvature of metrics g and h. Let $\rho = \begin{cases} e^{2u}, & n = 2, \\ u^{\frac{4}{n-2}}, & n > 2. \end{cases}$ For a prescribed
\(R_h = f, u \) satisfies the following second order equation

\[
L_g(u) = \begin{cases}
-R_g + f e^{2u}, & n = 2, \\
(n+2) u_n^{n-2}, & n > 2,
\end{cases}
\]

with the conformal Laplacian

\[
L_g = \begin{cases}
-\Delta_g, & n = 2, \\
-\frac{4(n-1)}{n-2}\Delta_g + R_g, & n > 2,
\end{cases}
\]

where \(\Delta_g \) is the Laplace-Beltrami operator. \(L_g \) satisfies the following covariance property for \(\varphi \in C^\infty(M) \),

\[
L_h \varphi = e^{-2u} L_g \varphi, \quad n = 2,
\]

\[
L_g(u \varphi) = u^{\frac{n+2}{n-2}} L_h(\varphi), \quad n > 2.
\]

The Yamabe problem on an closed manifolds has been worked by Hidehiko Yamabe [37], Neil Trudinger [33], Thierry Aubin [2, 3, 4] using variational method, and finally completely solved by Richard Schoen [32] using positive mass theorem.

For a complete noncompact Riemannian manifold \((M, g)\), the Yamabe problem with prescribed negative constant curvature problem was studied using maximum principle, with no topological obstructions. When \(M \) is a bounded domain in \(\mathbb{R}^n \) with Euclidean metric \(g \), this problem is called Loewner-Nirenberg problem. One can construct a super-solution and a sub-solution of the function, then using maximum principle to prove the existence of a solution to this problem. The uniqueness also follows from maximum principle. A very interesting phenomena of the solution is
that the solution metric blows up near the boundary with the rate cd^{-2}, with d the distance of the point to the boundary:

Theorem 1.0.1. (Loewner-Nirenberg [23]) Let $\Omega \subset \mathbb{R}^n \ (n \geq 3)$, be smooth and bounded. Let $d(x) = \text{dist}(x, \partial \Omega)$, and $v = u^{-\frac{2}{n-2}}$. Then there exists a unique conformal metric $\hat{g} = u^{\frac{4}{n-2}} ds^2$, such that

(1). The scalar curvature of \hat{g} is $\hat{R} = -n(n-1)$.

(2). g is complete, and moreover, $v(x)d^{-1} \to 2$, that's to say, $u(x) \sim (2d(x))^{-\frac{n-2}{2}}$, as $x \to \partial \Omega$.

Remark 1.0.2. Under conformal transformation, $g \mapsto \hat{g} = u^{\frac{4}{n-2}}g$, we have the formula $\hat{R} = u^{-\frac{n+2}{n-2}}(-\frac{4(n-1)}{n-2}\Delta u + Ru)$. Therefore, on Euclidean space the equation becomes

$$\begin{cases}
\Delta u = \frac{n(n-2)}{4} u^{\frac{n+2}{n-2}}, \quad x \in \Omega, \\
u \to \infty, \quad \text{as} \quad x \to \partial \Omega.
\end{cases}
(1.0.1)$$

The theorem says that there exists unique solution u to (1.0.1), and u satisfies (1), (2).

Remark 1.0.3. If $\Omega = B(0,1)$, the unit ball in \mathbb{R}, there is a solution satisfying $u^{\frac{4}{n-2}}(x) = \frac{1}{4(1-|x|^2)^2}$, and $d(x) = 1 - |x|$. Therefore,

$$u^{\frac{4}{n-2}}(1-|x|)^2 = \frac{1}{4}(1+|x|)^{-2} = \frac{1}{16},$$

as $|x| \to 1$. Note that now \hat{g} is just the hyperbolic metric. We call u here the hyperbolic solution.

We list the sketch proof as follows in three steps:
1. Comparison Theorem

Let $\mathcal{L}(u) = \Delta u - \frac{n(n-2)}{4} u^{\frac{n+2}{n-2}}$. If the following holds

$$
\begin{align*}
\mathcal{L}(u) &\geq \mathcal{L}(v), \quad x \in \Omega, \\
 u &\leq v, \quad x \in \partial \Omega
\end{align*}
$$

then we have $u \leq v$ in Ω. (A easy consequence of Maximal principle.)

2. Using variation methods, we have:

For each $k \in \mathbb{N}$, there exists a unique positive solution u_k to the following problem

$$
\begin{align*}
\mathcal{L}(u_k) &= 0, \quad x \in \Omega, \\
 u &= k \quad x \in \partial \Omega.
\end{align*}
$$

3. By the comparison theorem, we have that $u_k(x)$ is monotone in Ω as k increases.

For each point $x_0 \in \Omega$ and a small ball $B_r(x_0) \subset \Omega$, let u_ϵ be the hyperbolic solution. By the comparison theorem, $u_k \leq u_\epsilon$. Then by the elliptic regularity argument, $u_k \rightarrow u$ in $C^k_{loc}(\Omega)$, and $u \rightarrow \infty$, as $x \rightarrow \partial \Omega$. More precisely,

$$
\lim_{x \rightarrow \partial \Omega} u(x) d^{\frac{n-2}{2}}(x) \leq \left(\frac{1}{2}\right)^{n-2}.
$$

Also using the comparison function

$$
v_\delta(x) = \left(\frac{1}{2}\right)^{n-2}\left((d(x) + \delta)^{1 - \frac{2}{n}} - (d_0 + \delta)^{1 - \frac{2}{n}}\right)
$$

in the neighborhood $U_{d_0+\delta} = \{x \in \Omega : d(x) \leq d_0 + \delta\}$ of $\partial \Omega$,

we have $u \geq v_\delta$ in $U_{d_0+\delta}$. Let $\delta \rightarrow 0$, we have

$$
\lim_{x \rightarrow \partial \Omega} u(x) d^{\frac{n-2}{2}}(x) \geq \left(\frac{1}{2}\right)^{n-2}.
$$

This proves the theorem.

We should note that the Loewner-Nirenberg problem has been generalized by Aviles and McOwen [5] to complete noncompact manifolds with the same conclusion.

For \(n \geq 4 \), a natural conformal invariant and the corresponding conformal covariant operator are the \(Q \)-curvature and the fourth order Paneitz operator. Let \(\text{Ric}_g \) and \(R_g \) be the Ricci curvature and the scalar curvature of \((M, g) \). The \(Q \)-Curvature and the Paneitz operator are defined as follows,

\[
Q_g = \begin{cases}
-\frac{1}{12}(\Delta_g R_g - R_g^2 + 3|Ric_g|^2), & n = 4, \\
-\frac{2}{(n-2)^2}|Ric_g|^2 + \frac{n^3-4n^2+16n-16}{8(n-1)^2(n-2)^2} R_g^2 - \frac{1}{2(n-1)} \Delta_g R_g, & n \geq 5.
\end{cases}
\]

\[
P_g(\varphi) = \begin{cases}
\Delta_g^2 \varphi - \text{div}(\frac{2}{3}R_g g - 2 \text{Ric}_g) d\varphi, & n = 4, \\
\Delta_g^2 \varphi - \text{div}_g(a_n R_g g - b_n \text{Ric}_g) \nabla_g \varphi + \frac{n-4}{2} Q_g \varphi, & n \geq 5,
\end{cases}
\]

where \(a_n = \frac{(n-2)^2+4}{2(n-1)(n-2)} \), \(b_n = \frac{4}{n-2} \), \(\text{div}_g X = \nabla_i X^i \) for any smooth vector field \(X \), and \(\varphi \) is any smooth function on \(M \).

Let \(\tilde{g} = \rho g \), with \(\rho \) a positive function on \(M \), so that

\[
\rho = \begin{cases}
e^{2u}, & n = 4, \\
u^{\frac{n}{n-4}}, & n \geq 5.
\end{cases}
\]

The \(Q \)-curvature has the following transformation,

\[
P_g u + 2Q_g = 2Q_g e^{4u}, \quad n = 4,
\]

\[
P_g u = \frac{n-4}{2}Q_g u^{\frac{n+4}{n-4}}, \quad n > 4.
\]

Note that Paneitz operator satisfies the following conformal covariance property for
\[\varphi \in C^\infty(M), \]

\[P_{\tilde{g}} \varphi = e^{-4u} P_g \varphi, \quad n = 4, \]

\[P_{\tilde{g}}(\varphi) = u^{-\frac{n+4}{n-4}} P_g(u \varphi), \quad n > 4. \]

For \(n \geq 4 \), a natural conformal invariant and the corresponding conformal covariant operator are the \(Q \)-curvature and the fourth order Paneitz operator. Let \(\text{Ric}_g \) and \(R_g \) be the Ricci curvature and the scalar curvature of \((M, g) \). The \(Q \)-Curvature and the Paneitz operator are defined as follows,

\[
Q_g = \begin{cases}
-\frac{1}{12}(\Delta_g R_g - R_g^2 + 3|\text{Ric}_g|^2), & n = 4, \\
-\frac{2}{(n-2)^2}|\text{Ric}_g|^2 + \frac{n^3-4n^2+16n-16}{8(n-1)^2(n-2)^2} R_g^2 - \frac{1}{2(n-1)} \Delta_g R_g, & n \geq 5.
\end{cases}
\]

\[
P_g(\varphi) = \begin{cases}
\Delta_g^2 \varphi - \text{div}(\frac{2}{3} R_g g - 2 \text{Ric}_g)d\varphi, & n = 4, \\
\Delta_g^2 \varphi - \text{div}_g(a_n R_g g - b_n \text{Ric}_g)\nabla_g \varphi + \frac{n-4}{2} Q_g \varphi, & n \geq 5,
\end{cases}
\]

where \(a_n = \frac{(n-2)^2+4}{2(n-1)(n-2)} \), \(b_n = \frac{4}{n-2} \), \(\text{div}_g X = \nabla_i X^i \) for any smooth vector field \(X \), and \(\varphi \) is any smooth function on \(M \).

Let \(\tilde{g} = \rho g \), with \(\rho \) a positive function on \(M \), so that

\[
\rho = \begin{cases}
e^{2u}, & n = 4, \\
u^{\frac{4}{n-4}}, & n \geq 5.
\end{cases}
\]
The Q-curvature has the following transformation,

$$P_g u + 2Q_g = 2Q_ge^{4u}, \ n = 4,$$

$$P_g u = \frac{n-4}{2}Q_g u^{\frac{n+4}{n-4}}, \ n > 4.$$

Note that Paneitz operator satisfies the following conformal covariance property for $\varphi \in C^\infty(M)$,

$$P_{\tilde{g}} \varphi = e^{-4u}P_g \varphi, \ n = 4,$$

$$P_{\tilde{g}}(\varphi) = u^{-\frac{n+4}{n-4}}P_g(u \varphi), \ n > 4.$$

We want to find a function u so that the metric \tilde{g} satisfies $Q_{\tilde{g}} = f$ for a given function f. For the prescribed Q-curvature problem on closed manifold M of dimension four there are many results. Let $k_P = \int_M Q_g \, dvol_g$. In Chang, Yang [8], a variational method is used to solve this problem provided that $\text{Ker}(P_g) = \{ 0 \}$, P_g is a nonnegative operator and $K_P < 8 \pi^2$. Recall that the Yamabe constant $Y(g) \geq 0$ if and only if the conformal Laplacian is nonnegative. Gursky proved in [18] (see also [17]) that if the Yamabe constant $Y(g) \geq 0$, Chang and Yang’s condition is satisfied, and the solution exists. In particular, $k_P = 8 \pi^2$ if and only if (M, g) is conformally equivalent to the standard sphere. Then Xu and Yang proved the case $n \geq 6$. For $n \geq 5$, Qing and Raske [31] showed that for a conformally flat metric with positive Yamabe constant and Poincaré exponent less than $(n-\alpha)/2$ for some $\alpha \in [2, n)$, there exists a solution in its conformal class. A flow approach is performed in [6], which also contains a higher order Q-curvature problem generalized in another line, see also Xu and Chen [9]. For $n = 4$, using compactness results and topological methods, Malchiodi [12] proved that there exists a solution provided that $\text{Ker}(P_g) = \{ 0 \}$ and $k_P \neq 8k \pi^2$ for $k = 1, 2, 3...$. Ndiaye [29] generalized Machiodi’s result to higher di-
dimensional closed manifold. Also Ndiaye [30] proved a boundary value problem using the same method.

There are some interesting results for complete non-compact manifolds. For Euclidean space \mathbb{R}^n, $n \geq 4$, the solution to the prescribed Q-curvature problem is well studied by Lin [22], and later Wei and Ye [35].

In [16], using shooting method, the authors proved that there are infinitely many complete metrics with constant Q-curvature in the conformal class of the Poincaré disk with dimension $n \geq 5$, which are radially symmetric ODE solutions to the initial value problem parametrized by distinct given initial data at the origin. It is not difficult to prove that similar results hold for $n = 4$. Mazzeo pointed out that there should be a more general result of this type. In this paper, we solve a perturbation problem in the setting of asymptotically hyperbolic metrics close to a Poincaré-Einstein metric. To give a precise statement we first need some definitions.

Definition 1.0.4. Let M be a smooth manifold of dimensional n, with smooth boundary ∂M of dimension $n - 1$. Let g be a complete metric on $M = \text{Int}(M)$. We say that g is conformally compact if there exists a smooth function x on \overline{M}, with the property that $x > 0$ in M, and $x = 0$ on ∂M, so that the metric $h = x^2 g$ extends by continuity to a Riemannian metric on \overline{M}. Here x is called a defining function of g. Moreover, if $h \in C^k$ or $C^{k, \alpha}$, for some positive integer k, we say that g is conformally compact of order C^k or $C^{k, \alpha}$.

Note that a direct calculation shows that the sectional curvatures of a conformally compact metric g approach $-|d\rho|_g$ near ∂M. We call (M, g) asymptotically hyperbolic, if $|dx|_h|_{\partial M} = 1$; and here g is called an asymptotically hyperbolic metric, for which the sectional curvatures approach -1 near ∂M.

Definition 1.0.5. Let (M, g) be an asymptotically hyperbolic manifold. If g is also
Einstein, we call g a Poincaré-Einstein metric, and (M, g) a Poincaré-Einstein manifold.

Let (M^n, g) be an asymptotically hyperbolic manifold of dimension n, with x as its smooth defining function. Actually, we can choose x so that $|dx_h| = 1$ in a neighborhood of ∂M, see [13], and to simplify notation we always choose a defining function in this sense except in Chapter 4. We will mainly focus on the asymptotic behavior of the metric near ∂M, which is a local matter. Let y be local coordinates on ∂M. In a neighborhood of ∂M in \overline{M}, we introduce the local coordinates in the following way: $(x, y) \in [0, \varepsilon) \times \partial M$ represents the point moving from the point on ∂M with local coordinate y, along the geodesic which is the integral curve of $\nabla_h x$ for a length x in the metric h. In local coordinates (x, y),

$$h = x^2 g = dx^2 + \sum_{i,j=1}^{n-1} h_{ij} dy^i dy^j.$$

For convenience, let $\tilde{g} = \rho g$, with ρ a positive function on M, so that

$$\rho = \begin{cases}
 e^{2u}, & n = 4, \\
 (1 + u)^{\frac{4}{n-4}} , & n \geq 5.
\end{cases}$$

For a given function \tilde{Q}, let the operator \mathcal{E} be defined by

$$\mathcal{E}(u) = \begin{cases}
 P_g u + 2\tilde{Q}_g - 2\tilde{Q} e^{4u} , & \text{for } n = 4, \\
 P_g (1 + u) - \frac{n-4}{2} \tilde{Q} (1 + u)^{\frac{n+4}{n-4}} , & \text{for } n \geq 5.
\end{cases} \quad (1.0.2)$$

To solve the prescribed Q-curvature problem amounts to finding a solution to

$$\mathcal{E}(u) = 0. \quad (1.0.3)$$
For $\tilde{Q} = Q_g$, we define the linear operator $L = L_g$ of \mathcal{E} as follows,

$$L(u) = \begin{cases}
P_gu - 8Q_gu, & n = 4, \\
P_gu - \frac{n+4}{2}Q_gu, & n \geq 5.
\end{cases}$$

(1.0.4)

Let (x, y) be the local coordinates of M near the boundary described above. Let \mathcal{V}_e be the collection of the smooth vector fields on \overline{M}, which restricted to a neighborhood of ∂M are generated by \{x\partial_x, x\partial_y, \ldots, x\partial_{y^{n-1}}\} with smooth coefficients on \overline{M}.

Next we introduce the weighted spaces that we will be using. First, the weighted Sobolev spaces,

$$x^{\delta}H^m_e(M, \Omega^{\frac{1}{2}}) = \{ u = x^{\delta}v : V_1 \ldots V_j v \in L^2(M, \Omega^{\frac{1}{2}}), \forall j \leq m, V_i \in \mathcal{V}_e \},$$

where $m \in \mathbb{N}$, $\delta \in \mathbb{R}$, and $\Omega^{\frac{1}{2}} = \sqrt{dx \, dy}$ is the half-density. We also introduce the weighted Hölder space,

$$x^{\delta}\Lambda^{m, \alpha}_e = x^{\delta}\Lambda^{m, \alpha}(M, \Omega^{\frac{1}{2}}) = \{ u = x^{\delta}v\sqrt{dx \, dy} : V_1 \ldots V_j v \in \Lambda^{0, \alpha}, \forall j \leq m, V_i \in \mathcal{V}_e \},$$

with $m \in \mathbb{N}$, $\delta \in \mathbb{R}$, and $0 < \alpha < 1$, where $\Lambda^{0, \alpha}(M)$ is the space of half-densities $u = v\sqrt{dx \, dy}$ such that

$$\|v\|_{\Lambda^{0, \alpha}(M)} = \sup |v| + \sup \frac{(x + \tilde{x})^\alpha |v(x, y) - v(\tilde{x}, \tilde{y})|}{|x - \tilde{x}|^\alpha + |y - \tilde{y}|^\alpha} < \infty.$$
We will use the norm

$$\|u\|_{x^\Lambda^k, \alpha(M)} = \sum_{m=0}^{k} \sum_{|\gamma|=m} \|\partial_e^\gamma v\|_{0, \alpha},$$

with $\partial_e \in \mathcal{V}_e$ and $u = x^\delta v$.

In this paper, we always assume $n \geq 4$ to be the dimension of M. With these definitions, we can now state our main result:

Theorem 1.0.6. Let (M^n, g), $n \geq 4$, be a Poincaré-Einstein manifold with defining function x, and assume the metric $h = x^2 g$ is smooth up to the boundary. Let

$L : x^\nu \Lambda^{4, \alpha}(M) \rightarrow x^\nu \Lambda^{0, \alpha}(M)$, where $0 < \nu < \frac{n-1}{2}$ and $0 < \alpha < 1$ be the linearized operator defined in (1.0.4). Then,

i) The kernel of $L \subset x^\nu \Lambda^{4, \alpha}(M)$ is infinite dimensional, and L is surjective. Furthermore, given $\tilde{Q} \in \Lambda^{0, \alpha}(M, \sqrt{dx \wedge dy})$ with $\|\tilde{Q} - Q_g\|_{x^\nu \Lambda^{0, \alpha}}$ sufficiently small, for each v in the kernel of L there exists a unique solution u to the problem (1.0.3) with $\Pi_1(u) = v$, where $\Pi_1 : x^\nu \Lambda^{4, \alpha}(M) \rightarrow \ker(L)$ is the projection map (see Theorem 1.0.8).

ii) Let u be a solution of (1.0.3) with $\tilde{Q} = Q_g$. Then u has an expansion near the boundary

$$u(x, y) \sim (u_{00}(y)x^{\frac{n-1}{2}} + i\beta + u_{10}(y)x^{\frac{n-1}{2}} - i\beta) + o(x^{\frac{n-1}{2}}), \quad (1.0.5)$$

with $\beta = \frac{\sqrt{n^2 + 2n - 9}}{2}$ and $i = \sqrt{-1}$, where u_{00} and u_{10} are generally distributions of negative order.
Moreover, suppose $v = \Pi_1 u$ has an expansion of the form

$$v(x, y) \sim \sum_{j=0}^{+\infty} (v_{0j}(y)x^{n-1+i\beta+j} + v_{1j}(y)x^{n-1-i\beta+j} + v_{2j}(y)x^{n+j}), \quad (1.0.6)$$

in the sense that

$$v(x, y) - \sum_{j=0}^{k} (v_{0j}(y)x^{n-1+i\beta+j} + v_{1j}(y)x^{n-1-i\beta+j}) = o(x^{n-1+k}),$$

for each $k \geq 0$, where $\beta = \sqrt{n^2 + 2n - 9}/2$ and the coefficient functions are smooth.

Then u has an expansion of the same form.

For kernel elements having an expansion with smooth coefficients as in $(1.0.6)$, one can prescribe the leading terms; see Remark 2.0.5.

Remark 1.0.1. Our proof uses in a crucial way that the Laplacian operator Δ has no embedded eigenvalues in its essential spectrum. In [27], Mazzeo showed that this holds for any asymptotically hyperbolic manifold (M, g) with smooth defining function x such that the compactified metric $h = x^2g$ is smooth up to the boundary. The smoothness assumption comes up when he uses boundary regularity results of kernel elements and the unique continuation property on the boundary.

Remark 1.0.2. For examples of smooth Poincaré-Einstein manifolds (M^n, g), we have the Poincaré ball $(B^n(0), g_H)$, geometrically finite quotients of hyperbolic space \mathbb{H}^n/Γ with infinite volume. For nontrivial examples, Graham and Lee [14] and Lee [21] proved that there are infinitely many Poincaré-Einstein metrics g near the hyperbolic metric and a class of known Poincaré-Einstein metrics g with prescribed data of $x^2g|_{\partial M}$. Moreover, by the regularity result in [10], for g asymptotically hyperbolic of order C^2, with smooth defining function x and $x^2g|_{\partial M}$ is a smooth metric on ∂M, for n even, or $n=3$, up to a $C^{1,\alpha}$ diffeomorphism near the boundary, $h = x^2g$ ex-
tends to boundary smoothly; while for n odd and $n > 3$, h has expansion with possible log(x)-terms appearing at $x = 0$, which does not satisfy the regularity condition in [27].

Remark 1.0.3. The ODE result in [16] only gives existence of radially symmetric constant Q-curvature metrics in the conformal class of the hyperbolic metric, but allows the metric to be far away from the hyperbolic metric. As a perturbation result, our theorem gives the existence of solutions in the conformal class of metrics in a small neighborhood of the hyperbolic metric, more precisely, see Theorem 4.0.17.

Since this is a perturbation result, we first discuss the linear problem. We say that a bounded linear operator L is *essentially injective*, if the null space of L is at most finitely dimensional; and L is *essentially surjective* if L has closed range and with at most finitely dimensional cokernel. Using Mazzeo’s approach in [24], we obtain the semi-Fredholm property for the linear operator (1.0.4):

Theorem 1.0.7. Let (M^n, g) be an asymptotically hyperbolic manifold with defining function x and the metric $h = x^2 g$ smooth up to the boundary, then the linear operator $L : x^\delta H^4_c(M) \to x^\delta L^2(M, \sqrt{dx \, dy})$ as in (1.0.4), is essentially injective if $\delta > \frac{n}{2}$ and $\delta \neq n + \frac{1}{2}$, with infinite dimensional cokernel, and L is essentially surjective if $\delta < \frac{n}{2}$ and $\delta \neq -\frac{1}{2}$, with infinite dimensional kernel. Moreover, in both cases, L has closed range, and admits a generalized inverse G and orthogonal projectors Π_1 onto the nullspace and Π_2 onto orthogonal complement of the range of L which are edge operators, such that,

$$GL = I - \Pi_1,$$

$$LG = I - \Pi_2.$$

The corresponding theorem for the weighted Hölder space is as follows.
Theorem 1.0.8. Let (M^n, g) be an asymptotically hyperbolic manifold with defining function x and the metric $h = x^2 g$ smooth up to the boundary. Let $0 < \alpha < 1$. The linear operator $L : x^\nu \Lambda^{4,\alpha}(M) \to x^\nu \Lambda^{0,\alpha}(M)$ as in (1.0.4), is essentially injective if $\nu > \frac{n-1}{2}$ and $\nu \neq n$, with infinite dimensional cokernel; and L is essentially surjective if $\nu < \frac{n-1}{2}$ and $\nu \neq -1$, with infinite dimensional kernel. Moreover, in both cases, L has closed range. Also, $x^\nu \Lambda^{4,\alpha}(M)$ has the topological splitting of the following direct sum $x^\nu \Lambda^{4,\alpha}(M) = \Pi_1(x^\nu \Lambda^{4,\alpha}(M)) \oplus (I - \Pi_1)(x^\nu \Lambda^{4,\alpha}(M))$, which are the projection to the null space of L and its topological complement for the second case. Similarly as the theorem with weighted Sobolev spaces, there is a corresponding splitting of $x^\nu \Lambda^{0,\alpha}(M)$ for $\nu > \frac{n-1}{2}$.

The notes is organized as follows. In Chapter 2, we study the linear elliptic edge operator L defined in (1.0.4), and obtain the semi-Fredholm property of the linear operator L. In Chapter 3, we obtain that if the linear operator L with respect to the initial asymptotically hyperbolic metric g is surjective in a suitable weighted Hölder space, there are infinitely many solutions to the prescribed Q-curvature problem with \tilde{Q} a small perturbation of Q_g, and the solutions are parametrized by the elements in the kernel of L. Then we give the proof of Theorem 1.0.6. Using a special weighted Hölder space, in Chapter 4, we prove a perturbation result for the prescribed constant Q-curvature problem for a Poincaré-Einstein metric. In Chapter 5, we give a similar discussion to the prescribed U-curvature equations.
CHAPTER 2

SEMI-FREDHOLM PROPERTIES OF THE LINEARIZED OPERATOR

In the following, we will discuss the local parametrix for L and the Fredholm property of L. A clear feature is that the elliptic operators L under consideration here are degenerate near infinity. Here we review some of the material developed by Mazzeo and others in the theory of elliptic edge operators.

As in the introduction, let (M^n, g) be an asymptotically hyperbolic manifold of dimension n, with defining function x and the metric $h = x^2 g$ smooth up to the boundary. Let (x, y) be the local coordinates of M near the boundary, and \mathcal{V}_e be defined in the introduction. The one-forms dual to the vector fields which are elements in \mathcal{V}_e are smooth one forms in M, restricted on the neighborhood of ∂M generated linearly by $\{ \frac{dx}{x}, \frac{dy^1}{x}, ..., \frac{dy^{n-1}}{x} \}$ with coefficients smooth up to ∂M. Generally, a left or right parametrix E of an elliptic operator L on M is a pseudo-differential operator with the property that

$$EL = \text{Id} + R_1, \text{ or } LE = \text{Id} + R_2,$$

with R_1, R_2 compact operators.

The Schwartz kernel of an interior parametrix of the linear operator L is a distribution on $M \times M$, and for ”interior” we mean that the parametrix has singularity near the boundary which will be explained in the following. Let (x, y) and (\tilde{x}, \tilde{y}) be
local coordinates on each copy of M near the boundary. We know that the parametrix is smooth, except for the singularity along the diagonal $\Delta = \{x = \tilde{x}, y = \tilde{y}\}$, as in the case of compact manifolds. Moreover, here due to the degeneration of the edge operator L, as $x, \tilde{x} \to 0$, we also have the important additional singularity at the intersection of Δ and the corner, which is $S = \{x = \tilde{x} = 0, y = \tilde{y}\}$. To deal with the boundary singularity, we introduce a new manifold $M_0^2 = M \times_0 M$, by blowing-up $M \times M$ along S. Actually, if we use polar coordinates for $M \times M$ near the corner,

$$r = (x^2 + |y - \tilde{y}|^2 + \tilde{x}^2)^{1/2} \in \mathbb{R}^+,$$

$$\Theta = (x, y - \tilde{y}, \tilde{x})/r \in S_{++}^n = \{\Theta \in S^n, \Theta_0, \Theta_n \geq 0\},$$

we know that the level set of $r = R$ is a submanifold of dimensional $2n-1$ for $R > 0$, while $S = \{r = 0\}$ is singular. More precisely, let M_0^2 be the lift of $M \times M$ such that it is the same as $M \times M$ away from S, but near the corner, it is represented by the lift of the polar coordinates, smoothly. Hence, $S_{11} = \{r = 0\}$ is a $(2n - 1)$-dimensional submanifold of M_0^2. Let b be the natural projection map from M_0^2 to $M \times M$. For the convenience of calculation, as in [24], we introduce two systems of local coordinates on M_v^2, $(s, v, \tilde{x}, \tilde{y})$ and (x, y, t, w), where

$$s = x/\tilde{x}, \; v = \frac{y - \tilde{y}}{\tilde{x}}; \; t = \tilde{x}/x, \; w = \frac{\tilde{y} - y}{x}. $$

Changing variables in these two coordinates,

$$x\partial_x = s\partial_s = x\partial_x - w\partial_w - t\partial_t, \text{ and } x\partial_y = s\partial_v = x\partial_y - \partial_w. $$

In the following without loss of generality we only need to consider $(s, v, \tilde{x}, \tilde{y})$. View-
ing elements in \mathcal{V}_e as first order differential operators, we denote $\text{Diff}^*_e(M)$ the algebra generated by \mathcal{V}_e with coefficients in the ring $C^\infty(M)$, and with the product given by composition of operators. We call an element in $\text{Diff}^*_e(M)$ an \textit{edge operator}. Let $\text{Diff}^m_e(M)$ be the linear subspace of differential operators which are of m-th order. Then for $L \in \text{Diff}^m_e(M)$, it has the form

$$L = \sum_{j+|\alpha| \leq m} a_{j,\alpha}(x, y)(x\partial_x)^j(x\partial_y)^\alpha,$$

(2.0.1)

with $a_{j,\alpha} \in C^\infty(M)$, in the coordinate chart (x, y). The symbol of L is

$$\sigma_e(L)(x, y; \xi, \eta) = \sum_{j+|\alpha| = m} a_{j,\alpha}(x, y)\xi^j\eta^\alpha.$$

L is elliptic if $\sigma_e(L)(x, y; \xi, \eta) \neq 0$, for $(\xi, \eta) \neq 0$. It is easy to check that Δ_g and the linear operator L in (1.0.4) are elliptic. L in (2.0.1) can be considered as a lift to M_e^2 as follows,

$$L = \sum_{j+|\alpha| \leq m} a_{j,\alpha}(x, y)(x\partial_x)^j(x\partial_y)^\alpha = \sum_{j+|\alpha| \leq m} a_{j,\alpha}(s\tilde{x}, \tilde{y} + \tilde{x}v)(s\partial_s)^j(s\partial_v)^\alpha.$$

Let $N(L)$ be the normal operator of L, so that

$$N(L) = \sum_{j+|\alpha| \leq m} a_{j,\alpha}(0, \tilde{y})(s\partial_s)^j(s\partial_v)^\alpha,$$

is the restriction to S_{11} of the lift of L to M_e^2. The normal operator is an important approximation of L near the boundary. For the linear operator L in (2.0.1),

$$L\phi = \sum_{j+|\alpha| \leq m} a_{j,\alpha}(0, y)(x\partial_x)^j(x\partial_y)^\alpha \phi + E\phi,$$
any smooth function ϕ, with the error term

$$E\phi = x \sum_{j+|\alpha| \leq m} b_{j,\alpha}(x, y)(x \partial_x)^j(x \partial_y)^\alpha \phi,$$

for $x > 0$ small, with the coefficients $b_{j,\alpha}$ smooth up to the boundary.

Definition 2.0.9. The indicial family $I_\zeta(L)$ of $L \in \text{Diff}_c^k(M)$ is defined to be the family of operators

$$L(x^\zeta(\log(x))^p f(x, y)) = x^\zeta(\log(x))^p I_\zeta(L) f(0, y) + O(x^\zeta(\log(x))^{p-1}),$$

for $f \in C^\infty(M)$, $\zeta \in \mathbb{C}$, $p \in \mathbb{N}_0$.

There exists a unique dilation-invariant operator $I(L)$, which is called the indicial operator, such that

$$I(L)(y, s \partial_s) s^\zeta f(y) = s^\zeta I_\zeta(L) f(y).$$

In local coordinates near the boundary, $I(L) = \sum_{j \leq k} a_{j,0}(0, y)(s \partial_s)^j$.

Definition 2.0.10. If $L \in \text{Diff}_c^k(M)$ is elliptic, we denote $\text{spec}_b(L)$ as the boundary spectrum of L, which is the set of $\zeta \in \mathbb{C}$, for which $I_\zeta(L) = 0$.

Let (M, g), x, and h be defined as above. Denote S_x as the level set of x (also denoted as x_0 for convenience), and the coordinates $(y_1, ..., y_{n-1}) = y$. We now use this point of view to deal with our linearized operator (1.0.4).

In a neighborhood of ∂M, we have the following,

$$\text{Ric}_g = \text{Ric}_h + x^{-1}[(n-2)\text{Hess}_h x + \Delta_h x h] - (n-1)x^{-2}|dx|^2_h h,$$ \hspace{1cm} (2.0.2)
and

\[R_g = -n(n-1)|dx|_h^2 + (2n-2)x(\Delta_h x) + x^2 R_h, \quad (2.0.3) \]

where \(|dx|_h = 1\), and

\((\text{Hess}_h)_{ij}(x) = \nabla_i^h \nabla_j^h (x) = \partial_i \partial_j (x) - \Gamma_{ij}^s \partial_s (x) = -\Gamma_{ij}^0 = \frac{1}{2} \partial_s h_{ij} = B_{ij}, \)

with \(B_{ij} \) the second fundamental form of \(S_x \), for \(i, j > 0 \); and \((\text{Hess}_h)_{ij}(x) = 0 \) otherwise. Also \(\Delta_h x = \text{tr}_h(\text{Hess}_h) = H(h) \), with \(H(h) \) the mean curvature of the level set of \(x \) in the metric \(h \). Here \(\Gamma_{ij}^k \) is the Christoffel symbol with respect to \(h \). Note that \(\Delta_g \) in our paper is the trace of \(\text{Hess}_g \), with negative eigenvalues:

\[\Delta_g u = g^{ij}(\partial_i \partial_j - \Gamma_{ij}^k \partial_k) u \]
\[= x^2 \Delta_h u + (2-n) x (\nabla_h x, du) \]
\[= (2-n) x \partial_x u + x^2 (\partial_x^2 u + \Delta_y u + H(h) \partial_x u), \quad (2.0.6) \]

where \(\Delta_y \) is the Laplacian on the level set \(S_x \) of \(x \), in the induced metric \(h|_{S_x} \).

Near the boundary, the \(Q-\)curvature is

\[Q_g = -\frac{2}{(n-2)^2} (n-1)^2 n + \frac{n^3 - 4n^2 + 16n - 16}{8(n-1)^2(n-2)^2} n^2(n-1)^2 + O(x) \]
\[= \frac{n(n^2 - 4)}{8} + O(x), \]

for \(n \geq 5 \), and \(Q_g = 3 + O(x) \), for \(n = 4 \).

In the following of this chapter we will discuss about the linear operator \(L \) in
Note that

\[L \phi = \Delta_g^2 \phi - \text{div}_g (a_n R_g g - b_n \text{Ric}_g) \nabla_g \phi - 4 f \phi \]

\[= \Delta_g^2 \phi - a_n R_g \Delta_g \phi + b_n \text{Ric}^g_{ij} \nabla^i_g \nabla^j_g \phi - a_n (\nabla_g R_g, \nabla_g \phi) + b_n \nabla^i_g \text{Ric}_ij \nabla^j_g \phi - 4 f \phi, \]

\[= \Delta_g^2 \phi - a_n R_g \Delta_g \phi + b_n \text{Ric}^g_{ij} \nabla^i_g \nabla^j_g \phi + (-a_n + \frac{b_n}{2})(\nabla_g R_g, \nabla_g \phi) - 4 f \phi \]

\[= \Delta_g^2 \phi - a_n R_g \Delta_g \phi + b_n \text{Ric}^g_{ij} \nabla^i_g \nabla^j_g \phi + \frac{6 - n}{2(n - 1)} (\nabla_g R_g, \nabla_g \phi) - 4 f \phi, \]

with \(f = Q_g \) for \(n \geq 5 \), and \(f = 2 Q_g \) for \(n = 4 \). For the third equality, we use the second Bianchi identity. Also,

\[\Delta_g \phi = x^2 \Delta_h \phi - (n - 2) x (\nabla_h x, d\phi)_h = x^2 \Delta_h \phi -(n - 2) x \partial_x \phi, \]

and

\[R_{ij}(g) \nabla^i_g \nabla^j_g \phi \sim \left[-(n - 1)x^2 h_{ij} + O(x^3)\right]x^{-4} \nabla^i_g \nabla^j_g \phi \]

\[= -(n - 1) (\Delta_g \phi + O(x) p(x, y, x \partial_x, x \partial_y) \phi), \]

for some smooth function \(p(\cdot) \). As a consequence,

\[L \phi = \Delta_g^2 \phi - a_n R_g \Delta_g \phi + b_n \text{Ric}^g_{ij} \nabla^i_g \nabla^j_g \phi + \frac{6 - n}{2(n - 1)} (\nabla_g R_g, \nabla_g \phi) - 4 f \phi \]

\[= \Delta_g^2 \phi - a_n (-n(n - 1) + O(x)) \Delta_g \phi + b_n (-n(n - 1) \Delta_g \phi \]

\[+ O(x) p(x, y, x \partial_x, x \partial_y) \phi + \frac{6 - n}{2(n - 1)}(-2n - 2)x^2 H(h|_{\mathcal{S}_x}) \partial_x \phi \]

\[+ O(x^3) |\nabla_g \phi| - (\frac{1}{2} n(n^2 - 4) + O(x)) \phi, \]
and then, by definition,

\[N(L) = [(s \partial_s)^2 - (n - 1)s \partial_s + s^2 \Delta_v - n][(s \partial_s)^2 - (n - 1)s \partial_s + s^2 \Delta_v + \frac{n^2 - 4}{2}]. \]

In addition,

\[I(L) = ((s \partial_s)^2 - (n - 1)s \partial_s - n)((s \partial_s)^2 - (n - 1)s \partial_s + \frac{n^2 - 4}{2}). \]

Let \(\phi = s^\zeta \), and \(I(L)\phi = 0 \). Solving the equation, we get the indicial roots \(\zeta \), given by

\[\text{spec}_b(L) = \{ n, -1, \frac{n - 1}{2} - i \frac{\sqrt{n^2 + 2n - 9}}{2}, \frac{n - 1}{2} + i \frac{\sqrt{n^2 + 2n - 9}}{2} \}. \]

Let \(\Lambda \) be the indices set

\[\Lambda = \left\{ \frac{1}{2} + \text{Re}(\delta); \delta \in \text{spec}_b(L) \right\}. \quad (2.0.7) \]

The operator \(N(L) \) acts on functions defined on \(\mathbb{R}^+ \times \mathbb{R}^{n-1}_v \) for each fixed \(\bar{y} \), with coordinates \((s, v)\). For our linear operator \(L \), \(N(L) \) does not depend on \(\bar{y} \). We now take the Fourier transformation of \(N(L) \) in \(v \) direction,

\[\widehat{N(L)} = \sum_{j + |\alpha| \leq m} a_{i,\alpha}(s \partial_s)^j (i s \eta)^\alpha. \]

We have the symmetry of dilation:

\[a_{j,\alpha}(s \partial_s)^j (s \partial_y)^\alpha = a_{j,\alpha}(ks \partial_{ks})^j (ks \partial_{k y})^\alpha, \]
for any \(k \in \mathbb{R} - \{0\} \). Let \(t = s|\eta| \), then

\[
\hat{N}(L)(s, \eta) = \sum_{j + |\alpha| \leq m} a_{i,\alpha}(0, \tilde{y})(i t \tilde{\eta})^\alpha,
\]

which is denoted as \(L_0(t, \tilde{\eta}) \), where \(\tilde{\eta} = \frac{n}{|\eta|} \). This is a family of totally characteristic operators on \(\mathbb{R}_+^n \) and generally its coefficients depend on \(\tilde{y} \). Now we have fixed \(\tilde{\eta} \) in the formula, and it has no scaling freedom in this direction.

Let \(\mathcal{H}^{m,\delta,l} \) be the weighted Sobolev space

\[
\mathcal{H}^{m,\delta,l} = \{ f : \phi(t)f \in t^\delta H^m_e(\mathbb{R}^n_+), (1 - \phi(t))f \in t^{-l}H^m(\mathbb{R}^n_+) \},
\]

with \(\phi \in C_0^\infty(\mathbb{R}^n_+) \), and \(\phi(t) = 1 \) in a neighborhood of \(t = 0 \). Note that

\[
L_0 : t^\delta \mathcal{H}^{m,\delta,l} \rightarrow t^\delta \mathcal{H}^{m-4,\delta,l+4}
\]

is bounded.

For our linear operator \(L \),

\[
\hat{N}(L) = [(s\partial_s)^2 - (n - 1)s\partial_s + s^2(-|\eta|^2) - n][(s\partial_s)^2 - (n - 1)s\partial_s + s^2(-|\eta|^2) + \frac{n^2 - 4}{2}],
\]

and then

\[
L_0(t, \tilde{\eta}) = [(t\partial_t)^2 - (n - 1)t\partial_t - t^2 - n][(t\partial_t)^2 - (n - 1)t\partial_t - t^2 + \frac{n^2 - 4}{2}]
\]

\[
= L_1 \circ L_2,
\]

with \(s\partial_s = s|\eta|\partial_{|\eta|} = t \partial_t \), and \(L_0 \) here does not depend on \(\tilde{y} \). Now we have used the full symmetry of the operator, and made it into the simplest form.
Let us consider the relationship of Fredholm property among $N(L)$, $\hat{N}(L)$ and L_0, in $t^\delta L^2$, for $\delta > \frac{n}{2}$. We know that the first two operators have the same properties of injectivity and surjectivity. Let

$$L_0 \varphi(t) = 0,$$

by definition, it holds if and only if

$$\hat{N}(L)\varphi(s|\eta|) = 0.$$

But then

$$\hat{N}(L)(a(\eta)\varphi(s|\eta|)) = a(\eta) \hat{N}(L)\varphi(s|\eta|) = 0,$$

for all $a(\eta)$ smooth, since the derivative is only in s direction, with fixed η. Then, using the inverse Fourier transformation,

$$N(L) \int_{\mathbb{R}^{n-1}} e^{2\pi i \langle y, \eta \rangle} a(\eta) \varphi(s|\eta|) d\eta = 0.$$

This means kernel of one dimensional L_0 corresponds to the infinite dimensional kernel of $N(L)$, and this construction also gives the fact that the kernel of $N(L)$ is either trivial or of infinite dimension. But if $\hat{N}(L)$ is injective, then L_0 is injective. Conversely, if L_0 is injective, then $\hat{N}(L)$ is injective, and so is $N(L)$. We have a dual argument of the surjectivity for $\delta < \frac{n}{2}$. As in [24], L_0 is Fredholm when $\delta \notin \Lambda$, with the set Λ in [2.0.7], and $N(L)$ is semi-Fredholm with either infinite dimensional kernel or cokernel. Roughly speaking, L is a small perturbation of $N(L)$ near ∂M. When $N(L)$ is injective or surjective, L is essentially injective or essentially surjective,
which will be Theorem 1.0.7 and Theorem 1.0.8.

To see the semi-Fredholm property of L, the strategy is to first study the Fredholm property of L_0 and $N(L)$, and finally obtain the semi-Fredholm property of L using Mazzeo’s theorems which we list here as Theorem 2.0.12 and Corollary 2.0.13.

Now we discuss on the Fredholm property of L_0, L_1 and L_2 on the weighted spaces. To this end, we introduce Bessel functions as solutions to the Bessel equation as follows, which is well studied,

$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} - (x^2 + \alpha^2) y = 0,$$

where α is a complex number.

The Bessel functions I_α and $I_{-\alpha}$ form a basis of linear space of solutions to the Bessel function above, while \{$I_\alpha, K_\alpha\}$ is another basis. For Re(α) > $-\frac{1}{2}$, and $-\frac{\pi}{2} < arg(x) < \frac{\pi}{2}$, the integral representations of these solutions are as follows,

$$I_\alpha(x) = \left(\frac{x}{2}\right)^\alpha \frac{\Gamma(\alpha + \frac{1}{2})}{\Gamma(\frac{1}{2})} \int^1_{-1} e^{-xt}(1 - t^2)^{\alpha - \frac{1}{2}} dt,$$

$$K_\alpha(x) = \frac{\pi}{2} I_\alpha(x) - I_{-\alpha}(x) = \frac{\Gamma(\frac{1}{2})(\frac{x}{2})^\alpha}{\sin(\alpha \pi)} \int^\infty_1 e^{-xt}(t^2 - 1)^{\alpha - \frac{1}{2}} dt,$$

with x a complex number. See Page 172 and 77 in [34]. Note that I_α is bounded near $x = 0$, and it increases exponentially near $+\infty$, and

$$K_\alpha(x) \sim C(\varepsilon)x^{\text{Re}(\alpha)}e^{-x}e^{-\varepsilon},$$

for any $\varepsilon > 0$, as $x \to +\infty$. Also $K_\alpha(x)$ is bounded for Re(α) ≥ 0, near $x = 0$. The form $K_\alpha(x)$ is more useful near $x = \infty$, since it decays exponentially.

We want to solve the following ODE, by transferring it into the Bessel type equa-
tions as above.

\[L_1 u = ((t \partial_t)^2 - (n-1)t \partial_t - t^2 - n) u = 0. \]

Let \(u = t^\beta \tilde{u} \), then we obtain that

\[t^\beta((t \partial_t)^2 \tilde{u} + (2 \beta + 1 - n) t \partial_t \tilde{u} + (-n - t^2 + \beta^2 - \beta(n-1)) \tilde{u}) = 0. \tag{2.0.8} \]

Then, letting \(2 \beta + 1 - n = 0 \), the equation \(\text{(2.0.8)} \) is just the form of the Bessel function defined as above. In this case, \(\beta = \frac{n-1}{2} \), and then the index \(\alpha = \frac{n+1}{2} \).

Therefore,

\[u(t) = t^{-\frac{n-1}{2}}(C_1 I_{\frac{n+1}{2}}(t) + C_2 K_{\frac{n+1}{2}}(t)). \]

In fact,

\[t^{-\frac{n-1}{2}} I_{\frac{n+1}{2}}(t|\eta|) \sim t^n|\eta|^\frac{n+1}{2}, \quad t^{-\frac{n-1}{2}} K_{\frac{n+1}{2}}(t|\eta|) \sim t^{-1}|\eta|^{-\frac{n+1}{2}}, \]

near \(t = 0 \). Moreover,

\[t^{-\frac{n-1}{2}} I_{\frac{n+1}{2}}(t|\eta|) \sim t^{n-1}e^{t|\eta|}/\sqrt{2\pi|\eta|}, \quad t^{-\frac{n-1}{2}} K_{\frac{n+1}{2}}(t|\eta|) \sim t^{n-1}e^{-t|\eta|}\sqrt{\frac{\pi}{2|\eta|}}, \]

as \(t \to \infty \).

Similarly,

\[L_2 u = ((t \partial_t)^2 - (n-1)t \partial_t - t^2 + \frac{n^2-4}{2}) u = 0. \]
Let \(u(t) = t^\beta \tilde{u}(t) \), then

\[
t^\beta((t\partial_t)^2 \tilde{u} + (2\beta + 1 - n) t\partial_t \tilde{u} + \left(\frac{n^2 - 4}{2} - t^2 + \beta^2 - \beta(n - 1)\right)\tilde{u}) = 0.
\]

Set \(2\beta + 1 - n = 0 \), so that \(\beta = \frac{n-1}{2} \), and then \(\tilde{u} \) is a solution to the Bessel equation with \(\alpha = \frac{i\sqrt{n^2+2n-9}}{2} \).

\[
u(t) = t^{\frac{n-1}{2}} (C_1 I_{\frac{i\sqrt{n^2+2n-9}}{2}}(t) + C_2 K_{\frac{i\sqrt{n^2+2n-9}}{2}}(t)).
\]

By the expansion of the series form of the Bessel functions, as in [20, P. 108], we have

\[
t^\frac{n-1}{2} I_\alpha(t|\eta|) \sim t^{\frac{n-1}{2}+\alpha}|\eta|^\alpha/(2^\alpha \Gamma(1 + \alpha)),
\]

and

\[
t^\frac{n-1}{2} I_{-\alpha}(t|\eta|) \sim t^{\frac{n-1}{2}+\alpha}|\eta|^\alpha/(2^\alpha \Gamma(1 + \alpha)),
\]

with \(\alpha = \frac{i\sqrt{n^2+2n-9}}{2} \), near \(t = 0 \). Now it is easy to see that the linear combination

\[
x^\frac{n-1}{2} \left(C_1 x^{i\frac{\sqrt{n^2+2n-9}}{2}} + C_2 x^{-i\frac{\sqrt{n^2+2n-9}}{2}} \right)
\]

can never vanish to infinite order at \(t = 0 \) if either \(C_1 \neq 0 \) or \(C_2 \neq 0 \). Also,

\[
t^\frac{n-1}{2} K_\alpha(t|\eta|) \sim t^{\frac{n-1}{2}} \frac{\pi I_\alpha(t|\eta|) - I_{-\alpha}(t|\eta|)}{\sin(\alpha\pi)},
\]

with \(\alpha = \frac{i\sqrt{n^2+2n-9}}{2} \), and \(|\eta| \neq 0 \), near \(t = 0 \).

Using the integral form as above, we have that \(I_\alpha(t) \) grows exponentially, while
K_α decays exponentially as $t \to +\infty$, for $\alpha = \frac{i \sqrt{n^2 + 2n - 9}}{2}$.

Denote L_0^t to be the L^2 adjoint of L_0 in the measure dt, and

$$L_0^t = i^{2\delta} L_0 t^{-2\delta},$$

to be the adjoint of L_0 in $t^\delta L^2$ in the measure $t^{-2\delta} dt$. These are all elliptic operators, with boundary spectra:

$$\text{spec}_b(L_0^t) = \{-\zeta - 1 : \zeta \in \text{spec}_b(L_0)\},$$
$$\text{spec}_b(L_0^*) = \{-\zeta + 2\delta - 1 : \zeta \in \text{spec}_b(L_0)\}.$$

For example, for $L_1 = (t\partial_t)^2 - (n-1)(t\partial_t) - t^2 - n$,

$$\int L_1 u v dt = \int u L_1^t v dt.$$

Then

$$L_1^t = (-\partial_t (t\cdot))^2 + (n-1)(\partial_t (t\cdot)) - t^2 - n,$$

with

$$\partial_t (t\cdot) = t\partial_t + 1,$$

and $p'(\xi) = p(-(\xi + 1))$, for the quadratic polynomial p. Also, for L_1^*, using the fact that

$$-\partial_t (tt^{-2\delta}) = -t^{-2\delta}(-2\delta + 1 + t\partial_t) = t^{-2\delta}(2\delta - 1 - t\partial_t),$$

27
we obtain the boundary spectra as listed above. For the fourth order differential equation, we have obtained four linearly independent solutions, and they generalize the solution space.

Let \(\delta = \frac{n-1}{2} + \frac{1}{2} = \frac{n}{2} \), we have \(L_1^* = L_1 \), and \(L_2^* = L_2 \).

Definition 2.0.11. We say that an operator \(L \) has the unique continuation property on a boundary \(B \) if any solution of \(L u = 0 \) vanishing to infinite order at \(B \) vanishes identically.

Hypothesis 1. For each \(\tilde{y} \) and \(\dot{\eta} \), both \(L_0 \) and its adjoint \(L_0^* \) (The dual of \(L_0 \) with respect to the space \(t^{\text{Re} \delta} L^2 \) for any \(\delta \) we need) have the unique continuation property at \(\{ t = 0 \} \).

We know from the discussion above that \(L_0 \) satisfies the unique continuation property. Under the continuation hypothesis, we have that for each element \((\tilde{y}, \dot{\eta}) \in N_0 \), \(L_0 \) is surjective on \(x^\delta L^2 \) or injective on \(x^\delta L^2 \) when \(\delta \) is sufficiently negative or sufficiently large. For our case, we use \(\delta = \frac{n}{2} \) in Hypothesis 1. Now let us define \(\overline{\delta} \) to be the minimal value of \(\delta \) so that \(L_0 \) is injective, and meanwhile \(\underline{\delta} \) the maximal value so that \(L_0 \) is surjective dually. These values must lie in \(\Lambda \). The following theorem and corollary tell us the relationship between semi-Fredholm properties of \(L \) and the Fredholm properties of \(L_0 \), for certain cases we need.

Theorem 2.0.12. (Theorem 6.1. in [27]) Suppose \(L \in \text{Diff}^m(M) \) is elliptic and satisfies the unique continuation hypothesis, and that \(\text{spec}_b(L) \) is discrete. Suppose also that \(\delta \notin \Lambda \) is chosen so that either \(\delta > \overline{\delta} \) or \(\delta < \underline{\delta} \). Then \(L : x^\delta \mathcal{H}^{c+m}_e(M) \to \)
$x^\delta H^s_\nu(M)$ has closed range, and it is either essentially surjective, or essentially injective, which means respectively that L has either an at most finite dimensional nullspace, or a finite dimensional cokernel. Therefore, it admits a generalized inverse G and orthogonal projectors Π_i onto the nullspace and orthogonal complement of the range of L which are edge operators, such that,

\[GL = I - \Pi_1, \]
\[LG = I - \Pi_2. \]

Since the edge operators used in the proof of the weighted Sobolev spaces are bounded in the appropriate Hölder spaces, the corresponding result for Hölder spaces follows.

Corollary 2.0.13. (Corollary 6.4. in [24]) For L as in Theorem 2.0.12, $k \geq m$ a positive integer and $0 < \alpha < 1$ the mapping $L : x^\nu \Lambda^k,\alpha \to x^\nu \Lambda^{k-m},\alpha$ is semi-Fredholm provided $\nu = \delta - \frac{1}{2}$ and $\delta \notin \Lambda$ is as in the previous theorem. If $\delta < \tilde{\delta}$ or $\delta > \bar{\delta}$ so that L is essentially surjective or essentially injective, then topologically, we have the splitting,

\[x^\nu \Lambda^k,\alpha = \Pi_1(x^\nu \Lambda^k,\alpha) \oplus (I - \Pi_1)(x^\nu \Lambda^k,\alpha), \]
\[x^\nu \Lambda^{k-m},\alpha = \Pi_2(x^\nu \Lambda^{k-m},\alpha) \oplus (I - \Pi_2)(x^\nu \Lambda^{k-m},\alpha). \]

Let us compute δ and $\bar{\delta}$ for L_0. First, for L_1, since $t^{\alpha-1} I_{\alpha+1}(t|\eta|)$ increases exponentially as t goes to ∞ (here $|\eta| \neq 0$), it does not lie in $t^\delta L^2$ for any $\delta > 0$; furthermore,

\[t^{\alpha-1} K_{\alpha+1}(t|\eta|) \in t^\delta L^2(\mathbb{R}_+), \]
for $\delta < -\frac{1}{2}$. Similarly, for L_2, $t^{\frac{n-1}{2}}I_{\sqrt{n^2+2n-9}}(t|\eta|)$ grows exponentially when t goes to ∞ (with $|\eta| \neq 0$), and

$$t^{\frac{n-1}{2}}K_{\sqrt{n^2+2n-9}}(t|\eta|) \in t^\delta L^2(\mathbb{R}^+),$$

for $\delta < \frac{n-1}{2} + \frac{1}{2} = \frac{n}{2}$. Therefore, L_1 and L_2 both have trivial kernel in the space $x^\delta L^2(M, \sqrt{dx\,dy})$ for $\delta > \frac{n}{2}$. But Ker(L_2) is nontrivial for $\delta < \frac{n}{2}$. Also the composition of two injective maps is still injective. Therefore, $\delta = \frac{n}{2}$ for $L_0 = L_1 \circ L_2$. Since L_0 is self-adjoint in $t^{\frac{n}{2}} L^2(\mathbb{R}^+)$, we have that $\delta = \frac{n}{2}$. Since it satisfies the conditions of Theorem 2.0.12 and Corollary 2.0.13, therefore Theorems 1.0.7 and 1.0.8 are proved.

To conclude this chapter, we want to see when L is injective or surjective in the special case of Poincaré-Einstein manifolds. For a Poincaré-Einstein manifold (M, g) with $g = x^{-2}h$, without loss of generality we assume $R_g = -n(n-1)$. Let us first consider it in the weighted Sobolev spaces. We have

$$L = (\Delta_g - n)(\Delta_g + \frac{(n+2)(n-2)}{2}) = T_1 \circ T_2.$$

We know that L is self-adjoint with respect to $x^\frac{n}{2} L^2(M, \sqrt{dx\,dy})$. Then to show that $L : x^\delta H^4_c(M) \to x^\delta L^2(M)$ is surjective for $0 \leq \delta \leq \frac{n}{2}$, since L has close range, we only need to show that L is injective when $\delta > \frac{n}{2}$. For that, we only need to show that T_1 and T_2 are injective for $\delta > \frac{n}{2}$.

Lemma 2.0.14. $T_1, T_2 : x^\delta H^{2+m}_c(M, \sqrt{dx\,dy}) \to x^\delta H^m_c(M, \sqrt{dx\,dy})$, are both injective for $\delta > \frac{n}{2}$, and all $m \geq 0$.

Proof of Lemma 2.0.14. By the regularity argument, we only need to discuss on the case $m = 0$. Also, if T_1 and T_2 are injective in $L^2(M, g)$, which is $x^\frac{n}{2} L^2(\mathbb{R}^+, \sqrt{dx\,dy})$,
then we are done. The proof is as follows.

If \(u \in x^\delta L^2(M, \sqrt{dxdy}) \), for \(\delta > \frac{n}{2} \), then \(u \in L^2(M, g) \). Moreover, if also

\[T_1 u = (\Delta_g - n) u = 0, \]

by Weyl's lemma, \(u \in H^1(M, g) \). Now we multiply \(u \) on both sides of the equation, and integrate by parts, and then we have

\[-\int_M (|\nabla u|^2_g + u^2) dV_g = 0. \]

Therefore, \(u = 0 \). Then we have that \(T_1 \) is injective.

For the Poincaré ball \((B, g_{-1})\), we know that the Laplacian \(-\Delta_g\) has pure continuous spectrum, consisting of \(\left[\frac{(n-1)^2}{4}, \infty \right) \), with \(\lambda_0 = \frac{(n-1)^2}{4} \).

For an asymptotically hyperbolic manifold \((M, g)\) with its defining function \(x \) and the extending metric \(h = x^2g \) smooth up to the boundary, combining the boundary regularity result and the unique continuation result for \((-\Delta_g - \lambda)\), it was proved in [27] that if \(\lambda > \frac{(n-1)^2}{4} \), \(u \in L^2(M, g) \) and \((-\Delta_g - \lambda) u = 0\) then \(u = 0 \). That is to say, \(-\Delta_g\) has essential spectrum \(\left[\frac{(n-1)^2}{4}, +\infty \right) \), with no embedded eigenvalues. It is easy to check that when \(n \geq 4 \), \(\frac{n^2-4}{2} > \frac{(n-1)^2}{4} \). Therefore, for \(n \geq 4 \), \(T_2 \) is injective in \(L^2(M, g) = x^{\frac{n}{2}} L^2(M, \sqrt{dxdy}) \).

It follows that \(T_1 \) and \(T_2 \) are both injective when \(\delta > \frac{n}{2} \). This proves the lemma.

The lemma tells that \(L \) is injective for \(\delta > \frac{n}{2} \) on the Poincaré-Einstein manifolds. Then dually \(L \) is surjective when \(0 < \delta < \frac{n}{2} \).

The linear edge operators used above are all bounded linear operators in the weighted Hölder spaces, and can be used correspondingly in the weighted Hölder spaces. Then the corresponding statement for the weighted Hölder spaces is as follows.
Let

\[L : x^{\nu} \Lambda^{4,\alpha}(M) \to x^{\nu} \Lambda^{0,\alpha}(M). \]

Here \(0 < \alpha < 1\). Then \(L\) is injective when \(\nu = \delta - \frac{1}{2} > \frac{n-1}{2}\), while \(L\) is surjective when \(0 < \nu = \delta - \frac{1}{2} < \frac{n-1}{2}\) on the Poincaré-Einstein manifolds \(M\).

Remark 2.0.4. Generally, on an asymptotically hyperbolic manifold \((M, g)\) with a smooth defining function \(x\) and \(h = x^2 g\) smooth, let \(u \in \text{Ker}(L)\) for \(L\) defined in (2.0.4) in the weighted Hölder spaces \(x^{\nu} \Lambda^{4,\alpha}(M, \sqrt{dx \, dy})\), for \(0 < \nu < \frac{n-1}{2}\) and \(0 < \alpha < 1\). Then, \(u \in x^{\nu} \Lambda^{m,\alpha}\) for all \(m \in \mathbb{N}\), and \(u\) has the following weak expansion with coefficients which are generally distributions,

\[
 u(x, y) \sim \sum_{j=0}^{+\infty} (u_{0j}(y)x^{\frac{n-1}{2} + \frac{\sqrt{n^2 + 2n - 9}}{2} + j} + u_{1j}(y)x^{\frac{n-1}{2} - \frac{\sqrt{n^2 + 2n - 9}}{2} + j} + x^{n+j}u_{2j}(y)),
\]

(2.0.9)

in the sense that

\[
 u(x, y) - \sum_{j=0}^{k} (u_{0j}(y)x^{\frac{n-1}{2} + \frac{\sqrt{n^2 + 2n - 9}}{2} + j} + u_{1j}(y)x^{\frac{n-1}{2} - \frac{\sqrt{n^2 + 2n - 9}}{2} + j}) = o(x^{\frac{n-1}{2}+k}),
\]

for \(k \geq 0\). If either \(u_{00}\) or \(u_{01}\) is smooth, then all the coefficients are smooth. The more precise regularity of the coefficients in a weighted Sobolev space setting can be found in Chapter 7 in [24].

Remark 2.0.5. On a Poincaré-Einstein manifold \((M, g)\) with a smooth defining function \(x\) and \(h = x^2 g\) smooth, for \(0 < \nu < \frac{n-1}{2}\) and \(0 < \alpha < 1\), since \(T_1\) is injective, an element \(u\) in the kernel of \(L\) is exactly an element in the kernel of \(T_2\). By Proposition 3.4. in [15], for any chosen \(u_{00} \in C^\infty\) or \(u_{10} \in C^\infty\), there exists a unique \(u \in x^{\nu} \Lambda^{4,\alpha}(M, \sqrt{dx \, dy})\), for \(0 < \nu < \frac{n-1}{2}\), in the kernel of \(L\), so that \(u\) has
the expansion \((2.0.9)\) with smooth coefficients.
CHAPTER 3

THE NONLINEAR PROBLEM

Now let us return to the perturbation problem. It is more convenient to work in weighted Hölder spaces. Let \((M, g)\) be an asymptotically hyperbolic manifold defined as in the introduction. Let \(\tilde{g}, u\) also be defined as in the introduction, and let the prescribed curvature \(Q_{\tilde{g}} = f\). Define the operator \(T : x^\nu \Lambda^{4,\alpha}(M) \to x^\nu \Lambda^{0,\alpha}(M)\) as follows,

\[
T(u) = \begin{cases}
2 f e^{4u} - 2 Q_g - 8 Q_g u, & n = 4, \\
\frac{n-4}{2} (1 + u)^{\frac{n+4}{n-4}} f - \frac{n-4}{2} Q_g - \frac{n+4}{2} Q_g u, & n \geq 5.
\end{cases}
\]

We rewrite it in the form

\[
T(u) = \begin{cases}
2(e^{4u} - 1 - 4u)f + 2(f - Q_g) - 8(Q_g - f) u, & n = 4, \\
\frac{n-4}{2} ((1 + u)\frac{n+4}{n-4} - 1 - \frac{n+4}{n-4} u)f + \frac{n-4}{2} (f - Q_g) + \frac{n+4}{2} (f - Q_g)u, & n \geq 5.
\end{cases}
\]

Let \(L\) be as in (1.0.4), then the prescribed \(Q\)-Curvature equation is

\[
L u = T(u). \quad (3.0.1)
\]
Let $0 < \nu < \nu = \frac{n-1}{2}$ and $0 < \alpha < 1$, so that L is essentially surjective. Moreover, in the following we assume that L is surjective. Then

$$L : V_1 = (I - \Pi_1)(x^\nu \Lambda^{4,\alpha}(M)) \to x^\nu \Lambda^{0,\alpha}(M)$$

is an isomorphism, using topological splitting of $x^\nu \Lambda^{4,\alpha}(M)$ in Theorem 1.0.8 and the open mapping theorem. That is,

$$C_1 \|u\|_{x^\nu \Lambda^{4,\alpha}(M)} \leq \|L u\|_{x^\nu \Lambda^{0,\alpha}(M)} \leq C_2 \|u\|_{x^\nu \Lambda^{4,\alpha}(M)}, \quad (3.0.2)$$

for some constant $C_2 > C_1 > 0$, for all $u \in V_1$. We denote the inverse of L as

$$L^{-1} : x^\nu \Lambda^{0,\alpha}(M) \to V_1.$$

Let $f \in C^\alpha(M)$, and

$$(Q_g - f) \in x^\nu \Lambda^{0,\alpha},$$

with its small norm to be determined later. We want to use elements in kernel of L to parametrize the perturbation solutions to the nonlinear problem at 0. We will define a new map for each element in the kernel of L, and use it to construct a contraction map. For any fixed $u_1 \in \text{Ker}(L)$, for any $u_2 \in V_1$, let $u = u_1 + u_2$, and

$$T_{u_1}(u_2) = T(u_1 + u_2).$$

Now $L^{-1} \circ T_{u_1} : V_1 \to V_1$.

From now on, let u_1 be any fixed element in $B_\varepsilon(0) \cap \text{Ker}(L)$, and $u_2 \in B_\varepsilon(0) \cap V_1$,

35
with small $\epsilon \in (0, 1)$ to be determined. Note that

$$\|T_{u_2}(u_2)\|_{x^\Lambda^0,\alpha} \leq \begin{cases}
2\|e^{4u} - 1 - 4u\|_{x^\Lambda^0,\alpha(M)} + 2\|(f - Q_g)\|_{x^\Lambda^0,\alpha(M)} \\
+ 8\|(f - Q_g)u\|_{x^\Lambda^0,\alpha(M)},
\end{cases} \quad n = 4,$$

$$\frac{n-4}{2}\|((1 + u)^{n-4} - 1 - \frac{n+4}{n-4}u)f\|_{x^\Lambda^0,\alpha(M)} + \frac{n+4}{2}\|(f - Q_g)u\|_{x^\Lambda^0,\alpha(M)}, \quad n \geq 5.$$

Then we have

$$\|T_{u_1}(u_2)\|_{x^\Lambda^0,\alpha} \leq C(n)(\|f\|_{L^\infty}((u_1 + u_2)^2 + (1 + \|u_1 + u_2\|_{L^\infty})\|f - Q_g\|_{x^\Lambda^0,\alpha} \\
+ \|x^{-\nu}(u_1 + u_2)\|_{L^\infty}\|(u_1 + u_2)\|_{L^\infty}(\|f\|_{\Lambda^0,\alpha} + \|Q_g\|_{\Lambda^0,\alpha}) \\
+ \|f - Q_g\|_{L^\infty}\|u_1 + u_2\|_{x^\Lambda^0,\alpha}).$$

where $C > 0$ is a constant depending only on n, the diameter of M with respect to x^2g, and ν. By the definition of the weighted norm,

$$\|\phi\|_{L^\infty} \leq \|\phi\|_{\Lambda^0,\alpha}, \text{ and } \|\phi\|_{L^\infty} \leq C_0\|\phi\|_{x^\Lambda^0,\alpha}, \quad (3.0.3)$$

for a constant $C_0 > 0$ depending on the defining function and ν, for any $\phi \in x^\Lambda^0,\alpha$.

Therefore,

$$\|T_{u_1}(u_2)\|_{x^\Lambda^0,\alpha} \leq C_1 ((\epsilon(\|f\|_{\Lambda^0,\alpha} + \|Q_g\|_{\Lambda^0,\alpha}) + \|f - Q_g\|_{L^\infty})\|u_1 + u_2\|_{x^\Lambda^0,\alpha} \\
+ (1 + \epsilon)\|f - Q_g\|_{x^\Lambda^0,\alpha}),$$

where C_1 depends on n, the defining function, the diameter of M with respect to x^2g, and $\epsilon > 0$.
and \(\nu \), so that

\[
\| L^{-1} \circ T_{u_1}(u_2) \|_{x^{\nu}A^{4,\alpha}} \leq C_1 \| L^{-1} \| \left(\epsilon (\| f \|_{A^{\alpha}} + \| Q_g \|_{A^{\alpha}}) + \| f - Q_g \|_{L^\infty}) \right) \| u_1 + u_2 \|_{x^{\nu}A^{\alpha}}
\]

(3.0.4)

\[
\leq C_1 \| L^{-1} \| \left(\epsilon (\| f \|_{A^{\alpha}} + \| Q_g \|_{A^{\alpha}}) + \| f - Q_g \|_{L^\infty}) \| u_1 + u_2 \|_{x^{\nu}A^{\alpha}} \right) + (1 + \epsilon) \| f - Q_g \|_{x^{\nu}A^{\alpha}}.
\]

(3.0.5)

(3.0.6)

We now choose \(\epsilon \in (0, 1) \) small so that

\[
16 C_1 \epsilon \| L^{-1} \| \| Q_g \|_{A^{\alpha}} < 1,
\]

(3.0.7)

and let \(f \) satisfy that

\[
\| f \|_{A^{\alpha}} \leq 2 \| Q_g \|_{A^{\alpha}}, \text{ and } \| f - Q_g \|_{x^{\nu}A^{\alpha}} \leq \min \left\{ \frac{1}{4(1 + \epsilon)C_1 \| L^{-1} \|}, \frac{\epsilon \| Q_g \|_{A^{\alpha}}}{C_0} \right\}.
\]

(3.0.8)

Combining (3.0.3), we have

\[
\| L^{-1} \circ T_{u_1}(u_2) \|_{x^{\nu}A^{4,\alpha}} \leq \frac{3}{4} \epsilon.
\]

Therefore, \(L^{-1} \circ T_{u_1} \) maps \(B_\epsilon(0) \cap V_1 \) into \(B_\epsilon(0) \cap V_1 \).
For \(u_3, u_4 \in V_1 \cap B_\epsilon(0) \),

\[
\| L^{-1} \circ T_{u_1}(u_3) - L^{-1} \circ T_{u_1}(u_4) \|_{x^\nu \Lambda^4, \alpha} \\
\leq \| L^{-1} \| T_{u_1}(u_3) - T_{u_1}(u_4) \|_{x^\nu \Lambda^0, \alpha} \\
= \begin{cases} \\
\| L^{-1} \| 2f(\epsilon^{4u_1}(\epsilon^{4u_3} - \epsilon^{4u_4}) - 4(u_3 - u_4)) - 8(Q_g - f)(u_3 - u_4) \|_{x^\nu \Lambda^0, \alpha}, & n = 4, \\
\| L^{-1} \| \frac{n+4}{2} ((1 + u_1 + u_3)^{\frac{n+4}{n-4}} - (1 + u_1 + u_4)^{\frac{n+4}{n-4}} - \frac{n+4}{n-4}(u_3 - u_4)) f \\
+ \frac{n+4}{2} (f - Q_g)(u_3 - u_4) \|_{x^\nu \Lambda^0, \alpha}, & n \geq 5.
\end{cases}
\]

But

\[
e^{4(u_1 + u_3)} - e^{4(u_1 + u_4)} - 4(u_3 - u_4) = 4(u_3 - u_4)w,
\]

with

\[
w = \left(\frac{e^{4(u_1 + u_3)} - e^{4(u_1 + u_4)}}{4(u_3 - u_4)} - 1 \right) = \left(\int_0^1 e^{4(u_1 + u_4 + t(u_3 - u_4))} dt - 1 \right) \in x^\nu \Lambda^0, \alpha \cap B_\epsilon(0),
\]

with \(C \) which does not depend on \(u_3, u_4, \) or \(\epsilon \in (0, 1) \). We have similar results for \(n \geq 5 \). By the discussion above,

\[
\| L^{-1} \circ T_{u_1}(u_3) - L^{-1} \circ T_{u_1}(u_4) \|_{x^\nu \Lambda^4, \alpha} \leq \| L^{-1} \| \tilde{C}_0 \left(\epsilon \| f \|_{\Lambda^0, \alpha} \| u_3 - u_4 \|_{x^\nu \Lambda^0, \alpha} + \| Q_g - f \|_{x^\nu \Lambda^0, \alpha} \| u_3 - u_4 \|_{x^\nu \Lambda^0, \alpha} \right) \\
= \| L^{-1} \| \tilde{C}_0 \left(\epsilon \| f \|_{\Lambda^0, \alpha} + \| Q_g - f \|_{x^\nu \Lambda^0, \alpha} \right) \| u_3 - u_4 \|_{x^\nu \Lambda^0, \alpha}, \ n \geq 4,
\]

where \(\tilde{C}_0 \) depends only on the defining function, the diameter of \(M \) with respect to
\(x^2 g, \nu\) and \(n\). Let \(\epsilon\) be small so that

\[
\widetilde{C}_0 \|L^{-1}\| (1 + \|Q_g\|_{\Lambda^0, \alpha}) \epsilon < 1, \tag{3.0.12}
\]

and let

\[
\|Q_g - f\|_{x^\nu \Lambda^0, \alpha} \leq \frac{1}{8C_0 \|L^{-1}\|}.
\tag{3.0.13}
\]

Then we have

\[
\|L^{-1} \circ T_{u_1}(u_3) - L^{-1} \circ T_{u_1}(u_4)\|_{x^\nu \Lambda^4, \alpha} \leq \frac{3}{8} \|u_3 - u_4\|_{x^\nu \Lambda^0, \alpha}
\leq \frac{3}{8} \|u_3 - u_4\|_{x^\nu \Lambda^4, \alpha}.
\]

Note that \(\|L^{-1}\|\) depends on the projection map \(\Pi_1\) that we construct in Theorem 1.0.8 Therefore, if \(L\) is surjective for \(\nu < \frac{n-1}{2}\), and also \(\epsilon\) and \(f\) satisfy the above conditions, then for each \(u_1 \in B_\epsilon(0) \cap \text{Ker}(L)\),

\[
L^{-1} \circ T_{u_1} : V_1 \cap B_\epsilon(0) \rightarrow V_1 \cap B_\epsilon(0)
\]

is a contraction map. This implies that there exists a unique \(u_2 \in B_\epsilon(0) \cap V_1\), solving the equation

\[
L(u_1 + u_2) = T_{u_1}(u_2).
\]

Note that the proof above holds for \(h = x^2 g \in C^{4, \alpha}(\overline{M})\). Now we have proved the following theorem,

Theorem 3.0.15. Let \((M, g)\) be an asymptotically hyperbolic manifold of dimen-
sional $n \geq 4$, with x the smooth defining function, and the metric $h = x^2 g \in C^{4,\alpha}(M)$. For $0 < \nu < \frac{n-1}{2}$ and $0 < \alpha < 1$, let

$$L : x^{\nu} \Lambda^{4,\alpha}(M) \to x^{\nu} \Lambda^{0,\alpha}$$

be the linear operator defined in (1.0.4), which by Theorem 1.0.8 is essentially surjective. Assume that L is surjective. Then there exists a small constant $\epsilon_0 > 0$, depending on the diameter of M with respect to h, ν, n and also Π_1 and L, so that the following holds:

Let ϵ be any small real number satisfying $0 < \epsilon < \epsilon_0$, and let $f \in \Lambda^{0,\alpha}(M)$ satisfy

$$\|Q_g - f\|_{x^{\nu} \Lambda^{0,\alpha}} \leq \tilde{C} \epsilon,$$

for some positive constant \tilde{C} depending on the diameter of M with respect to h, ν, n, also Π_1 and L.

Then for each $u_1 \in B_r(0) \cap \text{Ker}(L)$, there exists a unique $u \in B_{2r}(0) \subseteq x^{\nu} \Lambda^{4,\alpha}(M)$, so that $Q_{\tilde{g}} = f$, where $\tilde{g} = (1 + u)^{\frac{4}{n-4}} g$ for $n \geq 5$, and $\tilde{g} = e^{2u} g$ for $n = 4$, with $\Pi_1 u = u_1$.

By the discussion at the end of Chapter 2, for the cases in Theorem 1.0.6, L is surjective for $x^{\nu} \Lambda^{4,\alpha}(M)$, $0 < \nu < \frac{n-1}{2}$. This completes the proof of (1) of Theorem 1.0.6.

Since surjectivity is an open property, L is surjective for $x^{\nu} \Lambda^{4,\alpha}(M)$, $0 < \nu < \frac{n-1}{2}$, for smooth g that is close enough to these metrics. Theorem 3.0.15 holds for metrics in a small neighborhood of these metrics.

In the following, we will discuss about the boundary regularity of the solutions.

For convenience, we assume that the defining function x and the metric $h = x^2 g$ are
smooth up to the boundary. The discussion we use here is standard, see [26]. We
will sketch the discussion. Composing the inverse \(G\) operator of \(L\) on both sides of
\((3.0.1)\),

\[
 u - \Pi_1 u = G L u = G T(u), \tag{3.0.14}
\]

with \(u_1 = \Pi_1 u\) the projection of \(u\) to the null space of \(L\).

For the regularity of \(u\) with respect to the derivative \(\partial_y\), which is the derivative
in some \(y\) direction, we introduce the following weighted space with \(k \leq m\):

\[
x^\nu \Lambda^{m,\alpha,k} = \{ u \in x^\nu \Lambda^{m,\alpha}(M, \sqrt{dxdy}), \text{ so that } (x\partial_x)^j (x\partial_y)^\beta \partial_y^\gamma u \in x^\nu \Lambda^{0,\alpha}, \text{ for } j + |\beta| + |\gamma| \leq m, j \geq 0, \text{ and } |\gamma| \leq k. \}.
\]

An easy observation is that for \(u \in x^\nu \Lambda^{m,\alpha}\) and \(m \geq 1\), \(\partial_y u = x\partial_y(x^{-1}u)\), so that

\[
\partial_y u \in x^{\nu-1} \Lambda^{m-1,\alpha}. \tag{3.0.15}
\]

Also for \(u \in x^\nu \Lambda^{m,\alpha,k}\) and \(1 \leq k \leq m\), \(\partial_y u \in x^\nu \Lambda^{m-1,\alpha,k-1}\). In Proposition 2.9 in
[26], it is proved that the inverse operator \(G : x^\nu \Lambda^{m,\alpha,k} \to x^\nu \Lambda^{m+4,\alpha,k}\) is bounded
for \(m \geq 0\) and \(0 \leq k \leq m\); also, \(\Pi_1 : x^\nu \Lambda^{m+4,\alpha,k} \to x^\nu \Lambda^{m+4,\alpha,k}\) is bounded for
\(m \geq 0\) and \(0 \leq k \leq m\).

Lemma 3.0.16. Let \(u \in x^\nu \Lambda^{k,\alpha}\) be a solution to \((3.0.1)\) with \(1 \leq \nu < \frac{n-1}{2}\) and
\(0 < \alpha < 1\). Assume that \((f - Q_g) \in x^\nu \Lambda^{m,\alpha,k}\), and \(u_1 = \Pi_1 u \in x^\nu \Lambda^{m+4,\alpha,k}\), for
\(0 \leq k \leq m\). Then we have that \(u \in x^\nu \Lambda^{m+4,\alpha,k}\).

Proof of Lemma 3.0.16 By assumption, \(x\) and the metric \(h\) are smooth up to the
boundary, so that \(Q_g \in C^\infty(M) \subseteq \Lambda^{m,\alpha,k}\) for any \(m \geq k\), and then we have
\(f \in \Lambda^{m,\alpha,k}\). For \(m = 0\) the claim holds automatically. Now assume \(m \geq 1\). Using
and boundedness of G for $k = 0$ we obtain that $u \in x^\nu \Lambda^{1+4,\alpha}$. Then we can substitute the regularity of u into the right hand side of (3.0.14), to gain more regularity. Using this induction argument, we obtain $u \in x^\nu \Lambda^{m+4,\alpha} = x^\nu \Lambda^{m+4,\alpha,0}$. This proves the lemma for $k = 0$.

Define the function F on \mathbb{R} as follows,

$$F(u) = \begin{cases}
 e^{4u} - 1 - 4u, & n = 4, \\
 (1 + u)^{\frac{n+4}{n-4}} - 1 - \frac{n+4}{n-4}u, & n \geq 5.
\end{cases}$$

Noticing that for $u \in x^\nu \Lambda^{m,\alpha,k'}$ with $k' < k$, using (3.0.15) and the fact $\nu \geq 1$, we have that

$$u^2f = xu(x^{-1}u)f \in x^\nu \Lambda^{m,\alpha,k'+1},$$

raising the third index by 1. This holds for the term $F(u)f$, since F is smooth on \mathbb{R} and vanishes quadratically at 0. Similarly,

$$u(f - Q_g) = xu(x^{-1}(f - Q_g)) = x(x^{-1}u)(f - Q_g) \in x^\nu \Lambda^{m,\alpha,k'+1}.$$

By this fact, combining with the equation (3.0.14), and also with boundedness of G, an induction argument as the case $k = 0$ proves the Lemma.

Now we assume that $f = Q_g$. Generally, $u_1 = \Pi_1 u \in x^\nu \Lambda^{4,\alpha}$ does not have better regularity. In (3.0.14), the terms on the right hand side behave better than $\Pi_1 u$, and u behaves like $\Pi_1 u$ near the boundary, and u only has the expansion (1.0.5) with the coefficients which are distributions of negative order, as discussed in Proposition 3.16 in [26]. If $1 \leq \nu < \frac{n-1}{2}$ and $u_1 = \Pi_1 u \in x^\nu \Lambda^{m,\alpha,k}$ for all $m \geq k \geq 0$, which
as discussed in [24] is equivalent to say \(u_1 \) has a smooth expansion (2.0.9), then by Lemma 3.0.16 \(u \) has a smooth expansion as in (1.0.6). Also, for \(u_1 \) small enough, we already obtain the existence of \(u \) in Poincaré Einstein manifolds. This completes the proof of Theorem 1.0.6.

Here we observe that the expansion of \(u \) gives us information on the asymptotic behavior of the curvature. For \(n = 4 \), assume that \(g \) and \(\tilde{g} \) are asymptotically hyperbolic metrics on \(M \), with the transformation \(\tilde{g} = e^{2u}g \), such that \(u \) has the expansion \(u \sim x^{\frac{3}{2} + i\sqrt{3}}u_{00}(y) + x^{3 - i\sqrt{3}}u_{10}(y) + o(x^{\frac{3}{2}}) \). Let \((1 + v)^2 = e^{2u} \). Denote \(\nu_0 = \frac{3}{2} + i\sqrt{\frac{3}{2}} \), and \(\nu_1 = \nu_0 \). Then,

\[
R_{\tilde{g}} = (1 + v)^{-3}(-6\Delta_g + R_g)(1 + v) = e^{-3u}(-6\Delta_g + R_g)e^u
\]

\[
= -6e^{-u}[-3x\partial_x u + (x\partial_x)^2 u] + R_g - 2R_g u + R_g(e^{-2u} - 1 + 2u)
\]

\[
+ 6x^2e^{-3u}(\Delta_y e^u + \frac{1}{2} \sum_{4 \geq i,j \geq 2} h_{ij} \partial_x h_{ij} \partial_x e^u).
\]

Therefore,

\[
R_{\tilde{g}} - R_g = -6e^{-2u}[-3x\partial_x u + (x\partial_x)^2 u] - 2R_g u + R_g(e^{-2u} - 1 + 2u) + 6x^2e^{-3u}(\Delta_y e^u
\]

\[
+ \frac{1}{2} \sum_{4 \geq i,j \geq 2} h_{ij} \partial_x h_{ij} \partial_x e^u)
\]

\[
= -6(-3x\partial_x u + (x\partial_x)^2 u) + 6(1 - e^{-2u})(-3x\partial_x u + (x\partial_x)^2 u) + 24u
\]

\[
- 2u(12 + R_g) + R_g(e^{-2u} - 1 + 2u) + 6x^2e^{-3u}[\Delta_y e^u + \frac{1}{2} \sum_{4 \geq i,j \geq 2} h_{ij} \partial_x h_{ij} \partial_x e^u])
\]

\[
= -6(-3\nu_0 x\nu_0 u_{00}(y) + \nu_0^2 x\nu_0 u_{00}(y) - 3\nu_1 x\nu_1 u_{10}(y) + \nu_1^2 x\nu_1 u_{10}(y) + O(x^{\frac{3}{2} + 1}))
\]

\[
+ 24(x\nu_0 u_{00}(y) + x\nu_1 u_{10}(y) + O(x^{\frac{3}{2} + 1})) + O(x^{\frac{3}{2} + 1})
\]

\[
= -6((-\nu_0^2 - 3\nu_0 - 4)x\nu_0 u_{00}(y) + (\nu_1^2 - 3\nu_1 - 4)x\nu_1 u_{10}(y)) + O(x^{\frac{3}{2} + 1})
\]

\[
= 120u + o(x^{\frac{3}{2}})
\]

43
For asymptotically hyperbolic manifolds of higher dimension, with similar calculation, we obtain the formula

$$R_{\tilde{g}} - R_g = \frac{4(n - 1)(n^2 + 2n - 4)}{(n - 4)} u + o(x^{\frac{n-1}{2}}).$$
CHAPTER 4

CONSTANT Q-CURVATURE METRICS FOR PERTURBED CONFORMAL STRUCTURES

Let (M, g_0) be a Poincaré-Einstein manifold, with a defining function x and the metric $h_0 = x^2 g_0$ smooth up to the boundary. Let

$$\mathcal{M}_\tau = \{ h : \text{metrics on } \overline{M}, \text{ so that } h \in C^{4,\alpha}(\overline{M}),$$

$$\text{with } \|h - h_0\|_{C^{4,\alpha}(M)} \leq \tau, \text{ and } |dx_h|_{\partial M} = 1 \},$$

for $\tau > 0$ and $0 < \alpha < 1$. For $h \in \mathcal{M}_\tau$, let $g = x^{-2}h$. We want to see that if τ is small enough, whether we can find a constant Q-curvature metric \tilde{g} in the conformal class of g, with $Q\tilde{g} = Qg_0$. We use the same notation u, L_g and so on as above. Note that the choice of x so that $|dx|_h = 1$ near the boundary in the chapters before is only to make the notation simpler. Now we only assume that $|dx|_h = 1$ on ∂M, and then there are only some additional small terms appearing in $E(L)$. Now let us state the main theorem in this chapter.

Theorem 4.0.17. Let (M, g_0) be a Poincaré-Einstein manifold with defining function x and the metric $h_0 = x^2 g_0$ smooth up to the boundary. There exists $\tau_0 > 0$, so that for $0 < \tau \leq \tau_0$, for all $C^{4,\alpha}$ Riemannian metric h on \overline{M} so that $\|h - h_0\|_{C^{4,\alpha}(M)} \leq \tau$, there always exist a family of asymptotically hyperbolic metrics in the conformal class.
of \(g = x^{-2}h \) with constant \(Q \)-curvature \(Q_{g_0} \), which are parametrized by elements in \(\text{Ker}(L_{g_0}) \).

For the proof of this theorem, we need the following lemma.

Lemma 4.0.18. Let \((M, g_0)\) be a Poincaré-Einstein manifold with defining function \(x \) and the metric \(h_0 = x^2g_0 \) smooth up to the boundary, and let \(\mathcal{M}_\tau \) be as above, with \(\tau > 0 \). There exists \(\tau_0 > 0 \), so that for \(0 < \tau \leq \tau_0 \), and any metric \(h \in \mathcal{M}_\tau \), there always exist a family of asymptotically hyperbolic metrics in the conformal class of \(g = x^{-2}h \) with constant \(Q \)-curvature \(Q_{g_0} \), which are parametrized by elements in \(\text{Ker}(L_{g_0}) \).

Now let us first use the lemma to prove Theorem 4.0.17. For a metric \(h \) close enough to \(h_0 \) in \(C^{4,\alpha}(\overline{M}) \), let \(h_1 = sh \) with \(s \) a smooth function on \(\overline{M} \) so that \(s = |dx|^2_h \) in a small neighborhood of \(\partial M \), and \(\|s - 1\|_{C^{4,\alpha}(M)} \leq 10\|h - h_0\|_{C^{4,\alpha}(M)} \). Then \(|dx|_{h_1}|_{\partial M} = 1 \). Since \(|dx|_{h_0} = 1 \), if \(\|h - h_0\|_{C^{4,\alpha}(M)} \) is small enough, then \(s \) is close enough to 1 and also \(h_1 \) is in the class \(\mathcal{M}_\tau \) stated in the lemma. Then by the lemma, there are infinitely many asymptotically hyperbolic metrics in the conformal class of \(x^{-2}h_1 \) (which is also the conformal class of \(g = x^{-2}h \)) with constant \(Q \)-curvature \(Q_{g_0} \), which are parametrized by elements in \(\text{Ker}(L_{g_0}) \). This proves Theorem 4.0.17.

Proof of Lemma 4.0.18

It is easy to check that

\[
x^\alpha\Lambda^{0,\alpha}(M, \sqrt{dx\,dy}) = \{ u \in C^\alpha(\overline{M}), u|_{\partial M} = 0 \}.
\]

Let \(L_g \) and \(L_{g_0} \) be the linear operators (1.0.4) with respect to \(g \) and \(g_0 \). Recall that
Ric_g and R_g satisfy (2.0.2) and (2.0.3). Also we know that

\[(|dx|^2 - 1) \in x^\alpha \Lambda^0,\alpha(M, \sqrt{dx \, dy}), \text{ and } ||dx|^2 - |dx|_{h_0}^2 ||_{x^\alpha \Lambda^0,\alpha} \leq C \tau, \]

for some constant C depending on the defining function and \(h_0 \). Also it is easy to see

the following inequalities by direct calculation.

\[\| (\Delta^2_g - \Delta^2_{g_0})u \|_{x^\alpha \Lambda^0,\alpha} \leq C \tau \|u\|_{x^\alpha \Lambda^4,\alpha}, \]
\[\| (R_g \Delta g - R_{g_0} \Delta_{g_0})u \|_{x^\alpha \Lambda^0,\alpha} \leq C \tau \|u\|_{x^\alpha \Lambda^4,\alpha}, \]
\[\| (\text{Ric}_{ij}(g) \nabla^i_g \nabla^j_g - \text{Ric}_{ij}(g_0) \nabla^i_{g_0} \nabla^j_{g_0})u \|_{x^\alpha \Lambda^0,\alpha} \leq C \tau \|u\|_{x^\alpha \Lambda^4,\alpha}, \]
\[\| (\nabla_g R_g, \nabla_g u) - (\nabla_{g_0} R_{g_0}, \nabla_{g_0} u) \|_{x^\alpha \Lambda^0,\alpha} \leq C \tau \|u\|_{x^\alpha \Lambda^4,\alpha}, \]
\[\| Q_g - Q_{g_0} \|_{x^\alpha \Lambda^0,\alpha} \leq C \tau, \]

with C depending on the defining function \(x \) and the metric \(h_0 \). Moreover, from

the discussion in Chapter 2, we know that \(L_{g_0} \) is surjective since \(g_0 \) is a smooth

Poincaré-Einstein metric. Let

\[x^\alpha \Lambda^4,\alpha(M, \sqrt{dx \, dy}) = \text{Ker}(L_{g_0}) \oplus V_1(g_0), \quad (4.0.1) \]

be the splitting as in Theorem 1.0.8. Restricted on \(V_1 \) with respect to \(g_0 \), \(L_{g_0} \) is an

isomorphism and satisfies (3.0.2). Let \(L^{-1}_{g_0} \) be the inverse of the restriction map of

\(L_{g_0} \) on \(V_1 \). By the above estimates, there exists \(\tau_1 > 0 \), so that for \(0 < \tau \leq \tau_1 \),

\[\|L_g - L_{g_0}\| \leq \frac{1}{8 \|L^{-1}_{g_0}\|}. \quad (4.0.2) \]

Now our equation is (3.0.1) with respect to the metric \(g \), and with \(f = Q_{g_0} \). We
rewrite it as follows:

\[L_{g_0}u = F(u) \equiv (L_{g_0} - L_g)u + T(u), \quad (4.0.3) \]

and then,

\[u = L_{g_0}^{-1} \circ (L_{g_0} - L_g)u + L_{g_0}^{-1} \circ T(u). \quad (4.0.4) \]

For any \(u_1 \in \text{Ker}(L_{g_0}) \), let \(F_{u_1} \) be the function on \(V_1 \) so that \(F_{u_1}(u) = F(u_1 + u) \) for \(u \in V_1 \), and also \(T_{u_1}(u) = T(u_1 + u) \) as before.

As in Chapter 3, we want to show that for \(\epsilon > 0 \) small enough, \(L_{g_0}^{-1} \circ F_{u_1} \) is a contraction map on \(B_\epsilon(0) \cap V_1 \) for \(u_1 \in B_\epsilon(0) \cap \text{Ker}(L_{g_0}) \). To do that, in the following we will mainly go along the line of Chapter 3.

For any \(\epsilon > 0 \), let \(u_1 \in \text{Ker}(L_{g_0}) \cap B_\epsilon(0) \) and \(u_2 \in B_\epsilon(0) \cap V_1 \). Then we get (3.0.4), with \(f = Q_{g_0} \) and the constant \(C_1 \) depends on the diameter of \(M \) with respect to \(x^2 g_0 \) instead. Now let

\[\epsilon_1 = \frac{1}{32C_1 \| L_{g_0}^{-1} \| \| Q_{g_0} \|_{\Lambda^{0,\alpha}}}, \]

and let \(\epsilon \leq \epsilon_1 \). Also, by the above estimates, there exists \(\tau_2 = \tau_2(\epsilon) > 0 \), so that for \(0 < \tau \leq \tau_2 \),

\[\| Q_g \|_{\Lambda^{0,\alpha}} \leq 2\| Q_{g_0} \|_{\Lambda^{0,\alpha}}, \text{ and } \| Q_{g_0} - Q_g \|_{x^\alpha \Lambda^{0,\alpha}} \leq \min \left\{ \frac{1}{4(1 + \epsilon)C_1 \| L_{g_0}^{-1} \|}, \frac{\epsilon\| Q_{g_0} \|_{\Lambda^{0,\alpha}}}{C_0} \right\}, \quad (4.0.5) \]
for C_0 in (3.0.3). Combining (3.0.3), we have

$$\| L_{g_0}^{-1} \circ T_u (u_2) \| \leq \frac{1}{2} \epsilon. \quad (4.0.6)$$

Now let $0 < \epsilon \leq \epsilon_1$ and $\tau \leq \min\{\tau_1, \tau_2(\epsilon)\}$. Using (4.0.2), (4.0.4) and (4.0.6), we have that

$$\| L_{g_0}^{-1} \circ F_{u_1} (u_2) \|_{x^\alpha A^{0,\alpha}} \leq \frac{3}{4} \epsilon. \quad (4.0.7)$$

Therefore, $L^{-1} \circ F_{u_1}$ maps $B_\epsilon \cap V_1$ into itself.

For $u_3, u_4 \in V_1 \cap B_\epsilon(0)$, using the same argument as in Chapter 3, we have similar inequality as (3.0.9),

$$\| L_{g_0}^{-1} \circ T_u (u_3) - L_{g_0}^{-1} \circ T_u (u_4) \|_{x^\alpha A^{4,\alpha}} \leq \tilde{C}_0 \| L_{g_0}^{-1} \epsilon \|_{x^\alpha A^{0,\alpha}} + \| Q_{g_0} - Q_g \|_{x^\alpha A^{0,\alpha}} \| u_3 - u_4 \|_{x^\alpha A^{0,\alpha}}, \quad (4.0.8)$$

with \tilde{C}_0 depending on the defining function x, the diameter of M with respect to $x^2 g_0$, α and n. Let

$$\epsilon_2 = \frac{1}{8 \tilde{C}_0 \| L_{g_0}^{-1} \| (1 + \| Q_{g_0} \|_{A^{0,\alpha}})}. \quad (4.0.9)$$

Also there exists $\tau_3 > 0$, so that for $0 < \tau \leq \tau_3$,

$$\| Q_{g_0} - Q_g \|_{x^\alpha A^{0,\alpha}} \leq \frac{1}{8 \tilde{C}_0 \| L_{g_0}^{-1} \|}. \quad (4.0.10)$$

Therefore we have that

$$\| L_{g_0}^{-1} \circ T_{u_1} (u_3) - L_{g_0}^{-1} \circ T_{u_1} (u_4) \|_{x^\alpha A^{4,\alpha}} \leq \frac{1}{4} \| u_3 - u_4 \|_{x^\alpha A^{4,\alpha}}, \quad (4.0.11)$$
for $\epsilon \leq \epsilon_2$. Now let $\epsilon = \min\{\epsilon_1, \epsilon_2\}$, and $\tau = \min\{\tau_1(\epsilon), \tau_3\}$. Combing (4.0.2) and (4.0.11), we obtain that

$$\|L^{-1}_{g_0} \circ F_{u_1}(u_3) - L^{-1}_{g_0} \circ F_{u_1}(u_4)\|_{x^\alpha A^4,\alpha} \leq \|L^{-1}_{g_0}\| \|L_{g_0} - L_g\| \|u_3 - u_4\|_{x^\alpha A^4,\alpha} + \frac{1}{4}\|u_3 - u_4\|_{x^\alpha A^4,\alpha} \leq \left(\frac{1}{8} + \frac{1}{4}\right)\|u_3 - u_4\|_{x^\alpha A^4,\alpha} = \frac{3}{8}\|u_3 - u_4\|_{x^\alpha A^4,\alpha}$$

Therefore, $L^{-1}_{g_0} \circ F_{u_1}$ is a contraction map on $B_\epsilon \cap V_1$. Then there exists a unique fixed point u_2. But then

$$L_{g_0}(u_1 + u_2) = L_{g_0}(u_2) = F_{u_1}(u_2) = F(u_1 + u_2).$$

So $u = u_1 + u_2$ is a solution to the constant Q-curvature equation with $u_1 = \Pi_1(u)$. We should also note that the dimension of $\text{Ker}(L)$ is infinity. This completes the proof of the lemma. \qed
CHAPTER 5

CRITICAL METRICS of REGULARIZED DETERMINANTS

Let M be a fourth dimensional asymptotically hyperbolic manifold, with complete metric g and its smooth defining function x, so that $h = x^2 g$ is a smooth metric on \overline{M}. Consider the equation

$$U = U_g \equiv \gamma_1 |W|^2 + \gamma_2 Q - \gamma_3 \Delta R = C,$$

(5.0.1)

where $\gamma_1, \gamma_2, \gamma_3$ and C are some constants, W is the Weyl tensor, and Q, R the Q-curvature and the scalar curvature with respect to g. The equation arises as the Euler-Lagrange equation for the regularized determinants,

$$F_A[w] = \log\left(\frac{\det A_{\tilde{g}}}{\det A_g}\right),$$

of a conformally covariant operator $A = A_g$, under the conformal change of metrics $\tilde{g} = e^{2w} g$, see Chapter 6 in [19]. More precisely, under the conformal change,

$$\tilde{U} e^{4w} = U + \left(\frac{1}{2} \gamma_2 + 6 \gamma_3\right) \Delta^2 w + 6 \gamma_3 \Delta |\nabla w|^2 - 12 \gamma_3 \nabla^i [(\Delta w + |\nabla w|^2) \nabla_i w]$$

(5.0.2)

$$+ \gamma_2 R_{ij} \nabla_i \nabla_j w + (2 \gamma_3 - \frac{1}{3} \gamma_2) R \Delta w + (2 \gamma_3 + \frac{1}{6} \gamma_2)(\nabla R, \nabla w),$$

(5.0.3)
with $\tilde{U} = U_g$. Define $\alpha = \frac{\gamma_2}{12\gamma_3}$. The following are some examples that we are interested in.

Example 1. For the conformal Laplacian, $A = L$, we have that $(\gamma_1, \gamma_2, \gamma_3) = (1, -4, -\frac{2}{3})$, and $\alpha = \frac{1}{2}$.

Example 2. For the spin Laplacian, $A = D^2$, we have that $(\gamma_1, \gamma_2, \gamma_3) = (7, -88, -\frac{14}{3})$, and $\alpha = \frac{11}{7}$.

Example 3. For the Paneitz operator, $A = P$, we have that $(\gamma_1, \gamma_2, \gamma_3) = (-\frac{1}{4}, -14, \frac{8}{3})$, and $\alpha = -\frac{7}{16}$.

For convenience, dividing both sides of the function by $6\gamma_3$, we have the following equation,

$$
\frac{\tilde{U}}{6\gamma_3} e^{4w} = (1 + \alpha) \Delta^2 w + \Delta |\nabla w|^2 - 2 \nabla^i [(\Delta w + |\nabla w|^2) \nabla_i w] + 2\alpha R_{ij} \nabla^i \nabla^j w
$$

$$
+ \left(\frac{1}{3} - \frac{2}{3} \alpha \right) R \Delta w + \left(\frac{1}{3} + \frac{1}{3} \alpha \right) (\nabla R, \nabla w) + \frac{U}{6\gamma_3}. \tag{5.0.4}
$$

We should note that

$$
\Delta |\nabla w|^2 - 2 \nabla^i (\Delta w \nabla_i w) = 2(\Delta g \nabla w, \nabla w) + 2(\nabla^2 w, \nabla^2 w) - 2 \nabla^i (\Delta w \nabla_i w)
$$

$$
= 2\nabla^i w (g^{pq} \nabla_p \nabla_q \nabla_i w - g^{pq} \nabla_i \nabla_p \nabla_q w) + 2(|\nabla^2 w|_g^2 - (\Delta w)^2)
$$

$$
= 2\nabla^i w g^{pq} R_{piq} \nabla_s w + 2(|\nabla^2 w|_g^2 - (\Delta w)^2)
$$

$$
= 2 Ric(\nabla w, \nabla w) + 2(|\nabla^2 w|_g^2 - (\Delta w)^2). \tag{5.0.5}
$$

Moreover,

$$
\nabla^i (|\nabla w|^2 \nabla_i w) = 2 \nabla^i \nabla^j w \nabla_j w \nabla_i w + |\nabla w|^2 \Delta w,
$$

52
therefore, the equation can be written in the following way,

\[
\frac{\bar{U}}{6\gamma_3}e^4w = (1 + \alpha) \Delta^2 w + 2 \text{Ric}(\nabla w, \nabla w) + 2(|\nabla^2 w|^2_g - (\Delta w)^2) \tag{5.0.6}
\]

\[- 4 \nabla_i \nabla_j w \nabla_i w \nabla_j w - 2 |\nabla w|^2 \Delta w + 2 \alpha R_{ij} \nabla^i \nabla^j w \tag{5.0.7}
\]

\[+ \left(\frac{1}{3} - \frac{2}{3}\alpha \right) R \Delta w + \left(\frac{1}{3} + \frac{1}{3}\alpha \right)(\nabla R, \nabla w) + \frac{U}{6\gamma_3}. \tag{5.0.8}
\]

We should point out that for \(\alpha = -1 \) and \(\gamma_1 = 0 \), the equation reduces to a second order differential equation, and in this case the \(U \)-curvature relates to the \(\sigma_2 \)-curvature with respect to the Schouten tensor \(A(g) \),

\[
\frac{1}{12\gamma_3}U(g) = \frac{\gamma_1}{12\gamma_3}|W|^2_g + \frac{\gamma_2}{12\gamma_3}Q_g - \frac{\Delta R_g}{12} \\
= -\left(\frac{1}{4} |\text{Ric}_g|^2 + \frac{1}{12} R^2_g - \frac{1}{12} \Delta_g R_g \right) - \frac{\Delta R_g}{12} \\
= -\left(\frac{1}{4} |\text{Ric}_g|^2 + \frac{1}{12} R^2_g \right) = -2\sigma_2(g).
\]

We have the equation

\[
4\sigma_2(\bar{g}) = -2 \text{Ric}(\nabla g w, \nabla g w) - 2(|\nabla^2 w|^2_g - (\Delta w)^2) + 4 \nabla_i w \nabla_i w \nabla_j w \\
+ 2 |\nabla w|^2 \Delta w + 2 \text{Ric}_{ij} \nabla^i \nabla^j w - R_g \Delta w + 4\sigma_2(g).
\]

A prescribed constant \(\sigma_2 \)-curvature asymptotically hyperbolic metric problem is discussed in [28]. From now on, we assume that \(\alpha \neq -1 \).

The linearization of \(\text{(5.0.6)} \) is given by

\[
L w = (1 + \alpha) \Delta^2 w + 2\alpha R_{ij} \nabla^i \nabla^j w + \left(\frac{1}{3} - \frac{2}{3}\alpha \right) R \Delta w + \left(\frac{1}{3} + \frac{1}{3}\alpha \right)(\nabla R, \nabla w) - \frac{2U}{3\gamma_3} w = 0.
\]
As $x \to 0$,

$$R_{ijkl}(g) = x^{-2}[R_{ijkl}(h) - h_{ik}(x^{-1}\nabla^h_j \nabla^t_i x + \frac{1}{2}x^{-2}h_{jl}) - h_{jl}(-x^{-1}\nabla^h_l \nabla^t_i x + \frac{1}{2}x^{-2}h_{ik})]$$

$$+ h_{il}(-x^{-1}\nabla^h_j \nabla^t_k x + \frac{1}{2}x^{-2}h_{jl}) + h_{jk}(-x^{-1}\nabla^h_l \nabla^t_i x + \frac{1}{2}x^{-2}h_{il})]$$

$$= x^{-4}[-\frac{1}{2}h_{ik}h_{jl} - \frac{1}{2}h_{jl}h_{ik} + h_{il}h_{jk} + \frac{1}{2}h_{jk}h_{il} + O(x)]$$

$$= x^{-4}[-h_{ik}h_{jl} + h_{il}h_{jk} + O(x)],$$

while

$$A(g) = \frac{1}{4-2}(\text{Ric}(g) - \frac{1}{2(4-1)}R(g)g) = \frac{1}{2}(-3 + 2 + O(x))g = (-\frac{1}{2} + O(x))g,$$

so that

$$W_{ijkl}(g) = R_{ijkl}(g) - g_{ik}A_{jl}(g) + g_{il}A_{jk}(g) + g_{jk}A_{il}(g) - g_{jl}A_{ik}(g)$$

$$= x^{-4}(-h_{ik}h_{jl} + h_{il}h_{jk} + O(x)) + x^{-4}[-h_{ik}(-\frac{1}{2}h_{jl} + O(x))]$$

$$+ h_{il}(-\frac{1}{2}h_{jk} + O(x)) + h_{jk}(-\frac{1}{2}h_{il} + O(x)) - h_{jl}(-\frac{1}{2}h_{ik} + O(x))]$$

$$= x^{-4}O(x),$$

and moreover, using the fact $\Delta h R = O(x)$, and $Q(g) = 3 + O(x)$, we have that
\[U(g) = 3\gamma_2 + O(x) \]. Then we obtain the main terms of \(Lw \) as follows,

\[
Lw = (1 + \alpha)\Delta_g^2w + \left(\frac{1}{3} - \frac{2}{3}\alpha\right)R_g\Delta_gw + 2\alpha \text{Ric}_i^g \nabla^i \nabla^j w \\
+ \frac{1}{3}(1 + \alpha)(\nabla_g R_g, \nabla_g w) - \frac{2U}{3\gamma_3}w \\
= (1 + \alpha)\Delta_g^2w + \left(\frac{1}{3} - \frac{2}{3}\alpha\right)(-12 + O(x))\Delta_gw + 2\alpha(-3\Delta_gw + O(x)p(x, y, x\partial_x, x\partial_y)w) \\
+ \frac{1}{3}(1 + \alpha)(-2 \times 4 - 2)x^2H(h|_{S_4})\partial_x w + O(x^3)|\nabla_y w| - (8 \times 3 \alpha + O(x))w \\
= (1 + \alpha)\Delta_g^2w - 12\left(\frac{1}{3} - \frac{2}{3}\alpha\right)\Delta_gw - 6\alpha\Delta_gw - 24\alpha w + O(x)p(x, y, x\partial_x, x\partial_y)w \\
= (1 + \alpha)\Delta_g^2w - (4 - 2\alpha)\Delta_gw - 24\alpha w + O(x)p(x, y, x\partial_x, x\partial_y)w \\
= ((1 + \alpha)\Delta_g + 6\alpha)(\Delta_g - 4)w + O(x)p(x, y, x\partial_x, x\partial_y)w.
\]

Correspondingly,

\[
N(L)w = (1 + \alpha)((s\partial_s)^2 + s^2\Delta_v - 3s\partial_s)^2w + (2\alpha - 4)((s\partial_s)^2 + s^2\Delta_v - 3s\partial_s)w - 24\alpha w,
\]

\[
L_0(t, \tilde{\eta})w = (1 + \alpha)((t\partial_t)^2 + t^2 - 3t\partial_t)^2w + (2\alpha - 4)((t\partial_t)^2 + t^2 - 3t\partial_t)w - 24\alpha w \\
= ((1 + \alpha)((t\partial_t)^2 + t^2 - 3t\partial_t) + 6\alpha)(((t\partial_t)^2 + t^2 - 3t\partial_t) - 4)w = L_3 \circ L_1 w,
\]

\[
I(L)w = (1 + \alpha)((s\partial_s)^2 - 3s\partial_s)^2w + (2\alpha - 4)((s\partial_s)^2 - 3s\partial_s)w - 24\alpha w \\
= ((1 + \alpha)((s\partial_s)^2 - 3s\partial_s) + 6\alpha)((s\partial_s)^2 - 3s\partial_s - 4)w.
\]

Therefore, the indicial roots of \(L \) is as follows,

i) For \(\alpha = \frac{1}{2} \), \(\text{spec}_b(L) = \{4, -1, 1, 2\} \).

ii) For \(\alpha = \frac{11}{7} \), \(\text{spec}_b(L) = \{4, -1, \frac{3}{2} + i\frac{\sqrt{17}}{6}, \frac{3}{2} - i\frac{\sqrt{17}}{6}\} \).

iii) For \(\alpha = -\frac{7}{16} \), \(\text{spec}_b(L) = \{4, -1, \frac{3}{2} + i\frac{\sqrt{230}}{6}, \frac{3}{2} - i\frac{\sqrt{230}}{6}\} \).
The solution of \(L_1 w = 0 \) is exactly the same as discussed in Chapter 2. We solve \(L_3 w = 0 \) by transferring it into the Bessel type equations discussed as above. Let \(u(t) = t^\beta \tilde{w}(t) \), then

\[
0 = t^\beta (t^2 \partial_t^2 \tilde{w} + (2\beta - 3) t \partial_t \tilde{w} + (\beta^2 - 3\beta + \frac{6\alpha}{1 + \alpha} - t^2) \tilde{w}).
\]

Let \(2\beta - 3 = 0 \), and then \(\beta = \frac{3}{2} \). Consequently,

\[
[(t^2 \partial_t^2 \tilde{w} + t^2 + \frac{9}{4} - \frac{6\alpha}{1 + \alpha})] \tilde{w} = 0.
\]

Let \(\tilde{\alpha}^2 = \frac{9}{4} - \frac{6\alpha}{1 + \alpha} \), then the solution is

\[
w = t^{\frac{3}{2}}(C_1 I_{\tilde{\alpha}}(t) + C_2 K_{\tilde{\alpha}}(t)). \tag{5.0.9}
\]

Here \(\tilde{\alpha}^2 \) is \(\frac{1}{4}, \frac{-17}{12}, \frac{83}{12} \), corresponding to the above three cases, with \(\text{Re}(\tilde{\alpha}) \geq 0 \). For the case \(\tilde{\alpha}^2 = -\frac{17}{12} \), since \(\tilde{\alpha}^2 \) is negative, \(L_3 \) behaves the same as \(L_2 \) in Chapter 2, and it follows that Theorem 1.0.7 and Theorem 1.0.8 with \(n = 4 \) hold for the linear operator \(L \), using the same argument as in Chapter 2.

By the expansion of the series form of the Bessel functions, as in \([20], P. 108\), we have

\[
t^{\frac{3}{2}} I_{\tilde{\alpha}}(t|\eta|) \sim t^{\frac{3}{2} + \tilde{\alpha}} |\eta|^{\tilde{\alpha}}/(2^{\tilde{\alpha}} \Gamma(1 + \tilde{\alpha})),
\]

and

\[
t^{\frac{3}{2}} I_{-\tilde{\alpha}}(t|\eta|) \sim t^{\frac{3}{2} - \tilde{\alpha}} |\eta|^{-\tilde{\alpha}}/(2^{-\tilde{\alpha}} \Gamma(1 - \tilde{\alpha})),
\]

near \(t = 0 \). Here we should note that the series expansion applies for all \(\tilde{\alpha} \in \mathbb{C} \).
Now it is easy to see that the linear combination

\[x^\frac{3}{2}(C_1 x^\tilde{\alpha} + C_2 x^{-\tilde{\alpha}}) \]

can never vanish to infinite order at \(t = 0 \) if either \(C_1 \neq 0 \) or \(C_2 \neq 0 \). Also,

\[t^\frac{3}{2}K_{\tilde{\alpha}}(t|\eta|) \sim t^\frac{3}{2} \frac{\pi I_{\tilde{\alpha}}(t|\eta|) - I_{-\tilde{\alpha}}(t|\eta|)}{\sin(\tilde{\alpha}\pi)} \sim O((t|\eta|)^{\frac{3}{2} - \tilde{\alpha}}), \]

near \(t = 0 \), with \(\tilde{\alpha} > 0 \) and \(\tilde{\alpha} \neq 1, 2, 3, ... \).

Using the integral form, we have

\[t^\frac{3}{2}I_{\tilde{\alpha}}(t|\eta|) \text{ grows exponentially}, \ t^\frac{3}{2}K_{\tilde{\alpha}}(t|\eta|) \text{ decays exponentially} \]

near \(t = +\infty \). Therefore, \(t^\frac{3}{2}I_{\tilde{\alpha}}(t|\eta|) \) does not belong to \(t^\delta L^2(\mathbb{R}^+) \) for any \(\delta > 0 \), while

\[t^\frac{3}{2}K_{\tilde{\alpha}}(t|\eta|) \in t^\delta L^2(\mathbb{R}_+), \]

only for \(\delta < \frac{3}{2} + \frac{1}{2} - \tilde{\alpha} = 2 - \tilde{\alpha} \). That is, \(L_3 \) is injective in \(x^\delta L^2 \) for \(\delta > 2 - \tilde{\alpha} \).

Summarizing the above discussion, let us compute \(\bar{\delta} \) and \(\delta \) for the linearized operator \(L \).

\[
\bar{\delta} = \inf \{ \delta : L_1 \text{ and } L_3 \text{ are injective in } t^\delta L^2 \} = \sup \{-1 + \frac{1}{2}, 2 - \tilde{\alpha} \}, \text{ and dually, }
\delta = \inf \{ (\frac{3}{2} + \frac{1}{2}) \times 2 - (-1 + \frac{1}{2}), (\frac{3}{2} + \frac{1}{2}) \times 2 - (2 - \tilde{\alpha}) \} = \inf \{ \frac{9}{2}, 2 + \tilde{\alpha} \}.
\]

For the case \(\alpha = \frac{1}{2} \), \(\bar{\delta} = \frac{3}{2} \), and \(\delta = \frac{5}{2} \) (surjectivity). For the case \(\alpha = -\frac{7}{16} \), \(\bar{\delta} = -1 + \frac{1}{2} = -\frac{1}{2} \), and \(\delta = \frac{9}{2} \). Then we can use Theorem 1.0.7 and Theorem 1.0.8 to obtain the semi-Fredholm property for these linear operators.
For the Poincaré Einstein manifold \((M, g)\), we have that the \(U\) curvatures defined above are all constants on \(M\). We want to see the solutions of the nonlinear problem. Now \(Lw = ((1 + \alpha)\Delta g + 6\alpha)(\Delta g - 4)w\). Define the operator \(T : x^\nu \Lambda^{4,\alpha}(M) \to x^\nu \Lambda^{0,\alpha}(M)\) as follows,

\[
T(w) = \left(\frac{\tilde{U}}{6\gamma_3} e^{4w} - \frac{U}{6\gamma_3} - \frac{2}{3\gamma_3} U w\right) - 2\text{Ric}(\nabla w, \nabla w) - 2\left(\nabla^2 w|_g^2 - (\Delta w)^2\right) + 4\nabla_j \nabla_i w \nabla^j w \nabla^i w + 2|\nabla w|^2 \Delta w.
\]

We rewrite it in the form

\[
T(w) = \frac{\tilde{U}}{6\gamma_3} (e^{4w} - 1 - 4w) + \left(\tilde{U} - U\right)\left(\frac{1}{6\gamma_3} + \frac{2}{3\gamma_3} w\right) - 2\text{Ric}(\nabla w, \nabla w) - 2\left(\nabla^2 w|_g^2 - (\Delta w)^2\right) + 4\nabla_j \nabla_i w \nabla^j w \nabla^i w + 2|\nabla w|^2 \Delta w.
\]

In this formula, comparing with the nonlinear term defined for \(Q\)-curvature equation, a few square terms of \(w\) and its derivatives of order up to 2 are involved, which are small terms in the argument of the perturbation problem. Now, the nonlinear equation becomes

\[
L_g w = T(w).
\]

To solve this, the argument follows exactly the way in Chapter 3 and Chapter 4. We only need to choose the right weighted Hölder spaces. Note that the index of the weight for the Hölder space is \(\frac{1}{2}\) less than the index of the weight of the corresponding Sobolev spaces.
5.1 SUMMARY.

Perturbation results for the curvatures defined in (5.0.1) can be proved along the same lines as the Q-curvature. For instance, assume (M, g) is a Poincaré-Einstein manifold. For the case $\alpha = -\frac{7}{16}$, by maximum principle, $((1 + \alpha)\Delta_g + 6\alpha)$ and $(\Delta_g - 4)$ are both injective on $L^2(M, g)$. Then similar to the discussion for the Q-curvature equation, there are infinitely many solutions $u \in x^\nu \Lambda^{4, \beta}(M, \sqrt{dx \wedge dy})$ for $0 < \beta < 1$ to this equation parametrized by the projection $\Pi_1 u$ to the kernel of the linearized operator L, for $\nu \in (0, \frac{3}{2})$. Moreover, if $\tilde{U} = U$, then w has the weak expansion $w(x, y) \sim w_{00}(y)x^4 + o(x^4)$, and also w has a smooth expansion if $1 \leq \nu < \frac{3}{2}$ and $\Pi_1 w$ has a smooth expansion. For the case $\alpha = \frac{11}{7}$, it is the same as the Q curvature problem, and the only difference is that here we use $i\sqrt{51}$ in the indicial roots and in the formula of expansion to replace $i\sqrt{15}$. For the case $\alpha = \frac{1}{2}$, $((1 + \alpha)\Delta_g + 6\alpha)$ is essentially injective on $x^\nu \Lambda^{4, \beta}(M, \sqrt{dx \wedge dy})$ for $\nu > 1$ and $\nu \neq 2$, while it is essentially surjective on $x^\nu \Lambda^{4, \beta}(M, \sqrt{dx \wedge dy})$ for $\nu < 2$, also $\nu \neq 1$ and $0 < \beta < 1$. Since $(\frac{3}{2}\Delta_g + 3)$ may have finite dimensional kernel, we do not have perturbation result for ν in this interval. But note that, using the same argument as in Lemma 2.0.14 in weighted Hölder spaces, for $\nu > 2$, the operator

$$\left(\frac{3}{2}\Delta + 3\right): x^\nu \Lambda^{2+m, \beta} \to x^\nu \Lambda^{m, \beta},$$

is injective, for $0 < \beta < 1$ and $m \geq 0$. Then dually the operator $(\frac{3}{2}\Delta + 3)$ is surjective for $\nu \in (0, 1)$. Also we know that the operator $(\Delta_g - 4)$ is surjective in the weighted Hölder space with $0 < \nu < \frac{3}{2}$, then the linearized operator

$L: x^\nu \Lambda^{4+m, \beta} \to x^\nu \Lambda^{m, \beta},$
with \(m \geq 0 \) is surjective for \(0 < \nu < 1 \) and \(0 < \beta < 1 \). Therefore, for the case \(\alpha = \frac{1}{2} \), the existence result as in i) in Theorem 1.0.6 holds for \(0 < \nu < 1 \). For the boundary expansion when \(\tilde{U} = U \), since all the indicial roots are integers in this case, there may be \(\log(x) \) terms in the expansion. Also, since \(\nu < 1 \), the smooth expansion result does not hold.

30. C. Ndiaye, *Conformal metrics with constant Q-curvature for manifolds with boundary*, communications in analysis and geometry **16** no. 5 (2008), 1049 - 1124.

