ABSTRACT

Compositions suitable for use as adjuvants in the preparation of vaccines, particularly those vaccines useful in the treatment of cancer, are provided. Methods for inhibiting tumor growth in an animal are also disclosed. Methods for immunizing an animal against cancer, such as prostate cancer, are also described. The adjuvants described are comprised of an extracellular matrix material, such as small intestinal submucosal (SIS) tissue. The preparations may take the form of sheets, gels, liquids (injectable), trocar, or other solid or semi-solid preparation. The invention provides for enhanced tumor inhibition of 2-fold or greater, compared to vaccine preparations without the extracellular matrix material, or from 4- to 5-fold, compared to preparations without the adjuvant promoting extracellular materials.

16 Claims, 11 Drawing Sheets
References Cited

U.S. PATENT DOCUMENTS

2004/0013712 A1 1/2004 Parma
2006/0099675 A1 5/2006 Benard
2006/0147433 A1 7/2006 Hiles

FOREIGN PATENT DOCUMENTS

CA 2667075 A1 5/2008
CA 2627364 7/2008
CN 101730541 A 6/2010
EP 2109667 A2 10/2009
JP 516763 5/2010
WO 03100034 A2 * 12/2003
WO 9624661 8/1996
US 8,802,113 B2

OTHER PUBLICATIONS

Bachman et al. (Journal of Immunology, 2005, vol. 175, pp. 4677-4685).
Bello-DeOcampo, Diana, et al., TGF-β Smad Signaling in Prostate Cancer, Current Drug Targets vol. 4 No. 3 (2003).
References Cited

OTHER PUBLICATIONS

References Cited

OTHER PUBLICATIONS

Theelen et al., (2005), “Effects of lowering the aluminium content of a Dtpa vaccine on its immunogenicity and reactogenicity when given as a booster to adolescents,” Vaccine, 10(23-12):1515-21.

(56) References Cited

OTHER PUBLICATIONS

Diamande et al., (2003), "Prostate specific antigen (PSA) does not affect growth of prostate cancer cells in vitro or prostate cancer xenografts in vivo," Prostate, 56:45-53.

References Cited

OTHER PUBLICATIONS

References Cited

OTHER PUBLICATIONS

* cited by examiner
FIG. 5

ADJUVANCY OF SIS ON POST-RESECTION VACCINES

TUMOR WEIGHT (g)

POST-RESECTION TREATMENT

FIG. 6

ADJUVANCY AFTER 28 DAYS OF GROWTH ON SIS

MEAN TUMOR WEIGHT (g)

VACCINATION GROUP
FIG. 7

PREVENTION OF TUMORS WITH VACCINE AND SIS GEL ADJUVANT

MEAN TUMOR WEIGHT (g)

VACCINATION GROUP

FIG. 8

TREATMENT OF CANCER WITH VACCINE AND SIS ADJUVANTS

MEAN TUMOR WEIGHT (g)

VACCINATION GROUP
FIG. 9

<table>
<thead>
<tr>
<th>SHAM SURGERY</th>
<th>TUMOR RESECTION ALONE</th>
<th>SIS ENCASEMENT</th>
<th>RESECTION + SIS OVERLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumor Weight (g)</td>
<td>12</td>
<td>15</td>
<td>9</td>
</tr>
</tbody>
</table>

Vertical bars indicate variability.
Figure 11

Allogeneic (Mat-LyLu) Vaccination: Metastasis

Number of Rats with Mets

Vaccination Group
Xenogeneic Vaccination

Figure 12

Mean Tumor Weight (g)
Figure 13

SIS vs. FEM vs. RCM in Tumor Resection Model

Mean Tumor Weight (g)
EXTRACELLULAR MATRIX CANCER VACCINE ADJUVANT

CROSS-REFERENCE TO RELATED APPLICATIONS

STATEMENT OF JOINT RESEARCH AGREEMENT

In compliance with 37 C.F.R. §1.71(g) (1), disclosure is herein made that the claimed invention was made pursuant to a Joint Research Agreement as defined in 35 U.S.C. 103 (c) (3), that was in effect on or before the date the claimed invention was made, and as a result of activities undertaken within the scope of the Joint Research Agreement, by or on behalf of the University of Notre Dame and Cook Biotech, Inc. (West Lafayette, Ind.).

BACKGROUND

1. Field of the Invention

The present invention relates generally to cancer vaccines that include an adjuvant, and to cancer vaccine adjuvants alone. In particular, the invention relates to cancer vaccine adjuvants derived or obtained at least in part from biological tissues, particularly extracellular matrix materials, such as from the small intestinal mucosa. The invention also relates to the field of methods for immunizing an animal against cancer using a cancer vaccine preparation that includes an extracellular matrix tissue-derived adjuvant. The invention also relates to the field of methods for preparing cancer vaccine adjuvants, as a method for preparing a cancer vaccine adjuvant from extracellular matrix tissue for vaccines to immunize an animal against cancer, particularly prostate cancer, is provided.

2. Related Art

Vaccination for the treatment of cancer is receiving increasing attention. Vaccines for melanoma, prostate and breast cancers have undergone development to include human clinical trials. Most of these vaccines utilize specific proteins to directly immunize the patient or to pulse harvested dendritic cells prior to infusion into the patient. Some trials have also used inactivated allogeneic cancer cells grown in vitro.

In general, cancer vaccines have been administered without an adjuvant or with specific cytokines included as adjuvants. An adjuvant is defined as a compound which enhances the immune response to a vaccine immunogen(s).

There have been some reports of the use of a mycobacterial adjuvant with normal non-malignant cells. For example, use of human prostate cells in the treatment of prostate cancer is described in U.S. Pat. No. 6,972,128 (Dalgleish et al.). In particular, an allogeneic immunotherapeutic agent containing immortalized normal (non-malignant) human prostate cells (replication incompetent) is described. A mycobacterial adjuvant was used with a non-malignant murine melanoma cell preparation in a vaccine suitable for intra-dermal injection. These preparations were reported to provide some protection against murine tumor cell growth.

A combination of aluminum hydroxide and aluminum phosphate (collectively referred to as alum) is currently used in commercial vaccines as adjuvants for humans and veterinary applications (11, 12). The efficacy of alum in increasing antibody responses to diphtheria and tetanus toxins is well established and HBsAg vaccine has been adjuvinated with alum. While the usefulness of alum is well established for some applications, it has limitations. For example, alum is ineffective for influenza vaccination and inconsistently illicit cell mediated immune response. The antibodies elicited by alum-adjuvinated antigens are mainly of the IgG1 isotype in the mouse, which may be optimal for protection by some vaccinal agents.

Bacterial vaccines have also been described that include an adjuvant, typically alum. Because alum is particularly efficient at stimulating Th2 antibody responses to co-administered immunogens, and because effective cancer immunity relies heavily on Th1 cell-mediated immunity, alum is not typically included in cancer vaccines. Clearly, cancer vaccination would benefit from a method to provide general enhancement of the immune response to cancer immunogens.

Noscapine has been described as an adjuvant for vaccines, as well as for use in the treatment of tumors and cancer, in U.S. Pat. No. 7,090,852. Noscapine is an alkaloid from opium, and is available as a commercial byproduct in the commercial production of prescription opiates.

Recombinant, single immunogen cancer vaccines have also been described. One such product in Phase 3 clinical trials is the GVAX® vaccine (Cell Genesys, Inc., South San Francisco, Calif.). This cancer vaccine is used in patients with advanced-stage, hormone-refractory prostate cancer, and is comprised of two allogeneic prostate cancer cell lines that have been genetically modified to secrete granulocyte-macrophage colony stimulating factor (GM-CSF). This hormone plays a role in stimulating the body’s immune response to the cancer vaccine. The cells are irradiated for safety (3). Cancer vaccination with the GVAX product has demonstrated a median increases in survival in cancer patients receiving the vaccine of approximately 7 months (4).

Though some studies have utilized specific cytokines as cancer vaccine adjuvants, such as GM-CSF in the GVAX vaccine (4), those cytokines typically enhance only specific features of the immune response and may be unstable outside of very controlled storage conditions (13, 14).

Pure soluble, recombinant and synthetic antigens, despite their better tolerability, are unfortunately often much less immunogenic than live or killed whole organism vaccines. Thus, the move towards the development of safer subunit vaccines has created a major need for more potent adjuvants. In particular, there is an urgent need for adjuvants capable of boosting cellular (Th1) immunity with a more acceptable toxicity.

Despite the description of over one hundred adjuvants in the scientific literature, alum remains the only adjuvant approved for human use in the USA (Petrovsky, 2006). Unfortunately, alum has no effect on cellular immunity and is faced with increasing concerns regarding potential for cumulative aluminium toxicity. There is a major unmet need for a safe efficacious adjuvant capable of boosting cellular plus humoral immunity.

The prerequisites for an ideal cancer adjuvant differ from conventional adjuvants for many reasons. First, the patients
that will receive the vaccines are immuno-compromised because of, for example, impaired mechanisms of antigen presentation, non-responsiveness of activated T cells and enhanced inhibition of self-reactivity by regulatory T cells. Second, the tumor antigens are usually self-derived and are, therefore, poorly immunogenic. Third, tumors develop escape mechanisms to avoid the immune system, such as tumor immunoediting, low or non-expression of MHC class I molecules or secretion of suppressive cytokines. Thus, adjuvants for cancer vaccines need to be more potent than for prophylactic vaccines, and consequently may be more toxic, and may even induce autoimmune reactions.

To heighten the immune response to cancer antigens, researchers often attach a decoy substance, or adjuvant, that the body will recognize as foreign. Such adjuvants are often proteins or bacteria which "trick" the immune system into mounting an immune response against the decoy and the tumor cells. Other adjuvants act to stimulate specific effector cells within the immune system. Several adjuvants are described below:

Keyhole limpet hemocyanin (KLH) is a protein made by a shellfish found along the coast of California and Mexico known as a keyhole limpet. KLH is a large protein that both causes an immune response and acts as a carrier for the vaccine antigen (Totterman, 2005(54); Mosolits, 2005 (55)). KLH antigens often are relatively small proteins that may be invisible to the immune system. KLH provides additional recognition sites for immune cells known as T-helper-cells and may increase activation of other immune cells known as cytotoxic T-lymphocytes (CTLs.

Bacillus Calmette-Guerin (BCG) is an inactivated form of the tuberculosis bacterium. BCG is added to some cancer vaccines with the hope that it will boost the immune response to the vaccine antigen (Totterman, 2005(54); Mosolits, 2005 (55)). It is not well understood why BCG may be especially effective for eliciting immune response. However, BCG has been used for decades with other vaccines, including vaccines for tuberculosis.

Interleukin-2 (IL-2) is a protein made by the body's immune system that may boost the cancer-killing abilities of certain specialized immune system cells called natural killer cells. Although it can activate the immune system, many researchers believe IL-2 alone will not be enough to prevent cancer relapse. Several cancer vaccines use IL-2 to boost immune response to specific cancer antigens (Wei, 2006 (57); He, 2005 (56), Rousseau, 2006(58)).

Granulocyte Monocyte-Colony Stimulating Factor (GM-CSF) is a protein that stimulates the proliferation of antigen-presenting cells and has been used as an adjuvant in a prostate cancer vaccine (Simons, 2006 (59)).

SIS is a commercially available acellular extracellular matrix (ECM) preparation produced from porcine small intestinal submucosa. SIS is a naturally derived, extracellular matrix, that is not synthetic or cross-linked. A commercial form of this collagenous acellular material is available from Cook Biotech, and is known by the trade name, "Oasis®". In this product, SIS is taken from a biological source and is processed to remove all cells. This product is biocompatible and safe for human use.

SIS has found substantial utility as a tissue growth scaffold. For example, SIS has shown wide utility in urology (15-22), wound care and repair (23-24), as an anal fistula plug (25), tendon repair, and bone healing (26-27, 29, 31-33). Following implantation, SIS rapidly attracts mononuclear inflammatory cells followed by ingrowth of host tissue (FIG. 1). In this way, SIS serves as a scaffold for tissue repair (26-28). The SIS then becomes fully replaced by host tissue. Other extracellular matrices, such as porcine renal capsule material, behave in a similar fashion to SIS (29-30).

Cancer Vaccine Adjuvants

Cancer vaccines may be described as a modified preparation of SIS, ECM, RCM, or other appropriate extracellular matrix material of choice, as a cancer vaccine adjuvant. In some embodiments, these preparations may be described as essentially free of alum. In other embodiments, the ECM materials may be described as a modified preparation of SIS, FEM, RCM, or other appropriate extracellular matrix material of choice, as a cancer vaccine adjuvant. In some embodiments, these preparations may be described as essentially free of alum. In other embodiments, the ECM materials may be described as a modified preparation of SIS, FEM, RCM, or other appropriate extracellular matrix material of choice (diluted) about 2-fold to about 10-fold. In some embodiments, a standard SIS material, such as that obtained from a commercial vendor, is diluted about 1-10 fold, and in this dilution, is particularly well suited for use as an injectable vaccine material. In particular embodiments, the extracellular material is diluted in a physiologically acceptable solution, such as saline.

Cancer Vaccine

In another aspect, the present invention provides a cancer vaccine comprising a preparation of an extracellular matrix tissue together with a preparation of (replication incompetent) tumor cells. In some embodiments, the tumor cells are prostate cancer cells, breast cancer cells, liver cancer cells, lung cancer cells, colon cancer cells, etc. In particular embodiments, the tumor cells are treated so as to render them replication incompetent by fixing the cells with glutaraldehyde. This glutaraldehyde preparation of tumor cells may then be mixed with the extracellular matrix material, such as SIS.

In one aspect of the invention, there has been provided a composition comprising an immunogenically enhancing preparation of an extracellular matrix material, particularly the extracellular matrix of the small intestinal submucosa (SIS) or tissue of the renal capsule. In some embodiments, the extracellular matrix comprises a menu of antigenic species char-
characteristic of porcine small intestinal mucosa. This preparation may also be described as comprising a small intestinal submucosa tissue preparation, or purified preparation thereof.

According to another aspect, there is provided a composition comprising an adjuvant and a vaccine of interest. In some embodiments, the vaccine is a whole-cell vaccine. In some embodiments the vaccine may be described as a cancer vaccine. In other embodiments, the vaccine comprises an immunogenic amount of a tumor antigen preparation of interest; and a cancer adjuvant, wherein said cancer adjuvant comprises a preparation characteristic of an extracellular matrix material, and wherein the immunogenic amount of the tumor antigen preparation of interest sufficient to stimulate a protective response in the presence of the cancer adjuvant is less than the amount of the tumor antigen preparation of interest sufficient to stimulate a protective response in the absence of the cancer adjuvant.

Method of Preparing a Cancer Vaccine Adjuvant and a Cancer Vaccine

According to another broad aspect of the invention, there is provided a method for preparing a cancer vaccine adjuvant. In some embodiments, the method comprises obtaining an amount of small intestinal submucosa (SIS) or other extracellular matrix material of choice (FEM, RCM), and preparing a processed preparation thereof suitable for use as a cancer vaccine adjuvant in combination with an immunogenic amount of a whole cell antigen vaccine preparation, such as prostate cells.

In another aspect, the invention provides a method for preparing a cancer vaccine. In some embodiments, the method comprises preparing a cancer vaccine adjuvant as described, and combining the cancer vaccine adjuvant with an immunogenic amount of a cancer antigen of interest. In some embodiments, the immunizing antigen of interest is a tumor cell preparation, such as a prostate, lung, breast, colon, or other cancer cell preparation. In some embodiments, the prostate cancer cell preparation comprises prostate tumor cells harvested from an animal that have been treated and/or processed with glutaraldehyde.

Methods of Treating/Inhibiting/Immunizing an Animal Against Cancer

According to yet another broad aspect of the invention, a method for treating and/or immunizing an animal having cancer or at risk of developing cancer is provided. In some embodiments, the method comprises immunizing an animal against prostate, breast, colon, lung, or other cancer of interest, employing as antigen a tumor tissue comprising the specific type of cancer cells of interest. In particular embodiments, the method provides for the treatment and/or immunization of a human having or at risk of developing prostate cancer. The present invention provides for both a cancer or at risk of developing cancer is provided. In some embodiments, the prostate cancer employs a composition comprising a vaccine, the vaccine comprising an adjuvant composed of an extracellular matrix (ECM) material together with a tissue preparation, such as a glutaraldehyde-fixed xenogeneic tissue preparation of prostate cancer cells. These preparations are found to be more immunogenic than use of the glutaraldehyde fixed xenogeneic tissue preparation without the extracellular matrix material adjuvant.

Method of Expanding a Tumor Cell Population

In yet another aspect, the invention provides a method for expanding a population of tumor and/or cancer cells in vitro. These cancer and/or tumor cells may then be used as an antigen of interest to be included with an extracellular matrix material adjuvant to provide a cancer vaccine as described herein.

Clinical Cancer Treatment Preparations

In yet another aspect, the invention provides a variety of unique clinical cancer treatment preparations. In some embodiments, these cancer treatment preparations may take the form of a gel, a sheet, or an injectable preparation of an extracellular matrix material. The injectable preparations may be further described as suitable for i.v. administration.

ECM-Conditioned Media Vaccine Preparations

In yet another aspect, the invention provides a preparation wherein the ECM upon which whole cancer cells have been grown and subsequently removed may be collected, and used as a vaccine. These conditioned-ECM preparations will therefore be described as essentially cancer cell free, and possess a relatively concentrated combination of cell and tissue secreted factors/peptides/organic and inorganic molecules anticipated to provide much if not all of the beneficial anti-cancer and anti-tumor growth properties of the whole cell-containing preparations as described herein. The absence of whole cells may avoid any unanticipated concern with administration of whole cells.

Combination Treatment Regimens and Preparations with ECM and/or ECM Conditioned Media Preparations

In yet another aspect, the invention provides a preparation and/or treatment regimen wherein the ECM in its various forms as described herein may be used in combination with another active agent, such as a T-cell suppressor (cyclophosphamide), cytokines, (IL-21), cytokine granulocyte/macrophage colony stimulating factor (GM-CSF), hormones (melatonin), immunosuppressive enzymes (1-methyl-trypophane), COX-2 inhibitors (cyclooxygenase-2), oligonucleotides (CpG oligonucleotides), or any combination of these.

Customized ECM Vaccines

In yet another aspect, the present invention provides a customized ECM vaccine, wherein an intended patient's own tumor and/or cancer cell tissue/biopsy tissue is grown on an ECM material, such as SIS. Once the cells have had opportunity to grow on the culture, the cells are either inactivated or removed, the ECM material washed, and then the ECM washed material is used as a vaccine or as an adjuvant for the patient. This approach allows targeting of cancer tissue antigens which may be specific and unique to an individual patients' tumor. Further, this aspect of the invention allows expansion on an ECM of harvested tumor material to quantities would be sufficient to provide ongoing booster vaccination as dictated by the clinical need of the patient.

The following abbreviations are used throughout the description of the present invention:

- ECM—Extracellular Matrix
- FEM Fascia Extracellular Matrix Material
- GET Glutamaldehyde Fixed Tumor
- LW Rat—Lobund-Wistar rat
- MEM Modified Eagle’s Medium
- PAIII Prostate Adenocarcinoma III Cell Line from LW rats
- RCM Renal Capsule Material
- SIS—Small Intestinal Submucosa

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be described in conjunction with the accompanying drawings, in which:

FIG. 1, according to one embodiment of the present invention, presents a remnant of SIS extracellular matrix material in a rat 28 days after surgical implantation. The remaining
biomaterial is surrounded by macrophages with occasional lymphocytes. Stained with H & E, 400X.

FIG. 2, according to one embodiment of the invention, presents a thin layer of PAIII rat prostate adenocarcinoma cells along the edge of SIS extracellular matrix material. PAIII cell had been co-cultured with SIS for three days. Stained with H & E, 400X.

FIG. 3, according to one embodiment of the invention, presents a photomicrograph of SIS extracellular matrix material following co-culture for three days with tumor cells obtained directly from a subcutaneous PAIII rat prostate adenocarcinoma tumor. The walls of the remnant blood vessel have been repopulated with cells and nuclei of other cells can be seen within the substance of the SIS. Stained with H & E, 400X.

FIG. 4, according to one embodiment of the invention, presents a photomicrograph of SIS extracellular matrix material following incubation for three days in media but with no added cells. There are no nuclei present within the remnant vessel or the substance of the SIS. Stained with H & E, 400X.

FIG. 5, according to one embodiment of the invention, demonstrates the adjuvancy of GFT cell vaccine on SIS after three days of growth in culture. Cells harvested from PAIII rat tumors were grown on SIS for three days. This cell population includes neoplastic epithelium, endothelial cells, fibroblasts and other connective tissue. Subcutaneous PAIII tumors were surgically resected and the GFT cell vaccine; GFT cell vaccine on SIS; or SIS without added cells placed onto the tumor bed. Rats were euthanized three weeks later and tumor weighed. Bars represent mean group tumor weight (standard deviation). A significant (P≤0.01) reduction in mean tumor weight was found in rats vaccinated with the GFT cell vaccine on SIS compared to all other groups.

FIG. 6, according to one embodiment of the invention, demonstrates the adjuvancy of GFT cell vaccine on SIS after 28 days of growth in culture. Cells harvested from PAIII rat tumors were grown on SIS for 28 days. This cell population includes neoplastic epithelium, endothelial cells, fibroblasts and other connective tissue. Subcutaneous PAIII tumors were surgically resected and the GFT cell vaccine; GFT cell vaccine on SIS; or SIS without added cells placed onto the tumor bed. Rats were euthanized three weeks later and tumor weighed. Bars represent mean group tumor weight (standard deviation). A nearly significant (P=0.053) reduction in mean tumor weight was found in rats vaccinated with the GFT cell vaccine on SIS compared to rats vaccinated with the GFT cell vaccine alone; however the difference was significant (P<0.01) compared to groups undergoing only resection or resection plus administration of SIS with no added cells.

FIG. 7, according to one embodiment of the invention, demonstrates the adjuvancy of GFT cell vaccine in preventing tumor growth. Rats were vaccinated three times, seven days apart, with either SIS gel; SIS gel with GFT cells; GFT cells; or saline prior to subcutaneous challenge with PAIII cells. Bars represent mean group tumor weights (±standard deviation). A significant (P≤0.01) reduction in mean tumor weight was found in rats vaccinated with the GFT cell vaccine in SIS gel compared to all other treatment groups.

FIG. 8, according to one embodiment of the invention, demonstrates the adjuvancy of SIS gel and sheet SIS for the GFT cell vaccine in treatment of PAIII prostate adenocarcinoma tumors following resection. Tumor-bearing rats were vaccinated three times, 7 days apart with either saline; SIS with no added cells; GFT cell vaccine; GFT cell vaccine in SIS gel; or GFT cell vaccine on SIS. Three days after the first vaccination, tumors were surgically resected; 21 days after resection, animals were euthanized and tumors weighed. Bars represent mean group tumor weights±standard deviation. Mean tumor weights for rats vaccinated with the GFT cell vaccine alone or in gel SIS were significantly (P<0.05) less than rats vaccinated with saline or SIS with no added cells. Mean tumor weight for rats vaccinated with the GFT cell vaccine on a sheet of SIS was significantly (P≤0.01) less than all other treatment groups.

FIG. 9, according to one embodiment of the invention, demonstrates the effect of SIS implantation on tumor recurrence. PAIII tumors recurring in all animals within 3 weeks of resection. Size of explanted tumors in the sham surgery group demonstrates a slower growth rate in tumors that reach a critical size. SIS overlay limited the size of the tumors that recurred (P=0.0009, versus tumor resection alone). Data are presented as mean ±1 SD.

FIG. 10, according to one embodiment of the invention, demonstrates the mean weights of tumors implanted in animals upon treatment with various allogeneic cell line material as vaccines, and provides a demonstration of the effect of the present preparations on tumor growth in vivo. Allogeneic Vaccination (Mat-LyLu): Metastasis. The figure demonstrates the mean weights of re-growen tumors 21 days following resection (May-LyLu). X= resection of tumor only; R= resection plus vaccination with GF RFL-6 cells; R/S = resection plus vaccination with GF RFL-6 cells on SIS adjuvant; MatLyLu/R = Resection plus vaccination with GF RFL-6 cells and GF MatLyLu cells on SIS adjuvant.

FIG. 11, according to one embodiment of the invention, demonstrates the mean weights of tumors implanted in animals upon treatment with various allogeneic cell line material vaccines, and provides a demonstration of the effect of the present preparations on tumor growth in vivo. Allogeneic Vaccination (Mat-LyLu): Metastasis. The figure demonstrates the mean weights of re-growen tumors 21 days following resection (May-LyLu). X= resection of tumor only; R= resection plus vaccination with GF RFL-6 cells; R/S = resection plus vaccination with GF RFL-6 cells on SIS adjuvant; MatLyLu/R = Resection plus vaccination with GF RFL-6 cells and GF MatLyLu cells on SIS adjuvant.

FIG. 12, according to one embodiment of the invention, demonstrates the mean weights of re-growen tumors, and demonstrates the effect of a xenogeneic cell line material on tumor growth and inhibition. X= resection of tumor only; DU/IM = resection plus vaccination with GF DU145 cells and GF IMR90 cells; LN/IM = Resection plus vaccination with GF LNCap cells and GF IMR90 cells; DU/IM/S = Resection plus vaccination with GF DU145 cells and GF IMR90 cells on SIS adjuvant; LN/IM/S = Resection plus vaccination with GF LNCap cells and GF IMR90 cells on SIS adjuvant.

FIG. 13, according to one embodiment of the invention, demonstrates that rats vaccinated with GF (glutaraldehyde fixed) cells grown on either SIS, FEM, or RCM had mean tumor weights significantly less than rats which were not vaccinated or those vaccinated with GF cells without the adjuvant. There were no significant differences between groups vaccinated with GF cells on SIS vs. RCM vs. FEM, though the group vaccinated with GF cells on RCM had a notably lower mean tumor weight than the other groups.

DETAILED DESCRIPTION

It is advantageous to define several terms before describing the invention. It should be appreciated that the following definitions are used throughout this application.
Definitions

Where the definition of terms departs from the commonly used meaning of the term, applicant intends to utilize the definitions provided below, unless specifically indicated.

For the purposes of the present invention, the term “adjuvant” is defined as a substance which enhances the immune response to an immunogen.

For purposes of the present invention, the term “adjuvancy” is defined as the ability of an agent to enhance and/or promote the immune response of animal to a particular antigen.

For the purposes of the present invention, the term “biological tissue” is defined as an animal tissue, including human, or plant tissue that is or that once was (cadaver tissue, for example) part of a living tissue or organism.

For purposes of the present invention, the term “extracellular matrix” (hereinafter “ECM”) is defined as a tissue derived or bio-synthetic material that is capable of supporting the growth of a cell or culture of cells. By way of examples, some particular ECMs include SIS, RCM and FEM.

For purposes of the present invention, the term “tissue” is defined as a material that is in part or whole made up from or derived from a biological tissue.

For purposes of the present invention, the term “biological tissue” is defined as an animal tissue, including human, or plant tissue that is or that once was (cadaver tissue, for example) part of a living tissue or organism.

For the purposes of the present invention, the term “biological matrix” is defined as an extracellular matrix or as part of an inoculation material, that will provide a treatment for, inhibit and/or convey immunity to cancer and/or tumor growth.

For the purposes of the present invention, the term “immunize” is defined as eliciting an immune response in an animal, both a humoral immune response and a cellular immune response.

For the purposes of the present invention, the term “immune provoking amount” is defined as an amount of the antigen required to elicit an immune response in the animal.

For purposes of the present invention, the term “facial extracellular matrix” (hereinafter “FEM”) relates to ECM derived from the fascia of porcine or other sources.

For purposes of the present invention, the term “renal capsule material” (hereinafter RCM), relates to ECM derived from the renal capsule of porcine or other sources.

Description

The description of the present invention is enhanced by the various examples that follow.

EXAMPLE 1

Materials and Methods

The present example provides some examples of materials and methods that may be used in the practice of the present invention.

Small Intestinal Submucosa (SIS)

Small Intestinal Submucosa (SIS) was obtained from Cook Biotech, Inc. (West Lafayette, Ind.). The material was provided as a sterile, lyophilized sheet of extracellular matrix. Experimental grade material was provided for use in the present studies of an SIS preparation that was described as having been prepared by harvesting porcine jejunum and placing 10- to 20-cm lengths into saline solution (31-33). Following removal of all mesenteric tissues, the jejunal segment was everted and the tunica mucosa abraded using a longitudinal wiping motion with a scalpel handle and moistened gauze. The serosa and tunica muscularis were then gently removed using the same procedure. The remaining tissue was disinfected with peracetic acid, rinsed extensively in high purity water, and sterilized using ethylene oxide gas prior to implantation.

Renal Capsule Material (RCM)

RCM was obtained from Cook Biotech, Inc. (West Lafayette, Ind.). Briefly, renal capsule was dissected from mature pig kidneys immediately following slaughter. It was thoroughly rinsed under running tap water and disinfected using a dilute solution of peracetic acid in ethanol to remove potential contaminating bacteria and viruses (34). Following disinfection, the RCM was rinsed in high purity water to remove the acid, lyophilized into a sheet form, and subsequently sterilized prior to implantation using ethylene oxide gas.

PAIII Cells

The PAIII cell line was derived from an autochthonous prostate tumor of an LW rat. PAIII cells have been transplanted into LW rats for many passages with no change in pattern of growth or disease. When PAIII cells are transplanted subcutaneously into the flank of LW rats, large metastasizing adenocarcinomas develop within 40 days, though initial tumors are palpable within 10 days. From the primary tumor, the PAIII cells metastasize spontaneously to the lungs. PAIII tumors are hormone-independent and refractory to most treatments (35).

GFT Cell Vaccine

GFT cell vaccine was a glutaraldehyde-fixed tumor (GFT) suspension of cells harvested from tumors grown in animals. GFT cell vaccine was prepared from tumor tissue (36). Specifically, three grams of a subcutaneous tumor tissue was harvested from a Lobund-Wistar rat and used in the vaccine preparation. The subcutaneous tumor had been produced by administering prostate adenocarcinoma cells isolated from an autochthonous, metastatic prostate adenocarcinoma in a LW rat (37).

The tissue was finely minced, repeatedly aspirated with a 1 cc syringe, and an aliquot drawn with a 20-gauge needle to eliminate large aggregates to create a cell suspension in modified Eagle’s medium (MEM). The cell suspension was incubated in 2.5% glutaraldehyde (v/v) for 37°C for 120 minutes and washed thoroughly with media to produce the GFT cell preparation.

Animals

LW rats obtained from a breeding colony maintained at the University of Notre Dame were used for all studies. In this model, large tumors develop subcutaneously following subcutaneous administration of 1 x 10^6 PAIII cells in approximately 99% of rats.

Subcutaneous Tumor and Tumor Resection Model

In this model, male, 3-4 month old LW rats are administered 1 x 10^6 PAIII cells subcutaneously into the flank. After 14-21 days, a palpable tumor is present, and by 40 days metastatic foci are present in the lungs. For studies involving resection, the animal is prepared for aseptic surgery. The visible tumor is resected, though the resection is not radical and sufficient tumor bed presumably remains, as tumor regrowth occurs in 100% of untreated individuals.

Growth of Cells on SIS and RCM

Sheets of single-layer SIS or RCM are cut into 2x2 cm sections and placed into Modified Eagle’s Medium (MEM). PAIII cells (1 x 10^6) or cells (1 x 10^6) harvested directly from a PAIII subcutaneous rat tumor are layered on the SIS or RCM and incubated at 37°C. To create the GFT cell vaccine on SIS, the SIS with attached cells then undergoes glutaraldehyde fixation (GFT) and washing. Glutaraldehyde fixation involves incubating cells in 2.5% glutaraldehyde (v/v) for 60 min at 37°C, and then washing with media.
EXAMPLE 2

In Vivo Activity of Tumor Cell Vaccine and Cancer Adjuvant

The present example demonstrates the utility of the present invention as an effective cancer vaccine adjuvant in vivo.

Tumor cells were cultured on SIS. Following three days of growth, the SIS with attached cells were fixed with glutaraldehyde. Subcutaneous tumors grown in the flank of Lobund-Wistar rats which had been administered PAIII prostate cancer cells 10 days earlier were surgically resected.

Groups of 5 rats then underwent either no further treatment; treatment with glutaraldehyde-fixed tumor (GFT) cells applied directly on the tumor bed; treatment with glutaraldehyde-fixed (GF) SIS (without cells) applied on the tumor bed; or treatment with glutaraldehyde-fixed SIS (with cells) applied on the tumor bed. Three weeks later, after tumors had re-grown in most rats, tumors were weighed with the following results:

- No treatment: mean tumor weight of 11.64 grams
- GFT cells: mean tumor weight of 10.54 grams
- GF SIS: mean tumor weight of 12.31 grams
- GF SIS+GFT cells: mean tumor weight of 4.77 grams

The addition of SIS to the GFT cell vaccine resulted in a greater than 50% reduction in mean tumor weight and establishes that SIS is an effective adjuvant for cancer (anti-tumor) vaccination.

EXAMPLE 3

ECM Supports Cancer Cell Expansion

The present example demonstrates the utility of the invention for providing a method for expanding a cancer cell population on an extracellular matrix material. The present example also demonstrates the utility of the invention for preparing a highly immunogenic population of cells useful in a cancer vaccine preparation. In the case of cancer, it is likely that many key antigens are expressed by connective tissue matrix and involve interactions of neoplastic cells with the extracellular matrix. Cancer cell vaccines grown on an extracellular matrix thus may be prepared according to the present example and used as improved vaccine antigen compositions for vaccination.

1. Fascia Extracellular Matrix Material (FEM)

The present example demonstrates another example of the type of extracellular matrix material that may be used in the practice of the present invention. The present example employs porcine fascia extracellular matrix material (FEM).

Studies were conducted as described herein to examine the ability of tumor cells to grow on FEM. In these studies, it was demonstrated that tumor cells did grow robustly on the FEM material, comparable with that growth supported on the SIS and RCM.

2. Expansion of Prostate Cancer Cells on SIS and RCM in Culture

Previous investigators have demonstrated the ability of pure cell lines to grow on SIS in vitro. For example, Badylak et al. (38) showed SIS is capable of supporting cultures of NIH Swiss mouse 3T3 fibroblasts, primary human fibroblasts, keratinocytes, endothelial cells, and an established rat osteosarcoma cell line. The present example demonstrates that an extracellular matrix material preparation as described herein from SIS supports cancer cell growth. In particular, growth of a prostate cancer cell line and a mixed cell population harvested directly from a subcutaneous tumor (the tumor having been produced by inoculation of rat PAIII cells into a Lobund-Wistar (LW) rat), are shown to grow on the ECM materials under the conditions described here.

Shells of single-layer SIS and RCM were cut into 2x2 cm sections and placed into Modified Eagle's Medium (MEM). PAIII cells (1x10^6), or cells harvested directly from a PAIII subcutaneous rat tumor (1x10^6), were layered on the SIS and incubated at 37°C for 72 hours, then stored in 10% neutral buffered formalin before being treated with hematoxylin and eosin stain and examined for cell growth.

Samples which were incubated with pure PAIII cells demonstrated a monolayer of cell growth along the edges of SIS and RCM (FIG. 2). In contrast, culture of cells harvested directly from tumors showed growth of cells along the edges of SIS and RCM. In addition, in the midsubstance; vascular structures were re-populated with cells (FIG. 3) compared to control SIS which had undergone incubation in media but with no cells added (FIG. 4) of Badylak et al. (38) showed that rat osteosarcoma cells and endothelial cells grew only on the edge of the ECM, while fibroblasts populated the ECM mid-substance. When co-cultured, keratinocytes and fibroblasts resulted in a distinct spatial orientation of the two cell types and early epidermal structures were formed. This study demonstrated that prostate cancer cells and mixed cell populations harvested directly from tumors can be grown in culture on three types (FEM, SIS and RCM) of ECM.

EXAMPLE 4

SIS as a Vaccine Adjuvant to Prevent Regrowth of Tumors Following Surgical Resection

In earlier work, the present inventors described the ability of glutaraldehyde-fixed tumor (GFT) cells harvested directly from a PAIII rat tumor to prevent prostate cancer (36). Based upon this, the present example demonstrates that vaccination will inhibit the regrowth of tumors following surgical resection.

The present example demonstrates that an SIS/whole cell vaccine effectively inhibits tumor regrowth following surgical resection and debulking. Studies utilized the Lobund-Wistar (LW) rat prostate cancer model which can be used to induce de novo prostate tumors by chemical induction, or it can be used to grow subcutaneous tumors following implantation of a prostate cancer cell line (PAIII cells).

Using the latter system, PAIII cells were administered subcutaneously to groups of LW rats. Fourteen days after administration of PAIII cells, tumors were surgically debulked and vaccines applied as follows:

Adjuvancy after Growth of Cells on SIS for 3 Days

Vaccine was prepared by allowing tumor cells harvested from a subcutaneous tumor to grow upon SIS in culture for 3
days, after which the material underwent glutaraldehyde fixation (GFT) and washing (GFT vaccine on SIS). Glutaraldehyde fixation involves incubating cells in 2.5% glutaraldehyde (v/v) for 60 min at 37° C., and then washing with media. One group of 5 rats underwent only resection; one group had GFT cell vaccine applied to the tumor bed; one group had SIS applied to the tumor bed; and one group had GFT cell vaccine on SIS applied to the tumor bed. The results in terms of mean tumor re-growth (tumor weight in grams±standard deviation) after 3 weeks are shown in FIG. 5 and were as follows:

Resection only: 11.64±2.14 gm, 4/5 with lung metastases
SIS alone: 13.61±1.46 gm, 4/5 with lung metastases
GFT cell vaccine: 9.50±1.27 gm, 3/5 with lung metastases
GFT cell vaccine on SIS: 3.98±0.137 gm, 2/5 with lung metastases

The tumors in rats vaccinated with the GFT cell vaccine on SIS were significantly smaller (P<0.01) than those from rats vaccinated with the GFT cell vaccine alone and the control groups.

Adjuvancy after Growth of Cells on SIS for 28 Days

In a second study, cells were cultured on SIS for 28 days before implantation. The results from this study are shown in FIG. 6 and are as follows:

Resection only: 14.9 gm±2.12, 6/6 with lung metastases
SIS only: 15.6 gm±1.82, 5/5 with lung metastases
GFT cell vaccine: 11.8 gm±1.46, 4/5 with lung metastases
GFT cell vaccine on SIS: 6.01 gm±1.17, 2/5 with lung metastases

Thus, the result is repeatable and demonstrates that the GFT vaccine on SIS also inhibited metastasis from the primary tumor to the lungs. These data were not quite significant (probability of 0.053) due to the small group size.

These data support the idea that efficacy of cancer vaccines is improved by growth of vaccine cells on, or incorporation into, extracellular matrices such as SIS.

EXAMPLE 5

SIS Gel Acts as an Adjuvant for a Vaccine to Prevent Cancer

Because implantation of vaccines incorporated onto solid SIS matrix would require incision of tissue, it may not be practical for all applications. Thus, the present example demonstrates the utility of the invention to provide a vaccine against cancer in a gel form using an extracellular matrix material, such as SIS, and the use of same as a vaccine adjuvant.

SIS gel is supplied by Cook Biotech, Inc. (West Lafayette, Ind.) and is produced from SIS material via an acid digestion and purification process.

SIS gel was diluted 1:10 with sterile saline. Harvested, glutaraldehyde-fixed cells from PAIII tumors were mixed into the SIS gel dilution such that each 0.25 ml dose of SIS gel contained 5x10⁶ GFT cells.

Groups of ten (10) male LW rats were administered subcutaneously the following:

0.25 ml of SIS gel
0.25 ml of SIS gel•GFT cells
0.25 ml of sterile saline containing 5x10⁶ GFT cells; or 0.25 ml saline.

Rats were vaccinated 3 times, 7 days apart. Seven days after the last vaccination, all rats were challenged subcutaneously with 1x10⁶ PAIII cells.

Three weeks after challenge with PAIII cells, rats were euthanized and tumors weighed. The results are shown as mean tumor weights (±standard deviation) in FIG. 7 and are as follows:

Saline=1.02 g (±0.37), 5/6 rats with metastases to the lungs
GFT cell vaccine=0.86 g (±0.11), 6/10 rats with metastases to the lungs
GFT cell vaccine in SIS gel=0.19 (±0.14), 1/10 rats with metastases to the lungs

As can be seen in FIG. 7, treatment with the GFT cells alone resulted in a tumor size of approximately 0.86 g (±0.11 g., while treatment with GFT cells in the extracellular matrix material (SIS) in a gel form resulted in a tumor growth of approximately 0.19 g, (±0.14 g., about one-fourth the size. Hence, the addition of the extracellular matrix gel (SIS) in a 1:10 dilution significantly adjuvanted the tumor growth inhibiting activity of the GFT cell preparation (fixed prostate cell vaccine antigen) about 4-fold to about 5-fold. Thus, it is demonstrated here that the addition of an extracellular matrix material to a cell-based cancer vaccine will significantly adjuvant a tumor cell preparation used as a vaccine, by 2-fold or greater.

EXAMPLE 6

SIS Gel Acts as a Vaccine Adjuvant for the Treatment of Cancer

The present example demonstrates the utility of the present invention for providing an enhancement of immunity effective both as a preventive measure and as a therapeutic measure.

In the present example, groups of six rats were challenged subcutaneously with 1x10⁶ PAIII cells to create tumors. Animals were vaccinated 3 times, 7 days apart; rats underwent surgical resection of tumors ten days after challenge, three days after the first vaccination. An additional group was included in which animals were vaccinated by subcutaneous implantation of GFT cell vaccine on a sheet of SIS. Animals were euthanized 21 days after tumor resection and tumors weighed.

The results from this study are shown in FIG. 8 and are summarized as:

<table>
<thead>
<tr>
<th>Treatment Group</th>
<th>Mean tumor weight (g) ± SD, Lung Metastases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saline Controls</td>
<td>9.2 ± 2.2 g, 6/6 with metastases</td>
</tr>
<tr>
<td>SIS alone</td>
<td>8.6 ± 1.8 g, 6/6 with metastases</td>
</tr>
<tr>
<td>GFT cell vaccine</td>
<td>5.8 ± 0.9 g, 4/6 with metastases</td>
</tr>
<tr>
<td>GFT cell vaccine in SIS gel</td>
<td>5.0 ± 0.8 g, 3/6 with metastases</td>
</tr>
<tr>
<td>GFT cell vaccine on SIS sheet</td>
<td>2.1 ± 1.1 g, 3/6 with metastases</td>
</tr>
</tbody>
</table>

These studies demonstrate that SIS gel has vaccine adjuvant activity and can enhance protective immunity to cancer both before cancer cell challenge and as an adjunct to surgical resection. This means that SIS gel enhances immunity effective as a preventative measure (i.e., as a vaccine), and as a therapeutic measure (FIG. 9).

EXAMPLE 7

Safety of GFT Vaccine and ECM Adjuvants

The present example demonstrates the utility of the present invention as a clinically acceptable preparation for animal, including human, treatment. In particular, the present
EXAMPLE 8

SIS does not Promote Growth of Tumor Tissue when Placed In Vivo

The present example demonstrates the utility of the extracellular matrix material preparations as providing an anti-tumor activity with a tumor/cancer cell preparation. The present example also demonstrates that the present preparations do not themselves induce tumor and/or cancer growth. Because cancer cells showed an ability to grow on SIS and RCM in vitro, it is important to determine if an ECM, such as SIS, would promote the growth of residual tumor cells if placed on the bed of a resected tumor in vivo.

To evaluate this, groups of 25 male LW rats, age 3 months, underwent induction of subcutaneous PAIII tumors as described above. Animals were then assigned to one of four different treatment groups:

- sham surgery control;
- physical encaement of the tumor with SIS (tumor was not dissected from the underlying vascular bed);
- complete tumor resection (all grossly visible tumor was removed); or
- complete tumor resection followed by overlying of the resected tumor bed with SIS (approximately 3x3 cm).

Three weeks later, rats were euthanized and the tumors weighed. The results (FIG. 9) show that SIS did not promote growth of PAIII tumors compared to sham surgery or resection alone. Overlying of the resected tumor bed with SIS led to a significant (P<0.0001) decrease in tumor size versus resection alone (39).

The SIS alone, with no cells involved, had a significant tumor effect.

In culture, cancer cell lines and cancer tissue from harvested tumor material both grow rapidly on SIS and RCM. When inactivated by glutaraldehyde fixation, cancer cells and tissue grown on SIS prevent regrowth of tumors following surgical resection. This effect is observed when cells are grown on SIS, and also when glutaraldehyde-fixed tumor cells are mixed into a gel form of SIS. Furthermore, SIS gel is shown to act as a vaccine adjuvant to prevent the development of cancer; that is, to stimulate protective immunity to challenge with live PAIII cells.

ECM materials, as demonstrated by SIS and RCM, both initiate a robust inflammatory response when implanted in vivo. While not intending to be limited to any particular theory or mechanism of action, it is believed that any antigenic moieties carried along, whether adhered to the ECM or present in a gel or a particulate suspension, will be processed by the immune system, thus possibly accounting for at least one theory by which the ECM may act as a vaccine adjuvant.

It is known that SIS contains a variety of bioactive species, including TGF-β (41). While TGF-β can act as a tumor promoter in later stages of tumor progression, it functions as a tumor suppressor in early tumorigenesis (42). Thus, administered at the proper time, such as following resection, the utility discovered herein for SIS to inhibit tumor growth may be utilized.

EXAMPLE 9

Proposed Regimen for Clinical Application, Sheet SIS

The present example is provided to demonstrate the utility of the present vaccines in SIS for providing a treatment for cancer and/or to reduce/inhibit tumor growth by use of SIS in a sheet-like preparation.

Approach without Surgical Tumor Resection:

While vaccines based on an extracellular matrix have not been described, use of a prostate cancer vaccine comprised of inactivated allogeneic whole prostate cancer cell lines has been described (Michael, et al) (2005) (47). In that study, monthly intradermal injections for 12 months of 8x10^7 inactivated whole cells were administered, the first two in a standard adjuvant, alum, to patients with hormone-resistant prostate cancer. The adjuvant used in the first two doses administered was bacilli Calmette-Guerin. The first three doses were given at weekly intervals, and once a month thereafter. This approach led to statistically significant declines in PSA (prostate-specific antigen) velocity with no evidence of toxicity. Further, median time to a defined point of disease progression was increased to 58 weeks from approximately 28 weeks.

A whole cell prostate cancer vaccine together with a preparation of the extracellular matrix adjuvant (diluted 1x10 from a commercial preparation, such as that commercially available from a vendor such as Cook Biotech, Inc.) would be used according to the present invention under a clinical regimen wherein the vaccine would be administered intradermally or subcutaneously on a monthly basis for approximately 12 months.

Vaccine preparations which can be easily injected, such as those including SIS gel or a particulate form of SIS as adjuvant would be administered by percutaneous injection.

A vaccine preparation which includes vaccine fixed on a sheet of SIS would be administered either percutaneously by trochar into the subcutaneous space or, in other embodiments, by implantation via a small incision made into the skin.

Approach with Surgical Resection:

Few studies have looked at the utility of vaccination in conjunction with surgical resection of a tumor. Pilla et al (2006) (49) administered subcutaneously tumor-derived heat shock protein gp 96-peptide complex vaccine to advanced stage melanoma patients for up to four treatments, two weeks...
apart, following surgical resection. That approach resulted in stabilization of disease in 11/18 patients post-surgically. Berd et al (1997) (50) administered an inactivated autologous whole cell vaccine on a weekly or monthly schedule to melanoma patients with clinically evident lymph node metastases; this approach resulted in survival rates superior to those resulting from surgery alone.

While no studies have looked at the utility of vaccination directly on the tumor bed of a resected prostate tumor, nor the utility of a vaccine incorporated onto a solid-phase adjuvant such as an extracellular matrix, the present examples demonstrate specific clinical use applications of the vaccine. Some embodiments of the present invention will provide the vaccine incorporated onto a sheet of extracellular matrix, and will be applied as a sheet directly onto the resected tumor bed at the time of surgery; or administered intradermally or subcutaneously at a site beyond the tumor bed on a monthly basis. A similar approach used with a different vaccine is described by Berd et al (1997) (50) using a whole cell vaccine for the treatment of melanoma.

In other embodiments, a combination approach may be used in which vaccination is made directly onto the tumor bed, and is applied at the time of resection followed by booster vaccinations given intradermally or subcutaneously. The sheet vaccine would be administered percutaneously by trochar into the subcutaneous space or, possibly, by implantation via a small incision made into the skin. Vaccine preparations which can be easily injected, such as those including SIS gel or a particulate form of SIS as adjuvant, would be administered by direct application of the material onto the tumor bed and/or intradermally or subcutaneously by injection. Bell et al. (2005) (65).

EXAMPLE 9
Dermal Application of Vaccines

The present example demonstrates the utility of the invention for providing a dermally-applicable formulation of the tissue based adjuvant cancer preparations.

While transdermal vaccination has been used for diseases associated with infectious pathogens (Kenney, 2004 (59); Skountzou, 2006 (60); Glenn, 2006 (61)), very few attempts have been made to apply this route of administration to cancer vaccines. Transcutaneous immunization was used in mice by administering imiquimod, a cytotopic T lymphocyte (CTL) activator, in an ointment applied to shaved skin (Rechsteiner, 2005 (62)); this approach stimulated CTL activity in general and not against any specific cancer antigen. Other investigators described an anti-tumor vaccine by delivery to mice of human carcinomaembryonic antigen gene in an adenovirus vector via a thin film of vector placed onto the shaved skin and beneath a patch (Iluang, 2005 (63)). This approach resulted in immunologic resistance to challenge with murine mammary adenocarcinoma cells.

According to use in the present invention, the cancer antigen of interest, such as a glutaraldehyde fixed preparation of prostate cells, may be prepared in a formulation together with a gel form of the extracellular matrix material, SIS. In this formulation, the preparation may be applied to an area to provide the anti-tumor effect.

EXAMPLE 10
SIS is an Effective Adjuvant for Vaccines Based on Allogeneic Cell Lines

As shown in earlier examples, vaccines utilizing PAIII prostate cancer cells or cells directly harvested from prostate tumors in Lobund-Wistar (LW) rats stimulate protective immunity in syngeneic animals. In contrast, allogeneic cells are those which are obtained from a genetically distinct individual of the same species. Thus, while the PAIII cell line is transplantable between all LW rats and is considered syngeneic, the Mat-Lu and Mat-Ly-Lu cell lines are derived from the Copenhagen rat. These latter two cell lines do not develop into tumors when transplanted into the LW rat. The RFL-6 cell line is an allogeneic rat fibroblast line which we evaluated to determine if fibroblast antigens enhanced protective immunity against tumor regrowth following resection.

Groups of 6 LW rats were administered 1x10⁶ PAIII prostate cancer cells subcutaneously to generate tumors. The rats then had the subcutaneous tumors surgically resected. The animals then underwent either no further treatment (RX); vaccination with either glutaraldehyde-fixed (GF) RFL-6 cells alone or with GF Mat-Lu or GF Mat-Ly-Lu cells; or vaccination with GF RFL-6 alone or with GF Mat-Lu or GF Mat-Ly-Lu on SIS after 3 days of growth in culture. Animals were vaccinated once, directly on the tumor bed. The animals were euthanized 21 days later and results are expressed in mean weight of re-grown tumor (S.D.) and number of lungs positive for metastatic foci out of the total number for the group.

RS only: 6.7 g (3.2); 4/6 lungs positive
GF RFL-6: 5.1 (1.79) 4/6 lungs positive
GF RFL-6 on SIS: 7.1 (3.14) 5/6 lungs positive
GF Mat-Lu+RFL: 4.7 (4.44); 1/6 lungs positive
GF Mat-Lu+RFL on SIS: 1.7 (1.21) 0/6 lungs positive
GF Mat-Ly-Lu+RFL: 5.9 (3.06) 1/6 lungs positive
GF Mat-Ly-Lu+RFL on SIS: 2.4 (1.77) 0/6 lungs positive

The mean weights of re-grown tumors 21 days following resection are in FIGS. 10 (May-Lu) and 11 (Mat-Ly-Lu).

For FIG. 10, X=resection of tumor only; R=resection plus vaccination with GF RFL-6 cells; R/S=Reection plus vaccination with GF RFL-6 cells on SIS adjuvant; MLu/R=Reection plus vaccination with GF RFL-6 cells and GF Mat-Lu cells; and MLu/R/S=Reection plus vaccination with GF RFL-6 cells and GF Mat.Lu cells on SIS adjuvant. For FIG. 11, X=resection of tumor only; R=resection plus vaccination with GF RFL-6 cells; R/S=Reection plus vaccination with GF RFL-6 cells on SIS adjuvant; MLuLyLu/R=Reection plus vaccination with GF RFL-6 cells and GF Mat.Ly-Lu cells; and MLuLyLu/R/S=Reection plus vaccination with GF RFL-6 cells and GF Mat.Ly-Lu cells on SIS adjuvant.

Histologic examination of tumor samples showed chronic inflammation and fibrosis surrounding SIS with a zone of acute inflammation at the border of the tumor in some rats treated with GF Mat-Ly-Lu+RFL on SIS in contrast to samples from other treatment groups. In those other groups, tumors were characterized by varying degrees of acute inflammation, primarily at the necrotic center of the tumor, likely due to tissue hypoxia. Since the tumor grows from the border, it can be conjectured that GF Mat-Ly-Lu+RFL on SIS stimulated an inflammatory response at the growing margin sufficient to interfere with tumor growth.

These results show that the ECM adjuvant, SIS, effectively adjuvantized a vaccine which utilized allogeneic (Mat-Lu and Mat.Ly-Lu) cell lines as antigens.

EXAMPLE 11
SIS is an Effective Adjuvant for Vaccines Based on Xenogeneic Cell Lines

A common problem with cancer immunotherapy is the issue of immunotolerance. Through a variety of mechanisms,
the host immune system simply fails to effectively respond to the tumor. Often, this is because the tumor is recognized as "self". Thus, antigens which are similar to tumor antigens and which are vigorously recognized as foreign would be of advantage. In this regard, cell lines from another species (xenogeneic) would likely be of value. According to the present invention, vaccines based on xenogeneic tumor cells will provide a robust immune response, one capable of attacking the host tumor.

In this study, the utility of the human cell lines DU145 (hormone independent prostate carcinoma obtained from a metastatic lesion in the brain of a human patient) is examined; and LNCaP (hormone dependent prostate carcinoma obtained from lymph node metastasis of a human patient) as xenogeneic vaccine antigens. Cells were grown for three days either on plastic culture vessels or on SIS in culture, glutaraldehyde-fixed (GF), and then used as the subcutaneous tumor resection model as described above. Results are given in mean tumor weight (S.D.) and number of lungs positive for metastatic foci out of the total number of lungs.

RS only: 6.5 g (3.32); 2/6 lungs positive
RS+GF DU145+GF IMR90: 4.9 g (2.46); 1/6 lungs positive
RS+GF LNcaP+GF IMR90: 3.8 g (1.46); 1/5 lungs positive
RS+GF DU145/GF IMR90 on SIS: 3.2 g (1.44); 1/6 lungs positive
RS+GF LNcaP/GF IMR90 on SIS: 1.9 g (0.92); 0/6 lungs positive

The mean weights of re-grown tumors 21 days following resection are in FIG. 12.

These results indicate that the ECM adjuvant, SIS, can serve as an effective adjuvant for xenogeneic cell cancer vaccines.

EXAMPLE 12

Ability of Other Extracellular Matrices (ECMs) to Act as Vaccine Adjuvants

The present example demonstrates the utility of the present invention for providing a vaccine using a variety of different cell-derived matrices.

Studies using PAIII cells grown on the ECMs, renal capsule material (RCM) and fascia extracellular matrix (FEM) were conducted using the subcutaneous PAIII tumor resection model in the LW rat. Briefly, PAIII cells were grown in culture for three days either on plastic culture vessels or on SIS in culture, glutaraldehyde-fixed (GF), and then used as the subcutaneous tumor resection model as described above. Results are given in mean tumor weight (S.D.) and number of lungs positive for metastatic foci out of the total number of lungs.

RS only: 6.5 g (3.32); 2/6 lungs positive
RS+GF DU145+GF IMR90: 4.9 g (2.46); 1/6 lungs positive
RS+GF LNcaP+GF IMR90: 3.8 g (1.46); 1/5 lungs positive
RS+GF DU145/GF IMR90 on SIS: 3.2 g (1.44); 1/6 lungs positive
RS+GF LNcaP/GF IMR90 on SIS: 1.9 g (0.92); 0/6 lungs positive

The mean weights of re-grown tumors 21 days following resection are in FIG. 12.

These results demonstrate that a variety of ECMs, including SIS, RCM, and FEM, are effective vaccine adjuvants.

EXAMPLE 13

Proposed Preparation of a Conditioned ECM Tissue Material as a Cell-Free Vaccine Preparation

The present example demonstrates the utility of the present invention for providing an essentially cell-free preparation of an ECM-conditioned vaccine or vaccine adjuvant. This conditioned ECM may be used as a vaccine or vaccine adjuvant.

While the current form of SIS-adjuvanted cancer vaccine involves the use of inactivated cancer cells grown on, or attached to, the extracellular matrix (ECM) it may also act as an adjuvant following detachment of such cells. Such a conditioned ECM preparation would reduce potential autoimmune response concerns from residual whole cell material. The conditioned ECM would comprise, for example, growth factors, secreted stromal material, and other factors, but would be essentially free of whole cells.

The conditioned ECM would be produced by allowing the tumor/cancer cells to grow on a sheet of SIS, for example, as described above. After a period of growth, the cells would be detached or lysed away from the SIS, such as by chemical means (such as by incubation in potassium thiocyanate) or mechanically (such as by exposure to ultrasound). The growth of the cells would create the elaboration from the cells of various growth factors and additional extracellular substance material. The ECM would thus come to contain antigens that serve as targets for immune destruction of tumors. In this way, then, the cell-free conditioned ECM could be used for vaccination in the same ways as ECM with the inactivated cell component as part of the preparation.

EXAMPLE 14

Proposed Combination Treatments with ECM Vaccine and a Second Active Agent

The present example is provided to demonstrate the utility of the invention for providing a therapy that includes an ECM vaccine preparation together with another active agent, such as a chemotherapeutic agent. It is anticipated that the inclusion of agents such as the ones named below, either alone or in combination, as well as others of the same class/biological function/biological activity will also be useful in the various applications presented here for clinical treatment. In some cases, the combination is expected to further improve the anti-cancer activity and/or effectiveness of the ECM. In some embodiments, the selected compounds may be admixed with or linked to the ECM, such as by a chemical link. A few examples of what some of these combination agents may include are provided as follows:

Cyclophosphamide—low dose cyclophosphamide has been shown to inhibit T-regulatory (suppressor) cells, thus allowing the immune system to more effectively target the tumor in response to vaccination. (Bernaudo P, et al. (2007), Cancer Res., 15; 67(18):8847-55.)(Lord R, et al. (2007), J. Urol., 177(6):2136-40). Cytokines, such as IL-21, have been described as modulating the immune cell population to favor cells capable of generating an effective immune response. (J.Y. Yee C., (2007), Blood. 2007 October 5, as well as the cytokine, granulocyte/macrophage colony stimulating factor (GM-CSF). (Chang EY, et al. (2000), Int J Cancer, 86(5):725-30).

Cyclooxygenase-2 (COX-2) is a rate-limiting enzyme in the synthesis of prostaglandins. It is over-expressed in multiple cancers and has been associated with diminished tumor immunity. Celecoxib is a COX-2 inhibitor and therefore can improve the immune response to anti-cancer vaccination. (Hahn T, et al. (2006), Int J Cancer, 118(9):2220-31).

Heat shock proteins—The cytosolic members of the heat shock protein 70 (HSP-70) family have been shown to elicit protective cancer cell mediated immunity in animal tumor models Hashemi S M, Hassun Z M, Soudi S, Ghazanfari T, Kheirimdish M, Shahabi S. Evaluation of anti-tumor effects of heat shock proteins in tumor lysate enriched by HSP-70 against fibrosarcoma tumor in BALB/c mice. Int Immunopharmacol. 2007 July; 7(7):920-7. Heat shock proteins might either be added to an ECM adjuvant or expression of heat shock proteins induced by cells grown upon an ECM.

EXAMPLE 15

Proposed Patient Customized ECM Vaccines

The present example is provided to demonstrate the utility of the present invention for providing a proposed customized vaccine preparation of the ECM using tissues from a targeted patient to be treated. Among other advantages, this approach to vaccine preparation according to the present invention will reduce and/or minimize potential for untoward effects associated with non-self immune responses, as the preparation is actually created using tissue from the intended patient. Further, expansion of the harvested tumor tissue on ECM allows the generation of enough material sufficient for continued booster vaccination as dictated by the clinical progression of the patient. This is accomplished while preserving the anti-cancer activities of the preparations described herein.

In addition, because the patients own cancer/tumor tissue will be used in the vaccine preparation process, it is envisioned that a customization of the ECM-adjuvanted vaccine to mimic a particular patients cancer and/or tumor cell population will include specialized and patient-specific factors that are excreted from a patients own unique diseased (i.e., tumor or cancer) cell population. This presents the opportunity to supply specific factors in an ECM that are not typically present in a more generalized preparation of tumor cells from an origin other than the intended patient. In this manner, the vaccine is tailored to a particular cancer cell population in the patient. It is expected that this approach will enhance the effectiveness of the preparation as a tumor inhibiting treatment.

By way of example, a patients tumor/cancer tissue would be biopsied, and the biopsied material would then be cultured on an ECM material, such as SIS. After an appropriate culture time, the tumor/cancer tissue cells would be removed or inactivated. The remaining ECM material would then be processed as described herein to provide a vaccine adjuvant. This adjuvant may then be used in the treatment of the patient.

Although the present invention has been fully described in conjunction with several embodiments thereof with reference to the accompanying drawings, it is to be understood that various changes and modifications may be apparent to those skilled in the art. Such changes and modifications are to be understood as included within the scope of the present invention as defined by the appended claims, unless they depart therefrom.

BIBLIOGRAPHY

The references listed below as well as all references cited in the specification are incorporated herein by reference to the extent that they supplement, explain, provide a background for or teach methodology, techniques and/or compositions employed herein.

What is claimed is:

1. A pharmaceutical preparation comprising a tumor-cell conditioned extracellular matrix material and replication incompetent tumor cells, wherein the extracellular matrix material is from a non-tumor tissue source.

2. The pharmaceutical preparation of claim 1 wherein the tumor cells are human prostate cells.

3. The pharmaceutical preparation of claim 1 wherein the tumor cells are prostate tumor cells.

4. The pharmaceutical preparation of claim 1 wherein the extracellular matrix material of claim 1 is derived from small intestinal submucosa.

5. A combination comprising the pharmaceutical preparation of claim 1 and a second biologically active agent.

6. A pharmaceutical preparation of claim 1 prepared by a method comprising:
 obtaining an extracellular matrix material from a non-tumor tissue source;
 culturing a tumor tissue on said extracellular matrix to form a preparation comprising a conditioned extracellular matrix and tumor cells; and,
 treating the preparation to render the tumor cells replication incompetent.

7. A method for inhibiting growth of a tumor in an animal comprising administering to an animal having a tumor the pharmaceutical preparation of claim 1.

8. The method of claim 7 wherein the pharmaceutical preparation comprises replication incompetent prostate tumor cells.

9. The method of claim 8 wherein the prostate tumor cells are human prostate tumor cells.

10. A method for inhibiting growth of a tumor in an animal in need thereof comprising:
 administering said animal the pharmaceutical preparation of claim 1.

11. An implantable preparation comprising a tumor-cell conditioned extracellular matrix material, and tumor tissue cells comprising replication incompetent tumor cells, wherein extracellular matrix material is from a non-tumor tissue source.

12. The implantable preparation of claim 11 further defined as comprising a sheet of extracellular matrix material.

13. The pharmaceutical preparation of claim 11 further defined as comprising a gel.

14. The pharmaceutical preparation of claim 11 further defined as comprising a particulate extracellular matrix material.

15. A pharmaceutical preparation comprising a prostate tumor cell conditioned extracellular matrix material, and replication incompetent prostate tumor cells, wherein extracellular matrix material is from a non-tumor tissue source.

16. The pharmaceutical preparation of claim 15 wherein the replication incompetent prostate tumor cells are human prostate tumor cells.
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the title page item [75] should read Mark A. Suckow.

Signed and Sealed this
Twenty-fifth Day of November, 2014

Michelle K. Lee
Deputy Director of the United States Patent and Trademark Office
UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 8,802,113 B2
APPLICATION NO. : 11/875698
DATED : August 12, 2014
INVENTOR(S) : Wolter et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the title page item [75] second inventor should read Mark A. Suckow.

This certificate supersedes the Certificate of Correction issued November 25, 2014.

Signed and Sealed this
Twenty-third Day of December, 2014

Michelle K. Lee
Deputy Director of the United States Patent and Trademark Office