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CHAPTER EIGHT 

 

SUPPORTING INFORMATION: EXPERIMENTAL  

 

8.1.  General Information 

 

Unless otherwise noted, all materials were used as received from a commercial 

supplier without further purification.  All anhydrous reactions were performed using 

oven-dried or flame-dried glassware, which was then cooled under vacuum and purged 

with nitrogen gas.  Tetrahydrofuran (THF), dichloromethane (CH2Cl2), toluene, and 

diethyl ether (Et2O) were filtered through activated alumina under nitrogen. Pentane and 

triethylamine (TEA) were dried over LiAlH4 and CaH2 respectively, and distilled prior to 

use.  4 Å molecular sieves were oven-dried overnight and then cooled under high vacuum 

prior to use.  All reactions were monitored by Whatman analytical thin layer 

chromatography (TLC) plates (AL SIL G/UV, aluminum back) and analyzed with 254 

nm UV light and / or anisaldehyde – sulfuric acid or potassium permanganate treatment.  

Silica gel for column chromatography was purchased from E. Merck (Silica Gel 60, 230-

400 mesh).  Biotage chromatography was performed using Flash 40+M, 25+M, 25+S, or 

12+M KP-Sil™ Silica (32-63 μm, 60 Å, nominally 500 m2/g silica) Cartridges.  Unless 

otherwise noted, all 1H and 13C NMR spectra were recorded in CDCl3 using either Varian 
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Unity Plus 300 spectrometers operating at 299.88 MHz for 1H and 75.37 MHz for 13C, 

Varian Inova 500 spectrometers operating at 499.86 MHz for 1H and 125.69 MHz for 

13C, or Varian VNMRS 600 operating at 599.87 MHz for 1H and 150.84 MHz for 13C.  

Chemical shifts (δ) were reported in ppm relative to residual CHCl3 as an internal 

reference (1H: 7.26 ppm, 13C: 77.00 ppm).  Coupling constants (J) were reported in Hertz 

(Hz). Peak multiplicity is indicated as follows: s (singlet), d (doublet), t (triplet), q 

(quartet), p (pentet), x (septet), h (heptet), b (broad), and m (multiplet).  FT-IR spectra 

were recorded on Perkin-Elmer Paragon 1000 spectrometer, and absorption frequencies 

were reported in reciprocal centimeters (cm-1).  Mass spectra (FAB) were obtained at the 

Department of Chemistry and Biochemistry, University of Notre Dame using either a 

JEOL AX505HA or JEOL JMS-GCmate mass spectrometer. 

 

8.2.  Experimental Procedures for Chapter Three 

 

(+)-(R,E)-7-tert-butyldimethylsiloxy-2,4-dimethyldodec-4-en-3-one 3.13 

 

OTBS

3.71

N

O

OMe i-PrMgCl
OTBS

3.13

O

 

 

Weinreb amide 3.71 (2.58 g, 7.21 mmol) was dissolved in Et2O (100 mL) and 

cooled to 0°C.  Isopropylmagnesium chloride (10.8 mL, 21.6 mmol, 2.0 M in Et2O) was 

added dropwise via a syringe pump over one hour while maintaining an internal 

temperature at 0°C.  The solution was then stirred for three hours at this temperature.  
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The reaction was quenched carefully with a half-saturated aqueous solution of NH4Cl 

(100 mL).  The mixture was poured into a separatory funnel, and the organic layer was 

separated.  The aqueous layer was extracted with Et2O (3 x 50 mL).  After combining all 

organic layers, the solution was then dried with MgSO4 and concentrated.  The crude 

material was purified with silica gel column chromatography with 98:2 pentane : Et2O to 

yield ketone 3.13 in 70% yield as a colorless oil (1.73 g, 5.08 mmol).  1H NMR (500 

MHz, CDCl3): δ (ppm) = 6.73 (1H, tq, J = 7.0, 1.5 Hz), 3.82 (1H, p, J = 5.5 Hz), 3.32 

(1H, h, J = 6.5 Hz), 2.45 – 2.35 (2H, m), 1.78 (3H, d, J = 1.0 Hz), 1.45 – 1.19 (8H, m), 

1.09 (3H, d, J = 1.5 Hz), 1.08 (3H, d, J = 2.0 Hz), 0.89 (9H, s), 0.88 (3H, t, J = 5.5 Hz), 

0.06 (3H, s), 0.05 (3H, s).  13C NMR (125 MHz, CDCl3): δ (ppm) = 206.13, 138.43, 

136.97, 71.32, 37.34, 36.78, 33.66, 31.88, 25.79, 25.04, 22.61, 19.67, 19.63, 18.03, 14.01, 

11.94, -4.84, -4.54.  IR (cm-1): f = 2957, 2951, 2859, 1670, 1470, 1380, 1256, 1086, 836, 

775.  HRMS-FAB: (M-H)+ = 339.2719 calculated for C20H39O2Si, experimental = 

339.2730. [α]20
D = +11.3 ( c = 3.45 in CHCl3) 

 

tert-butyl 4-methoxyphenyl(E)-3-(trimethylsilyl)allylcarbamate 3.21 

 

PMP
NH

Boc TMS Br

3.40

NaH;

TMS N
Boc

PMP3.213.42
 

 

NaH (0.99 g, 41.4 mmoles) was suspended in THF (20 mL) and cooled to 0oC.  

Carbamate 3.42 (4.62 g, 20.7 mmoles), as a solution in THF (20 mL), was added 

dropwise, and yellow solids began to form.  After standing for one hour, allylic bromide 
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3.40 (3.63 g, 18.8 mmoles), as a solution in THF (20 mL), was added dropwise which 

resulted in the solid to slowly dissolve.  After stirring the reaction overnight, the mixture 

was cooled to 0oC, and quenched with slow addition of DI water (50 mL).  After 

separation of layers, the aqueous layer was extracted with Et2O (3 x 50 mL).  The organic 

layers were combined, dried over MgSO4, filtered, and concentrated under vacuum.  

Purification by silica gel column chromatography with 80:20 hexanes : EtOAc yielded 

product 3.21 in 74% yield as a yellow oil (4.64 g, 13.8 mmoles).  1H (300 MHz, CDCl3): 

δ (ppm) = 7.18 – 7.09 (2H, m, b), 6.80 – 6.85 (2H, m), 6.05 (1H, dt, J = 18.6, 4.8 Hz), 

5.76 (1H, d, J = 18.6 Hz), 4.17 (2H, dd, J = 5.1, 1.5 Hz), 3.78 (3H, s), 1.43 (9H, s), 0.05 

(9H, s).  13C (75 MHz, CDCl3): δ (ppm) = 157.35, 154.83, 141.72, 136.01, 131.31 

(broad), 127.53 (broad), 113.73, 80.01, 55.37, 55.31, 28.26, -1.36.  IR (cm-1): f = 3040, 

2955, 1701, 1513, 1248, 1166.  HRMS-FAB: M•+ = 335.1917 calculated for 

C18H29O3NSi, experimental 335.1898. 

 

tert-butyl (E,3S,4R)-4-hydroxy-3-(trimethylsilyl)non-1-enyl4-methoxyphenylcarbamate 

3.23 

 

n-BuLi, (-)-sparteine;
Et2AlCl; hexanal

TMS N
Boc

PMP3.21

OH

TMS3.23

N
PMP

Boc

 

 

In a flame dried flask, enecarbamate 3.21 (1.78 g, 5.30 mmol) and (-)-sparteine 

(1.83 mL, 7.95 mmol) was dissolved in toluene (74 mL).  This solution was then dried 

with 2 grams of 4 Å molecular sieves and transferred into a flame-dried round-bottomed 
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flask via cannula, and then cooled to -78°C.  This temperature was maintained throughout 

the reaction.  A solution of n-BuLi (3.00 mL, 7.95 mmol, 2.3 M in hexanes) was then 

added dropwise such that an internal temperature of the solution was maintained below -

75°C.   After stirring for 40 minutes, a solution of Et2AlCl (5.9 mL, 10.6 mmol, 1.8M in 

toluene) was added dropwise over 15 minutes.  After stirring the solution for additional 

30 minutes, freshly distilled hexanaldehyde (1.27 mL, 10.6 mmol) was added to the 

mixture dropwise.  After stirring for two hours, the reaction completed, and the solution 

was poured into a separatory funnel containing DI water (50 mL) and 2 M HCl (5 mL).  

The product was then extracted with Et2O (3 x 50 mL), and the combined ether layers 

was washed with a saturated NaHCO3 aqueous solution (50 mL).  The organic layer was 

dried over MgSO4, filtered, and concentrated under vacuum leaving a crude yellow oil.  

1H NMR analysis of the crude material showed only a single diastereomer.  The crude 

product was purified using Biotage purification system.  Biotage condition: 40+M 

column, 95:5 hexanes : EtOAc for 240 mL, then 95:5 → 85:25 hexanes : EtOAc linear 

gradient over 600 mL, then 80:20 hexanes : EtOAc for 240 mL.  Removal of solvent 

afforded homoaldol product 3.23 in 82% yield as a pale yellow oil (1.89 g, 4.35 mmol).  

The enantiomeric ratio was determined to be 96:4 from a chiral HPLC analysis 

(ChiralPak AD-H column, 1.0 mL/min, 5% iPrOH in hexanes).  The retention time of 

major enantiomer (3S, 4R) was 4.74 minutes, while the retention time of minor 

enantiomer (3R, 4S) was 5.85 minutes.  1H (500 MHz, d6-acetone, ref = 2.05): δ (ppm) = 

7.08 (2H, m), 6.97 (2H, m), 6.94 (1H, d, J = 16.0 Hz), 4.54 (1H, dd, J = 14.5, 11.5 Hz), 

3.81 (3H, s), 3.75 (1H, m), 3.26 (1H, d, J = 5.0 Hz), 1.61 (1H, dd, J = 6.5, 2.0 Hz), 1.38 

(9H, s), 1.34 – 1.24 (8H, m), 0.89 (3H, t, J = 7.0 Hz), -0.02 (9H, s).  13C (125 MHz, d6-
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acetone, ref = 30.83): δ (ppm) = 159.41, 153.18, 133.52, 130.49, 129.84, 115.01, 109.71, 

80.71, 71.91, 55.69, 38.29, 37.91, 32.71, 28.45, 26.33, 23.38, 14.42, -1.73.   IR (cm-1): f = 

3505, 3063, 2955, 2939, 1706, 1686, 1648, 1513, 1325, 1246, 1168, 1036, 837.  HRMS-

FAB: (M-H)+ = 434.2727 calculated for C24H40O4NSi, experimental 434.2751. 

 

tert-butyl (E,3S,4R)-3-(tert-butyldimethylsilyl)-4-hydroxynon-1-enyl4-methoxyphenyl 

carbamate 3.50 

 

n-BuLi, (-)-sparteine;
Et2AlCl; hexanal

TBS N
Boc

PMP3.51

OH

TBS3.50

N
PMP

Boc

 

 

In a flame dried flask, enecarbamate 3.51 (2.00 g, 5.30 mmol) and (-)-sparteine 

(1.83 mL, 7.95 mmol) was dissolved in toluene (74 mL).  This solution was then dried 

using 2 grams of 4 Å molecular sieves and transferred into a flame-dried round-bottomed 

flask via cannula, and then cooled to -78°C.  This temperature was maintained throughout 

the reaction.  A solution of n-BuLi (3.00 mL, 7.95 mmol, 2.3 M in hexanes) was then 

added dropwise such that an internal temperature of the solution was maintained below -

75°C.   After stirring for 40 minutes, a solution of Et2AlCl (5.9 mL, 10.6 mmol, 1.8M in 

toluene) was added dropwise over 15 minutes.  After strring the solution for additional 30 

minutes, freshly distilled hexanaldehyde (1.27 mL, 10.6 mmol) was added to the solution 

dropwise.  After stirring for two hours, the reaction completed, and the solution was 

poured into a separatory funnel containing DI water (50 mL) and 2 M HCl (5 mL).  The 

product was then extracted with Et2O (3 x 50 mL), and the combined ether layers was 
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washed with a saturated NaHCO3 aqueous solution (50 mL).  The organic layer was dried 

over MgSO4, filtered, and concentrated under vacuum leaving a crude yellow oil.  1H 

NMR analysis of the crude material showed only a single diastereomer.  The crude 

product was purified using Biotage purification system.  Biotage condition: 40+M 

column, 95:5 hexanes : EtOAc for 240 mL, then 95:5 → 85:25 hexanes : EtOAc linear 

gradient over 600 mL, then 80:20 hexanes : EtOAc for 240 mL.  Removal of solvent 

afforded homoaldol product 3.50 in 87% yield as a pale yellow oil (2.21 g, 4.63 mmol).  

The enantiomeric ratio was determined to be 99:1 from a chiral HPLC analysis 

(ChiralPak AD-H column, 1.0 mL/min, 5% iPrOH in hexanes).  The retention time of 

major enantiomer (3S, 4R) was 4.98 minutes, while the retention time of minor 

enantiomer (3R, 4S) was 6.76 minutes.  1H (300 MHz, d6-acetone, ref = 2.05): δ (ppm) = 

7.07 (2H, m), 6.98 (1H, d, J = 15.0 Hz), 6.96 (2H, m), 4.58 (1H, dd, J = 14.4, 11.4 Hz), 

3.81 (3H, s), 3.77 ( 1H, m, broad), 3.23 (1H, d, J = 4.8 Hz), 1.83 (1H, dd, J = 11.7, 2.4 

Hz), 1.38 (9H, s), 1.43 – 1.29 (8H, m, broad), 0.93 (9H, s), 0.93 – 0.88  (3H, m), 0.01 

(3H, s), -0.09 (3H, s).  13C (75 MHz, d6-acetone, ref = 30.83): δ (ppm) =159.43, 153.16, 

133.34, 130.52 (2 carbon signals), 114.98, 110.13, 80.71, 72.33, 55.68, 38.16, 34.40, 

32.70, 28.44, 27.93, 26.32, 23.35, 18.28, 14.43, -5.39, -5.83.   IR (cm-1): f = 3513 (broad), 

3070, 2955, 2928, 2855, 1708, 1686, 1648, 1513, 1324, 1247, 1161, 1034, 834.  HRMS-

FAB: (M+H)+ = 478.3353 calculated for C27H48O4NSi, experimental = 478.3347. 
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tert-butyl (E)-3-(tert-butyldimethylsilyl)allyl4-methoxyphenylcarbamate 3.51 

 

PMP
NH

Boc TBS Br

3.54

NaH;

TBS N
Boc

PMP3.513.42
 

 

NaH (0.85 g, 35.6 mmoles) was suspended in DMF (20 mL) and cooled to 0oC.  

Carbamate 3.42 (7.95 g, 35.6 mmoles), as a solution of DMF (20 mL), was added 

dropwise which resulted in rapid gas evolution.  After stirring for one hour, allylic 

bromide 3.54 (6.44 g, 27.4 mmoles), as a solution of DMF (20 mL), was then added 

dropwise.  After stirring the reaction overnight at room temperature, the mixture was 

cooled to 0oC, and quenched with slow addition of DI water (50 mL).  The aqueous layer 

was extracted with Et2O (3 x 100 mL).  The organic layers were combined, dried over 

MgSO4, filtered, and concentrated under vacuum.  Purification by silica gel column 

chromatography with 80:20 hexanes : EtOAc yielded product 3.21 in 74% yield as a 

yellow oil (4.64 g, 13.8 mmoles).  1H (300 MHz, CDCl3): δ (ppm) = 7.12 – 7.09 (2H, b), 

6.84 – 6.80 (2H, m), 6.05 (1H, dt, J = 18.6, 5.1 Hz), 5.76 (1H, d, J = 18.6 Hz), 4.20 (2H, 

dd, J = 4.8, 1.2 Hz), 3.78 (3H, s), 1.43 (9H, s), 0.83 (9H, s), 0.05 (9H, s).  13C (75 MHz, 

CDCl3): δ (ppm) = 157.38, 154.78, 142.99, 135.86, 128.61 (b), 127.62, 113.74, 80.00, 

55.36, 55.34, 28.27, 26.32, 16.42, -6.20.  IR (cm-1): f = 3042, 2953, 2856, 1702, 1513, 

1388, 1248, 1166, 1037, 831.  HRMS-FAB: M•+ = 377.2386 calculated for C21H35O3NSi, 

experimental 377.2377. 
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(+)-Vinylogous Mukaiyama Aldol Adduct 3.68 

 

N O

OOTBS

3.67

hexanal,
TiCl4

OH

3.68

N

O

O

O

 

 

Into a flame dried flask, freshly distilled hexanal (17.8 mL, 144 mmol) was 

dissolved in CH2Cl2 (200 mL) and then cooled to -78°C.  A precooled (-78°C) solution of 

TiCl4 (8.7 mL, 79.1 mmol) in CH2Cl2 (79mL) was then added rapidly via cannula.  After 

stirring the mixture for 5 minutes, this solution was added via cannula to a precooled (-

78oC) solution of N,O-silylketene acetal 3.67 in CH2Cl2 (400 mL).  The reaction mixture 

was stirred at -78°C for an hour at which all of 3.67 were consumed.  The reaction was 

then quenched with a saturated NaHCO3 solution (100 mL), warmed up to room 

temperature, and then a saturated Rochelle’s salt solution (200 mL) was added.  The 

mixture was vigorously stirred until separation of layers was achieved.  The organic layer 

was separated, and the aqueous layer was extracted with CH2Cl2 (3x100 mL).  The 

organic layers were combined, dried over MgSO4, and then concentrated under vacuum.  

The crude material was purified with silica gel column chromatography with 70:30 

hexanes : EtOAc to yield aldol adduct 3.68 as a colorless oil (21.3 g, 68.4 mmol) in 95% 

yield as a single diastereomer as determined by both 1H and 13C NMR. 1H NMR (500 

MHz, CDCl3): δ (ppm) = 6.03 (1H, tq, J = 7.5, 1.5 Hz), 4.53 (1H, ddd, J = 8.5, 5.5, 4.5 

Hz), 4.31 (1H, t, J = 9.0 Hz), 4.17 (1H, dd, J = 9.0, 5.5 Hz), 3.69 (1H, m), 2.81 (1H, s, b), 

2.37 – 2.30 (2H, m), 2.26 (1H, m), 1.91 (3H, d, J = 1.0 Hz), 1.56 – 1.22 (8H, m), 0.90 
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(3H, d, J = 7.0 Hz), 0.89 (3H, d, J = 7.0 Hz), 0.86 (3H, t, J = 6.5 Hz).  13C NMR (125 

MHz, CDCl3): δ (ppm) = 171.48, 154.21, 135.26, 132.87, 70.47, 63.37, 58.04, 36.77, 

36.70, 31.75, 28.26, 25.50, 22.56, 17.74, 15.01, 13.98, 13.64.  IR (cm-1): f = 3524, 2961, 

2938, 2860, 1781, 1686, 1297, 1209, 1056, 773.  HRMS-FAB: (M+H)+ = 312.2175 

calculated for C17H30O4N, experimental = 312.2157.  [α]20
D = +33.2° (c = 1.24 in 

CHCl3).  

 

(+)-(R,E)-5-tert-butyldimethylsiloxy-N-methoxy-N,2-dimethyldec-2-enamide 3.71 

 

OH

3.68

N

O

O

O 1.  AlMe3, 
     (MeO)MeNH2Cl

OTBS

3.71

N

O

OMe

2.  TBSCl, DMAP, 
     imid.

 

 

Weinreb’s salt (18.6 g, 191 mmol) was suspended in THF (300 mL) and cooled to 

0°C.  AlMe3 (95.4 mL, 191 mmol, 2.0 M in hexanes) was then added dropwise which 

resulted in vigorous gas evolution.  The solution was warmed up to room temperature, 

stirred for an hour, and cooled back to 0°C.  In a separate flask, imide 3.68 (19.7 g, 63.1 

mmol) was dissolve in THF (400 mL), and this solution was cooled to 0oC.  The solution 

of Weinreb’s salt – aluminum complex was then transferred to the solution of imide 3.68 

via cannula.  The resulting solution was warmed up to room temperature and stirred 

overnight in which all starting material was completely consumed.  After cooling to 0°C, 

the reaction was quenched very slowly and carefully with DI water (100 mL).   A 

saturated solution of Rochelle’s salt (200 mL) was then added.  The mixture was 
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vigorously stirred for an hour until organic and aqueous layers were well separated.  

Upon separation of the organic layer from the aqueous layer, the aqueous layer was 

extracted with Et2O (3 x 100 mL).  The organic layers were then combined, dried over 

MgSO4, and concentrated under vacuum.   

The crude material was then redissolved in CH2Cl2 (200 mL) and cooled to 0°C.  

Imidazole (25.9 g, 382 mmol) and DMAP (1.55 g, 12.7 mmol) was then added, followed 

by TBSCl (19.2 g, 127 mmol).  The mixture was warmed up to room temperature and 

stirred for an hour at which all starting material was completely consumed.  The mixture 

was diluted with additional CH2Cl2 (200 mL), poured into a separatory funnel, and 

sequentially washed with 2 M HCl (100 mL) and then saturated NaHCO3 (100 ml) 

solutions.  The organic layers were dried with MgSO4, filtered, and concentrated under 

vacuum.  The crude material was purified with silica gel column chromatography with 

80:20 hexanes : EtOAc to yield title product 3.71 as a yellow oil (12.2 g, 34.1 mmol) in 

54% yield over two steps.  1H NMR (500 MHz, CDCl3): δ (ppm) = 5.91 (1H, tq, J = 7.5, 

1.5 Hz), 3.75 (1H, qn, J = 5.5 Hz), 3.62 (3H, s), 3.22 (3H, s), 2.32 – 2.23 (2H, m), 1.85 

(3H, d, J = 1.0 Hz), 1.43 – 1.18 (8H, m), 0.87 (9H, s), 0.86 (3H, t, J = 5.0 Hz), 0.04 (3H, 

s), 0.03 (3H, s).  13C NMR (125 MHz, CDCl3): δ (ppm) = 172.69, 132.03, 130.32, 71.55, 

60.92, 36.84, 35.63, 33.71, 31.92, 25.82, 25.11, 22.61, 18.03, 14.21, 14.00, -4.50, -4.65.  

IR (cm-1): f = 2953, 2930, 1655, 1462, 1371, 1257, 1072, 836, 771.  HRMS-FAB: 

(M+H)+ = 358.2777 calculated for C19H40O3NSi, experimental = 358.2763.  [α]20
D = 

+15.2 (c = 1.39 in CHCl3).       
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(E,3S,6S)-6-((4-methoxybenzyloxy)methyl)-3-tert-butyl-dimethylsiloxy-4-methylhept-4-

enal 3.99 

 

PMBO

OH
3.101

OsO4, NMO

PMBO

OTBS
3.99

O

TBSCl, imid.
PMBO

OTBS
3.101a

PMBO

OTBS
3.101b

OH

OH
Pb(OAc)4

 

 

 Homoallylic alcohol 3.101 (1.02 g, 3.51 mmol) was dissolved in CH2Cl2 (25 mL).  

Imidazole (1.43 g, 21.1 mmol), DMAP (215 mg, 1.76 mmol), and TBSCl (794 mg, 5.27 

mmol) were sequentially added, and the reaction was stirred overnight.  After dilution 

with CH2Cl2 (150 mL), the organic phase was washed with 2.0 M HCl (50 mL) followed 

by saturated NaHCO3 (50 mL), dried over MgSO4, and concentrated under vacuum to 

give TBS ether 3.101a. 

 Crude 3.101a was dissolved in a mixture of 5:5:1 THF : t-BuOH : H2O (66 mL).  

NMO (2.49 g, 14.0 mmol) and a small crystal of OsO4 were then added.  The reaction 

was stirred until completion, quenched with a saturated solution of Na2S2O3 (100 mL), 

and vigorously stirred for 30 minutes.  The mixture was then extracted with EtOAc (4 x 

50 mL).  The organic layers were combined, dried over MgSO4, filtered, and rotovaped to 

give diol 3.101b. 

 Crude 3.101b was dissolved in CH2Cl2 (100 mL) and cooled to 0°C.  NaHCO3 

(882 mg, 10.5 mmol) and Pb(OAc)4 (2.34 g, 5.27 mmol) were sequentially added.  The 
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suspension was stirred for two hours and carefully quenched with a saturated NaHCO3 

solution (100 mL).  After separation of layers, the aqueous phase was extracted with Et2O 

(3 x 50 mL).  The organic layers were combined, dried over MgSO4, filtered, and 

rotovaped.  The crude material was purified in a silica gel column with 90:10 hexanes : 

EtOAc to give aldehyde 3.99 in 88% yield over 3 steps as a clear oil (1.26 g, 31.0 mmol).  

1H NMR (500 MHz, CDCl3): δ (ppm) = 9.73 (1H, dd, J = 3.0, 2.5 Hz), 7.26 – 7.23 (2H, 

m), 6.89 – 6.86 (2H, m), 5.27 (1H, dt, J = 9.5, 1.0 Hz), 4.50 (1H, ddd, J = 8.5, 4.5, 0.5 

Hz), 4.47 (1H, d, J = 11.5 Hz), 4.40 (1H, d, J = 11.5 Hz), 3.81 (3H, s), 3.30 (1H, dd, J = 

9.0, 6.0 Hz), 3.23 (1H, dd, J = 9.0, 7.0 Hz), 2.69 (1H, m), 2.64 (1H, ddd, J = 15.5, 8.5, 3.0 

Hz), 2.40 (1H, ddd, J = 15.5, 4.0, 2.0 Hz), 1.62 (3H, d, J = 1.0 Hz), 0.96 (3H, d, J = 6.5 

Hz), 0.85 (9H, s), 0.04 (3H, s), - 0.01 (3H, s).  13C NMR (125 MHz, CDCl3): δ (ppm) = 

202.04 and 202.03 (atropisomer), 158.99, 136.35, 130.61, 129.44 and 129.40 

(atropisomer), 129.03, 113.62, 74.67, 73.72, 72.56, 55.19 and 55.16 (atropisomer), 49.93, 

32.57, 25.66 and 25.63 (atropisomer), 18.01, 17.45, 11.68, -4.62 and -4.69 (atropisomer), 

-5.28 and -5.34 (atropisomer).  IR (cm-1): f = 3029, 2951, 2858, 2754, 1725, 1511, 1238, 

1098, 820.  HRMS-FAB: (M-H)+ = 405.2461 calculated for C23H37O4Si, experimental = 

405.2462.   
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(+)-(E,4S,7S)-8-(4-methoxybenzyloxy)-5,7-dimethylocta-1,5-dien-4-ol 3.101 

 

B

TMS

allylMgBr;
NaOH, H2O2

PMBO O

3.74

PMBO

OH
3.101

3.100a

O

Ph

HN

Me

 

 

(-)-9-(1R, 2R-Pseudoepehdrinyl)-(10S)-(trimethylsilyl)-9-borabicyclo[3.3.2]dec-

ane 3.100a (3.77 g, 10.2 mmol) was suspended in Et2O (200 mL) and cooled to -78°C.  

Allylmagnesium bromide (10.2 mL, 10.2 mmol, 1.0 M in Et2O) was added dropwise, and 

the reaction was brought up to room temperature and stirred for one hour.  After 

recooling to -78°C, aldehyde 3.74 (2.10 g, 8.46 mmol) was introduced dropwise.  The 

mixture was then stirred for three hours, warmed to 0°C, quenched with a premixed 

solution of H2O2 (2.9 mL, 25.4 mmol, 30% in H2O) and NaOH (12.7 mL, 2.0 M in H2O), 

and refluxed for two hours.  After cooling to room temperature, DI water (100 mL) was 

added.  After separation of layers, the aqueous phase was extracted with Et2O (3 x 50 

mL).  The organic layers were combined, dried over MgSO4, and rotovaped to give a 

yellow oil.  Purification of the crude material with Biotage purification system gave 

homoallylic alcohol 3.101 in 95% yield as a colorless oil (2.33 g, 8.02 mmol).  Biotage 

conditions: 40+M column, 90:10 → 60:40 hexanes : Et2O linear gradient over 960 mL.  

1H NMR (500 MHz, CDCl3): δ (ppm) = 7.26 – 7.24 (2H, m), 6.89 – 6.86 (2H, m), 5.75 

(1H, dddd, J = 17.0, 10.0, 7.0, 7.0 Hz), 5.23 (1H, d, J = 9.0 Hz), 5.11 (1H, m), 5.08 (1H, 
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m), 4.45 (1H, d, J = 11.5 Hz), 4.42 (1H, d, J = 12.0 Hz), 4.02 (1H, t, J = 6.5 Hz), 3.80 

(3H, s), 3.30 (1H, dd, J = 9.5, 6.5 Hz), 3.24 (1H, dd, J = 9.0, 7.0 Hz), 2.72 (1H, xd, J = 

9.0, 7.0 Hz), 2.30 (2H, t, J = 7.0 Jz), 1.81 (1H, b), 1.65 (3H, d, J = 1.5 Hz), 0.97 (3H, d, J 

= 7.0 Hz).  13C NMR (125 MHz, CDCl3): δ (ppm) = 159.03, 136.93, 134.79, 130.61, 

129.27, 129.10, 117.46, 113.67, 76.33, 74.82, 72.54, 55.22, 39.71, 32.57, 17.55, 11.85.  

IR (cm-1): f = 3418, 3074, 2957, 2930, 2858, 1612, 1514, 1455, 1248, 1088, 1037, 820.  

HRMS-FAB: M•+ = 290.1882 calculated for C18H26O3, experimental = 290.1888.  [α]20
D 

= +3.35° (c = 2.15 in CHCl3).      

 

Methyl 2-((2R,4S,6S)-6-((S,E)-5-(4-methoxybenzyloxy)-4-methylpent-2-en-2-yl)-tetrahy-

dro-4-hydroxy-2-methoxy-2H-pyran-2-yl)acetate 3.129 

 

TiCl2(i-PrO)2

OMe

OTMS

3.81

OTMS

PMBO

OTBS
3.99

O PMBO

OTBS

OMe

OOOH

3.73

OMeO

O

OH

3.129
OPMB

OMe

OMeO

O

OH

3.128
OPMB

OMe
+

PPTS

MeOH

 

  

 Aldehyde 3.99 (1.26 g, 3.10 mmol) was dissolved in CH2Cl2 (100 mL), cooled to 

-78°C, and added a freshly prepared solution of TiCl2(i-PrO)2 (4.0 mL, 4.00 mmol, 1.0 M 

in CH2Cl2).  After stirring for 5 minutes, Chan’s diene 3.81 was introduced dropwise.  
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The reaction mixture was stirred to completion (15 minutes), quenched with pH 7.00 

buffer (50 mL) and then a saturated Rochelle’s salt solution (100 mL), and stirred 

vigorously for two hours while warming up to room temperature.  After separation of 

layers, the aqueous phase was extracted with CH2Cl2 (2 x 50 mL).  The organic layers 

were combined, dried over MgSO4, filtered, and rotovaped.  The crude oil was the 

purified with Biotage to give aldol product 3.73 in 92% yield (1.49 g, 2.85 mmol) as a 

3:2 mixture of diastereomers.  Biotage conditions: 40+M column, 90:10 hexanes : EtOAc 

over 240 mL, 90:10 → 60:40 hexanes : EtOAc linear gradient over 480 mL, and then 

60:40 hexanes : EtOAc over 240 mL. 

 β-ketoester 3.73 (1.26 g, 2.41 mmol) was then dissolved in a 3:1 mixture of 

MeOH : CH2Cl2 (90 mL).  TsOH•H2O (23 mg, 0.121 mmol) was then added.  After 

stirring for 6 hours, the reaction was concentrated under vacuum, and the crude material 

was purified with Biotage to give pyrans 3.128 in 27% yield (254 mg, 0.601 mmol) and 

3.129 in 50% yield (504 mg, 1.19 mmol).  Biotage conditions: 40+M column, 80:20 

hexanes : EtOAc over 240 mL, then 80:20 → 20:80 hexanes : EtOAc linear gradient over 

1185 mL.  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.26 – 7.24 (2H, m), 6.88 – 6.85 (2H, 

m), 5.23 (1H, d, J = 9.0 Hz), 4.45 (1H, d, J = 12.0 Hz), 4.42 (1H, d, J = 11.5 Hz), 4.11 

(1H, dddd, J = 11.0, 11.0, 5.0, 5.0 Hz), 3.90 (1H, dd, J = 12.0, 1.5 Hz), 3.80 (3H, s), 3.69 

(3H, s), 3.32 (1H, dd, J = 9.5, 6.0 Hz), 3.23 (1H, dd, J = 9.0, 7.5 Hz), 3.22 (3H, s), 2.79 

(1H, d, J = 14.0 Hz), 2.72 (1H, m), 2.63 (1H, d, J = 14.0 Hz), 2.29 (1H, ddd, J = 12.5, 4.5, 

1.5 Hz), 1.90 (1H, dddd, J = 12.5, 4.0, 2.0, 2.0 Hz), 1.66 (3H, d, J = 1.5 Hz), 1.55 (1H, 

dd, J = 12.5, 11.0 Hz), 1.37 (1H, q, J = 11.5 Hz), 0.98 (3H, d, J = 6.5 Hz).  13C NMR (125 

MHz, CDCl3): δ (ppm) = 169.91, 159.22, 134.99, 130.84, 129.72, 129.21, 113.75, 99.44, 
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74.68, 74.42, 72.60, 65.06, 55.63, 52.19, 48.48, 43.15, 42.41, 39.26, 33.43, 18.64, 12.63.  

IR (cm-1): f = 3457, 3071, 2923, 1854, 1742, 1428, 1112, 1041, 700.  HRMS-FAB: 

(M+H)+ = 423.2382 calculated for C23H35O7, experimental = 423.2312. 

 

(+)-Methyl Pyranoside 3.129b 

 

 BPSCl, imid.

OMeO

O

OH

3.129
OPMB

OMe

OMeO

O

OBPS

3.129a
OPMB

OMe

OMeO

O

OBPS

3.129b
OH

OMe

DDQ

 

 

Pyran 3.129 (500 mg, 1.18 mmol) was dissolved in CH2Cl2 (25 mL).  Imidazole 

(240 mg, 3.54 mmol), DMAP (72 mg, 0.59 mmol), and BPSCl (0.46 mL, 1.77 mmol) 

was sequentially added, and the reaction was stirred overnight.  After dilution with 

CH2Cl2 (150 mL), the organic phase was washed with 2.0 M HCl (50 mL) followed by 

saturated NaHCO3 (50 mL), dried over MgSO4, and concentrated under vacuum to give 

BPS ether 3.129a.     

The crude material was redissolved in CH2Cl2 (25 mL).  After addition of five 

drops of DI H2O, DDQ (400 mg, 1.77 mmol) was introduced in one portion.  The 

suspension was stirred for one hour, diluted with CH2Cl2 (150 mL), and washed with 
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saturated NaHCO3 (50 mL).  The organic layer was then dried over MgSO4, filtered, and 

rotovaped to give a dark oil.  The crude material was loaded into a silica gel column, and 

product elution was made with 80:20 hexanes : EtOAc to give alcohol 3.129b in 83% 

yield over two steps as a yellow oil (528 mg, 0.980 mmol).  1H NMR (500 MHz, CDCl3): 

δ (ppm) = 7.68 – 7.65 (4H, m), 7.43 – 7.35 (6H, m), 5.06 (1H, d, J = 10.0 Hz), 4.15 (1H, 

tt, J = 11.0, 5.0 Hz), 3.68 (1H, dd, J = 11.5, 1.5 Hz), 3.65 (3H, s), 3.46 (1H, dd, J =11.0, 

6.0 Hz), 3.34 (1H, dd, J = 10.5, 7.5 Hz), 3.07 (3H, s), 3.67 (1H, d, J = 13.5 Hz), 2.60 (1H, 

d, J = 14.0 Hz), 2.60 (1H, m), 2.15 (1H, ddd, J = 13.0, 4.5, 1.5 Hz), 1.70 (1H, dd, J = 

12.5, 10.5 Hz), 1.65 (1H, dddd, J = 12.5, 4.5, 2.0, 2.0 Hz), 1.60 (3H, d, J = 1.5 Hz), 1.41 

(1H, ddd, J = 12.5, 12.5, 12.5 Hz), 1.05 (9H, s), 0.91 (3H, d, J = 7.0 Hz).  13C NMR (125 

MHz, CDCl3): δ (ppm) = 169.72, 137.05, 135.76, 134.54, 134.27, 129.53, 128.44, 

127.52, 127.49, 99.53, 74.00, 67.66, 66.34, 51.66, 47.86, 42.41, 41.84, 39.00, 34.97, 

26.93, 19.09, 16.77, 12.63.  IR (cm-1): f = 3460, 3072, 2954, 1859, 1742, 1428, 1112, 

1042, 703.  HRMS-FAB: (M+H)+ = 541.2985 calculated for C31H45O6Si, experimental = 

541.2971.  [α]20
D = +46.1° (c = 1.70 in CHCl3).      

 

(+)-Silyl Enol Ether 3.133 

 

OTBS

3.13

O
TMSOTf, TEA

Et2O, 100°C

OTBS

3.133

OTMS

 

 

In a thick-walled reaction tube, ketone 3.13 (1.00 g, 2.94 mmol) was dissolved in 

Et2O (50 mL).  TEA (2.04 mL, 14.7 mmol) and TMSOTf (1.14 mL, 5.88 mmol) were 
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sequentially added.  The reaction vessel was then sealed and immersed into a sand bath at 

100°C for 48 hours.  After cooling to room temperature, the reaction was diluted with 

Et2O (150 mL) and washed with a saturated NaHCO3 solution (50 mL).  After separation 

of layers, the organic phase was dried over MgSO4, filtered, and rotovaped to give a 

brown oil.  The crude material was then flushed over a silica pad with 100% hexanes.  

After concentration, the title product 3.133 was yielded in 99% as a pale yellow oil (1.20 

g, 2.91 mmol).  1H NMR (500 MHz, CDCl3): δ (ppm) = 5.35 (1H, ddq, J = 7.0, 7.0, 1.5 

Hz), 3.72 (1H, p, J = 6.0 Hz), 2.23 (2H, t, J = 6.0 Hz), 1.67 (3H, d, J = 1.0 Hz), 1.63 (6H, 

s), 1.47 – 1.35 (3H, m), 1.31 – 1.20 (5H, m), 0.89 (9H, s), 0.88 (3H, m), 0.12 (9H, s), 

0.06 (3H, s), 0.05 (3H, s).  13C NMR (125 MHz, CDCl3): δ (ppm) = 146.89, 133.53, 

126.96, 110.83, 71.95, 36.67, 35.89, 31.96, 25.88, 25.15, 22.62, 19.81, 18.09, 17.73, 

15.07, 14.05, 0.29, -4.41, -4.59.  IR (cm-1): f = 2958, 2930, 2858, 1472, 1377, 1252, 1225, 

1060, 874, 839, 774.  HRMS-FAB: M•+ = 412.3193 calculated for C23H48O2Si2, 

experimental = 412.3189.  [α]20
D = +12.1° (c = 1.50 in CHCl3).  
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(-)-(E,2S,5S)-5-tert-butyldimethylsiloxy-2,4-dimethylocta-3,7-dien-1-ol 3.138a 

 

PMBO

OH
3.101

PMBO

OTBS
3.101a

TBSCl, imid.

HO

OTBS
3.138a

DDQ

 

 

Homoallylic alcohol 3.101 (2.33 g, 8.02 mmol) was dissolved in CH2Cl2 (50 mL).  

Imidazole (3.27 g, 48.1 mmol), DMAP (490 mg, 4.01 mmol), and TBSCl (1.81 g, 12.0 

mmol) were sequentially added, and the reaction was stirred overnight.  After dilution 

with CH2Cl2 (150 mL), the organic phase was washed with 2.0 M HCl (50 mL) followed 

by saturated NaHCO3 (50 mL), dried over MgSO4, and concentrated under vacuum to 

give TBS ether 3.101a.  The crude material was redissolved in CH2Cl2 (50 mL).  After 

addition of ten drops of DI H2O, DDQ (2.73 g, 12.0 mmol) was introduced in one 

portion.  The suspension was stirred for one hour, and the remaining solid was then 

filtered under vacuum.  The resulting organic filtrate was diluted with CH2Cl2 (150 mL) 

and washed with saturated NaHCO3 (50 mL).  The organic layer was then dried over 

MgSO4, filtered, and rotovaped to give a dark oil.  Purification of the crude material with 

Biotage purification system gave alcohol 3.138a in 99% yield over two steps as a yellow 

oil (2.25 g, 7.91 mmol).  Biotage conditions: 40+M column, 95:5 hexanes : EtOAc over 

240 mL, then 95:5 → 90:10 hexanes : EtOAc linear gradient over 720 mL.   1H NMR 

(500 MHz, CDCl3): δ (ppm) = 5.74 (1H, dddd, J = 17.5, 10.5, 7.0, 7.0 Hz), 5.10 (1H, ddq, 
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J = 10.0, 1.5, 1.5 Hz), 5.00 (1H, m), 5.01 (1H, m), 4.02 (1H, t, J = 6.0 Hz), 3.46 (1H, m), 

3.32 (1H, t, J = 9.0 Hz), 2.62 (1H, m), 2.25 (2H, ddq, J = 7.5, 6.0, 1.0 Hz), 1.60 (3H, d, J 

= 1.0 Hz), 1.48 (1H, b), 0.92 (3H, d, J = 7.0 Hz), 0.88 (9H, s), 0.03 (3H, s), -0.01 (3H, s).  

13C NMR (125 MHz, CDCl3): δ (ppm) = 139.42, 135.48, 127.40, 116.30, 77.39, 67.61, 

40.96, 34.96, 25.77, 18.21, 16.81, 12.43, -4.69, -5.00.  IR (cm-1): f = 3450, 3077, 2957, 

2929, 2857, 1472, 1256, 1073, 1036, 913, 836, 775.  HRMS-FAB: (M+H)+ = 285.2250 

calculated for C16H33O2Si, experimental = 285.2229.  [α]20
D = -11.6° (c = 2.15 in CHCl3).   

 

(-)-((S,E)-2-iododec-2-en-5-yloxy)(tert-butyl)dimethylsilane 3.140 

 

3.147

OH

SnBu3

 TBSCl, imid.

3.140

OTBS

I

I2

3.147a

OH

I

 

 

Vinylstannane 3.147 (1.50 g, 3.37 mmol) was dissolved in Et2O (50 mL).  After 

cooling the reaction to 0°C, I2 (941 mg, 3.71 mmol) was then added.  The reaction was 

stirred for 15 minutes followed by addition of a KF solution (489 mg, 8.43 mmol, 

dissolved in 20 mL of DI H2O) and acetone (50 mL).  This mixture was further stirred for 

30 minutes, and a saturated solution of Na2S2O3 (50 mL) was added.  After separation of 

layers, the aqueous phase was extracted with Et2O (2 x 50 mL).  The organic layers were 

combined, dried over MgSO4, filtered, and rotovaped to give a yellow oil. 
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The crude material was redissolved in CH2Cl2 (50 mL).  Imidazole (687 mg, 10.1 

mmol), DMAP (82 mg, 0.67 mmol), and TBSCl (1.02 g, 6.74 mmol) were sequentially 

added, and the mixture was stirred overnight.  After dilution with CH2Cl2 (250 mL), the 

organic layer was washed with 2 M HCl (50 mL) and then a saturated NaHCO3 solution 

(50 mL).  The organic layer was dried over MgSO4, filtered, and rotovaped.  The crude 

material was loaded into a silica gel column, and product elution with 100:0 → 98:2 

hexanes : EtOAc gave vinyl iodide 3.140 in 94% yield over two steps as a yellow oil 

(1.25 g, 3.15 mmol).  1H NMR (500 MHz, CDCl3): δ (ppm) = 6.18 (1H, ddq, J = 8.0, 8.0, 

2.0 Hz), 3.66 (1H, p, J = 5.5 Hz), 2.37 (3H, d, J = 1.0 Hz), 2.15 (2H, t, J = 6.5 Hz), 1.43 – 

1.37 (3H, m), 1.35 – 1.23 (5H, m), 0.89 (9H, s), 0.89 (3H, m), 0.05 (3H, s), 0.04 (3H, s).  

13C NMR (125 MHz, CDCl3): δ (ppm) = 138.23, 94.85, 71.44, 38.33, 37.13, 31.94, 

27.70, 25.85, 24.98, 22.63, 18.05, 14.03, -4.43, -4.60.  IR (cm-1): f = 2956, 2929, 2857, 

1463, 1255, 1058, 836, 774.  HRMS-FAB: (M-H)+ = 395.1267 calculated for 

C16H32OSiI, experimental = 395.1248.  [α]20
D = -0.14 (c = 25.0 in CHCl3).   

 

(-)-(S)-dec-2-yn-5-ol 3.146 

 

3.145

O
1-Propyne, 
n-BuLi, HMPA

3.146

OH

 

 

Condensed propyne (7.1 mL, 125 mmol) was added into a flask containing THF 

(200 mL, precooled to -78°C), and n-BuLi (36.2 mL, 83.2 mmol, 2.3 M in hexanes) was 

introduced along the inner wall of the flask.  The reaction was allowed to slowly warm up 
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to 0°C over one hour and then recooled to -78°C.  After addition of HMPA (50 mL), 

epoxide 3.145 (4.75 g, 41.6 mmol) was then added.  The reaction mixture was slowly 

warmed up to room temperature, stirred for 48 hours, and then cooled to 0°C.  A half-

saturated solution of NH4Cl (100 mL) and Et2O (500 mL) was sequentially added.  Upon 

separation of layers, the organic phase was washed with DI H2O (2 x 100 mL), dried over 

MgSO4, filtered, and rotovaped to yield a yellow oil.  The crude oil was flushed through a 

pad of silica gel with 90:10 hexanes : EtOAc to give alcohol 3.146 in 81% yield as a 

yellow oil (5.19 g, 33.7 mmol).  1H NMR (500 MHz, CDCl3): δ (ppm) = 3.67 (1H, b), 

2.36 (1H, ddq, J = 16.5, 5.0, 2.5 Hz), 2.23 (1H, ddq, J = 16.5, 7.5, 2.5 Hz), 1.98 (1H, d, J 

= 4.0 Hz), 1.80 (3H, t, J = 2.0 Hz), 1.51 – 1.45 (2H, m), 1.42 (1H, m), 1.34 – 1.24 (5H, 

m), 0.88 (3H, t, J = 6.5 Hz).  13C NMR (125 MHz, CDCl3): δ (ppm) = 78.29, 75.33, 

70.20, 36.18, 31.74, 27.66, 25.31, 22.57, 13.99, 3.49.  IR (cm-1): f = 3369, 2956, 2930, 

2859, 1458, 1125, 1080, 1036.  HRMS-FAB: (M+H)+ = 155.1436 calculated for 

C10H19O, experimental = 155.1430.  [α]20
D = -5.62° (c = 2.65 in CHCl3).   

 

(-)-(S,E)-2-(tributylstannyl)dec-2-en-5-ol 3.147 

 

3.146

OH CuCN, n-BuLi;

3.147

OH

SnBu3

Bu3SnH; MeOH

 

 

A suspension of CuCN (7.31 g, 81.6 mmol) in THF (219 mL) was cooled to -

78°C, and n-BuLi (70.9 mL, 163.2 mmol, 2.3 M in hexanes) was added dropwise.  The 

mixture was warmed to -40°C, stirred for 10 minutes, and recooled to -78°C.  Bu3SnH 
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(43.9 mL, 163.2 mmol) was introduced dropwise.  Once again, the mixture was warmed 

to -40°C, stirred for 10 minutes, and recooled to -78°C.  The subsequent slow addition of 

MeOH (121 mL) resulted in significant gas evolution, and then alkyne 3.146 (4.20 g, 

27.2 mmol) was introduced.  The reaction was warmed up to -10°C, stirred for 24 hours, 

and then quenched with a saturated solution of NH4Cl (200 mL).  After separation of 

layers, the aquoues phase was extracted with Et2O (2 x 100 mL).  The organic layers 

were combined, dried over MgSO4, filtered, and then rotovaped.  The crude material was 

purified with TEA-neutralized silica gel column chromatography using 90:10 hexanes : 

EtOAc to give vinylstannate 3.147 in 59% yield as a single olefin isomer (7.10g, 15.9 

mmol).  1H NMR (500 MHz, CDCl3): δ (ppm) = 5.57 (1H, m), 3.65 (1H, b), 2.38 – 2.25 

(2H, m), 1.91 – 1.82 (3H, m), 1.56 – 1.42 (11H, m), 1.34 – 1.25 (11H, m), 0.94 – 0.84 

(16H, m).  13C NMR (125 MHz, CDCl3): δ (ppm) = 142.34, 136.06, 71.45, 36.72, 36.20, 

31.90, 30.30, 29.17, 27.36, 25.43, 22.63, 19.41, 14.04, 13.70, 9.10.  IR (cm-1): f = 3351, 

2957, 2927, 2855, 1464, 1376, 1071.  HRMS-FAB: (M-C4H9)+ = 389.1866 calculated for 

C18H37OSn, experimental = 389.1855.  [α]20
D = -7.00° (c = 1.00 in CHCl3).   
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(-)-(S,E)-5-(4-methoxybenzyloxy)-2,4-dimethylpent-3-en-1-ol 3.149 

 

PPTS, DHP
HO

3.148 O

OEt

HO

3.149

OPMB
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OEt

THPO

3.148b

OH THPO
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OPMB
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MeOH, HCl

 

 

Alcohol 3.148 (24.8 g, 144 mmol) was dissolved in CH2Cl2 (500 mL).  PPTS 

(1.81 g, 7.20 mmol) and DHP (39.4 mL, 432 mmol) were sequentially added.  After 

stirring overnight, the reaction mixture was washed with a saturated solution of NaHCO3 

(100 mL).  After separation of layers, the organic layer was dried over MgSO4, filtered, 

and rotovaped to give crude 3.148a as a yellow oil. 

Crude 3.148a was dissolved in Et2O (200 mL).  This solution was then added 

dropwise via cannula to a suspension of LAH (6.57 g, 173 mmol) in Et2O (300 mL, 

precooled to 0°C) and stirred for one hour.  DI water (6.6 mL) was then introduced 

dropwise very carefully followed by sequential addition of 15% NaOH (6.6 mL) and DI 

H2O (19.8 mL) which resulted in the formation of white precipitate.  After vigorous 

stirring for two hours, the white solid was filtered under vacuum and washed with Et2O.  

The organic filtrate was then concentrated under vacuum to give crude alcohol 3.148b. 
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Crude 3.148b was dissolved in THF (200 mL).  This solution was then added 

dropwise via cannula to a suspension of NaH (6.57 g, 173 mmol) in THF (300 mL, 

precooled to 0°C).  After strirring for one hour, TBAI (5.30 g, 14.4 mmol) and PMBCl 

(23.5 mL, 173 mmol) were added.  The mixture was then refluxed overnight, cooled to 

0°C, and slowly and carefully quenched with a half-saturated solution of NH4Cl (200 

mL).  After separation of layers, the aqueous phase was extracted with Et2O (3 x 100 

mL).  The organic layers were combined, dried over MgSO4, filtered, and rotovaped to 

give crude PMB ether 3.148c. 

Crude 3.148c was dissolved in MeOH (500 mL), and 37% HCl (2 mL) was 

added.  After stirring the reaction for two hours, a saturated solution of NaHCO3 (200 

mL) was then carefully added.  Evaporation of MeOH under vacuum allowed subsequent 

extraction of the remaining aqueous layer with Et2O (4 x 100 mL).  The organic layers 

were combined, dried over MgSO4, filtered, and rotovaped.  The crude material was then 

purified in a silica gel column with 80:20 → 50:50 hexanes : EtOAc.  Evaporation of 

solvent yielded alcohol 3.149 in 87% yield over four steps as a yellow oil (31.2 g, 125 

mmol).  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.31 – 7.28 (2H, m), 6.92 – 6.89 (2H, 

m), 5.23 (1H, dq, J = 10.0, 1.5 Hz), 4.43 (2H, s), 3.91 (2H, s), 3.83 (3H, s), 3.50 (1H, 

ddd, J = 11.0, 6.0, 6.0 Hz), 3.40 (1H, dd, J = 10.0, 8.5 Hz), 2.69 (1H, xd, J = 9.5, 6.5 Hz), 

1.74 (3H, d, J = 1.0 Hz), 1.67 (1H, b), 0.99 (1H, d, J = 6.5 Hz).  13C NMR (125 MHz, 

CDCl3): δ (ppm) = 159.11, 134.28, 130.40, 130.22, 129.35, 113.72, 75.67, 71.41, 67.66, 

55.23, 35.21, 16.83, 14.35.  IR (cm-1): f = 3412, 2956, 2869, 1613, 1514, 1456, 1249, 

1073, 1036, 822.  HRMS-FAB: M•+ = 250.1569 calculated for C15H22O3, experimental = 

250.1570.  [α]20
D = -10.9° (c = 5.93 in CHCl3).   
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(+)-(E,3R,4S)-ethyl 7-(4-methoxybenzyloxy)-3-hydroxy-2,2,4,6-tetramethylhept-5-enoate 

3.151 

 

HO

3.149

OPMB

3.150

N B

O

O

Tos H

O OPMB

EtO

OTMS

3.141

OPMB

OHO

EtO

3.151

3.142

DMP

+

OPMB

OTMSO

EtO

3.151a  

 

Alcohol 3.149 (1.00 g, 4.00 mmol) was dissolved in CH2Cl2 (100 mL) in a round-

bottomed flask, and the flask was then placed in a water bath at room temperature.  

NaHCO3 (3.36 g, 40.0 mmol) was then added followed by the Dess-Martin reagent (2.04 

g, 4.80 mmol).  After stirring the suspension was for one hour, the reaction was carefully 

quenched with slow addition of a saturated aqueous solution of NaHCO3 until no more 

gas evolution was observed.  After separation of layers, the aqueous layer was extracted 

with CH2Cl2 (2 x 50 mL).  The organic layers were then combined, dried over MgSO4, 

filtered, and concentrated under vacuum to give white solids, which were then taken up in 

hexanes (100 mL).  The white residue was filtered over celite, washed with hexanes (2 x 

50 mL).  Removal of hexanes followed by redissolving the yellow oil in CH2Cl2 (50 mL) 
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provided a solution of aldehyde 3.142 which was immediately subjected to the 

subsequent aldol reaction. 

In a separate flask, N-Tos-L-valine (2.17 g, 8.00 mmol) was suspended in CH2Cl2 

(50 mL) and cooled to 0°C.  Addition of borane (7.2 mL, 7.2 mmol, 1.0 M in THF) 

resulted in gas evolution, and the resulting clear solution was warmed to room 

temperature, stirred overnight, cooled to -78°C, and then transferred via cannula to a 

precooled (-78°C) solution of aldehyde 3.142.  The reaction mixture was stirred to 

completion, quenched with pH 7.00 buffer (50 mL), and stirred vigorously while 

warming to 0°C.  After separation of layers, the aqueous phase was extracted with 

CH2Cl2 (2 x 50 mL).  The organic layers were combined, dried over MgSO4, filtered, and 

rotovaped.  The crude oil was the purified with Biotage to give aldol product 3.151 in 

67% yield (975 mg, 2.67 mmol) and 3.151a in 9% yield (157 mg, 0.360 mmol).  Biotage 

conditions: 40+M column, 90:10 hexanes : EtOAc over 240 mL, then 90:10 → 70:30 

hexanes : EtOAc linear gradient over 720 mL.  1H NMR (500 MHz, CDCl3): δ (ppm) = 

7.27 – 7.24 (2H, m), 6.89 – 6.86 (2H, m), 5.38 (1H, dq, J = 10.0, 0.5 Hz), 4.38 (1H, d, J = 

11.5 Hz), 4.35 (1H, d, J = 11.5 Hz), 4.10 (1H, q, J = 7.0 Hz), 3.83 (1H, d, J = 4.0 Hz), 

3.80 (3H, s), 3.53 (1H, dd, J = 7.5, 6.0 Hz), 2.76 (1H, d, J = 7.5 Hz), 2.62 (1H, pd, J = 

9.5, 6.5 Hz), 1.66 (3H, d, J = 1.5 Hz), 1.25 (3H, t, J = 7.0 Hz), 1.22 (3H, s), 1.19 (3H, s), 

0.97 (3H, d, J = 7.0 Hz).  13C NMR (125 MHz, CDCl3): δ (ppm) = 177.70, 159.04, 

131.87, 130.66, 130.56, 129.31, 113.68, 80.07, 75.82, 71.15, 60.65, 55.23, 46.39, 35.16, 

22.82, 22.48, 16.45, 14.00, 13.89.  IR (cm-1): f = 3501, 2980, 1716, 1614, 1515, 1464, 

1250, 1035, 821.  HRMS-FAB: (M+H)+ = 365.2328 calculated for C21H33O5, 

experimental = 265.2320.  [α]20
D = +6.38° (c = 4.70 in CHCl3).  
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8.3.  Experimental Procedures for Chapter Four 

 

(±)-(3R,5R)-6-iodo-5-methoxy-1-phenylhexan-3-ol 4.52 

 

Ph

O OMe

Ph

OH OMe

I

4.50 4.52

ICl

DIPA, H2O

 

 

Homoallylic MOM ether 4.50 (204 mg, 0.926 mmol) was dissolved in toluene (25 

mL), and the solution was cooled to -78°C.  Iodine monochloride (1.02 mL, 1.02 mmol, 1 

M in CH2Cl2) was then added dropwise.  After stirring for 10 minutes, the reaction was 

quenched with a mixture of diisopropylamine (5 mL) and DI H2O (0.5 mL), stirred 

vigorously, and warmed to room temperature.  After separating the organic and aqueous 

layers, the aqueous layer was washed with CH2Cl2 (2 x 20 mL).  The organic layers were 

then combined, dried over MgSO4, filtered, and concentrated to give a dark yellow oil.  

The ensuing Biotage chromatography of the crude oil gave the title product 4.52 in 87% 

yield as a yellow oil (270 mg, 0.808 mmol).  Biotage condition: 25+M column, 95:5 → 

80:20 hexanes : EtOAc linear gradient over 360 mL.  1H NMR (500 MHz, d8-toluene, ref 

= 2.09 ppm): δ (ppm) = 7.18 – 7.01 (5H, m), 3.56 (1H, dddd, J = 8.5, 8.5, 4.0, 2.5 Hz), 

2.98 (1H, d, J = 13.0 Hz), 2.87 (1H, dd, J = 17.0, 8.0 Hz), 2.84 (3H, s), 2.82 (1H, dd, J = 

16.5, 5.5 Hz), 2.77 – 2.71 (2H, m), 2.64 (1H, ddd, J = 13.5, 9.5, 7.0 Hz), 1.66 (1H, m), 

1.59 – 1.50 (2H, m), 1.42 (1H, ddd, J = 14.5, 4.0, 3.0 Hz).  13C NMR (125 MHz, d8-

toluene, ref = 20.40 ppm): δ (ppm) = 142.61, 129.00, 128.56, 125.99, 79.48, 69.32, 
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55.97, 41.99, 39.84, 32.05, 9.01.  HRMS-FAB: (M+H)+ = 355.0508 calculated for 

C13H19O2I, experimental = 355.0536.   

 

(±)-((3R,5R)-3-(chloromethoxy)-6-iodo-5-methoxyhexyl)benzene 4.55 

 

Ph

O OMe

Ph

O OMe

I

4.50 4.55

ICl

d8-toluene

Cl

 

 

In an oven-dried NMR tube, homoallylic MOM ether 4.50 (20 mg, 0.091 mmol) 

was dissolved in anhydrous d8-toluene (0.75 mL).  The solution was cooled to -78°C. 

Iodine monochloride (0.14 mL, 0.14 mmol, 1.0 M in CH2Cl2) was added dropwise along 

the inner wall of the tube.  The reaction mixture was shaken very rapidly resulting in a 

brown solution, and the NMR tube was then immediately inserted into a precooled -60°C 

NMR probe.  The NMR probe was then warmed up to -20°C over 10 minutes and 

equilibrated for 15 minutes.  NMR spetra were acquired with the methylene chloride 

proton signal readily suppressed: δ (ppm) = 4.47, 4.30, 4.11.  1H NMR (500 MHz, d8-

toluene, ref = 2.09 ppm): δ (ppm) = 7.14 – 6.97 (5H, m), 5.08 (1H, d, J = 5.5 Hz), 5.01 

(1H, d, J = 5.5 Hz), 3.61 (1H, q, J = 6.0 Hz), 2.93 (2H, d, J = 4.0 Hz), 2.84 (3H, s), 2.65 

(1H, m), 2.57 – 2.42 (2H, m), 1.68 – 1.63 (1H, m), 1.59 – 1.49 (3H, m).  13C NMR (125 

MHz, d8-toluene, ref = 20.40 ppm): δ (ppm) = 141.87, 128.57, 126.10, 81.35, 75.62, 

75.17, 55.91, 38.52, 35.57, 31.36, 10.46.  Note: One aromatic signal missing, presumably 

buried under the strong d8-toluene signals.  
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8.4.  Experimental Procedures for Chapter Five 

 

(±)-1-(2-(methoxymethoxy)pent-4-enyl)benzene 5.21 

 

Ph
H

O
1.  AllylMgBr

Ph

OMOM

5.21
2.  MOMCl, DIPEA

5.21a  

 

Phenylacetaldehyde (11.7 mL, 100 mmol) was dissolved in THF (500 mL), and 

the solution was cooled to -78°C.  A solution of allylmagnesium bromide (110 mL, 110 

mmol, 1.0 M in Et2O) was then added dropwise over 15 minutes, and the reaction was 

stirred for additional 30 minutes at which the aldehyde starting material was completely 

consumed.  The reaction was quenched with a saturated NH4Cl solution (300 mL) and 

warmed up to 0°C.  After separating the organic and aqueous layers, the aqueous layer 

was washed with Et2O (2 x 100 mL).  The organic layers were then combined, dried over 

MgSO4, and filtered.  The organic solvent was removed under vacuum leaving behind a 

yellow oil.  This yellow oil was redissolved in CH2Cl2 (200 mL), and DIPEA (52.2 mL, 

300 mmol) was then added.  After cooling the mixture to 0°C, MOMCl (9.10 mL, 120 

mmol) was added dropwise.  The reaction was warmed to room temperature and stirred 

overnight.  The reaction was then diluted with CH2Cl2 (300 mL) and washed 

subsequently with aqueous solutions of 2 M HCl (200 mL) and then saturated NaHCO3 

(200 mL).  The organic layer was then dried over MgSO4 and filtered.  A yellow oil was 

obtained upon removal of CH2Cl2 under vacuum.  The crude material was purified with 

column chromatography using 95:5 hexanes : EtOAc to give the title product 5.21 in 72% 
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yield over two steps as a colorless oil (14.9 g, 72.0 mmol).  1H NMR (500 MHz, CDCl3): 

δ (ppm) = 7.30 – 7.27 (2H, m), 7.22 – 7.19 (3H, m), 5.87 (1H, dddd, J = 17.5, 9.5, 7.0, 

7.0 Hz), 5.12 (1H, m), 5.09 (1H, m), 4.61 (1H, d, J = 7.0 Hz), 4.50 (1H, d, J = 7.0 Hz), 

3.87 (1H, p, J = 6.5 Hz), 3.16 (3H, s), 2.81 (2H, d, J = 6.5 Hz), 2.34 – 2.25 (2H, m).  13C 

NMR (125 MHz, CDCl3): δ (ppm) = 138.71, 134.57, 129.47, 128.17, 126.08, 117.40, 

95.18, 77.44, 55.21, 40.79, 38.65.  IR (cm-1): f = 3064, 3028, 2930, 1455, 1149, 1100, 

1040, 917, 745, 700.  HRMS-FAB: (M+H)+ = 207.1385 calculated for C13H19O2, 

experimental = 207.1385. 

 

(±)-2-((2R,4R)-5-iodo-4-methoxy-1-phenylpentan-2-yloxy)acetonitrile 5.22 

 

Ph

OMOM ICl; Et4NCN

5.21

Ph

O

5.22

I

OMe

CN

 

 

 Homoallylic MOM ether 5.21 (4.39 g, 21.3 mmol) was dissolved in toluene (400 

mL), and 4 grams of 4 Å molecular sieves were then added.  After cooling this solution to 

-78°C, an iodide monochloride solution (25.6 mL, 25.6 mmol, 1.0 M in CH2Cl2) was 

added dropwise while maintaining an internal temperature of the reaction below -75°C.  

The solution became dark red and was stirred for 30 minutes while slowly warming up to 

-30°C.  In a separate flask, tetraethylammonium cyanide (5.00 g, 32.0 mmol) was 

dissolved in acetonitrile (40 mL), and 2 grams of 4 Å molecular sieves were added.  

Toluene (20 mL) was then added which caused the solution to become cloudy.  This 
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Et4NCN solution was introduced via cannula to the reaction vessel, and the mixture was 

stirred at -30°C for 18 hours.  The reaction was warmed to room temperature and 

quenched with DI water (200 mL).  After separating the organic and aqueous layers, the 

aqueous layer was washed with Et2O (3 x 100 mL).  The organic layers were combined, 

dried over MgSO4, and filtered.  Removal of solvent under vacuum left behind a yellow 

oil.  The crude material was purified with Biotage chromatography to give the title 

product 5.22 in 78% yield as a yellow oil (5.97 g, 16.6 mmol).  Biotage condition: 40+M 

column, 95:5 hexanes : EtOAc for 120 mL, then 95:5 → 80:20 hexanes : EtOAc linear 

gradient over 600 mL, then 80:20 hexanes : EtOAc for 240 mL.  1H NMR (500 MHz, 

CDCl3): δ (ppm) = 7.34 – 7.31 (2H, m), 7.27 – 7.21 (3H, m), 4.19 (1H, d, J = 16.5 Hz), 

4.06 (1H, d, J = 16.5 Hz), 3.81 (1H, p, J = 6.0 Hz), 3.36 (1H, dd, J = 19.5, 5.5 Hz), 3.33 

(3H, s), 3.29 (1H, dd, J = 11.0, 3.5 Hz), 3.10 (1H, m), 2.90 (1H, dd, J = 14.0, 6.5 Hz), 

2.84 (1H, dd, J = 13.5, 5.5 Hz), 1.86 – 1.83 (2H, m).  13C NMR (125 MHz, CDCl3): δ 

(ppm) = 137.11, 129.35, 128.53, 126.68, 116.32, 79.02, 76.07, 56.64, 54.60, 40.46, 

38.63, 9.57.  IR (cm-1): f = 3062, 3028, 2926, 2825, 2191, 1603, 1496, 1454, 1348, 1273, 

1182, 1087, 888, 748, 702.  HRMS-FAB: (M+H)+ = 360.0461 calculated for C14H19O2 

MI, experimental = 360.0466. 
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(±)-(4R,6R)-6-benzyl-tetrahydro-4-methoxy-2H-pyran-2-carbonitrile 5.23 

 

Ph

O

5.22

I

OMe

CN

LiHMDS, HMPA,

O

OMe

NC
Ph

2R-5.23
O

OMe

NC
Ph

2S-5.23
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 HMDS (4.64 mL, 21.8 mmol) was dissolved in THF (40 mL) and cooled to -

78°C.  A solution of n-BuLi (9.50 mL, 21.8 mmol, 2.3 M in hexanes) was then added 

dropwise quite rapidly, and the solution was stirred for 10 minutes prior to addition of 

HMPA (7.60 mL, 43.7 mmol).  This LiHMDS solution was further stirred for 10 minutes.  

In a separate flask, cyanoether 5.22 (5.23 g, 14.6 mmol) was dissolved in THF (300 mL), 

and the solution was cooled to -78°C.  The freshly prepared, cold LiHMDS solution was 

then added via cannula dropwise over 30 minutes.  The reaction was further stirred for 2 

hours and then quenched with a half-saturated aqueous NH4Cl solution (200 mL).  After 

warming up room temperature, the organic and aqueous layers were separated.  The 

aqueous layer was washed with Et2O (2 x 100 mL).  The organic layers were then 

combined, dried over MgSO4, filtered, and concentrated under vacuum leaving behind a 

dark orange oil.  The crude material was purified with Biotage chromatography to give 

title product 2R-5.23 and 2S-5.23 in 82% combined yield as a yellow oil (2.76 g, 11.9 

mmol).  Crude 1H NMR indicated 4:1 diastereomeric ratio.  Biotage condition: 40+M 

column, 90:10 hexanes : EtOAc for 240 mL, then 90:10 → 70:30 hexanes : EtOAc linear 

gradient over 720 mL, then 70:30 hexanes : EtOAc for 120 mL. 
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Less polar (major) diastereomer 2R-5.23:  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.31 

– 7.28 (2H, m), 7.24 – 7.19 (3H, m), 4.60 (1H, dd, J =12.5, 2.5 Hz), 3.29 (1H, dddd, J = 

13.5, 6.5, 6.5, 2.0 Hz), 3.67 (1H, p, J = 3.0 Hz), 3.27 (3H, s), 2.89 (1H, dd, J = 14.0, 7.0 

Hz), 2.67 (1H, dd, J = 14.0, 6.0 Hz), 2.09 (1H, dddd, J = 14.0, 5.5, 2.5, 2.5 Hz), 1.91 (1H, 

ddd, J = 14.0, 12.5, 3.0 Hz), 1.80 (1H, dddd, J = 14.5, 3.0, 2.0, 2.0 Hz), 1.42 (1H, ddd, J = 

14.0, 11.5, 2.5 Hz).  13C NMR (125 MHz, CDCl3): δ (ppm) = 137.39, 129.44, 128.29, 

126.44, 118.54, 73.85, 71.56, 61.31, 56.14, 42.04, 33.76, 33.43.  IR (cm-1): f = 3021, 

2924, 2879, 2826, 1603, 1449, 1342, 1183, 1086, 1070.  HRMS-FAB: (M+H)+ = 

232.1338 calculated for C14H18O2 M, experimental = 232.1325.  

More polar (minor) diastereomer 2S-5.23:  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.31 

– 7.28 (2H, m), 7.23 – 7.20 (3H, m), 4.77 (1H, dd, J = 6.0, 0.5 Hz), 4.41 (1H, dddd, J = 

13.0, 6.5, 6.5, 2.0 Hz), 3.67 (1H, p, J = 3.0 Hz), 3.36 (3H, s), 2.88 (1H, dd, J = 14.0, 7.0 

Hz), 2.74 (1H, dd, J = 14.0, 6.0 Hz), 2.15 (1H, m), 1.89 (1H, m), 1.88 (1H, ddd, J = 15.0, 

6.5, 3.0 Hz), 1.47 (1H, ddd, J = 14.5, 12.0, 3.0 Hz).  13C NMR (125 MHz, CDCl3): δ 

(ppm) = 137.11, 129.30, 128.35, 126.43, 118.67, 71.00, 69.59, 60.90, 56.01, 41.80, 

34.54, 30.03.  IR (cm-1): f = 3030, 2924, 2826, 1599, 1449, 1369, 1342, 1187, 1086, 

1028.  HRMS-FAB: (M+H)+ = 232.1338 calculated for C14H18O2 M, experimental = 

232.1355.  
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(±)-(2R,4R,6R)-6-benzyl-tetrahydro-4-methoxy-2H-pyran-2-carboxamide 5.24 

 

O

OMe

NC
Ph
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t-BuOH

O

OMe

Ph

5.24O

H2N

 

 

 Cyanopyran 5.23 (125 mg, 0.540 mmol) as a 4:1 mixture of diastereomers was 

charged into a 10 mL round bottomed flask.  A solution of KOt-Bu (3 mL, 1 M in t-

BuOH) was then added, and the mixture was stirred for 48 hours.  The reaction was 

quenched with addition of a half-saturated solution of NH4Cl (10 mL).  After extracting 

the aqueous layer with Et2O (2 x 10 mL), the organic layers were combined, dried over 

MgSO4, filtered, and concentrated under vacuum.  The crude material was the loaded into 

a silica gel column, was eluted with 30:70 hexanes : EtOAc.  Upon removal of solvent, 

title product 5.24 was isolated in 66% yield (89 mg, 0.357 mmol) with a diastereomeric 

ratio of 18:1 as a yellow oil.  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.30 – 7.27 (2H, 

m), 7.23 – 7.18 (3H, m), 6.45 (1H, b), 5.68 (1H, b), 4.15 (1H, dd, J = 12.5, 2.5 Hz), 4.01 

(1H, dddd, J = 13.5, 7.5, 5.5, 2.0 Hz), 3.69 (1H, p, J = 3.0 Hz), 3.32 (3H, s), 2.82 (1H, dd, 

J = 14.0, 7.5 Hz), 2.74 (1H, dd, J = 13.5, 5.5 Hz), 2.36 (1H, dddd, J = 14.0, 3.0, 2.0, 2.0 

Hz), 1.83 (1H, dddd, J = 14.0, 3.0, 2.5, 2.5 Hz), 1.44 (1H, ddd, J = 14.0, 12.5, 2.5 Hz), 

1.42 (1H, ddd, J = 14.0, 11.5, 2.5 Hz).  13C NMR (125 MHz, CDCl3): δ (ppm) = 175.08, 

138.11, 129.22, 128.28, 126.30, 73.04, 72.63, 71.90, 56.12, 42.44, 35.45, 31.06.  IR (cm-

1): f = 3469, 3306, 2924, 2873, 1686, 1586, 1454, 1374, 1096, 1076.  HRMS-FAB: 

(M+H)+ = 250.1443 calculated for C14H20O3N, experimental = 250.1461.   
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(±)-(2R,4R,6R)-methyl 6-benzyl-tetrahydro-4-methoxy-2H-pyran-2-carboxylate 5.25 

 

O

OMe

NC
Ph
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K2CO3,
MeOH

O

OMe

Ph

5.25

MeO

O  

 

 Cyanopyran 5.23 (100 mg, 0.432 mmol) as a 4:1 mixture of diastereomers was 

dissolved in MeOH (10 mL).  K2CO3 (597 mg, 4.32 mmol) was then added, and the 

suspension was stirred overnight at room temperature.  The reaction was quenched with 

addition of a half-saturated solution of NH4Cl (10 mL).  After extracting the aqueous 

layer with Et2O (2 x 10 mL), the organic layers were combined, dried over MgSO4, 

filtered, and concentrated under vacuum.  The crude material was the loaded into a silica 

gel column, was eluted with 80:20 hexanes : EtOAc.  Upon removal of solvent, title 

product 5.25 was isolated in 36% yield (41 mg, 0.155 mmol) with a diastereomeric ratio 

of 6:1 as a yellow oil.  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.32- 7.28 (2H, m), 7.25 – 

7.22 (3H, m), 4.12 (1H, dd, J = 12.0, 2.0 Hz), 4.03 (1H, dddd, J = 13.5, 7.0, 5.0, 2.0 Hz), 

3.77 (3H, s), 3.69 (1H, p, J = 3.0 Hz), 3.33 (3H, s), 2.92 (1H, dd, J = 13.5, 7.0 Hz), 2.76 

(1H, dd, J = 13.5, 5.5 Hz), 2.22 (1H, dddd, J = 14.0, 3.0, 3.0, 3.0 Hz), 1.84 (1H, dddd, J = 

14.0, 3.0, 3.0, 3.0 Hz), 1.41 (1H, ddd, J = 14.5, 12.0, 3.0 Hz), 1.37 (1H, ddd, J = 14.5, 

12.0, 2.5 Hz).  13C NMR (125 MHz, CDCl3): δ (ppm) = 173.29, 138.14, 129.46, 128.20, 

126.23, 72.87, 72.85, 69.55, 56.05, 52.88, 42.45, 34.85, 32.32.  IR (cm-1): f = 3028, 2925, 

2874, 1760, 1667, 1455, 1299, 1190, 1102, 869.  HRMS-FAB: M•+ = 264.1362 

calculated for C15H20O4, experimental = 264.1353. 
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GENERAL PROCEDURE A: One-Pot Cyclization and Alkylation 
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O
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CN

 

 

 HMDS (1.42 mL, 6.68 mmol) was dissolved in THF (10 mL) and cooled to -

78°C.  A solution of n-BuLi (2.90 mL, 6.68 mmol, 2.3 M in hexanes) was then added 

dropwise quite rapidly, and the solution was stirred for 15 minutes prior to addition of 

HMPA (1.45 mL, 8.35 mmol).  This LiHMDS solution was further stirred for 30 minutes.  

In a separate flask, cyanoether 5.22 (300 mg, 0.835 mmol) was dissolved in THF (20 

mL), and the solution was cooled to -78°C.  The freshly prepared, cold LiHMDS solution 

was then added via cannula dropwise.  The reaction was further stirred for 15 minutes 

and then alkylating agent (4.18 mmol) was added dropwise.  The reaction was then 

warmed up to -30°C and stirred overnight.  A half-saturated solution of NH4Cl (50 mL) 

was then added in one portion, and the mixture was warmed up to room temperature.  

The organic and aqueous layers were separated.  The aqueous layer was washed with 

Et2O (2 x 20 mL).  The organic layers were then combined, dried over MgSO4, filtered, 

and concentrated under vacuum leaving behind a yellow oil.  The crude material was 

purified with Biotage chromatography to give title product 5.26 as a mixture of 

diastereomers.  Biotage condition: 25+M column, 95:5 hexanes : EtOAc for 90 mL, then 

95:5 → 80:20 hexanes : EtOAc linear gradient over 360 mL, then 80:20 hexanes : EtOAc 

for 90 mL. 
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(±)-(4R,6R)-2,6-dibenzyl-tetrahydro-4-methoxy-2H-pyran-2-carbonitrile 5.26a 
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 General Procedure A was followed.  Benzyl bromide (0.497 mL, 4.18 mmol) was 

employed as the alkylating agent.  Title product 5.26a was isolated in 82% yield with a 

diastereomeric ratio of 3:2 as a yellow oil (221 mg, 0.688 mmol). 

Less polar (major) diastereomer 2R-5.26a:  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.32 

– 7.28 (2H, m), 7.27 – 7.21 (6H, m), 7.18 – 7.16 (2H, m), 4.26 (1H, m), 3.80 (1H, m), 

3.39 (1H, d, J = 14.0 Hz), 3.34 (3H, s), 3.04 (1H, d, J = 14.0 Hz), 3.01 (1H, dd, J = 13.5, 

6.5 Hz), 2.83 (1H, dd, J = 13.5, 6.0 Hz), 2.16 (1H, dd, J = 14.0, 4.5 Hz), 1.98 (1H, dd, J = 

14.0, 6.0 Hz), 1.78 – 1.75 (2H, m).  13C NMR (125 MHz, CDCl3): δ (ppm) = 137.77, 

134.36, 130.53, 129.51, 128.37, 128.20, 127.17, 126.43, 121.05, 73.05, 71.66, 70.58, 

56.19, 43.45, 41.49, 36.68, 33.05.  IR (cm-1): f = 3030, 2929, 2832, 1497, 1455, 1199, 

1077, 1048.  HRMS-FAB: M•+ = 321.1729 calculated for C21H23O2 M, experimental = 

321.1730.  The relative stereochemistry of the ring was deduced from a ROESY 

experiment. 
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CNO

H
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Ph
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More polar (minor) diastereomer 2S-5.26a:  1H NMR (500 MHz, CDCl3): δ (ppm) = 

7.29 – 7.27 (7H, m), 7.23 – 7.19 (3H, m), 4.38 (1H, dddd, J = 12.5, 6.5, 6.5, 2.0 Hz), 3.63 

(1H, p, J = 3.0 Hz), 3.29 (3H, s), 3.10 (1H, d, J = 13.5 Hz), 3.01 (1H, d, J = 13.5 Hz), 

2.90 (1H, dd, J = 14.0, 6.5 Hz), 2.76 (1H, dd, J = 14.0, 6.0 Hz), 2.15 (1H, ddd, J = 14.5, 

2.0, 2.0 Hz), 1.86 (1H, dddd, J = 14.0, 3.0, 2.0, 2.0 Hz), 1.55 (1H, dd, J = 14.5, 3.0 Hz), 

1.36 (1H, ddd, J = 14.0, 11.5, 3.0 Hz).  13C NMR (125 MHz, CDCl3): δ (ppm) = 137.32, 

133.74, 130.79, 129.48, 128.22, 128.17, 127.37, 126.30, 120.04, 71.73, 71.62, 70.56, 

56.02, 47.34, 41.82, 35.56, 34.02.  IR (cm-1): f = 3027, 2925, 1497, 1455, 1100, 1074, 

1042.  HRMS-FAB: M•+ = 321.1729 calculated for C21H23O2 M, experimental = 321.1729.  

 

(±)-(4R,6R)-2-allyl-6-benzyl-tetrahydro-4-methoxy-2H-pyran-2-carbonitrile 5.26b 
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 General Procedure A was followed.  Allyl bromide (0.364 mL, 4.18 mmol) was 

employed as the alkylating agent.  Title product 5.26b was isolated in 95% yield with a 

diastereomeric ratio of 3:2 as a yellow oil (215 mg, 0.792 mmol). 

Less polar (major) diastereomer 2R-5.26b:  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.31 

– 7.28 (2H, m), 7.24 – 7.20 (3H, m), 5.73 (1H, dddd, J = 17.0, 10.5, 7.0, 7.0 Hz), 5.19 – 

5.15 (2H, m), 4.11 (1H, dddd, J = 10.0, 7.0, 7.0, 3.5 Hz), 3.74 (1H, m), 3.30 (3H, s), 2.98 

(1H, dd, J = 13.5, 7.0 Hz), 2.93 (1H, dd, J = 14.5, 7.0 Hz), 2.80 (1H, dd, J = 14.0, 6.5 
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Hz), 2.54 (1H, dd, J = 14.0, 7.5 Hz), 2.12 (1H, dd, J = 14.5, 4.0 Hz), 1.97 (1H, ddd, J = 

14.0, 5.5, 1.0 Hz), 1.73 (1H, dddd, J = 14.0, 5.0, 3.5, 1.0 Hz), 1.70 (1H, ddd, J = 13.0, 

9.0, 3.5 Hz).  13C NMR (125 MHz, CDCl3): δ (ppm) = 137.75, 131.03, 129.42, 128.30, 

126.39, 121.05, 120.08, 72.29, 71.79, 69.92, 56.18, 41.56, 41.47, 35.88, 33.12.  IR (cm-1): 

f = 3084, 3029, 2929, 2830, 1644, 1605, 1497, 1455, 1350, 1201, 1079, 1045, 924, 751, 

701.  HRMS-FAB: (M-H)+ = 270.1494 calculated for C17H20O2 M, experimental = 

270.1522.  

More polar (minor) diastereomer 2S-5.26b:  1H NMR (500 MHz, CDCl3): δ (ppm) = 

7.30 – 7.26 (2H, m), 7.23 – 7.20 (3H, m), 5.87 (1H, dddd, J = 17.0, 10.5, 7.5, 7.0 Hz), 

5.25 – 5.20 (2H, m), 4.37 (1H, dddd, J = 12.0, 6.0, 6.0, 2.0 Hz), 3.65 (1H, p, J = 2.5 Hz), 

3.33 (3H, s), 2.90 (1H, dd, J = 13.5, 6.0 Hz), 2.74 (1H, dd, J = 14.0, 6.0 Hz), 2.56 (1H, 

dddd, J = 14.0, 7.0, 5.5, 5.5 Hz), 2.48 (1H, dddd, J = 14.0, 7.5, 1.0, 1.0 Hz), 2.21 (1H, 

ddd, J = 14.5, 3.0, 2.0 Hz), 1.86 (1H, ddd, J = 14.0, 3.5, 2.0, 2.0 Hz), 1.52 (1H, dd, J = 

14.5, 3.0 Hz), 1.36 (1H, ddd, J = 14.0, 11.5, 2.5 Hz).  13C NMR (125 MHz, CDCl3): δ 

(ppm) = 137.26, 130.46, 129.49, 128.19, 126.31, 120.38, 120.11, 71.66, 70.87, 70.47, 

55.98, 45.85, 41.79, 35.52, 34.02.  IR (cm-1): f = 3084, 3028, 2926, 2828, 1644, 1605, 

1455, 1348, 1196, 1099, 1083, 924, 744, 701.  HRMS-FAB: (M-H)+ = 270.1494 

calculated for C17H20O2 M, experimental = 270.1499.  
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GENERAL PROCEDURE B: Reductive Decyanation Using LiDBB 
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In a flask, cyanopyran 5.26 (1.0 equivalent) as a mixture of diastereomers was 

dissolved in degassed THF (10 mL).  200 mg of 4 Å molecular sieves were then added.  

After standing for 10 minutes, this solution was then transferred to a round-bottomed 

flask via cannula.  To ensure cyanopyran 5.26 was completely transferred, the flask was 

washed with THF (2 x 2.5 mL) and transferred via cannula.  This solution was then 

cooled to -78°C.  A freshly prepared solution of LiDBB (2.5 equivalents, 0.4 M in THF) 

was then added dropwise until reaction mixture turned dark green.  After stirring for 30 

minutes, MeOH (2 mL) was added dropwise causing the green color to disappear.  The 

mixture was warmed to room temperature and diluted with a half-saturated NH4Cl 

solution (20 mL).  The organic and aqueous layers were separated.  The aqueous layer 

was washed with Et2O (2 x 20 mL).  The organic layers were then combined, dried over 

MgSO4, filtered, and concentrated under vacuum leaving behind a yellow oil.  Column 

chromatography purification with silica gel and 95:5 hexanes : EtOAc provided title 

product 5.27. 
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(±)-(2S,4S,6R)-2,6-dibenzyl-tetrahydro-4-methoxy-2H-pyran 5.27a 
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General Procedure B was followed.  Cyanopyran 5.26a (150 mg, 0.467 mmol) 

and LiDBB (2.93 mL, 1.17 mmol, 0.4 M in THF) were employed, and tetrahydropyran 

5.27a was isolated in 47% yield (65.0 mg, 0.219 mmol) with a diastereomeric ratio of 

>20:1 as a colorless oil.  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.27 – 7.18 (10H, m), 

3.48 (2H, m), 3.29 (3H, s), 3.26 (1H, m), 2.97 (2H, dd, J = 14.0, 7.0 Hz), 2.70 (2H, dd, J 

= 14.0, 6.0 Hz), 1.99 (2H, m), 1.17 (2H, ddd, J = 11.5, 11.5, 11.5 Hz).  13C NMR (125 

MHz, CDCl3): δ (ppm) = 138.56, 129.46, 128.14, 126.10, 76.67, 76.56, 55.32, 42.59, 

37.15.  IR (cm-1): f = 3027, 2943, 2847, 1495, 1454, 1372, 1152, 1086, 750, 700.  HRMS-

FAB: (M+H)+: 297.1855 calculated for C20H25O2, experimental = 297.1842. 
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(±)-(2S,4S,6R)-2-allyl-6-benzyl-tetrahydro-4-methoxy-2H-pyran 5.27b 

 

O

OMe

Ph

5.27b
O

OMe

Ph

5.26b
CN

LiDBB;
MeOH

 

 

 General Procedure B was followed.  Cyanopyran 5.26b (180 mg, 0.663 mmol) 

and LiDBB (4.15 mL, 1.66 mmol, 0.4 M in THF) were employed, and tetrahydropyran 

5.27b was isolated in 37% yield (60.0 mg, 0.244 mmol) with a diastereomeric ratio of 

>20:1 as a colorless oil.  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.28 – 7.17 (5H, m), 

5.82 (1H, dddd, J = 17.0, 10.0, 6.5, 6.5 Hz), 5.07 – 5.00 (2H, m), 3.90 (1H, m), 3.71 (1H, 

m), 3.61 (1H, p, J = 2.5 Hz), 3.25 (3H, s), 2.89 (1H, dd, J = 14.0, 7.0 Hz), 2.62 (1H, dd, J 

= 13.5, 6.0 Hz), 2.29 (1H, m), 2.15 (1H, m), 1.82 (1H, ddd, J = 14.0, 4.5, 2.0 Hz), 1.78 

(1H, ddd, J = 13.5, 4.5, 2.0 Hz), 1.34 (1H, ddd, J = 11.5, 2.5, 2.5 Hz), 1.32 (1H, ddd, J = 

11.5, 6.0, 2.5 Hz).  13C NMR (125 MHz, CDCl3): δ (ppm) = 138.76, 135.02, 129.49, 

128.05, 125.98, 116.44, 73.60, 72.77, 71.51, 55.88, 42.66, 40.65, 34.74, 34.70.  IR (cm-1): 

f = 3064, 3028, 2917, 2865, 1347, 1050, 1032, 912, 699.  HRMS-FAB: (M+H)+ = 

247.1698 calculated for C16H23O2, experimental = 247.1687. 
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GENERAL PROCEDURE C: Reduction of Methyl Pyranoside 5.43 to 2,6-cis-

Tetrahydropyran 5.27 
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Methyl pyranoside 5.43 as a mixture of diastereomers (1.0 equivalent) was 

dissolved in CH2Cl2.  Several grains of 4 Å molecular sieves were added, and the solution 

was chilled to -78°C.  After addition of Et3SiH (2.0 equivalents), a freshly prepared 

solution of TMSOTf (3.0 equivalents, 1.0 M in CH2Cl2) was then added dropwise slowly, 

and the reaction was stirred for one minute.   Immediately, the reaction was quenched by 

one full injection, of a half-saturated NH4Cl aqueous solution (10 mL) and warmed to 

0°C.  After separating the organic and aqueous layers, the aqueous layer was washed with 

CH2Cl2 (2 x 20 mL).  The organic layers were then combined, dried over MgSO4, 

filtered, and concentrated under vacuum leaving behind a yellow oil.  The crude material 

was loaded into a silica gel column, and product elution was made with 90:10 hexanes : 

EtOAc.  Removal of solvent under vacuum provided the title product 5.27.   
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(±)-(2S,4S,6R)-2,6-dibenzyl-tetrahydro-4-methoxy-2H-pyran 5.27a 
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General Procedure C was followed.  Methyl pyranoside 5.43a (280 mg, 0.858 

mmol) dissolved in CH2Cl2 (25 mL), TMSOTf (2.57 mL, 2.57 mmol, 1.0 M in CH2Cl2), 

and Et3SiH (0.27 mL, 1.72 mmol) were employed, and tetrahydropyran 5.27a was 

obtained in 91% yield with a diastereomeric ratio of >20:1 as a colorless oil (232 mg, 

0.783 mmol).  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.27 – 7.18 (10H, m), 3.48 (2H, 

m), 3.29 (3H, s), 3.26 (1H, m), 2.97 (2H, dd, J = 14.0, 7.0 Hz), 2.70 (2H, dd, J = 14.0, 6.0 

Hz), 1.99 (2H, m), 1.17 (2H, ddd, J = 11.5, 11.5, 11.5 Hz).  13C NMR (125 MHz, CDCl3): 

δ (ppm) = 138.56, 129.46, 128.14, 126.10, 76.67, 76.56, 55.32, 42.59, 37.15.  IR (cm-1): f 

= 3027, 2943, 2847, 1495, 1454, 1372, 1152, 1086, 750, 700.  HRMS-FAB: (M+H)+: 

297.1855 calculated for C20H25O2, experimental = 297.1842. 
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(±)-(2S,4S,6R)-2-allyl-6-benzyl-tetrahydro-4-methoxy-2H-pyran 5.27b 
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General Procedure C was followed.  Methyl pyranoside 5.43b (150 mg, 0.542 

mmol) dissolved in CH2Cl2 (15 mL), TMSOTf (1.63 mL, 1.63 mmol, 1.0 M in CH2Cl2), 

and Et3SiH (0.17 mL, 1.08 mmol) were employed, and tetrahydropyran 5.27b was 

obtained in 82% yield with a diastereomeric ratio of >20:1 as a colorless oil (110 mg, 

0.447 mmol).  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.28 – 7.17 (5H, m), 5.82 (1H, 

dddd, J = 17.0, 10.0, 6.5, 6.5 Hz), 5.07 – 5.00 (2H, m), 3.90 (1H, m), 3.71 (1H, m), 3.61 

(1H, p, J = 2.5 Hz), 3.25 (3H, s), 2.89 (1H, dd, J = 14.0, 7.0 Hz), 2.62 (1H, dd, J = 13.5, 

6.0 Hz), 2.29 (1H, m), 2.15 (1H, m), 1.82 (1H, ddd, J = 14.0, 4.5, 2.0 Hz), 1.78 (1H, ddd, 

J = 13.5, 4.5, 2.0 Hz), 1.34 (1H, ddd, J = 11.5, 2.5, 2.5 Hz), 1.32 (1H, ddd, J = 11.5, 6.0, 

2.5 Hz).  13C NMR (125 MHz, CDCl3): δ (ppm) = 138.76, 135.02, 129.49, 128.05, 

125.98, 116.44, 73.60, 72.77, 71.51, 55.88, 42.66, 40.65, 34.74, 34.70.  IR (cm-1): f = 

3064, 3028, 2917, 2865, 1347, 1050, 1032, 912, 699.  HRMS-FAB: (M+H)+ = 247.1698 

calculated for C16H23O2, experimental = 247.1687. 
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(±)-(2R,4S,6S)-2-benzyl-tetrahydro-4-methoxy-6-methyl-2H-pyran 5.27c 
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General Procedure C was followed.  Methyl pyranoside 5.43c (140 mg, 0.559 

mmol) dissolved in CH2Cl2 (20 mL), TMSOTf (1.68 mL, 1.68 mmol, 1.0 M in CH2Cl2), 

and Et3SiH (0.18 mL, 1.12 mmol) were employed, and tetrahydropyran 5.27c was 

obtained in 72% yield with a diastereomeric ratio of >20:1 as a colorless oil (89 mg, 

0.404 mmol).  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.29 – 7.26 (2H, m), 7.23 – 7.18 

(3H, m), 3.91 (1H, dddd, J = 13.5, 6.5, 6.5, 1.5 Hz), 3.81 (1H, ddq, J = 12.5, 6.5, 2.0 Hz), 

3.59 (1H, p, J = 3.0 Hz), 3.23 (3H, s), 2.89 (1H, dd, J = 6.5, 14.0 Hz), 2.60 (1H, dd, J = 

13.5, 7.5 Hz), 1.82 – 1.74 (2H, m), 1.33 (1H, ddd, J = 11.0, 11.0, 3.0 Hz), 1.30 (1H, ddd, 

J = 11.0, 11.0, 3.0 Hz), 1.16 (3H, d, J = 6.5 Hz).  13C NMR (125 MHz, CDCl3): δ (ppm) = 

138.64, 129.45, 128.18, 126.06, 73.62, 72.75, 68.09, 55.93, 42.82, 36.95, 34.30, 21.95.  

IR (cm-1): f = 3028, 2970, 2916, 2867, 1455, 1348, 1104, 1082, 699.  HRMS-FAB: 

(M+H)+ = 221.1542 calculated for C14H21O2, experimental = 221.1561. 
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(±)-(2R,4R,6R)-2-benzyl-6-((benzyloxy)methyl)-tetrahydro-4-methoxy-2H-pyran 5.27d 
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General Procedure C was followed.  Methyl pyranoside 5.43d (169 mg, 0.473 

mmol) dissolved in CH2Cl2 (15 mL), TMSOTf (1.42 mL, 1.42 mmol, 1.0 M in CH2Cl2), 

and Et3SiH (0.15 mL, 0.946 mmol) were employed, and tetrahydropyran 5.27d was 

obtained in 66% yield with a diastereomeric ratio of >20:1 as a colorless oil (102 mg, 

0.313 mmol).  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.39 – 7.35 (4H, m), 7.33 – 7.21 

(6H, m), 4.62 (1H, d, J = 12.5 Hz), 4.59 (1H, d, J = 12.5 Hz), 4.03 – 3.96 (2H, m), 3.68 

(1H, p, J = 3.0 Hz), 3.53 (1H, dd, J = 10.5, 6.0 Hz), 3.50 (1H, dd, J = 10.5, 4.0 Hz), 3.29 

(3H, s), 3.01 (1H, dd, J = 14.0, 7.0 Hz), 2.69 (1H, dd, J = 13.5, 7.0 Hz), 1.84 (1H, m), 

1.82 (1H, m), 1.49 (1H, ddd, J = 14.0, 12.0 2.5 Hz), 1.40 (1H, ddd, J = 14.5, 12.0, 3.0 

Hz).  13C NMR (125 MHz, CDCl3): δ (ppm) = 138.54, 138.50, 129.43, 128.25, 128.10, 

127.59, 127.41, 126.00, 73.36, 73.19, 73.15, 72.73, 71.54, 55.88, 42.57, 34.57, 31.46.  IR 

(cm-1): f = 3062, 3028, 2918, 2864, 1496, 1454, 1098, 1080, 736, 698.  HRMS-FAB: M•+ 

= 326.1882 calculated for C21H26O3, experimental = 326.1880. 
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(±)-(((2R,4R)-5-iodo-4-methoxy-1-phenylpentan-2-yloxy)methyl)(phenyl)sulfane 5.35 
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Compound 5.21 (8.00 g, 38.8 mmol) was dissolved in toluene (600 mL), and 8 

grams of 4 Å molecular sieves were then added.  After cooling this solution to -78°C, 

iodine monochloride (46.5 mL, 46.5 mmol, 1.0 M in CH2Cl2) was added dropwise while 

maintaining an internal temperature of the reaction below -75°C.  The solution became 

dark red and was stirred for 30 minutes.  Then, TEA (16.2 mL, 116 mmol) was added in 

one injection, followed by PhSH (5.60 mL, 54.3 mmol) in which the solution 

immediately turned cloudy grey.  The reaction was warmed to room temperature over one 

hour and then quenched with a 1:1 mixture of saturated NaHCO3 and Na2S2O3 (300 mL).  

After separating the organic and aqueous layers, the aqueous layer was washed with Et2O 

(2 x 100 mL).  The organic layers were then combined, dried over MgSO4, and filtered.  

The organic solvent was removed under vacuum leaving behind a yellow oil.  The crude 

material was purified with column chromatography using 95:5 hexanes : EtOAc to give 

ether transfer product 5.35 in 88% yield with a diastereomeric ratio of >20:1 as a 

colorless oil (15.0 g, 33.9 mmol).  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.42 – 7.41 

(2H, m), 7.33 – 7.29 (4H, m), 7.26 – 7.20 (4H, m), 5.18 (1H, d, J = 12.0 Hz), 4.84 (1H, d, 

J = 12.0 Hz), 4.01 (1H, dddd, J = 8.0, 6.5, 6.5, 4.5 Hz), 3.30 (1H, dd, J = 11.0, 4.0 Hz), 

3.27 (1H, dd, J = 11.0, 4.0 Hz), 3.22 (3H, s), 2.97 (1H, m), 2.93 (1H, dd, J = 13.5, 6.0 
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Hz), 2.82 (1H, dd, J = 13.5, 6.0 Hz), 1.82 (1H, ddd, J = 14.5, 8.0, 5.5 Hz), 1.73 (1H, ddd, 

J = 14.0, 7.0, 4.0 Hz). 13C NMR (125 MHz, CDCl3): δ (ppm) = 137.60, 135.63, 129.50, 

129.11, 128.93, 128.37, 126.40, 126.34, 75.71, 74.69, 73.07, 56.42, 40.18, 38.59, 10.58.  

IR (cm-1): f = 3059, 3026, 2924, 2822, 1584, 1481, 1439, 1088, 1053, 741, 701.  HRMS-

FAB: M•+ = 442.0464 calculated for C19H23O2SI, experimental = 442.0457. 

 

(±)-1-((2R,4R)-2-((phenylsulfonyl)methoxy)-5-iodo-4-methoxypentyl)benzene 5.36 
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 Compound 5.35 (15.0 g, 33.9 mmol) was dissolved in ethanol (424 mL, 200 

proof), and the solution was cooled to 0°C.  In a separate flask, ammonium (VI) 

molybdate tetrahydrate (8.47 g, 6.79 mmol) was dissolved in a cold aqueous hydrogen 

peroxide solution (30%, 424 mL).  This Mo(VI) – H2O2 mixture was immediately poured 

to the solution of 5.35 in one portion causing the reaction to turn yellow and cloudy  (the 

cloudiness eventually dissipated).  The reaction was stirred at 0°C for one hour and then 

at room temperature for two more hours.  Addition of DI water (400 mL) quenched the 

reaction, and the aqueous layer was extracted with CH2Cl2 (3 x 200 mL).  The pink 

organic layers were combined, dried over MgSO4, filtered, and rotovaped to produce a 

dark red oily residue.  The crude material was then loaded onto silica gel and 

chromatographed with 80:20 hexanes : EtOAc to afford the corresponding sulfone 5.36 in 
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83% yield as a yellow oil (13.3 g, 28.1 mmol).  1H NMR (500 MHz, CDCl3): δ (ppm) = 

7.82 – 7.80 (2H, m), 7.67 (1H, m), 7.56 – 7.53 (2H, m), 7.30 – 7.22 (3H, m), 7.15 – 7.14 

(2H,m), 4.55 (1H, d, J = 12.5 Hz), 4.39 (1H, d, 12.5 Hz), 4.11 (1H, p, J = 6.0 Hz), 3.29 

(1H, dd, J = 10.5, 5.0 Hz), 3.27 (3H, s), 3.23 (1H, dd, J = 11.0, 4.0 Hz), 3.04 (1H, m), 

2.86 (1H, dd, J = 14.0, 7.0 Hz), 2.82 (1H, dd, J = 14.0, 6.0 Hz), 1.80 (1H, ddd, J = 17.0, 

6.5, 6.5 Hz), 1.78 (1H, ddd, J = 14.5, 5.5, 5.5 Hz).  13C NMR (125 MHz, CDCl3): δ (ppm) 

= 137.30, 137.03, 133.94, 129.49, 129.16, 128.70, 128.53, 126.67, 84.38, 80.94, 75.93, 

56.55, 40.77, 38.77, 9.73.  IR (cm-1): f = 3062, 3028, 2926, 2825, 1447, 1324, 1298, 

1150, 1112, 1080, 746, 702, 688.  HRMS-FAB: (M+H)+ = 475.0440 calculated for 

C19H24O4SI, experimental = 475.0447. 

 

(±)-(2S,4S)-2-benzyl-tetrahydro-4-methoxy-6-(phenylsulfonyl)-2H-pyran 5.37 

 

LiHMDS, HMPAO

5.36

I

OMe

SO2Ph

Ph
O

OMe

PhO2S

2S-5.37

Ph
O

OMe

PhO2S

2R-5.37

Ph+

 

 

HMDS (7.74 mL, 36.5 mmol) was dissolved in THF (100 mL) and cooled to -

78°C.  A solution of n-BuLi (17.3 mL, 36.5 mmol, 2.1 M in hexanes) was then added 

dropwise quite rapidly, and the solution was stirred for 10 minutes prior to the addition of 

HMPA (14.6 mL, 84.1 mmol).  This LiHMDS solution was further stirred for 10 minutes.  

In a separate flask, sulfone 5.36 (13.3 g, 28.0 mmol) was dissolved in THF (500 mL), and 

the solution was cooled to -78°C.  The freshly prepared, cold LiHMDS solution was then 
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added to this solution via cannula dropwise over 30 minutes.  The reaction was further 

stirred for 2 hours, and then quenched with a half-saturated aqueous NH4Cl solution (200 

mL).  After separating the organic and aqueous layers, the aqueous layer was washed 

with Et2O (2 x 100 mL).  The organic layers were then combined, dried over MgSO4, 

filtered, and concentrated under vacuum leaving behind a yellow oil.  The crude material 

was flushed through a thick silica pad with 70:30 hexanes : EtOAc.  The solvent was then 

evaporated to leave the title product 5.37 as a yellow solid (9.31 g, 26.9 mmol) in 96% 

yield as a 3:2 mixture of diastereomers.  Although compound 5.37 was found pure judged 

by 1H and 13C NMR, compound 5.37 could be recrystallized by dissolving the solid in hot 

Et2O following by cooling to -20°C in freezer overnight at which the product 

reprecipitated as an amorphous white solid.  The solid was then filtered and washed with 

cold Et2O.  For characterization purposes, the two diastereomers were separated and 

isolated by column chromatography with 80:20 hexanes : EtOAc. 

Less Polar Diastereomer 2S-5.37:  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.84 – 7.82 

(2H, m), 7.62 – 7.58 (1H, m), 7.46 – 7.42 (2H, m), 7.15 – 7.13 (3H, m), 7.01 – 6.98 (2H, 

m), 4.70 (1H, dd, J = 12.0, 2.0 Hz), 3.93 (1H, m), 3.80 (1H, p, J = 3.0 Hz), 3.31 (3H, s), 

2.81 (1H, dd, J = 14.0, 8.0 Hz), 2.65 (1H, dd, J = 14.5, 4.5 Hz), 2.41 (1H, ddd, J = 13.5, 

5.0, 2.0 Hz), 1.85 – 1.79 (2H, m), 1.49 (1H, ddd, J = 14.0, 11.5, 2.5 Hz).  13C NMR (125 

MHz, CDCl3): δ (ppm) = 137.69, 136.48, 133.57, 129.24, 129.02, 128.66, 128.07, 

126.08, 87.54, 74.43, 72.29, 56.21, 41.66, 34.63, 26.44.  IR (cm-1): f = 3063, 3029, 2931, 

2880, 2828, 1448, 1321, 1151, 1102, 1071, 1039, 726, 596.  HRMS-FAB: (M-H)+ = 

345.1161 calculated for C19H21O4S, experimental = 345.1169. 
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More Polar Diastereomer 2R-5.37:  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.60 – 7.52 

(3H, m), 7.40 – 7.37 (2H, m), 7.31 – 7.27 (3H, m), 7.14 – 7.12 (2H, m), 4.75 (1H, dddd, J 

= 8.5, 7.0, 5.0, 5.0 Hz), 4.70 (1H, dd, J = 7.5, 6.0 Hz), 3.71 (1H, m), 3.43 (3H, s), 2.77 

(1H, dd, J = 14.5, 5.0 Hz), 2.71 (1H, dd, J = 14.0, 8.5 Hz), 2.38 – 2.28 (2H, m), 1.87 – 

1.79 (2H, m).  13C NMR (125 MHz, CDCl3): δ (ppm) = 137.66, 137.17, 133.35, 129.19, 

128.96, 128.75, 128.36, 126.30, 87.63, 72.17, 71.09, 55.95, 40.75, 35.11, 25.59.  IR (cm-

1): f = 3066, 3022, 2926, 1447, 1321, 1303, 1145, 1119, 1080.  HRMS-FAB: (M+H)+ = 

347.1317 calculated for C19H23O4S, experimental = 347.1318. 

 

GENERAL PROCEDURE D: AlCl3 Mediated Addition of Silyl Nucleophiles to 

Sulfonylpyran 5.37 To Furnish 2,6-trans-tetrahydropyran 5.38 

 

O

OMe

PhO2S

5.37

AlCl3
nucleophiles

O

OMe

Nuctoluene
-78°C → -40°C

5.38

Ph Ph

 

 

A suspension of AlCl3 (1.5 equivalents) in toluene (10 mL) was cooled to -78°C.  

In a separate flask, sulfonylpyran 5.37 (1.0 equivalent) as a mixture of diastereomers was 

dissolved in toluene (5 mL).  After cooling to -78°C, this solution was transferred to the 

AlCl3 suspension via cannula.  To ensure all starting material was completely transferred, 

the flask was washed with toluene (2 x 2.5 mL) and transferred to the reaction mixture.  

This mixture was stirred for 5 minutes.  Nucleophiles (3.0 equivalents) were then added 

dropwise, and the reaction was slowly warmed up to -40°C over one hour in which all 
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pyran 5.37 was consumed.  A saturated aqueous solution of Rochelle’s salt (20 mL) was 

then added, and the emulsion was stirred until separation of layers was achieved.  After 

separating the organic and aqueous layers, the aqueous layer was washed with CH2Cl2 (2 

x 20 mL).  The organic layers were then combined, dried over MgSO4, filtered, and 

concentrated under vacuum leaving behind a yellow oil.  The crude material was purified 

using Biotage chromatography system which provided 2,6-trans-tetrahydropyran 5.38.  

 

(±)-(2R,4S,6R)-2-allyl-6-benzyl-tetrahydro-4-methoxy-2H-pyran 5.38a 

 

O

OMe

PhO2S

5.37
O

OMe

5.38a

TMS

PhPh AlCl3

 

 

General Procedure D was followed.  Sulfonylpyran 5.37 (325 mg, 0.938 mmol), 

AlCl3 (188 mg, 1.41 mmol), and allyltrimethylsilane (0.45 mL, 2.81 mmol) were 

employed, and tetrahydropyran 5.38a was obtained in 80% with a diastereomeric ratio of 

>20:1 as a colorless oil (185 mg, 0.447 mmol).  Biotage condition: 25+S column, 95:5 

hexanes : EtOAc for 90 mL, then 95:5 → 85:15 hexanes : EtOAc linear gradient over 270 

mL.  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.31 – 7.28 (2H, m), 7.23 – 7.19 (3H, m), 

5.76 (1H, dddd, J = 17.0, 10.0, 7.0, 7.0 Hz), 5.07 (1H, ddd, J = 17.0, 3.5, 1.5 Hz), 5.03 

(1H, m), 4.26 (1H, m), 3.81 (1H, dddd, J = 10.0, 7.0, 6.0, 3.0 Hz), 3.65 (1H, dddd, J = 

9.5, 9.5, 5.0, 4.0 Hz), 3.34 (3H, s), 2.98 (1H, dd, J = 14.0, 7.5 Hz), 2.78 (1H, dd, J = 13.5, 

7.5 Hz), 2.40 (1H, m), 2.25 (1H, m), 2.04 (1H, m), 1.86 (1H, m), 1.54 (1H, ddd, J = 13.0, 
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10.0, 5.5 Hz), 1.30 (1H, ddd, 13.0, 9.5, 9.5 Hz).  13C NMR (125 MHz, CDCl3): δ (ppm) = 

138.77, 134.90, 129.09, 128.40, 126.21, 116.78, 73.05, 72.99, 69.28, 55.41, 40.14, 38.74, 

36.08, 33.54.  IR (cm-1): f = 3027, 2925, 2858, 1454, 1378, 1089, 913, 700.  HRMS-FAB: 

(M+H)+ = 247.1698 calculated for C16H23O2, experimental = 247.1680. 

 

(±)-(2R,4S,6R)-2-benzyl-tetrahydro-4-methoxy-6-(2-methylallyl)-2H-pyran 5.38b 

 

O

OMe

PhO2S

5.37
O

OMe

5.38b

TMS

PhPh AlCl3

 

 

General Procedure D was followed.  Sulfonylpyran 5.37 (165 mg, 0.476 mmol), 

AlCl3 (95 mg, 0.714 mmol), and methallyltrimethylsilane (0.25 mL, 1.43 mmol) were 

employed, and tetrahydropyran 5.38b was obtained in 86% with a diastereomeric ratio of 

>20:1 as a colorless oil (106 mg, 0.407 mmol).  Biotage condition: 25+S column, 95:5 

hexanes : EtOAc for 90 mL, then 95:5 → 85:15 hexanes : EtOAc linear gradient over 270 

mL.  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.30 – 7.28 (2H, m), 7.22 – 7.19 (3H, m), 

4.77 (1H, m), 4.73 (1H, m), 4.28 (1H, m), 3.93 (1H, m), 3.66 (1H, dddd, J = 9.5, 9.5, 4.0, 

4.0 Hz), 3.34 (3H, s), 2.97 (1H, dd, J = 13.5, 7.0 Hz), 2.82 (1H, dd, J = 13.5, 8.0 Hz), 

2.37 (1H, dd, J = 13.5, 7.0 Hz), 2.17 (1H, dd, J = 14.0, 5.5 Hz), 2.03 (1H, m), 1.85 (1H, 

m), 1.71 (3H, s), 1.52 (1H, ddd, J = 15.5, 10.0, 5.5 Hz), 1.28 (1H, ddd, J = 12.5, 9.5, 9.5 

Hz).  13C NMR (125 MHz, CDCl3): δ (ppm) = 142.55, 138.70, 129.08, 128.41, 126.21, 

112.52, 73.07, 72.96, 68.03, 55.42, 44.08, 38.70, 36.49, 33.27, 22.59.  IR (cm-1): f = 
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3067, 3027, 2927, 1454, 1376, 1085, 888, 700.  HRMS-FAB: (M-H)+ = 259.1698 

calculated for C17H23O2, experimental = 259.1715. 

 

(±)-2-((2S,4R,6R)-6-benzyl-tetrahydro-4-methoxy-2H-pyran-2-yl)-1-phenylethanone 

5.38c 

 

O

OMe

PhO2S

5.37
O

OMe

5.38c
AlCl3

Ph

Ph

OTBS

O

PhPh

 

 

General Procedure D was followed.  Sulfonylpyran 5.37 (170 mg, 0.491 mmol), 

AlCl3 (98 mg, 0.737 mmol), and (1-phenylvinyloxy)(tert-butyl)dimethylsilane (345 mg, 

1.47 mmol) were employed, and tetrahydropyran 5.38c was obtained in 82% with a 

diastereomeric ratio of >20:1 as a colorless oil (131 mg, 0.404 mmol).  Biotage condition: 

25+S column, 95:5 hexanes : EtOAc for 90 mL, then 95:5 → 80:20 hexanes : EtOAc 

linear gradient over 270 mL, then 80:20 hexanes : EtOAc for 90 mL.  1H NMR (500 

MHz, CDCl3): δ (ppm) = 7.95 – 7.93 (2H, m), 7.56 (1H, m), 7.47 – 7.44 (2H, m), 7.27 – 

7.25 (2H, m), 7.20 – 7.16 (3H, m), 4.48 (1H, dddd, J = 9.5, 6.5, 6.5, 3.5 Hz), 4.23 (1H, 

m), 3.70 (1H, dddd, J = 9.0, 9.0, 4.5, 4.5 Hz), 3.36 (1H, dd, J = 16.5, 6.5 Hz), 3.33 (3H, 

s), 3.16 (1H, dd, J = 16.0, 6.5 Hz), 2.98 (1H, dd, J = 13.5, 7.0 Hz), 2.79 (1H, dd, J = 14.0, 

6.5 Hz), 2.17 (1H, m), 1.83 (1H, dddd, J = 13.0, 4.0, 4.0, 1.5 Hz), 1.60 (1H, ddd, J = 13.5, 

9.0, 4.5 Hz), 1.43 (1H, ddd, J = 13.0, 8.5, 8.5 Hz).  13C NMR (125 MHz, CDCl3): δ (ppm) 

= 198.43, 138.66, 137.15, 133.11, 129.08, 128.55, 128.38, 128.17, 126.18, 72.86, 72.64, 
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66.70, 55.58, 44.18, 39.12, 35.88, 33.66.  IR (cm-1): f = 3061, 3026, 2925, 1683, 1449, 

1087, 700.  HRMS-FAB: (M+H)+ = 325.1804 calculated for C21H25O3, experimental = 

325.1812. 

 

(±)-methyl 2-((2S,4R,6R)-6-benzyl-tetrahydro-4-methoxy-2H-pyran-2-yl)-2-

methylpropanoate 5.38d 

 

O

OMe
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General Procedure D was followed.  Sulfonylpyran 5.37 (190 mg, 0.548 mmol), 

AlCl3 (110 mg, 0.822 mmol), and (1-methoxy-2-methylprop-1-enyloxy)(tert-

butyl)dimethylsilane (356 mg, 1.64 mmol) were employed, and tetrahydropyran 5.38d 

was obtained in 80% with a diastereomeric ratio of >20:1 as a colorless oil (135 mg, 

0.441 mmol).  Biotage condition: 25+S column, 95:5 hexanes : EtOAc for 90 mL, then 

95:5 → 85:15 hexanes : EtOAc linear gradient over 270 mL.  1H NMR (500 MHz, 

CDCl3): δ (ppm) = 7.30 – 7.27 (2H, m), 7.21 – 7.18 (3H, m), 4.34 (1H, qt, J = 7.0 Hz), 

3.92 (1H, dd, J = 11.5, 1.5 Hz), 3.67 (1H, dddd, J = 11.5, 11.5, 4.5, 4.5 Hz), 3.60 (3H, s), 

3.36 (3H, s), 2.95 (1H, dd, J = 13.5, 7.0 Hz), 2.83 (1H, dd, J = 13.5, 8.0 Hz).  1.96 (1H, 

m), 1.95 (1H, m), 1.43 (1H, ddd, J = 12.5, 11.5, 6.0 Hz), 1.21 (1H, qt, J = 11.5 Hz).  13C 

NMR (125 MHz, CDCl3): δ (ppm) = 177.07, 138.73, 129.01, 128.42, 126.20, 74.52, 

73.31, 55.34, 51.80, 46.35, 37.70, 33.24, 32.13, 21.13, 20.02.  IR (cm-1): f = 3027, 2950, 
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1732, 1455, 1267, 1143, 1089, 1025, 743, 701.  HRMS-FAB: (M+H)+ = 307.1909 

calculated for C18H27O4, experimental = 307.1908. 

 

(±)-(E)-methyl 4-((2R,4S,6R)-6-benzyl-tetrahydro-4-methoxy-2H-pyran-2-yl)-2-

methylbut-2-enoate 5.38e 

 

O
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General Procedure D was followed.  Sulfonylpyran 5.37 (160 mg, 0.462 mmol), 

AlCl3 (92 mg, 0.693 mmol), and ((Z)-1-methoxy-2-methylbuta-1,3-dienyloxy)(tert-

butyl)dimethylsilane (317 mg, 1.39 mmol) were employed, and tetrahydropyran 5.38e 

was obtained in 80% with a diastereomeric ratio of >20:1 as a colorless oil (135 mg, 

0.441 mmol).  Biotage condition: 25+S column, 95:5 hexanes : EtOAc for 90 mL, then 

95:5 → 85:15 hexanes : EtOAc linear gradient over 270 mL.    1H NMR (500 MHz, 

CDCl3): δ (ppm) = 7.30 – 7.27 (2H, m), 7.22 – 7.18 (3H, m), 6.72 (1H, tq, J = 7.5, 1.5 

Hz), 4.25 (1H, ddd, J = 11.5, 7.5, 4.5 Hz), 3.88 (1H, m), 3.73 (3H, s), 3.65 (1H, dddd, J = 

9.5, 9.0, 5.0, 4.0 Hz), 3.33 (3H, s), 2.98 (1H, dd, J = 13.5, 9.0 Hz), 2.76 (1H, dd, J = 13.5, 

7.0 Hz), 2.51 (1H, m), 2.37 (1H, m), 2.03 (1H, m), 1.85 (1H, dddd, J = 13.0, 3.5, 3.5, 1.0 

Hz), 1.82 (3H, d, J = 1.0 Hz), 1.59 (1H, ddd, J = 13.0, 9.5, 5.0 Hz), 1.34 (1H, ddd, J = 

13.0, 9.0, 9.0 Hz). 13C NMR (125 MHz, CDCl3): δ (ppm) = 168.38, 138.62, 138.37, 

129.02, 128.98, 128.39, 126.18, 72.91, 72.57, 68.85, 55.52, 51.66, 38.89, 36.12, 34.82, 
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33.68, 12.64.  IR (cm-1): f = 3027, 2947, 1713, 1435, 1265, 1090.  HRMS-FAB: (M+H)+ 

= 319.1909 calculated for C19H27O4, experimental = 319.1916. 

 

(±)-((1R,2R)-2-((2S,4R,6R)-6-benzyl-tetrahydro-4-methoxy-2H-pyran-2-yl) 

cyclopropoxy)(tert-butyl)dimethylsilane 5.38f 
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General Procedure D was followed.  Sulfonylpyran 5.37 (175 mg, 0.505 mmol), 

AlCl3 (101 mg, 0.758 mmol), and ((Z)-3-(tributylstannyl)prop-1-enyloxy)(tert-

butyl)dimethylsilane (699 mg, 1.515 mmol) were employed, and tetrahydropyran 5.38f 

(major product) was obtained in 29% as a colorless oil (50 mg, 0.133 mmol).  The 

relative stereochemistry of the cyclopropane group to the tetrahydropyran ring was not 

determined.  Biotage condition: 25+S column, 98:2 hexanes : EtOAc for 180 mL, then 

98:2 → 85:15 hexanes : EtOAc linear gradient over 360 mL, then 85:15 hexane : EtOAc 

for 180 mL.  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.28 – 7.31 (2H, m), 7.17 – 7.22 

(3H, m), 4.32 (1H, ddd, J = 11.5, 7.0, 4.0 Hz), 3.59 (1H, dddd, J = 9.0, 9.0, 5.0, 4.0 Hz), 

3.34 (3H, s), 3.18 (1H, ddd, J = 6.0, 3.0, 3.0 Hz), 3.03 (1H, ddd, J = 9.0, 9.0, 3.5 Hz), 

2.96 (1H, dd, J = 14.0, 8.0 Hz), 2.68 (1H, dd, J = 13.5, 7.0 Hz), 1.97 (1H, m), 1.80 (1H, 

dddd, J = 13.0, 4.0, 4.0 1.5 Hz), 1.59 (1H, ddd, J = 14.5, 9.0, 5.0 Hz), 1.40 (1H, ddd, J = 

12.5, 9.0, 9.0 Hz), 1.28 (1H, m), 0.87 (9H, s), 0.68 (1H, ddd, J = 10.5, 5.5, 3.5 Hz), 0.37 
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(1H, ddd, J = 6.5, 6.0, 6.0 Hz), 0.05 (6H, s).  13C NMR (125 MHz, CDCl3): δ (ppm) = 

138.66, 129.05, 128.39, 126.19, 73.08, 72.10, 71.78, 55.44, 51.73, 38.96, 34.94, 34.02, 

25.84, 24.44, 17.99, 11.51, -4.91, -5.09.  IR (cm-1): f = 3025, 2928, 2857, 1455, 1255, 

1213, 1156, 1093, 837, 778, 699.  HRMS-FAB: (M+H)+ = 377.2572 calculated for 

C22H37O3Si, experimental = 377.2530. 

 

(±)-methyl 2-((2S,4R,6R)-6-benzyl-tetrahydro-4-methoxy-2H-pyran-2-yl)propanoate 

5.38g 
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General Procedure D was followed.  Sulfonylpyran 5.37 (160 mg, 0.505 mmol), 

AlCl3 (101 mg, 0.758 mmol), and ((E)-1-methoxyprop-1-enyloxy)(tert-

butyl)dimethylsilane (281 mg, 1.386 mmol) were employed, and tetrahydropyran 5.38g 

was obtained as a 1:1 mixture of diastereomers in 82% combined yield as a colorless oil 

(115 mg, 0.375 mmol).  Biotage condition: 25+S column, 98:2 hexanes : EtOAc for 180 

mL, then 98:2 → 85:15 hexanes : EtOAc linear gradient over 360 mL, then 85:15 hexane 

: EtOAc for 180 mL.  The more polar diastereomer: 1H NMR (500 MHz, CDCl3): δ 

(ppm) = 7.30 – 7.27 (2H, m), 7.21 – 7.17 (3H, m), 4.26 (1H, m), 4.10 – 3.98 (2H, m), 

3.93 (1H, ddd, J = 9.0, 9.0, 3.0 Hz), 3.64 (1H, dddd, J = 9.5, 9.0, 5.0, 4.5 Hz), 3.33 (3H, 

s), 2.93 (1H, dd, J = 13.5, 7.0 Hz), 2.77 – 2.71 (2H, m), 2.05 (1H, m), 1.18 (1H, dddd, J = 
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14.5, 4.0, 4.0, 1.5 Hz), 1.55 (1H, ddd, J = 14.5, 9.5, 5.0 Hz), 1.33 (1H, ddd, J = 12.5, 9.0, 

9.0 Hz), 1.19 (3H, t, J = 7.5 Hz), 1.11 (3H, d, J = 7.0 Hz).  13C NMR (125 MHz, CDCl3): 

δ (ppm) = 175.02, 138.65, 129.13, 128.33, 126.14, 72.96, 72.79, 71.78, 60.28, 55.56, 

44.68, 38.90, 33.36, 33.03, 14.16, 13.36.  IR (cm-1): f = 3027, 2979, 2930, 2825, 1732, 

1455, 1376, 1261, 1160, 1095.  HRMS-FAB: (M+H)+: 307.1909 calculated for C18H26O4, 

experimental = 307.1932.   

 

(±)-(E)-methyl 4-((2S,4R,6R)-6-benzyl-tetrahydro-4-methoxy-2H-pyran-2-yl)pent-2-

enoate 5.38h 
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 General Procedure D was followed.  Sulfonylpyran 5.37 (150 mg, 0.433 mmol), 

AlCl3 (87 mg, 0.650 mmol), and ((Z)-1-methoxy-2-methylbuta-1,3-dienyloxy)(tert-

butyl)dimethylsilane (297 mg, 1.299 mmol) were employed, and tetrahydropyran 5.38h 

was obtained in 62% as the major product as a chromatographically an inseparable 3:2 

mixture of diastereomers at C4 stereocenter.  5.38h was isolated as a colorless oil (89 mg, 

0.280 mmol).  Biotage condition: 25+S column, 95:5 hexanes : EtOAc for 90 mL, then 

95:5 → 85:15 hexanes : EtOAc linear gradient over 270 mL.  The two diastereomers 

were labeled A (major) and B (minor) for characterization purposes.  Diastereomers A 

and B were distinguishable by both 1H and 13C NMR based on their signal intensity.  1H 
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NMR (500 MHz, CDCl3): δ (ppm) = 7.33 – 7.29 (4H, m, A and B), 7.25 – 7.19 (6H, m, 

A and B), 6.93 (1H, dd, J = 15.5, 8.0 Hz, A), 6.88 (1H, dd, J = 16.0, 8.5 Hz, B), 5.87 (1H, 

dd, J = 16.0, 1.0 Hz, B), 5.81 (1H, dd, J = 16.0, 1.0 Hz, A), 4.31 – 4.22 (2H, m, A and B), 

3.75 (3H, s, B), 3.74 (3H, s, A), 3.71 – 3.58 (4H, m, A and B), 3.37 (3H, s, A), 3.35 (3H, 

s, B), 2.98 (1H, dd, J = 13.5, 8.0 Hz, A), 2.96 (1H, dd, J = 14.0, 9.5 Hz, B), 2.77 (2H, dd, 

J = 14.0, 7.0 Hz, A and B), 2.64 (1H, m, A), 2.55 (1H, m, B), 2.14 – 1.84 (4H, m, A and 

B), 1.66 – 1.53 (2H, m, A and B), 1.39 – 1.53 (2H, m, A and B), 1.05 (1H, d, J = 7.0 Hz, 

A), 0.97 (1H, d, J = 6.5 Hz, B).  13C NMR (125 MHz, CDCl3): δ (ppm) = 166.98 (B), 

166.93 (A), 151.32 (A), 151.11 (B), 138.61 (B), 138.58 (A), 129.10 (B), 129.03 (A), 

128.38 (A), 128.34 (B), 126.22 (B), 126.17 (A), 121.21 (B), 120.87 (A), 73.28 (A), 73.16 

(B), 73.08 (A), 72.52 (B), 72.39 (A), 72.32 (B), 55.65 (B), 55.46 (A), 51.43 (B), 51.34 

(A), 41.19 (A), 41.05 (B), 39.08 (B), 38.41 (A), 34.19 (A), 33.89 (B), 33.69 (B), 33.61 

(A), 15.72 (A), 15.50 (B).  IR (cm-1): f = 3073, 3015, 2937, 1722, 1655, 1454, 1435, 

1273, 1195, 1094, 1013, 741, 700.  HRMS-FAB: (M+H)+ = 319.1909 calculated for 

C19H27O4, experimental = 319.1892. 
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GENERAL PROCEDURE E: Alkylation of Sulfonylpyran 5.37   

 

O

OMe

PhO2S

5.37

Ph

NaHMDS;
Electrophiles;
MeOH, PPTS

O

OMe

E

5.43
OMe

Ph

 

 

Sulfonylpyran 5.37 (1.0 equivalent) as a mixture of diastereomers was dissolved 

in toluene (15 mL), and the solution was cooled to -78°C.  A solution of NaHMDS (3.0 

equivalents, 2.0 M in THF) was then added dropwise.  After stirring the mixture for 30 

minutes, electrophiles (4.0 equivalents) was added dropwise.  The solution was warmed 

to -50°C and stirred overnight or until starting material was completely consumed.  The 

reaction was diluted with Et2O (10 mL) and then quenched with half-saturated Na2CO3 

solution (20 mL).  After separating the organic and aqueous layers, the aqueous layer was 

washed with Et2O (2 x 20 mL).  The organic layers were then combined, dried over 

MgSO4, and filtered.  The solution was rotovaped in a cold bath only to remove Et2O, and 

toluene must remain in the flask.  MeOH (25 mL) and PPTS (15 mg) was then added to 

the toluene solution, and the mixture was stirred for one hour.  After adding TEA (1 mL), 

this mixture was then concentrated and eluted through a silica gel column.  Removal of 

solvent under vacuum provided the title product 5.43 as a mixture of diastereomers.   
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(±)-(4S,6S)-2,6-dibenzyl-tetrahydro-2,4-dimethoxy-2H-pyran 5.43a 

 

O

OMe

PhO2S

5.37

Ph

NaHMDS;
benzyl bromide;
MeOH, PPTS

O

OMe

5.43a
OMe

PhPh

 

 

General Procedure E was followed.  Sulfonylpyran 5.37 (200 mg, 0.577 mmol), 

NaHMDS (0.87 mL, 1.73 mmol, 2.0 M in THF), and benzyl bromide (0.27 mL, 2.31 

mmol) were employed, and a diastereomeric mixture of methyl pyranoside 5.43a was 

obtained in 79% yield as a colorless oil (148 mg, 0.453 mmol).  Product elution was 

made with 90:10 hexane : EtOAc.  The less polar diastereomer:  1H NMR (500 MHz, 

CDCl3): δ (ppm) = 7.33 – 7.21 (10H, m), 3.73 (1H, m), 3.54 (1H, dddd, J = 11.0, 11.0, 

4.5, 4.5 Hz), 3.24 (3H, s), 3.11 (3H, s), 2.95 (1H, d, J = 14.0 Hz), 2.91 (1H, dd, J = 13.5, 

7.0 Hz), 2.88 (1H, d, J = 14.0 Hz), 2.76 (1H, dd, J = 13.5, 5.5 Hz), 1.99 (1H, m), 1.90 

(1H, ddd, J = 13.0, 5.0, 2.0 Hz), 1.16 (1H, dd, J = 12.5, 11.5 Hz), 1.04 (1H, q, J = 11.5 

Hz).   13C NMR (125 MHz, CDCl3): δ (ppm) = 138.53, 136.46, 130.24, 129.55, 128.13, 

128.06, 126.37, 126.19, 101.22, 73.60, 70.40, 55.50, 47.42, 42.38, 42.17, 38.35, 36.40.  

IR (cm-1): f = 3028, 2939, 2827, 1603, 1496, 1454, 1379, 1149, 1088, 1035, 978, 752, 

700.  HRMS-FAB: (M-H)+ = 325.1804 calculated for C21H25O3, experimental = 

325.1797. 
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(±)-(4R,6R)-2-allyl-6-benzyl-tetrahydro-2,4-dimethoxy-2H-pyran 5.43b 

 

O

OMe

PhO2S

5.37

Ph

NaHMDS;
allyl bromide;

MeOH

O

OMe

5.43b
OMe

Ph

 

 

General Procedure E was followed.  Sulfonylpyran 5.37 (200 mg, 0.577 mmol), 

NaHMDS (0.87 mL, 1.73 mmol, 2.0 M in THF), and allyl bromide (0.20 mL, 2.31 mmol) 

were employed, and a diastereomeric mixture of methyl pyranoside 5.43b was obtained 

in 85% yield as a colorless oil (135 mg, 0.488 mmol).  The methanolysis step was run for 

24 hours without PPTS and subsequent TEA quench.  Product elution was made with 

90:10 hexanes : EtOAc.  The more polar diastereomer:  1H NMR (500 MHz, CDCl3): δ 

(ppm) = 7.28 – 7.17 (5H, m), 5.75 (1H, dddd, J = 16.5, 9.5, 7.0, 7.0 Hz), 5.09 – 5.04 (2H, 

m), 4.08 (1H, dddd, J = 11.0, 7.5, 5.0, 2.0 Hz), 3.56 (1H, m), 3.27 (3H, s), 2.93 (3H, s), 

2.79 (1H, dd, J = 13.5, 8.0 Hz), 2.70 (1H, dd, J = 13.5, 5.5 Hz), 2.44 (1H, dddd, J = 14.5, 

7.0, 1.5, 1.5 Hz), 2.22 (1H, dddd, J = 14.5, 7.5, 1.0, 1.0 Hz), 1.97 (1H, ddd, J = 15.0, 3.0, 

2.0 Hz), 1.82 (1H, dddd, J = 13.5, 3.0, 2.0, 2.0 Hz), 1.54 (1H, dd, J = 14.5, 4.0 Hz), 1.38 

(1H, ddd, J = 14.0, 11.5, 3.5 Hz).   13C NMR (125 MHz, CDCl3): δ (ppm) = 138.72, 

133.42, 129.64, 127.96, 126.01, 117.67, 99.05, 73.15, 65.84, 56.44, 47.34, 42.28, 41.41, 

35.22, 33.73.  IR (cm-1): f = 3080, 3017, 2922, 2820, 1455, 1208, 1110, 1087, 1029.  

HRMS-FAB: (M-OMe)+ = 245.1542 calculated for C16H21O2, experimental = 245.1559. 
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(±)-(4R,6R)-6-benzyl-tetrahydro-2,4-dimethoxy-2-methyl-2H-pyran 5.43c 

 

O

OMe

PhO2S

5.37

Ph

NaHMDS;
methyl iodide;
MeOH, PPTS

O

OMe

5.43c
OMe

Ph

 

 

 General Procedure E was followed.  Sulfonylpyran 5.37 (200 mg, 0.577 mmol), 

NaHMDS (0.87 mL, 1.73 mmol, 2.0 M in THF), and CH3I (0.14 mL, 2.31 mmol) were 

employed, and a diastereomeric mixture of methyl pyranoside 5.43c was obtained in 97% 

yield as a colorless oil (140 mg, 0.559 mmol).  Product elution was made with 90:10 

hexanes : EtOAc.  The more polar diastereomer:  1H NMR (500 MHz, CDCl3): δ (ppm) 

= 7.28 – 7.24 (4H, m), 7.19 (1H, m), 4.06 (1H, dddd, J = 11.5, 7.5, 5.5, 2.0 Hz), 3.56 (1H, 

p, J = 6.0 Hz), 3.28 (3H, s), 2.93 (3H, s), 2.81 (1H, dd, J = 13.5, 7.5 Hz), 2.68 (1H, dd, J 

= 13.5, 5.5 Hz), 2.06 (1H, ddd, J = 14.5, 2.0, 2.0 Hz), 1.82 (1H, dddd, J = 14.0, 3.0, 2.0, 

2.0 Hz), 1.57 (1H, dd, J = 15.0, 4.5 Hz), 1.41 (1H, ddd, J = 14.0, 12.0, 4.0 Hz), 1.26 (3H, 

s).   13C NMR (125 MHz, CDCl3): δ (ppm) = 138.74, 129.55, 127.99, 126.00, 98.19, 

73.36, 65.91, 56.47, 47.76, 42.31, 37.85, 33.64, 24.18.  IR (cm-1): f = 3030, 2925, 2826, 

1454, 1373, 1201, 1128, 1091, 1034.  HRMS-FAB: (M-H)+ = 249.1491 calculated for 

C15H21O3, experimental = 249.1475. 
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(±)-(4R,6R)-6-benzyl-2-((benzyloxy)methyl)-tetrahydro-2,4-dimethoxy-2H-pyran 5.43d 

 

O

OMe

PhO2S

5.37

Ph

NaHMDS;
BOMCl;

MeOH, PPTS

O

OMe

5.43d
OMe

PhBnO

 

 

 General Procedure E was followed.  Sulfonylpyran 5.37 (200 mg, 0.577 mmol), 

NaHMDS (0.87 mL, 1.73 mmol, 2.0 M in THF), and BOMCl (0.32 mL, 2.31 mmol) were 

employed.  The reaction was warmed to -40°C and stirred overnight.  A diastereomeric 

mixture of methyl pyranoside 5.43d was obtained in 82% yield as a colorless oil (169 

mg, 0.474 mmol).  Product elution was made with 95:5 hexanes : i-PrOH.  The more 

polar diastereomer:  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.37 – 7.33 (4H, m), 7.31 – 

7.16 (6H, m), 4.60 (1H, d, J = 12.0 Hz), 4.56 (1H, d, J = 12.5 Hz), 4.13 (1H, dddd, J = 

11.5, 8.0, 5.5, 2.5 Hz), 3.59 (1H, p, J = 3.5 Hz), 3.47 (1H, d, J = 10.5 Hz), 3.30 (3H, s), 

3.25 (1H, d, J = 10.0 Hz), 2.92 (3H, s), 2.78 (1H, dd, J = 13.5, 8.0 Hz), 2.70 (1H, dd, J = 

13.5, 5.5 Hz), 2.14 (1H, ddd, J = 15.0, 3.0, 1.5 Hz), 1.82 (1H, dddd, J = 13.5, 3.5, 2.0, 2.0 

Hz), 1.72 (1H, dd, J = 14.5, 4.0 Hz), 1.48 (1H, ddd, J = 14.0, 11.5, 3.5 Hz).   13C NMR 

(125 MHz, CDCl3): δ (ppm) = 138.56, 138.21, 129.54, 128.33, 127.98, 127.71, 127.61, 

126.04, 98.52, 73.29, 72.78, 71.33, 65.97, 56.36, 47.83, 42.20, 34.39, 33.45.  IR (cm-1): f 

= 3028, 2923, 2863, 1454, 1213, 1111, 1100, 1031, 738, 699.  HRMS-FAB: (M-OMe)+ = 

325.1804 calculated for C21H25O3, experimental = 325.1823. 
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(±)-1-((S)-2-((benzyloxy)methoxy)pent-4-enyl)benzene 5.46 

 

Ph

OH
BOMCl, DIPEA

Ph

OBOM

5.465.21b  

 

Crude 1-phenylpent-4-en-2-ol (5.00 g, 30.8 mmol) was dissolved in CH2Cl2 (100 

mL), and DIPEA was then added (16.1  mL, 92.5 mmol).  After cooling the mixture to 

0°C, BOMCl (6.40 mL, 46.2 mmol) was added dropwise.  The reaction was warmed to 

gentle reflux overnight.  After recooling to 0°C, the reaction was then diluted with 

CH2Cl2 (100 mL) and washed subsequently with aqueous solutions of 2 M HCl (100 mL) 

and then saturated NaHCO3 (100 mL).  The organic layer was then dried over MgSO4 

and filtered.  A yellow oil was obtained upon removal of CH2Cl2 under vacuum.  The 

crude material was purified with Biotage chromatography to give the title product 5.46 in 

70% yield as a colorless oil (6.10 g, 21.6 mmol).  Biotage condition: 40+M column, 

100:0 hexanes : EtOAc for 240 mL, then 100:0 → 98:2 hexanes : EtOAc linear gradient 

over 240 mL.  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.39 – 7.21 (10H, m), 5.91 (1H, 

m), 5.15 (1H, m), 5.13 (1H, m), 4.78 (1H, d, J = 7.5 Hz), 4.65 (1H, d, J = 7.5 Hz), 4.43 

(1H, d, J = 11.5 Hz), 4.30 (1H, d, J = 12.0 Hz), 3.99 (1H, p, J = 6.0 Hz), 2.85 (2H, d, J = 

6.5 Hz), 2.37 – 2.34 (2H, m).  13C NMR (125 MHz, CDCl3): δ (ppm) = 138.80, 137.79, 

134.56, 129.56, 128.29, 128.25, 127.85, 127.56, 126.17, 117.57, 92.95, 77.28, 69.22, 

40.82, 38.55.  IR (cm-1): f = 3064, 3029, 2939, 2887, 1496, 1454, 1163, 1101, 1042, 916, 

744, 699.  HRMS-FAB: (M+H)+ = 283.1698 calculated for C19H23O2, experimental = 

283.1703. 
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(±)-1-((2R,4R)-2-((phenylsulfonyl)methoxy)-4-(benzyloxy)-5-iodopentyl)benzene 5.47 

 

ICl; PhSH, TEA O

5.46a

I

OBn

SPh

PhPh

OBOM

5.46

O

5.47

I

OBn

SO2Ph

(NH4)6Mo7O24 • 4H2O
H2O2

Ph

 

 

Compound 5.46 (800 mg, 2.83 mmol) was dissolved in toluene (60 mL), and 1 

gram of 4 Å molecular sieves was then added.  After cooling this solution was cooled to -

78°C, an iodine monochloride solution (3.96 mL, 3.96 mmol, 1.0 M in CH2Cl2) was 

added dropwise while maintaining an internal temperature of the reaction below -75°C.  

The solution became dark red and was stirred for 30 minutes.  Then, TEA (1.18 mL, 8.49 

mmol) was added in one injection, followed by PhSH (0.41 mL, 3.96 mmol) in which the 

solution immediately turned cloudy.  The reaction was warmed to room temperature over 

one hour and then quenched with a 1:1 mixture of saturated NaHCO3 and Na2S2O3 (100 

mL).  After separating the organic and aqueous layers, the aqueous layer was washed 

with Et2O (2 x 50 mL).  The organic layers were then combined, dried over MgSO4, and 

filtered.  The organic solvent was removed under vacuum leaving behind a yellow oil.  

The crude material was flushed through a thick silica pad with hexanes which removed 

the non-polar side product, then with 50:50 hexanes : EtOAc to isolate the product.  Upon 

removal of solvent, the material was then loaded into a silica gel column, and the product 

was eluted with 95:5 hexanes : EtOAc.  The title product 5.46a was obtained 68% yield 
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with a diastereomeric ratio of >20:1 as a yellow oil (1.00 g, 1.93 mmol).  1H NMR (500 

MHz, CDCl3): δ (ppm) = 7.40 – 7.15 (15H, m), 5.14 (1H, d, J = 12.0 Hz), 4.83 (1H, d, J 

= 12.0 Hz), 4.46 (1H, d, J = 11.5 Hz), 4.31 (1H, d, J = 11.5 Hz), 4.02 (1H, m), 3.31 (2H, 

d, J = 4.5 Hz), 3.25 (1H, m), 2.90 (1H, dd, J = 14.0, 6.5 Hz), 2.78 (1H, dd, J = 13.5, 6.5 

Hz), 1.88 (1H, ddd, J = 14.5, 7.5, 5.5 Hz), 1.79 (1H, ddd, J = 14.5, 7.0, 5.0 Hz).  13C 

NMR (125 MHz, CDCl3): δ (ppm) = 137.84, 137.65, 135.67, 129.54, 129.25, 128.96, 

128.40, 128.38, 127.91, 127.73, 126.42, 126.39, 74.74, 74.03, 73.17, 70.93, 40.22, 38.97, 

10.76.  IR (cm-1): f = 3061, 3028, 2921, 1584, 1495, 1454, 1053, 1027, 741, 700.  HRMS-

FAB: (M-H)+ = 517.0698 calculated for C25H26O2SI, experimental = 517.0717. 

 Compound 5.46a (5.17 g, 9.97 mmol) was dissolved in ethanol (124 mL, 200 

proof), and the solution was cooled to 0°C.  In a separate flask, ammonium (VI) 

molybdate tetrahydrate (2.49 g, 1.99 mmol) was dissolved in a cold aqueous hydrogen 

peroxide solution (30%, 124 mL).  This Mo(VI) – H2O2 mixture was immediately poured 

to the solution of 5.46a in one portion causing the reaction to turn yellow and cloudy  (the 

cloudiness eventually dissipated).  The reaction was stirred at 0°C for one hour and then 

at room temperature for 48 hours.  Addition of DI water (300 mL) quenched the reaction, 

and the aqueous layer was extracted with CH2Cl2 (3 x 100 mL).  The pink organic layers 

were combined, dried over MgSO4, filtered, and rotovaped to produce a dark red oily 

residue.  The crude material was then loaded onto silica gel and chromatographed with 

80:20 hexanes : EtOAc to afford the corresponding sulfone 5.47 in 65% yield as a yellow 

oil (3.59 g, 6.52 mmol).  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.77 (2H, d, J = 7.5 

Hz), 7.64 (1H, t, J = 7.5 Hz), 7.51 (2H, t, J = 8.0 Hz), 7.39 – 7.31 (5H, m), 7.29 – 7.22 

(3H, m), 7.08 (2H, m), 4.56 (1H, d, J = 11.0 Hz), 4.53 (1H, d, J = 12.5 Hz), 4.37 (1H, d, J 
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= 12.5 Hz), 4.34 (1H, d, J = 11.5 Hz), 4.11 (1H, p, J = 6.0 Hz), 3.34 – 3.26 (3H, m), 2.80 

(1H, dd, J = 14.0, 7.0 Hz), 2.76 (1H, dd, J = 14.0, 6.0 Hz), 1.90 – 1.80 (2H, m).  13C 

NMR (125 MHz, CDCl3): δ (ppm) = 137.52, 137.28, 136.99, 133.89, 129.50, 129.14, 

128.70, 128.51, 128.47, 128.00, 127.89, 126.65, 84.36, 80.80, 73.81, 70.93, 40.69, 39.04, 

9.96.  IR (cm-1): f = 3062, 3029, 2922, 1496, 1447, 1324, 1297, 1150, 1113, 1080, 744, 

700.  HRMS-FAB: (M+H)+ = 551.0753 calculated for C25H28O4SI, experimental = 

551.0747. 

 

(±)-(2R,4R)-2-benzyl-4-(benzyloxy)-tetrahydro-6-(phenylsulfonyl)-2H-pyran 5.48 

 

LiHMDS, HMPAO

5.47

I

OBn

SO2Ph

Ph
O

OBn

PhO2S

2S-5.48

Ph
O

OBn

PhO2S

2R-5.48

Ph+

 

 

HMDS (1.75 mL, 8.21 mmol) was dissolved in THF (50 mL) and cooled to -

78°C.  A solution of n-BuLi (3.70 mL, 8.21 mmol, 2.2 M in hexanes) was then added 

dropwise quite rapidly, and the solution was stirred for 10 minutes prior to the addition of 

HMPA (2.90 mL, 16.4 mmol).  This LiHMDS solution was further stirred for 10 minutes.  

In a separate flask, sulfone 5.47 (3.01 g, 5.47 mmol) was dissolved in THF (200 mL), and 

the solution was cooled to -78°C.  The freshly prepared, cold LiHMDS solution was then 

added to this solution via cannula dropwise over 30 minutes.  The reaction was further 

stirred for 2 hours, and then quenched with a half-saturated aqueous NH4Cl solution (200 

mL).  After separating the organic and aqueous layers, the aqueous layer was washed 
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with Et2O (2 x 100 mL).  The organic layers were then combined, dried over MgSO4, 

filtered, and concentrated under vacuum leaving behind a yellow oil.  The crude material 

was flushed through a thick silica pad with 70:30 hexanes : EtOAc.  The solvent was then 

evaporated to leave the title product 5.48 as a yellow solid (2.10 g, 4.97 mmol) in 91% 

yield as a 3:2 mixture of diastereomers.  For characterization purposes, the two 

diastereomers were separated and isolated by column chromatography with 80:20 

hexanes : EtOAc. 

Less Polar Diastereomer 2S-5.48:  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.85 (2H, d, J 

= 7.5 Hz), 7.61 (1H, dt, J = 7.5, 0.5 Hz), 7.45 (2H, t, J = 8.0 Hz), 7.37 – 7.30 (5H, m), 

7.16 – 7.15 (3H, m), 7.02 – 7.00 (2H, m), 4.79 (1H, dd, J = 12.0, 2.0 Hz), 4.56 (1H, d, J = 

12.0 Hz), 4.47 (1H, d, J = 12.0 Hz), 4.05 – 4.00 (2H, m), 2.82 (1H, dd, J = 14.0, 8.0 Hz), 

2.67 (1H, dd, J = 14.5, 4.5 Hz), 2.47 (1H, m), 1.91 – 1.85 (2H, m), 1.53 (1H, ddd, J = 

14.0, 12.0, 2.5 Hz).  13C NMR (125 MHz, CDCl3): δ (ppm) = 137.91, 137.74, 136.50, 

133.59, 129.29, 129.07, 128.69, 128.42, 128.09, 127.73, 127.45, 126.11, 87.69, 74.53, 

70.42, 70.19, 41.69, 34.91, 27.08.  IR (cm-1): f = 3063, 3030, 2920, 2877, 1496, 1448, 

1320, 1151, 1090, 1067, 747, 726, 700.  HRMS-FAB: (M-H)+ = 421.1474 calculated for 

C25H25O4S, experimental = 421.1448. 

More Polar Diastereomer 2R-5.48:  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.60 – 7.55 

(3H, m), 7.42 – 7.38 (6H, m), 7.33 (1H, m), 7.30 – 7.27 (3H, m), 7.11 – 7.10 (2H, m), 

4.78 (1H, m), 4.75 (1H, d, J = 12.0 Hz), 4.71 (1H, dd, J = 8.0, 5.5 Hz), 4.55 (1H, d, J = 

12.0 Hz), 3.89 (1H, m), 2.75 (1H, dd, J = 14.5, 5.5 Hz), 2.70 (1H, dd, J = 14.0, 9.0 Hz), 

2.44 – 2.30 (2H, m), 1.90 – 1.82 (2H, m).  13C NMR (125 MHz, CDCl3): δ (ppm) = 

137.94, 137.61, 137.08, 133.41, 129.20, 129.04, 128.77, 128.42, 128.38, 127.69, 127.67, 
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126.32, 87.56, 72.48, 70.08, 68.73, 40.59, 35.25, 26.23.  IR (cm-1): f = 3063, 3029, 2928, 

2868, 1496, 1447, 1329, 1301, 1149, 1083, 742, 699.  HRMS-FAB: (M-SO2Ph)+ = 

281.1542 calculated for C19H21O2, experimental = 281.1544. 

 

(±)-(2R,4S,6R)-2-allyl-6-benzyl-4-(benzyloxy)-tetrahydro-2H-pyran 5.49 

 

O

OBn

PhO2S

5.48
O

OBn

5.49

TMS

PhPh AlCl3

 

 

A suspension of AlCl3 (166 mg, 1.24 mmol) in toluene (15 mL) was cooled to -

78°C.  In a separate flask, sulfonylpyran 5.48 (350 mg, 0.828) was dissolved in toluene 

(10 mL).  After cooling to -78°C, this solution was transferred to the AlCl3 suspension 

via cannula in a rapid stream.  To ensure all starting material was completely transferred, 

the flask was washed with toluene (2 x 2.5 mL) and transferred to the reaction mixture 

via cannula.  This mixture was stirred for 5 minutes.  Allyltrimethylsilane (0.39 mL, 2.48 

mmol) was then added dropwise, and the reaction was slowly warmed up to -50°C over 

one hour and stirred at this temperature for additional 30 minutes in which all pyran 5.48 

was consumed.  A saturated aqueous solution of Rochelle’s salt (50 mL) was then added, 

and the emulsion was stirred until separation of layers was achieved.  After separating the 

organic and aqueous layers, the aqueous layer was washed with CH2Cl2 (2 x 20 mL).  

The organic layers were then combined, dried over MgSO4, filtered, and concentrated 

under vacuum leaving behind a yellow oil.  The crude material was loaded into a silica 
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gel column, and the product was eluted with 95:5 hexanes : EtOAc.  Tetrahydropyran 

5.49 was obtained as a colorless oil in 88% yield (235 mg, 0.729 mmol) with of >20:1 

diasteremeric ratio.  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.39 – 7.35 (4H, m), 7.33 – 

7.29 (3H, m), 7.23 (1H, tt, J = 7.5, 2.0 Hz), 7.15 – 7.14 (2H, m), 5.79 (1H, dddd, J = 17.0, 

10.0, 7.0, 7.0 Hz), 5.08 (1H, dddd, J = 17.0, 1.5, 1.5, 1.5 Hz), 5.04 (1H, m), 4.58 (1H, d, J 

= 12.0 Hz), 4.55 (1H, d, J = 12.5 Hz), 4.29 (1H, m), 3.86 (1H, dddd, J = 10.0, 10.0, 4.5, 

4.5 Hz), 3.81 (1H, dddd, J = 10.0, 6.5, 6.5, 2.0 Hz), 2.95 (1H, dd, J = 13.5, 7.5 Hz), 2.76 

(1H, dd, J = 13.5, 8.0 Hz), 2.42 (1H, m), 2.28 (1H, m), 2.07 (1H, m), 1.89 (1H, m), 1.63 

(1H, ddd, J = 15.5, 10.0, 5.5 Hz), 1.42 (1H, ddd, J = 13.5, 10.5, 10.5 Hz).    13C NMR 

(125 MHz, CDCl3): δ (ppm) = 138.71, 138.57, 134.87, 129.08, 128.39, 128.38, 127.54, 

127.50, 126.19, 116.81, 73.15, 70.80, 69.59, 69.33, 40.19, 38.65, 36.67, 33.63.  IR (cm-1): 

f = 3063, 3027, 2943, 2860, 1496, 1454, 1356, 1090, 913, 738, 699.  HRMS-FAB: 

(M+H)+ = 323.2011 calculated for C22H27O2, experimental = 323.2002. 

 

(±)-(2R,4S,6R)-2-allyl-6-benzyl-tetrahydro-2H-pyran-4-ol 5.50 

 

O

OBn

5.49

Ph

1.  Li-NH3

2.  DDQ
O

OH

5.50

Ph

 

 

 Anhydrous ammonia (30 mL) was condensed into a round-bottomed flask at -

78°C, and lithium wire (24 mg, 3.41 mmol) was added in two pieces.  The solution 

immediately turned dark blue and was stirred for 15 minutes.  In a separate flask, 
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tetrahydropyran 5.49 (183 mg, 0.568 mmol) was dissolved in THF (10 mL).  After 

cooling to -78°C, this solution was transferred to the Li-NH3 mixture rapidly via cannula.  

To ensure all starting material was completely transferred, the flask was washed with 

THF (2 x 1 mL), cooled, and then transferred to the reaction mixture.  After 5 minutes, 

solid NH4Cl was added until the blue color disappeared, and the ammonia was 

evaporated by warming the reaction to room temperature.  The reaction mixture was 

diluted with Et2O (20 mL) and then washed with DI water (20 mL).  After separating the 

organic and aqueous layers, the aqueous layer was washed with Et2O (2 x 10 mL).  The 

organic layers were then combined, dried over MgSO4, filtered, and concentrated under 

vacuum leaving behind a yellow oil, which was redissolved in CH2Cl2 (20 mL).  DDQ 

(387 g, 1.70 mmol) was then added resulting in a red suspension.  After stirring 

overnight, the solid residue was filtered under vacuum, and the filtrate was then washed 

with a saturated NaHCO3 solution.  After separating the organic and aqueous layers, the 

aqueous layer was washed with CH2Cl2 (20 mL).  The organic layers were then 

combined, dried over MgSO4, filtered, and concentrated under vacuum leaving behind a 

red oil.  The crude material was purified using silica gel chromatography with 70:30 

hexanes : EtOAc.  Upon removal of solvent, title product 5.50 was isolated in 92% yield 

as a clear oil (122 mg, 0.525 mmol).  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.310 – 

7.280 (2H, m), 7.229 – 7.182 (3H, m), 5.771 (1H, dddd, J = 17.0, 10.0, 7.0, 7.0 Hz), 

5.077 (1H, ddd, J = 17.0, 3.0, 1.5 Hz), 5.038 (1H, m), 4.283 (1H, m), 4.131 (1H, dddd, J 

= 10.0, 10.0, 4.5, 4.0 Hz), 3.810 (1H, m), 2.991 (1H, dd, J = 14.0, 7.0 Hz), 2.787 (1H, dd, 

J = 13.5, 7.5 Hz), 2.372 (1H, m), 2.248 (1H, m), 2.020 (1H, dddd, J = 12.5, 4.5, 2.5, 2.0 

Hz), 1.865 (1H, dddd, J = 13.0, 4.5, 2.5, 2.0 Hz), 1.536 (1H, ddd, J = 12.5, 10.0, 5.5 Hz), 
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1.273 (1H, ddd, J = 12.5, 10.0, 10.0 Hz).  13C NMR (125 MHz, CDCl3): δ (ppm) = 

138.68, 134.71, 129.09, 128.43, 126.25, 116.90, 73.69, 68.92, 64.50, 40.31, 40.26, 38.33, 

36.74.  IR (cm-1): f = 3391, 3064, 3026, 2923, 2856, 1455, 1373, 1086, 1053, 1086, 1053, 

1000, 915, 742, 700.  HRMS-FAB: (M-H)+ = 231.1385 calculated for C15H19O2, 

experimental = 231.1388. 

 

(±)-(2S,4S,6R)-2-allyl-6-benzyl-4-(benzyloxy)-tetrahydro-2H-pyran 5.51 

 

O

OBn

PhO2S
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Ph

NaHMDS;
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MeOH

O

OBn
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 Sulfonylpyran 5.48 (400 mg, 0.945 mmol) was dissolved in toluene (30 mL), and 

the solution was cooled to -78°C.  A solution of NaHMDS (1.42 mL, 2.84 mmol, 2.0 M 

in THF) was then added dropwise.  After stirring the mixture for 45 minutes, allyl 

bromide (0.33 mL, 3.78 mmol) was added dropwise.  The solution was warmed to -50°C 

and stirred overnight or until starting material was completely consumed.  The reaction 

was diluted with Et2O (20 mL) and then quenched with a half-saturated Na2CO3 solution 

(20 mL).  After separating the organic and aqueous layers, the aqueous layer was washed 

with Et2O (2 x 20 mL).  The organic layers were then combined, dried over MgSO4, and 

filtered.  The solution was rotovaped in a cold bath only to remove Et2O, and the toluene 
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must remain in the flask.  MeOH (15 mL) was then added to the toluene solution, and the 

mixture was stirred for 24 hours.  This mixture was concentrated and chromatographed 

through a silica gel column with 95:5 hexanes : EtOAc.  Removal of solvent under 

vacuum provided product 5.48a as a 4:1 mixture of diastereomers (233 mg, 0.661 mmol) 

as a yellow oil.  The more polar diastereomer:  1H NMR (500 MHz, CDCl3): δ (ppm) = 

7.34 – 7.19 (10H, m), 5.79 (1H, dddd, J = 16.5, 9.5, 7.5, 7.5 Hz), 5.10 (1H, m), 5.07 (1H, 

m), 4.60 (1H, d, J = 12.5 Hz), 4.44 (1H, d, J = 12.0 Hz), 4.18 (1H, dddd, J = 13.0, 7.5, 

5.0, 2.0 Hz), 3.77 (1H, p, J = 1.5 Hz), 2.96 (3H, s), 2.79 (1H, dd, J = 14.0, 8.0 Hz), 2.71 

(1H, dd, J = 13.5, 5.0 Hz), 2.47 (1H, dd, J = 14.0, 7.0 Hz), 2.25 (1H, dd, J = 14.5, 7.5 

Hz), 2.05 (1H, ddd, J = 15.0, 2.5, 2.0 Hz), 1.84 (1H, dddd, J = 13.5, 3.0, 2.0, 2.0 Hz), 

1.59 (1H, dd, J = 15.0, 4.5 Hz), 1.42 (1H, ddd, J = 14.5, 12.0, 4.0 Hz).  13C NMR (125 

MHz, CDCl3): δ (ppm) = 139.01, 138.74, 133.43, 129.62, 128.22, 127.93, 127.50, 

127.25, 125.97, 117.72, 99.06, 69.98, 69.71, 66.03, 47.29, 42.21, 41.40, 35.00, 34.45.  IR 

(cm-1): f = 3064, 3028, 2922, 1496, 1454, 1341, 1206, 1110, 1075, 1030, 736, 698.  

HRMS-FAB: (M-OMe)+ = 321.1855 calculated for C15H21O3, experimental = 321.1836. 

 Methyl pyranoside 5.48a (233 mg, 0.661 mmol) as a mixture of diastereomers 

was then dissolved in CH2Cl2 (20 mL).  Several grains of 4 Å molecular sieves were 

added, and the solution was chilled to -78°C.  After addition of Et3SiH (0.21 mL, 1.32 

mmol) to the solution, a freshly prepared solution of TMSOTf (1.98 mL, 1.98 mmol, 1.0 

M in CH2Cl2) was then added dropwise, and the reaction was stirred for one minute.   

Immediately, the reaction was quenched by one full injection, of a half-saturated NH4Cl 

aqueous solution (10mL) and warmed to 0°C.  After separating the organic and aqueous 

layers, the aqueous layer was washed with CH2Cl2 (2 x 20 mL).  The organic layers were 

 401



then combined, dried over MgSO4, filtered, and concentrated under vacuum leaving 

behind a yellow oil.  The crude material was loaded into a silica gel column, and product 

elution was made with 95:5 hexanes : EtOAc.  Tetrahydropyran 5.51 was obtained as a 

colorless oil in 50% yield (235 mg, 0.729 mmol) over two steps with a 15:1 diasteremeric 

ratio.  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.339 – 7.190 (10H, m), 5.817 (1H, dddd, 

J = 17.5, 10.5, 7.0, 7.0 Hz), 5.072 – 5.002 (2H, m), 4.446 (2H, s), 4.000 (1H, m), 3.845 

(1H, p, J = 3.0 Hz), 3.814 (1H, m), 2.906 (1H, dd, J = 14.0, 7.0 Hz), 2.631 (1H, dd, J = 

14.0, 6.0 Hz), 2.302 (1H, m), 2.157 (1H, m), 1.884 – 1.814 (2H, m), 1.382 (1H, ddd, J = 

11.5, 6.5, 2.5 Hz), 1.353 (1H, ddd, J = 11.5, 6.5, 2.5 Hz).  13C NMR (125 MHz, CDCl3): 

δ (ppm) = 138.81, 138.77, 135.04, 129.50, 128.31, 128.04, 127.41, 127.34, 125.98, 

116.46, 72.86, 71.61, 71.46, 70.00, 42.61, 40.66, 35.16, 35.08.  IR (cm-1): f = 3064, 3027, 

2915, 2862, 1496, 1454, 1340, 1066, 913, 724, 697.  HRMS-FAB: (M-H)+ = 321.1855 

calculated for C22H25O2, experimental = 321.1830. 

 

(±)-(2S,4S,6R)-2-allyl-6-benzyl-tetrahydro-2H-pyran-4-ol 5.52 
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 The preparative procedure for tetrahydropyran 5.50 was followed with the 

following modifications.  Tetrahydropyran 5.51 (134 mg, 0.416 mmol), Li (18 mg, 2.496 

mmol), and DDQ (284 mg, 1.248 mmol) were employed, and tetrahydropyran 5.52 was 
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obtained in 92% yield as a colorless oil (89 mg, 0.383 mmol) over two steps.  1H NMR 

(500 MHz, CDCl3): δ (ppm) = 7.287 – 7.258 (2H, m), 7.232 – 7.184 (3H, m), 5.822 (1H, 

dddd, J = 17.0, 10.0, 7.0, 7.0 Hz), 5.081 – 5.013 (2H, m), 4.231 (1H, p, J = 5.013 Hz), 

3.975 (1H, dddd, J = 11.5, 6.5, 6.5, 2.0 Hz), 3.809 (1H, dddd, J = 11.0, 6.5, 6.5, 2.0 Hz), 

2.930 (1H, dd, J = 13.5, 7.0 Hz), 2.621 (1H, dd, J = 11.0, 6.5, 6.5, 2.0 Hz), 2.309 (1H, m), 

2.160 (1H, m), 1.664 (1H, dddd, J = 14.0, 2.0, 2.0, 2.0 Hz), 1.617 (1H, dddd, J = 14.0, 

2.5, 2.5, 2.5 Hz), 1.488 (1H, ddd, J = 11.5, 7.0, 3.0 Hz), 1.458 (1H, ddd, J = 12.0, 7.0, 3.0 

Hz), 1.340 (1H, b).  13C NMR (125 MHz, CDCl3): δ (ppm) = 138.57, 134.87, 129.51, 

128.11, 126.06, 116.61, 72.51, 71.17, 64.68, 42.61, 40.58, 38.01, 37.96.  IR (cm-1): f = 

3392, 3065, 3028, 2916, 2867, 1642, 1496, 1455, 1382, 1338, 1066, 914, 760, 700.  

HRMS-FAB: (M-H)+ = 231.1385 calculated for C15H19O2, experimental = 231.1391. 

 

 

 

 

 

 

 

 

 

 

 

 

 403



(-)-Bis-Tetrahydropyran 5.53 
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Sulfone 5.65 was subjected to the procedure as represented in the preparation of 

compound 5.37 with the following modifications.  Sulfone 5.65 (1.60 g, 1.65 mmol), 

HMDS (0.52 mL, 2.47 mmol), n-BuLi (1.18 mL, 2.47 mmol, 2.1 M in hexanes), HMPA 

(0.86 mL, 4.94 mmol) were employed.  LiHMDS was prepared in THF (50 mL), and 

sulfone 5.65 was dissolved in THF (200 mL).  The crude material was then loaded into 

Biotage chromatography system: 40+M column, 100:0 → 80:20 hexanes : EtOAc linear 

gradient for 960 mL, then 80:20 → 50:50 hexanes : EtOAc linear gradient over 240 mL 

to afford the corresponding diastereomeric mixture of sulfonylpyran 5.66 in 86% yield 

(1.189 g, 1.41 mmol) as a colorless oil. 

Sulfonylpyran 5.66 (400 mg, 0.474 mmol) as a mixture of diastereomers was 

dissolved in toluene (47 mL), and the solution was cooled to -78°C.  After addition of 

allyl iodide (1.29 mL, 14.2 mmol), a solution of NaHMDS (2.37 mL, 4.74 mmol, 2.0 M 
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in THF) was then added dropwise.  The mixture was slowly warmed to -50°C.  After 

overnight stirring, the reaction was quenched with a half-saturated Na2CO3 solution (50 

mL).  After separating the organic and aqueous layers, the aqueous layer was washed 

with Et2O (2 x 30 mL).  The organic layers were then combined, dried over MgSO4, and 

filtered.  The solution was rotovaped in a cold bath only to remove Et2O, and the toluene 

must remain in the flask.  MeOH (50 mL) was then added to the toluene solution, and the 

mixture was stirred overnight.  This mixture was then concentrated and flushed through a 

thick silica pad with 90:10 hexanes : EtOAc.  Removal of solvent under vacuum provided 

the title product 5.67 as a mixture of diastereomers in 74% yield (270 mg, 0.349 mmol) 

as a yellow oil.  

Methyl pyranoside 5.67 (270 mg, 0.349 mmol) as a mixture of diastereomers was 

dissolved in CH2Cl2 (35 mL).  270 mg of 4 Å molecular sieves were added, and the 

solution was chilled to -78°C.  After addition of Et3SiH (0.17 mL, 1.05 mmol) to the 

solution, a freshly prepared solution of TMSOTf (0.42 mL, 0.419 mmol, 1 M in CH2Cl2) 

was then added very slowly (one drop per 4 seconds) using a glass syringe.  After the 

addition was complete, the reaction was stirred for five minutes.   The reaction was 

quenched by one full injection, of a saturated NaHCO3 aqueous solution (10 mL) and 

warmed to 0°C.  After separating the organic and aqueous layers, the aqueous layer was 

washed with CH2Cl2 (2 x 50 mL).  The organic layers were then combined, dried over 

MgSO4, filtered, and concentrated under vacuum leaving behind a yellow oil.  The crude 

material was loaded into a silica gel column, and product elution was made with 90:10 

hexanes : EtOAc.  Removal of solvent under vacuum provided bis-tetrahydropyran 5.53 

as a single diastereomer in 64% yield (165 mg, 0.222 mmol) as a colorless oil.  1H NMR 
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(500 MHz, CDCl3): δ (ppm) = 7.68 – 7.65 (4H, m), 7.42 – 7.24 (11H, m), 5.80 (17.0, 

10.0, 7.0, 7.0 Hz), 5.05 – 4.98 (2H, m), 4.51 (1H, d, J = 12.0 Hz), 4.47 (1H, d, J = 12.0 

Hz), 4.27 (1H, dddd, J = 9.5, 4.5, 4.5, 4.5 Hz), 3.94 (1H, m), 3.88 – 3.72 (5H, m), 3.68 

(1H, ddd, J = 10.5, 5.5, 5.5 Hz), 2.23 (1H, ddd, J = 14.5, 7.5, 7.5 Hz), 2.10 (1H, ddd, J = 

13.5, 6.5, 6.5 Hz), 1.91 (1H, m), 1.87 – 1.80 (3H, m), 1.66 – 1.60 (4H, m), 1.40 – 1.26 

(4H, m), 1.04 (9H, s), 0.89 (9H, s), 0.050 (6H, s).  13C NMR (125 MHz, CDCl3): δ (ppm) 

= 138.90, 135.56, 135.53, 135.19, 133.92, 133.82, 129.51, 129.47, 128.31, 127.60, 

127.59, 127.39, 127.31, 116.30, 71.66, 71.32, 69.94, 68.96, 67.63, 66.15, 65.38, 60.78, 

41.44, 40.61, 39.49, 38.88, 35.63, 35.48, 35.27, 26.82, 25.88, 19.16, 18.10, -4.60, -4.71.   

IR (cm-1): f = 3073, 2927, 2845, 1428, 1250, 1108, 1090, 830, 698.  HRMS-FAB: 

(M+H)+ = 743.4527 calculated for C45H67O5Si2, experimental = 743.4543.   [α]20
D = -

20.1° (c = 3.30 in CHCl3). 
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(-)-Homoallylic Alcohol 5.54 
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Into a solution of aldehyde 5.63 (2.50 g, 4.62 mmol) in Et2O (250 mL) precooled 

to -78°C, a solution of allylmagnesium bromide (9.24 mL, 9.24 mmol, 1.0 M in Et2O) 

was added dropwise.  The reaction mixture was warmed to room temperature and stirred 

for two hours at which all starting material was completely consumed.  After cooling to 

0°C, the reaction was quenched with a saturated ammonium chloride solution (250 mL).  

After separating the organic and aqueous layers, the aqueous layer was washed with Et2O 

(100 mL).  The organic layers were combined, dried over MgSO4, filtered, and removed 

under vacuum.  The crude material was then loaded into Biotage chromatography system: 

40+M column, 95:5 hexanes : EtOAc for 120 mL, then 95:5 → 85:15 hexanes : EtOAc 

linear gradient over 840 mL, then 85:15 → 50:50 hexanes : EtOAc linear gradient over 

240 mL providing the more polar homoallylic alcohol 5.64 in 46% (1.24 g, 2.13 mmol) 

and the less polar homoallylic alcohol 5.54 in 49% (1.32 g, 2.27 mmol), both as a 

colorless oil. 
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 Homoallylic alcohol 5.64 (1.24 g, 2.27 mmol) was then dissolved in toluene (150 

mL).  Triphenylphosphine (1.68 g, 6.39 mmol) and p-nitrobenzoic acid (1.07 g, 6.39 

mmol) were added, and the solution was stirred for 5 minutes.  Then, 

diethylazodicarboxylate (1.02 mL, 6.39 mmol) was then added.  After stirring the 

reaction mixture overnight, toluene was then removed under vacuum leaving a yellow 

crude material which was redissolved in MeOH (100 mL).  K2CO3 (1.77 g, 12.8 mmol) 

was then added, and the suspension was stirred for 2 hours.  The reaction was quenched 

with DI water (100 mL), and the aqueous layer was extracted with Et2O (3 x 100 mL).  

The organic layers were combined, dried over Mg2SO4, filtered, and removed under 

vacuum leaving a mixture of a yellow oil and a crystalline solid (methyl p-nitrobenzoate).  

The solid byproduct was filtered off with hexanes (50 mL).  The filtrate was then 

concentrated and loaded into a silica gel column and chromatographed with 90:10 

hexanes : EtOAc providing homoallylic alcohol 5.54 in 70% (0.867 g, 1.49 mmol) with a 

trace amount of methyl p-nitrobenzoate contaminant.  1H NMR (500 MHz, CDCl3): δ 

(ppm) = 7.69 – 7.66 (4H, m), 7.44 – 7.36 (6H, m), 5.80 (1H, dddd, J = 17.5, 10.5, 7.0, 7.0 

Hz), 5.08 (1H, m), 5.06 (1H, s), 4.30 (1H, dddd, J = 9.0, 4.5, 4.5, 4.5 Hz), 3.90 (1H, m), 

3.77 (1H, ddd, J = 10.5, 7.5, 7.5 Hz), 3.71 – 3.66 (3H, m), 3.53 (1H, s), 2.23 (1H, ddd, J = 

13.5, 6.5, 6.5 Hz), 2.15 (1H, ddd, J = 14.0, 6.0, 6.0 Hz), 1.95 (1H, dddd, J = 11.5, 9.0, 

6.0, 6.0 Hz), 1.76 (1H, ddd, J = 13.0, 3.0, 3.0 Hz), 1.72 – 1.60 (4H, m), 1.52 (1H, ddd, J = 

14.5, 2.5, 2.5 Hz), 1.30 (1H, ddd, J = 13.0, 10.0, 10.0 Hz), 1.05 (9H, s), 0.88 (9H, s), 0.04 

(6H, s).  13C NMR (125 MHz, CDCl3): δ (ppm) = 135.58, 135.54, 135.02, 133.83, 

133.56, 129.60 (2C), 127.67, 127.64, 117.14, 71.23, 70.38, 68.85, 64.59, 60.67, 41.91, 

41.52, 41.40, 38.40, 34.70, 26.83, 25.81, 19.16, 18.08, -4.63, -4.64.  IR (cm-1): f = 3503, 

 408



3075, 2930, 2857, 1428, 1254, 1112, 1081, 836, 702.  HRMS-FAB: (M+H)+ = 583.3639 

calculated for C34H55O4Si2, experimental = 583.3654.   [α]20
D = -23.0° (c = 1.87 in 

CHCl3). 

 

Absolute Stereochemistry Determination of (-)-Homoallylic Alcohol 5.54 using Mosher’s 

Ester Analysis 

 

In two separate vials, 5 mg of alcohol 5.54 was dissolved in CH2Cl2 (0.5 mL).  

DMAP (20 mg) and one drop of either (R)- or (S)-Mosher’s acid chloride was then added.  

The mixture was stirred until completion.  After concentrating the reaction mixture under 

vacuum, the crude material was loaded into a silica gel column and chromatographed 

with 98:2 hexanes : EtOAc which provided the corresponding the Mosher’s ester (S)-

5.54ME or (R)-5.54ME  
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1H NMR (500 MHz, CDCl3): δ (ppm) = 7.68 – 7.65 (4H, m), 7.52 – 7.51 (2H, m), 

7.43 – 7.34 (9H, m), 5.55 (1H, dddd, J = 14.5, 10.5, 7.5, 7.5 Hz), 5.23 (1H, dddd, J = 6.5, 

6.5, 6.5, 5.0 Hz), 4.95 (1H, d, J = 9.5 Hz), 4.94 (1H, d, J = 17.5 Hz), 4.25 (1H, dddd, J = 

9.5, 5.0, 5.0, 5.0 Hz), 3.93 (1H, m), 3.74 (1H, ddd, J = 10.0, 7.5, 6.0 Hz), 3.66 (1H, ddd, J 

= 11.5, 6.0, 6.0 Hz), 3.64 (1H, m), 3.49 (3H, s), 2.38 (1H, ddd, J = 15.0, 5.0, 5.0 Hz), 
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2.28 (1H, ddd, J = 14.5, 7.5, 7.5 Hz), 2.21 (1H, ddd, J = 14.5, 7.5, 7.5 Hz), 1.85 – 1.77 

(3H, m), 1.64 – 1.58 (3H, m), 1.32 (1H, ddd, J = 13.0, 8.0, 8.0 Hz), 1.04 (9H, s), 0.87 

(9H, s), 0.037 (3H, s), 0.035 (3H, s). 

 

O

OTBS

5.54
OBPS

OH

O

OTBS

(R)-5.54ME
OBPS

O

(R)

O

Ph
CF3

OMe

DMAP

Cl

(S)

O

Ph
CF3

OMe

 

 

1H NMR (500 MHz, CDCl3): δ (ppm) = 7.67 – 7.64 (4H, m), 7.52 – 7.51 (2H, m), 

7.43 – 7.36 (9H, m), 5.68 (1H, dddd, J = 17.0, 10.5, 7.5, 6.0 Hz), 5.23 (1H, p, J = 5.5 Hz), 

5.05 (1H, d, J = 10.0 Hz), 5.05 (1H, d, J = 17.5 Hz), 4.23 (1H, dddd, J = 9.0, 5.0, 5.0, 5.0 

Hz), 3.87 (1H, m), 3.69 (1H, ddd, J = 10.0, 7.5, 5.0 Hz), 3.60 (1H, ddd, J = 11.5, 6.0, 6.0 

Hz), 3.51 (3H, s), 3.46 (1H, m), 2.47 – 2.36 (2H, m), 2.02 (1H, ddd, J = 14.5, 7.5, 7.5 

Hz), 1.79 – 1.67 (3H, m), 1.60 – 1.49 (3H, m), 1.26 (1H, m), 1.03 (9H, s), 0.88 (9H, s), 

0.051 (3H, s), 0.044 (3H, s). 

 

Δδ (S)-5.54ME – (R)-5.54ME 

 

O OBPS

O- 0.135

- 0.106

- 0.107
- 0.111
- 0.054

H

H

H HH

MPTA

H
+ 0.019

H H

+ 0.053
+ 0.055

+ 0.060
H

OTBSH
+ 0.176

H
+ 0.059
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(+)-Sulfonyl Ether 5.60 

 

OBPS

OH BOMCl, DIPEA

OBPS

OBOM ICl, toluene, -78°C;

TEA, PhSH

5.55 5.55a

OBPS

O

SPh

I

OBn

5.55b

OBPS

O

SO2Ph

I

OBn

5.60

TPAP, NMO

 

 

Homoallylic alcohol 5.55 (6.20 g, 17.5 mmol, >95% ee) was dissolved in CH2Cl2 

(100 mL), and DIPEA (100 mL) was then added.  After cooling the mixture to 0°C, 

BOMCl (7.29 mL, 52.4 mmol) was added dropwise.  The reaction was refluxed overnight 

resulting in dark red color.  After cooling to room temperature, the reaction was then 

diluted with CH2Cl2 (300 mL) and washed with 2 M HCl (200 mL).  After separating the 

organic and aqueous layers, the aqueous layer was washed with CH2Cl2 (2 x 100 mL).  

The organic layer was then combined, dried over MgSO4 and filtered.  A red oil was 

obtained upon removal of CH2Cl2 under vacuum.  The crude material was flushed 

through a thick pad of silica with 90:10 hexanes : EtOAc to give a mixture containing the 

title product 5.55a and BOMCl residue as a colorless oil (12.0 g).  This mixture was 

carried on the next step without further purification.  For characterization purposes, a 

small aliquot of the mixture was carefully chromatographed with 95:5 hexanes : EtOAc.  

1H NMR (500 MHz, CDCl3): δ (ppm) = 7.68 – 7.66 (4H, m), 7.44 – 7.27 (11H, m), 5.83 

(1H, dddd, J = 17.5, 10.5, 7.0, 7.0 Hz), 5.09 (1H, m), 5.06 (1H, m), 4.79 (1H, d, J = 7.0 

Hz), 4.76 (1H, d, J = 7.0 Hz), 4.61 (1H, d, J = 11.5 Hz), 4.54 (1H, d, J = 12.0 Hz), 3.95 

(1H, p, J = 6.0 Hz), 3.81 (1H, ddd, J = 10.5, 6.5, 6.5 Hz), 3.77 (1H, ddd, J = 10.0, 6.0, 6.0 
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Hz), 2.39 – 2.29 (2H, m), 1.81 – 1.77 (2H, m), 1.06 (9H, s).  13C NMR (125 MHz, 

CDCl3): δ (ppm) = 137.88, 135.55 (2C), 135.53, 134.61, 133.80, 129.58, 129.57, 128.37, 

127.81, 127.62 (2C), 127.59, 117.28, 93.62, 74.15, 69.44, 60.53, 39.16, 37.07, 26.84, 

19.16.  IR (cm-1): f = 3071, 2931, 2858, 1472, 1428, 1169, 1112, 1042, 736, 701.  HRMS-

FAB: (M-SiPh2t-Bu)+ = 219.1385 calculated for C14H19O2, experimental = 219.1375. 

[α]20
D = -5.65° (c = 4.23 in CHCl3). 

A mixture of homoallylic BOM ether 5.55a and BOMCl residue (12.0 g) was 

dissolved in toluene (350 mL), and 12 grams of 4 Å molecular sieves were then added.  

After cooling this solution to  -78°C, an iodine monochloride solution (35.0 mL, 35.0 

mmol, 1.0 M in CH2Cl2) was added dropwise over one hour while maintaining an internal 

temperature of the reaction below -75°C.  The solution became dark red and was stirred 

for 30 minutes.  Then, TEA (9.72 mL, 69.9 mmol) was added in one injection, followed 

by PhSH (3.59 mL, 35.0 mmol) in which the solution immediately turned cloudy grey.  

The reaction was warmed to room temperature over one hour and then quenched with a 

1:1 mixture of saturated NaHCO3 and Na2S2O3 (300 mL).  After separating the organic 

and aqueous layers, the aqueous layer was washed with Et2O (2 x 100 mL).  The organic 

layers were then combined, dried over MgSO4, and filtered.  The organic solvent was 

removed under vacuum leaving behind a yellow oil.  The crude material was purified 

with column chromatography: first, using 98:2 hexanes : EtOAc to remove the non-polar 

byproduct, and then, 90:10 hexanes : EtOAc to elute the inseparable ether transfer 

product 5.55b and BOMCl residue.  Removal of solvent provided 12.2 g of the mixture, 

which was carried on the next step without further purification. 
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A mixture of thioether 5.55b and BOMCl residue (12.2 g) was divided into 2 

separate batches of 6.10 g.  For each batch, the material was dissolved in dry CH3CN (50 

mL).  6 grams of 4 Å molecular sieves and NMO (4.95 g, 42.2 mmol) were added, the 

mixture was stirred until NMO was completely dissolved. TPAP (148 mg, 0.422 mmol) 

was charged, and the solution was warmed to 40°C and stirred overnight.  After cooling 

to room temperature, the two batches were combined and concentrated under vacuum 

leaving black crude material.  This crude mixture was then loaded into a silica gel 

column, and sulfone 5.60 was eluted with 80:20 hexanes : EtOAc as a colorless oil in 

46% yield over three steps (5.92 g, 7.97 mmol) as a single diastereomer.  1H NMR (500 

MHz, CDCl3): δ (ppm) = 7.83 (2H, dd, J = 8.0, 0.5 Hz), 7.65 – 7.59 (5H, m), 7.47 – 7.27 

(13H, m), 4.54 (1H, d, J = 11.5 Hz), 4.50 (2H, s), 4.36 (1H, d, J = 11.5 Hz), 4.01 (1H, p, 

= 6.0 Hz), 3.70 – 3.61 (2H, m), 3.35 – 3.25 (3H, m), 1.87 – 1.76 (2H, m), 1.71 (2H, q, J = 

6.5 Hz), 1.05 (9H, s).  13C NMR (125 MHz, CDCl3): δ (ppm) = 137.60, 137.37, 135.54, 

135.53, 133.92, 133.48, 133.44, 129.77, 129.74, 129.14, 128.70, 128.44, 127.86, 127.84, 

127.75, 127.73, 84.08, 77.27, 73.90, 71.04, 59.86, 39.14, 36.72, 26.87, 19.17, 10.27.  IR 

(cm-1): f = 3068, 2959, 2928, 2855, 1427, 1324, 1398, 1260, 1150, 1111, 1079, 1027, 

799, 741.  HRMS-FAB: M•+ = 742.1645 calculated for C36H43O5SiSI, experimental = 

742.1622.  [α]20
D = +0.328° (c = 6.10 in CHCl3). 
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(-)-Tetrahydropyran 5.61 

 

LiHMDS, HMPA

O

OBn

PhO2S

5.60a
OBPSOBPS

O

SO2Ph

I

OBn

5.60

TMS

O

OBn

5.61
OBPS

AlCl3

 

 

Sulfone 5.60 was subjected to the procedure as represented in the preparation of 

compound 5.37 with the following modifications.  Sulfone 5.60 (9.50 g, 12.8 mmol), 

HMDS (4.08 mL, 19.2 mmol), n-BuLi (8.73 mL, 19.2 mmol, 2.2 M in hexanes), HMPA 

(6.68 mL, 38.4 mmol) were employed.  LiHMDS was prepared in THF (100 mL), and 

sulfone 5.60 was dissolved in THF (400 mL).  The crude mixture was flushed through a 

thick silica pad with 70:30 hexanes : EtOAc, and the diastereomeric mixture of 

sulfonylpyran 5.60a was obtained in 98% (7.68 g, 12.5 mmol)  as a yellow oil. 

 A suspension of AlCl3 (2.50 g, 18.7 mmol) in toluene (400 mL) was cooled to -

78°C.  In a separate flask, a diastereomeric mixture of sulfonylpyran 5.60a (7.68 g, 12.5 

mmol) was dissolved in toluene (50 mL).  After cooling to -78°C, this solution was 

transferred to the AlCl3 suspension via cannula.  To ensure all starting material was 

completely transferred, the flask was washed with toluene (2 x 25 mL), cooled, and 

transferred to the reaction mixture.  This mixture was stirred for 5 minutes.  

Allyltrimethylsilane (5.96 mL, 37.5 mmol) was then added dropwise, and the reaction 

was slowly warmed up to -50°C over one hour in which the reaction completed.  A 
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saturated aqueous solution of Rochelle’s salt (300 mL) was then added, and the emulsion 

was stirred until separation of layers was achieved.  After separating the organic and 

aqueous layers, the aqueous layer was washed with CH2Cl2 (2 x 100 mL).  The organic 

layers were then combined, dried over MgSO4, filtered, and concentrated under vacuum 

leaving behind a yellow oil.  The crude material was loaded into a silica gel column and 

eluted with 92:8 hexanes : EtOAc.  Upon removal of solvent, tetrahydropyran 5.61 was 

isolated as a colorless oil in 98% yield (6.33 g, 12.3 mmol) as a single diastereomer. 1H 

NMR (500 MHz, CDCl3): δ (ppm) = 7.68 – 7.65 (4H, m), 7.43 – 7.27 (11H, m), 5.72 

(1H, dddd, J = 17.0, 10.0, 7.0, 7.0 Hz), 5.04 – 4.96 (2H, m), 4.54 (1H, d, J = 12.0 Hz), 

4.51 (1H, d, J = 11.5 Hz), 4.29 (1H, m), 3.75 (1H, m), 3.71 – 3.65 (2H, m), 3.46 (1H, m), 

2.32 (1H, m), 2.17 (1H, m), 1.97 (1H, m), 1.93 (1H, m), 1.86 (1H, m), 1.71 (1H, ddd, J = 

13.0, 10.5, 5.5 Hz), 1.63 (1H, m), 1.31 (1H, ddd, J = 12.5, 10.0, 10.0 Hz), 1.04 (9H, s).  

13C NMR (125 MHz, CDCl3): δ (ppm) = 138.63, 135.57, 135.54, 134.88, 133.87, 133.71, 

129.55, 129.54, 128.37, 127.60 (2C), 127.48, 127.46, 116.69, 71.38, 69.63, 68.80, 68.59, 

60.82, 40.30, 36.96, 35.18, 34.57, 26.83, 19.16.   IR (cm-1): f = 3070, 2931, 2857, 1428, 

1112, 1089, 701.  HRMS-FAB: (M+H)+ = 515.2981 calculated for C33H43O3Si, 

experimental = 515.2970.  [α]20
D = -29.5° (c = 2.18 in CHCl3). 
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(-)-Alcohol 5.62 

 

O

OBn

5.61
OBPS

1.  Li-NH3

2.  DDQ
O

OH

5.62
OBPS

 

 

Anhydrous ammonia (300 mL) was condensed into a round-bottomed flask at -

78°C, and lithium wire (228 mg, 32.5 mmol) was added in small pieces.  The solution 

immediately turned dark blue and was stirred for 15 minutes.  In a separate flask, 

tetrahydropyran 5.61 (2.79 g, 5.42 mmol) was dissolved in THF (100 mL).  After cooling 

to -78°C, this solution was transferred to the Li-NH3 mixture rapidly via cannula.  To 

ensure all starting material was completely transferred, the flask was washed with THF (2 

x 20 mL), cooled, and then transferred to the reaction mixture.  After 5 minutes, solid 

NH4Cl was added until the blue color disappeared, and the ammonia was evaporated by 

warming the reaction to room temperature.  The reaction mixture was diluted with Et2O 

(100 mL) and then washed with DI water (100 mL).  After separating the organic and 

aqueous layers, the aqueous layer was washed with Et2O (2 x 100 mL).  The organic 

layers were then combined, dried over MgSO4, filtered, and concentrated under vacuum 

leaving behind a yellow oil, which was redissolved in CH2Cl2 (100 mL).   

DDQ (4.92 g, 21.7 mmol) was added resulting in a red suspension.  After stirring 

overnight, the solid residue was filtered under vacuum, and the filtrate was then washed 

with a saturated NaHCO3 solution.  After separating the organic and aqueous layers, the 

aqueous layer was washed with CH2Cl2 (100 mL).  The organic layers were combined, 
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dried over MgSO4, filtered, and concentrated under vacuum leaving behind a red oil.  The 

crude material was purified using Biotage chromatography system: 40+M column, 90:10 

→ 50:50 hexanes : EtOAc linear gradient for 960 mL providing the title product 5.62 in 

98% yield (2.25g, 5.30 mmol). 1H NMR (500 MHz, CDCl3): δ (ppm) = 7.70 – 7.66 (4H, 

m), 7.44 – 7.37 (6H, m), 5.74 (1H, dddd, J = 17.0, 10.0, 7.0, 7.0 Hz), 5.06 – 4.98 (2H, m), 

4.29 (1H, m), 3.92 (1H, dddd, J = 10.5, 10.5, 4.5, 4.5 Hz), 3.76 (1H, ddd, J = 10.5, 7.0, 

7.0 Hz), 3.69 (1H, ddd, J = 10.5, 7.0, 5.0 Hz), 3.45 (1H, m), 2.28 (1H, m), 2.16 (1H, m), 

2.00 (1H, dddd, J = 14.5, 10.0, 5.5, 5.5 Hz), 1.94 (1H, m), 1.84 (1H, m), 1.68 – 1.59 (2H, 

m), 1.48 (1H, b), 1.19 (1H, ddd, J = 11.5, 11.0, 11.0 Hz), 1.05 (9H, s).  13C NMR (125 

MHz, CDCl3): δ (ppm) = 135.56, 135.53, 134.67, 133.84, 133.68, 129.56, 129.55, 127.60 

(2C), 116.88, 69.33, 68.17, 64.65, 60.76, 40.56, 40.40, 38.12, 34.10, 26.82, 19.14.  IR 

(cm-1): f = 3369, 3072, 2932, 2857, 1428, 1112, 1088, 1032, 739, 702.  HRMS-FAB: 

(M+H)+ = 425.2512 calculated for C26H37O3Si, experimental = 425.2512.  [α]20
D = -32.2° 

(c = 2.44 in CHCl3). 

 

(-)-Aldehyde 5.63 

 

O

OH

5.62
OBPS

1.  TBSCl, imid.

2.  Ozone; PPh3
O

OTBS

5.63
OBPSO

 

 

Alcohol 5.62 (2.25 g, 5.30 mmol) was dissolved in CH2Cl2 (100 mL).  DMAP 

(130 mg, 1.06 mmol), imidazole (1.08 g, 15.9 mmol), and TBSCl (1.20 g, 7.95 mmol) 
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were then added.  After overnight stirring, the reaction mixture was washed with 2 M 

HCl (100 mL).  After separating the organic and aqueous layers, the aqueous layer was 

washed with CH2Cl2 (2 x 50 mL).  The organic layers were combined, dried over MgSO4, 

filtered, and then cooled to -78°C.   Ozone was bubbled into the solution until a persistent 

blue color was attained.  Addition of PPh3 (2.78 g, 10.6 mmol) resulted in the 

disappearance the blue color, and the mixture was stirred overnight.  After removing 

solvent under vacuum, the crude material was loaded into a silica gel column and 

chromatographed with 90:10 hexanes : EtOAc to yield the title aldehyde 5.63 as a white 

solid in 81% yield (2.33 g, 4.31 mmol) over two steps.  1H NMR (500 MHz, CDCl3): δ 

(ppm) = 9.68 (1H, t, J = 2.0 Hz), 7.68 – 7.66 (4H, m), 7.44 – 7.36 (6H, m), 4.27 (1H, 

dddd, J = 9.0, 4.5, 4.5, 4.5 Hz), 4.13 (1H, dddd, J = 8.0, 8.0, 4.5, 4.5 Hz), 4.02 (1H, m), 

3.77 (1H, ddd, J = 10.5, 8.5, 6.0 Hz), 3.69 (1H, ddd, J = 11.5, 6.5, 5.0 Hz), 2.82 (1H, ddd, 

J = 17.0, 8.5, 2.5 Hz), 2.58 (1H, ddd, J = 16.5, 5.0, 1.5 Hz), 1.91 – 1.84 (2H, m), 1.68 – 

1.60 (3H, m), 1.40 (1H, ddd, J = 13.0, 7.5, 7.5 Hz), 1.05 (9H, s), 0.90 (9H, s), 0.062 (3H, 

s), 0.056 (3H, s).  13C NMR (125 MHz, CDCl3): δ (ppm) = 201.41, 135.55 (2C), 133.90, 

133.74, 129.59, 129.58, 127.63, 127.62, 129.59, 129.58, 127.63, 127.62, 66.58, 65.38, 

64.86, 60.48, 48.82, 39.08, 38.73, 35.86, 26.85, 25.81, 19.18, 18.03, -4.73, -4.74.  IR (cm-

1): f = 3074, 2953, 2857, 2722, 1727, 1472, 1255, 1112, 1084, 836, 702.  HRMS-FAB: 

(M+H)+ = 541.3169 calculated for C31H49O4Si2, experimental = 541.3189.  [α]20
D = -

20.3° (c = 1.20 in CHCl3).  mp = 83°C – 84°C. 
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(-)-Sulfonyl Ether 5.65 
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(NH4)6Mo7O24 • 4H2O
H2O2

 

 

Homoallylic alcohol 5.54 (1.75 g, 3.00 mmol) was dissolved in a mixture of 

CH2Cl2 (20 mL) and DIPEA (20 mL) in a thick-walled tube.  BOMCl (2.50 mL, 18.0 

mmol) was added dropwise.  The tube was then sealed, warmed at 80°C, and stirred for 

24 hours.  After cooling to room temperature, the reaction was then diluted with CH2Cl2 

(100 mL) and washed with 2 M HCl (100 mL).  After separating the organic and aqueous 

layers, the aqueous layer was washed with CH2Cl2 (2 x 50 mL).  The organic layers were 

then combined, dried over MgSO4 and filtered.  A red oil was obtained upon removal of 

CH2Cl2 under vacuum.  The crude material was flushed through a thick pad of silica with 

90:10 hexanes : EtOAc to give of a mixture containing the title product 5.54a and 

BOMCl residue (3.21 g) as a colorless oil.  This mixture was carried on the next step 

without further purification.  For characterization purposes, a small aliquot of the mixture 

was carefully chromatographed with 95:5 hexanes : EtOAc.  1H NMR (500 MHz, 
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CDCl3): δ (ppm) = 7.69 – 7.66 (4H, m), 7.44 – 7.27 (11H, m), 5.81 (1H, dddd, J = 17.0, 

10.5, 7.0, 7.0 Hz), 5.06 (1H, m), 5.03 (1H, s), 4.76 (1H, d, J = 7.0 Hz), 4.74 (1H, d, J = 

7.0 Hz), 4.62 (1H, d, J = 11.5 Hz), 4.58 (1H, d, J = 12.0 Hz), 4.26 (1H, dddd, J = 9.5, 4.5, 

4.5, 4.5 Hz), 3.94 (1H, m), 3.82 (1H, p, J = 6.0 Hz), 3.80 – 3.67 (3H, m), 2.36 (1H, m), 

2.25 (1H, m), 1.98 (1H, ddd, J = 14.0, 7.0, 7.0 Hz), 1.91 (1H, dddd, J = 14.0, 8.5, 5.5, 5.5 

Hz), 1.83 (1H, ddd, J = 12.5, 3.5, 3.5 Hz), 1.68 (1H, ddd, J = 14.0, 6.0, 6.0 Hz), 1.66 – 

1.59 (3H, m), 1.32 (1H, ddd, J = 13.0, 9.0, 9.0 Hz), 1.05 (9H, s), 0.89 (9H, s), 0.042 (6H, 

s).  13C NMR (125 MHz, CDCl3): δ (ppm) = 137.96, 135.53, 135.52, 134.64, 133.88, 

133.75, 129.54, 129.53, 128.34, 127.69, 127.62, 127.61, 127.54, 117.26, 93.42, 74.34, 

69.43, 67.57, 66.36, 65.14, 60.83, 40.29, 40.00, 38.84, 38.77, 35.33, 26.84, 25.84, 19.16, 

18.07, -4.62, -4.65.  IR (cm-1): f = 3071, 2930, 2857, 1428, 1254, 1112, 1042, 836, 701.  

HRMS-FAB: (M-C6H6)+ = 625.3745 calculated for C36H57O5Si2, experimental = 

625.3730.   [α]20
D = -18.8° (c = 2.50 in CHCl3). 

A mixture of ether 5.54a and BOMCl residue (3.21 g) was dissolved in toluene 

(200 mL), and 3 grams of 4 Å molecular sieves were then added.  After cooling this 

solution to -78°C, an iodine monochloride solution (6.00 mL, 6.00 mmol, 1.0 M in 

CH2Cl2) was added dropwise over one hour while maintaining an internal temperature of 

the reaction below -75°C.  The solution became dark red and was stirred for 30 minutes.  

Then, TEA (1.67 mL, 12.0 mmol) was added in one injection, followed by PhSH (0.62 

mL, 6.00 mmol) in which the solution immediately turned cloudy grey.  The reaction was 

warmed to room temperature over one hour and then quenched with a 1:1 mixture of 

saturated NaHCO3 and Na2S2O3 (300 mL).  After separating the organic and aqueous 

layers, the aqueous layer was washed with Et2O (2 x 100 mL).  The organic layers were 
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then combined, dried over MgSO4, and filtered.  The organic solvent was removed under 

vacuum leaving behind a yellow oil.  The crude material was then loaded into Biotage 

chromatography system: 40+M column, 98:2 hexanes : EtOAc for 240 mL, then 98:2 → 

90:10 hexanes : EtOAc linear gradient over 720 mL.  All fractions containing ether 

transfer product 5.54b were combined and rotovaped providing a mixture of title product 

5.54b and BOMCl residue (3.20 g).  This mixture was carried on the next step without 

further purification.  For characterization purposes, a small aliquot of the mixture was 

carefully chromatographed with 98:2 hexanes : EtOAc.  1H NMR (500 MHz, CDCl3): δ 

(ppm) = 7.69 – 7.66 (4H, m), 7.43 – 7.26 (13H, m), 7.22 (2H, t, J = 7.0 Hz), 7.13 (1H, t, J 

= 7.0 Hz), 5.01 (1H, d, J = 12.0 Hz), 4.97 (1H, d, J = 12.5 Hz), 4.49 (1H, d, J = 11.0 Hz), 

4.33 (1H, d, J = 11.5 Hz), 4.22 (1H, m), 3.84 (1H, p, J = 6.0 Hz), 3.77 (1H, ddd, J = 13.5, 

9.0, 3.5 Hz), 3.71 (1H, ddd, J = 10.0, 7.0, 6.5 Hz), 3.65 (1H, ddd, J = 10.5, 6.0, 6.0 Hz), 

3.58 (1H, m), 3.30 – 3.21 (3H, m), 1.95 (1H, ddd, J = 13.5, 6.5, 6.5 Hz), 1.85 – 1.76 (4H, 

m), 1.61 – 1.55 (3H, m), 1.51 (1H, ddd, J = 13.5, 6.5, 6.5 Hz), 1.17 (1H, ddd, J = 12.0, 

9.5, 9.5 Hz), 1.05 (9H, s), 0.87 (9H, s), 0.021 (3H, s), 0.011 (3H, s).  13C NMR (125 

MHz, CDCl3): δ (ppm) = 137.80, 136.27, 135.58, 135.56, 133.84, 133.76, 129.58, 

129.57, 128.92, 128.42, 128.36, 127.88, 127.77, 127.65 (2C), 125.99, 73.88, 72.22, 

71.02, 69.87, 68.36, 65.88, 64.94, 60.96, 40.89, 39.87, 38.99, 38.57, 34.82, 26.87, 25.85, 

19.19, 18.07, 10.98, -4.57, -4.66.  IR (cm-1): f = 3064, 2929, 2856, 1428, 1254, 1112, 

1082, 1054, 733, 695.  HRMS-FAB: (M-C4H9)+ = 881.2588 calculated for 

C44H58O5Si2SI, experimental = 881.2553.   [α]20
D = -12.8° (c = 1.40 in CHCl3). 

A mixture of thioether 5.54b and BOMCl residue (3.20 g) was dissolved in 

ethanol (200 mL, 200 proof), and the solution was cooled to 0°C.  In a separate flask, 
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ammonium (VI) molybdate tetrahydrate (11.2 g, 9.00 mmol) was dissolved in a cold 

aqueous hydrogen peroxide solution (30%, 100 mL).  This Mo(VI) – H2O2 mixture was 

immediately poured to the solution of compound 23b in one portion causing the reaction 

to turn yellow and cloudy  (the cloudiness eventually dissipated).  The reaction was 

stirred vigorously at 0°C for one hour and then at room temperature for two more hours.  

Addition of DI water (300 mL) quenched the reaction, and the aqueous layer was 

extracted with CH2Cl2 (3 x 100 mL).  The yellow organic layers were combined, dried 

over MgSO4, filtered, and rotovaped to produce a yellow oily residue.  The crude 

material was then loaded into Biotage chromatography system: 40+M column, 95:5 

hexanes : EtOAc for 240 mL, then 95:5 → 80:20 hexanes : EtOAc linear gradient over 

720 mL to afford the corresponding sulfone 5.65 in 45% yield over three steps as a 

yellow oil (1.30 g, 1.34 mmol).  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.86 (2H, d, J = 

7.5 Hz), 7.67 – 7.65 (4H, m), 7.61 (1H, t, J = 7.5 Hz), 7.49 (2H, t, J = 7.5 Hz), 7.44 – 7.28 

(11H, m), 4.54 (1H, d, J = 11.0 Hz), 4.53 (1H, d, J = 12.0 Hz), 4.48 (1H, d, J = 12.0 Hz), 

4.34 (1H, d, J = 11.5 Hz), 4.20 Hz (1H, m), 3.90 – 3.83 (2H, m), 3.71 (1H, ddd, J = 10.0, 

7.0, 7.0 Hz), 3.65 (1H, ddd, J = 10.0, 6.0, 6.0 Hz), 3.59 (1H, dddd, J = 12.5, 9.5, 4.0, 4.0 

Hz), 3.32 – 3.27 (2H, m), 3.19 (1H, m), 1.91 – 1.77 (4H, m), 1.72 (1H, m), 1.66 – 1.56 

(3H, m), 1.52 (1H, ddd, J = 14.0, 7.0, 4.0 Hz), 1.16 (1H, ddd, J = 13.0, 9.5, 9.5 Hz), 1.05 

(9H, s), 0.88 (9H, s), 0.036 (6H, s).  13C NMR (125 MHz, CDCl3): δ (ppm) = 137.66, 

137.58, 135.54 (2C), 133.90, 133.75, 133.68, 129.63, 129.14, 128.69, 128.45, 127.90, 

127.86, 127.69, 127.68 (2C), 83.85, 77.56, 73.65, 70.99, 68.39, 65.63, 64.81, 60.96, 

40.99, 39.53, 38.68, 38.41, 34.95, 26.86, 25.84, 19.17, 18.06, 10.52, -4.57, -4.63.   IR 

(cm-1): f = 3064, 2929, 2856, 1428, 1325, 1253, 1112, 1083, 741.  HRMS-FAB: (M+H)+ 
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= 971.3269 calculated for C48H68O7Si2SI, experimental = 971.3301.   [α]20
D = -12.3° (c = 

2.54 in CHCl3). 

 

(±)-(2R,4R)-2-benzyl-3,4-dihydro-4-methoxy-2H-pyran 5.70 

 

O

OMe

PhO2S
Ph

5.37

MgBr2•OEt2, TEA
THF, 50°C, )))

O

OMe

Ph

5.70  

 

 Sulfonylpyran 5.70 (5.00 g, 14.4 mmol) as a mixture of diastereomers was 

dissolved in THF (200 mL).  Upon addition of TEA (20.0 mL, 144 mmol) and 

MgBr2•OEt2 (11.2 g, 43.2 mmol), the suspension mixture was agitated in an ultrasound 

bath at 50°C until the starting material was completely consumed.  The reaction was 

cooled to room temperature and quenched with a saturated aqueous NaHCO3 solution 

(200 mL).  After separation of organic and aqueous layers, the aqueous solution was 

extracted with Et2O (2 x 100 mL).  The organic layers were combined, dried over 

MgSO4, filtered, and concentrated under vacuum.  The crude material was flushed 

through a thick silica pad with 95:5 hexanes : EtOAc, and dihydropyran 5.70 was 

produced in 95% yield (2.80 g, 13.7 mmol) as a yellow oil after concentration.  1H NMR 

(500 MHz, CDCl3): δ (ppm) = 7.32 – 7.29 (2H, m), 7.25 – 7.21 (3H, m), 6.51 (1H, d, J = 

6.0 Hz), 4.97 (1H, ddd, J = 6.5, 5.5, 2.0 Hz), 4.15 (1H, dddd, J = 12.5, 7.5, 6.0, 2.0 Hz), 

3.64 (1H, m), 3.29 (3H, s), 2.97 (1H, dd, J = 14.0, 7.0 Hz), 2.87 (1H, dd, J = 14.0, 5.5 

Hz), 1.96 (1H, dddd, J = 14.0, 1.5, 1.5, 1.5 Hz), 1.53 (1H, ddd, J = 14.5, 12.0, 4.0 Hz).  
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13C NMR (125 MHz, CDCl3): δ (ppm) = 147.22, 137.55, 129.43, 128.26, 126.36, 99.92, 

71.93, 68.29, 55.00, 41.41, 33.02.  IR (cm-1): f = 3062, 3029, 2924, 2817, 1639, 1455, 

1245, 1081, 700.  HRMS-FAB: (M-H)+ = 203.1072 calculated for C13H15O2, 

experimental = 203.1068. 

 

GENERAL PROCEDURE F: Ferrier Rearrangement of Dihydropyran 5.70 

 

Lewis acid
O

OMe

Ph

5.70

O
Ph

5.71
Nuc

nucleophile

 

 

Dihydropyran 5.70 (1.0 equivalent) was dissolved in CH2Cl2 (10mL), and the 

solution was cooled to -78°C.  After addition of nucleophile (3.0 equivalents), a freshly 

prepared 1.0 M solution of Lewis acid (TMSOTf or BF·OEt2) in CH2Cl2 (0.1 – 3.0 

equivalents) buffered with oven-dried solid NaHCO3 was then added dropwise.  The 

reaction mixture was stirred for 5 minutes and then quenched with phosphate buffer (pH 

7.00, 20 mL).  After separation of layers, the aqueous layer was extracted with CH2Cl2 (2 

x 20 mL).  The organic layers were then combined, dried over MgSO4, and concentrated 

under vacuum.  The crude material was purified with a silica gel column using 95:5 

hexanes : EtOAc to give the Ferrier rearrangement product 5.71.  
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(±)-(2S,6R)-6-allyl-2-benzyl-3,6-dihydro-2H-pyran 5.71a 

 

TMSOTf
O

OMe

Ph

5.70

O
Ph

5.71a

TMS

. 

 

General Procedure F was followed.  Dihydropyran 5.70 (100 mg, 0.489 mmol) 

dissolved in CH2Cl2 (10 mL), TMSOTf (0.98 mL, 0.98 mmol, 1.0 M in CH2Cl2), and 

allyltrimethylsilane (0.23 mL, 1.47 mmol) were employed.  1H NMR of the crude 

reaction mixture indicated a diastereomeric ratio of >20:1, and after chromatography, 

dihydropyran 5.71a was obtained in 91% with as a colorless oil (95.0 mg, 0.443 mmol).  

1H NMR (500 MHz, CDCl3): δ (ppm) = 7.31 – 7.28 (2H, m), 7.25 – 7.20 (3H, m), 5.82 

(1H, m), 5.78 – 5.70 (2H, m), 5.01 (1H, m), 4.98 (1H, m), 4.25 (1H, m), 3.95 (1H, dddd, 

J = 6.5, 6.5, 6.0, 6.0 Hz), 2.92 (1H, dd, J = 13.5, 7.0 Hz), 2.75 (1H, dd, J = 13.5, 6.0 Hz), 

2.36 (1H, m), 2.23 (1H, m), 2.02 – 1.98 (2H, m).  13C NMR (125 MHz, CDCl3): δ (ppm) 

= 138.70, 134.84, 129.28, 129.16, 128.18, 126.08, 124.09, 116.74, 72.46, 69.08, 41.75, 

38.77, 29.99.  IR (cm-1): f = 3064, 3030, 2924, 1496, 1455, 1075, 914, 700.  HRMS-FAB: 

(M-H)+ = 213.1279 calculated for C15H17O, experimental = 213.1279.  The relative 2,6-

trans stereochemistry of the ring was deduced from a ROESY experiment. 

 

O
Ph

H H
NOENOE  
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With catalytic amount of TMSOTf (Table 1, entry 2):  Dihydropyran 5.70 (100 mg, 0.489 

mmol) dissolved in CH2Cl2 (10 mL), TMSOTf (49 μL, 0.0489 mmol, 1.0 M in CH2Cl2), 

and allyltrimethylsilane (0.23 mL, 1.47 mmol) were employed.  1H NMR of crude 

reaction mixture indicated a diastereomeric ratio of >20:1, and after chromatography, 

dihydropyran 5.71a was obtained in 90% with as a colorless oil (94.0 mg, 0.439 mmol). 

 

(±)-(2S,6R)-2-benzyl-3,6-dihydro-6-(2-methylallyl)-2H-pyran 5.71b 

 

TMSOTf
O

OMe

Ph

5.70

O
Ph

5.71b

TMS

 

 

 General Procedure F was followed.  Dihydropyran 5.70 (100 mg, 0.489 mmol) 

dissolved in CH2Cl2 (10 mL), TMSOTf (0.98 mL, 0.98 mmol, 1.0 M in CH2Cl2), and 

trimethyl(2-methylallyl)silane (0.26 mL, 1.47 mmol) were employed.  1H NMR of the 

crude reaction mixture indicated a diastereomeric ratio of >20:1, and after 

chromatography, dihydropyran 5.71b was obtained in 91% with as a colorless oil (102 

mg, 0.447 mmol).  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.30 – 7.27 (2H, m), 7.24 – 

7.19 (3H, m), 5.80 (1H, m), 5.71 (1H, m), 4.73 (1H, s), 4.62 (1H, s), 4.38 (1H, m), 3.94 

(1H, dddd, J = 7.0, 7.0, 7.0, 5.5 Hz), 2.92 (1H, dd, J = 14.0, 7.0 Hz), 2.74 (1H, dd, J = 

13.5, 6.5 Hz), 2.33 (1H, dd, J = 14.0, 8.5 Hz), 2.15 (1H, dd, J = 14.0, 5.5 Hz), 2.00 – 1.97 

(2H, m), 1.71 (3H, s).  13C NMR (125 MHz, CDCl3): δ (ppm) = 142.35, 138.65, 129.51, 

129.34, 128.17, 126.08, 123.86, 112.52, 71.23, 68.95, 42.27, 41.90, 29.99, 22.42.  IR 
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(cm-1): f = 3071, 3030, 2933, 1648, 1455, 1091, 1043, 887, 741, 699.  HRMS-FAB: (M-

H)+ = 227.1436 calculated for C16H19O, experimental = 227.1445.   

 

(±)-(2S,6R)-2-benzyl-6-ethyl-3,6-dihydro-2H-pyran 5.71c 

 

TMSOTf
O

OMe

Ph

5.70

O
Ph

5.71c

Et2Zn

 

 

General Procedure F was followed.  Dihydropyran 5.70 (100 mg, 0.489 mmol) 

dissolved in CH2Cl2 (10 mL), TMSOTf (0.98 mL, 0.98 mmol, 1.0 M in CH2Cl2), and 

diethylzinc (1.47 mL, 1.47 mmol, 1.0 M in hexanes) were employed.  1H NMR of the 

crude reaction mixture indicated a diastereomeric ratio of >20:1, and after 

chromatography, dihydropyran 5.71c was obtained in 89% with as a colorless oil (88 mg, 

0.435 mmol).  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.30 – 7.27 (2H, m), 7.25 – 7.19 

(3H, m), 5.78 (1H, m), 5.72 (1H, m), 4.06 (1H, m), 3.89 (1H, m), 2.90 (1H, dd, J = 13.5, 

7.0 Hz), 2.74 (1H, dd, J = 13.5, 6.0 Hz), 2.04 – 1.93 (2H, m), 1.56 (1H, m), 1.44 (1H, m), 

0.83 (3H, t, J = 7.5 Hz).  13C NMR (125 MHz, CDCl3): δ (ppm) = 138.88, 129.81, 

129.29, 128.16, 126.05, 123.59, 123.59, 74.23, 68.79, 41.91, 30.28, 26.93, 10.18.  IR 

(cm-1): f = 3030, 2962, 2923, 1454, 1186, 1057, 698.  HRMS-FAB: (M-H)+ = 201.1279 

calculated for C14H17O, experimental = 201.1292. 
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(±)-(2S,6S)-2-benzyl-3,6-dihydro-6-(prop-1-ynyl)-2H-pyran 5.71d 

 

TMSOTf
O

OMe

Ph

5.70

O
Ph

5.71d

SnBu3

 

 

General Procedure F was followed.  Dihydropyran 5.70 (100 mg, 0.489 mmol) 

dissolved in CH2Cl2 (10 mL), TMSOTf (0.98 mL, 0.98 mmol, 1.0 M in CH2Cl2), and 

tributyl(prop-1-ynyl)stannane (483 mg, 1.47 mmol) were employed.  1H NMR of the 

crude reaction mixture indicated a diastereomeric ratio of >20:1, and after 

chromatography, dihydropyran 5.71d was obtained in 96% with as a colorless oil (100 

mg, 0.471 mmol).  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.32 – 7.20 (5H, m), 5.80 

(1H, dddd, J = 10.0, 5.5, 2.0, 2.0 Hz), 5.72 (1H, dddd, J = 10.0, 4.0, 3.0, 1.5 Hz), 4.93 

(1H, m), 4.23 (1H, dddd, J = 10.5, 7.0, 7.0, 3.5 Hz), 3.03 (1H, dd, J = 14.0, 6.5 Hz), 2.77 

(1H, dd, J = 14.0, 7.0 Hz), 2.03 (1H, ddddd, J = 17.5, 10.0, 2.5, 2.5, 2.0 Hz), 1.89 (1H, 

m), 1.87 (1H, d, J = 2.0 Hz).  13C NMR (125 MHz, CDCl3): δ (ppm) = 138.01, 129.26, 

128.19, 126.80, 126.15, 124.56, 81.92, 77.38, 69.50, 64.18, 41.83, 29.92, 3.65.  IR (cm-1): 

f = 3030, 2919, 2280, 2216, 1454, 1275, 1183, 1072, 940, 743, 700.  HRMS-FAB: (M-

H)+ = 211.1123 calculated for C15H15O, experimental = 211.1148. 
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(±)-(2S,6S)-2-benzyl-3,6-dihydro-6-(2-methylbut-3-en-2-yl)-2H-pyran 5.71e 

 

TMSOTf
O

OMe

Ph

5.70

O
Ph

5.71e

SnBu3

 

 

General Procedure F was followed.  Dihydropyran 5.70 (100 mg, 0.489 mmol) 

dissolved in CH2Cl2 (10 mL), TMSOTf (0.98 mL, 0.98 mmol, 1.0 M in CH2Cl2), and 

tributyl(3-methylbut-2-enyl)stannane (528 mg, 1.47 mmol) were employed.  1H NMR of 

crude reaction mixture indicated a diastereomeric ratio of 10:1, and after 

chromatography, dihydropyran 5.71e was obtained in 78% with as a colorless oil (92 mg, 

0.380 mmol).  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.30 – 7.27 (2H, m), 7.23 – 7.19 

(3H, m), 5.91 (1H, dddd, J = 10.0, 4.0, 3.0, 2.0 Hz), 5.85 (1H, dd, J = 17.5, 11.0 Hz), 5.81 

(1H, dddd, J = 10.5, 2.0, 2.0, 2.0 Hz), 4.96 (1H, dd, J = 10.5, 1.5 Hz), 4.91 (1H, dd, J = 

17.5, 1.5 Hz), 4.10 (1H, dddd, J = 6.5, 6.5, 6.5, 4.5 Hz), 3.91 (1H, p, J = 2.5 Hz), 2.91 

(1H, dd, J = 13.0, 7.0 Hz), 2.74 (1H, dd, J = 13.5, 6.5 Hz), 2.09 (1H, ddddd, J = 17.0, 4.0, 

4.0, 2.0, 2.0 Hz), 1.88 (1H, ddddd, J = 17.5, 7.0, 3.5, 3.5, 3.5 Hz), 0.97 (3H, s), 0.96 (3H, 

s).  13C NMR (125 MHz, CDCl3): δ (ppm) = 145.73 and 145.60 (atropisomer), 139.06, 

129.35, 128.14, 126.20 (b), 126.01, 125.08 (b), 111.88, 78.18 and 78.10 (atropisomer), 

71.48 and 71.37 (atropisomer), 41.98, 40.77, 29.04, 24.56, 22.44.  IR (cm-1): f = 3083, 

3030, 2963, 2928, 1455, 1190, 1095, 913, 743, 699.  HRMS-FAB: (M-H)+ = 241.1592 

calculated for C17H21O, experimental = 241.1581. 
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(±)-2-((2R,6S)-6-benzyl-5,6-dihydro-2H-pyran-2-yl)-1-phenylethanone 5.71f 

 

TMSOTf
O

OMe

Ph

5.70

O
Ph

5.71f

Ph

OTBS

Ph

O

 

 

General Procedure F was followed.  Dihydropyran 5.70 (100 mg, 0.489 mmol) 

dissolved in CH2Cl2 (10 mL), TMSOTf (1.47 mL, 1.47 mmol, 1.0 M in CH2Cl2), and (1-

phenylvinyloxy)(tert-butyl)dimethylsilane (344 mg, 1.47 mmol) were employed.  1H 

NMR of the crude reaction mixture indicated a diastereomeric ratio of >20:1, and after 

chromatography, dihydropyran 5.71f was obtained in 96% with as a colorless oil (138 

mg, 0.471 mmol).  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.91 – 7.89 (2H, m), 7.56 

(1H, m), 7.47 – 7.44 (2H, m), 7.23 – 7.20 (2H, m), 7.17 – 7.13 (3H, m), 5.87- 5.80 (2H, 

m), 4.94 (1H, m), 3.92 (1H, dddd, J = 11.5, 6.5, 6.5, 4.5 Hz), 3.36 (1H, dd, J= 16.0, 7.5 

Hz), 3.03 (1H, dd, J=15.5, 6.0 Hz), 2.87 (1H, dd, J = 14.0, 7.0 Hz), 2.69 (1H, dd, J = 

13.5, 6.5 Hz), 2.05 – 1.95 (2H, m).  13C NMR (125 MHz, CDCl3): δ (ppm) = 198.11, 

138.39, 137.15, 133.05, 129.23, 128.81, 128.55, 128.17, 128.15, 126.14, 124.66, 69.70, 

69.60, 43.00, 41.63, 29.79.  IR (cm-1): f = 3062, 3030, 2920, 1682, 1598, 1449, 1359, 

1275, 1203, 1080, 690.  HRMS-FAB: (M+H)+ = 293.1542 calculated for C20H21O2, 

experimental = 293.1537. 
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(±)-2-((2S,6S)-6-benzyl-5,6-dihydro-2H-pyran-2-yl)-2,4-dimethylpentan-3-one 5.71g 

 

TMSOTf

OTBS

O

OMe

Ph

5.70

O
Ph

5.71g

O

 

 

General Procedure F was followed.  Dihydropyran 5.70 (100 mg, 0.489 mmol) 

dissolved in CH2Cl2 (10 mL), TMSOTf (1.47 mL, 1.47 mmol, 1.0 M in CH2Cl2), and 

(2,4-dimethylpent-2-en-3-yloxy)(tert-butyl)dimethylsilane (335 mg, 1.47 mmol) were 

employed.  1H NMR of crude reaction mixture indicated a diastereomeric ratio of >20:1, 

and after chromatography, dihydropyran 5.71g was obtained in 95% with as a colorless 

oil (133 mg, 0.464 mmol).  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.29 – 7.26 (2H, m), 

7.21 – 7.18 (3H, m), 5.93 (1H, dddd, J = 10.5, 4.0, 4.0, 2.0 Hz), 5.71 (1H, dddd, J = 10.5, 

1.5, 1.5, 1.5 Hz), 4.50 (1H, p, J = 2.5 Hz), 4.12 (1H, dddd, J = 7.0, 7.0, 5.0, 5.0 Hz), 3.01 

(1H, h, J = 6.5 Hz), 2.94 (1H, dd, J = 14.0, 7.0 Hz), 2.76 (1H, dd, J = 13.5, 7.0 Hz), 2.18 

(1H, m), 1.84 (1H, m), 1.11 (3H, s), 1.09 (3H, s), 0.99 (3H, d, J = 6.5 Hz), 0.94 (3H, d, J 

= 6.5 Hz).  13C NMR (125 MHz, CDCl3): δ (ppm) = 219.01, 138.73, 129.25, 128.27, 

126.13, 125.34, 125.31, 74.61, 71.89, 52.56, 39.70, 34.70, 28.04, 21.12, 20.25, 19.80, 

19.52.  IR (cm-1): f = 3029, 2972, 2934, 2872, 1704, 1470, 1381, 1086, 1032, 700.  

HRMS-FAB: (M+H)+ = 287.2011 calculated for C19H27O2, experimental = 287.2008. 
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(±)-methyl 2-((2S,6S)-6-benzyl-5,6-dihydro-2H-pyran-2-yl)-2-methylpropanoate 5.71h 
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General Procedure F was followed.  Dihydropyran 5.70 (100 mg, 0.489 mmol) 

dissolved in toluene (10 mL), BF3·OEt2 (1.47 mL, 1.47 mmol, 1.0 M in CH2Cl2), and (1-

methoxy-2-methylprop-1-enyloxy)(tert-butyl)dimethylsilane (318 mg, 1.47 mmol) were 

employed.  1H NMR of crude reaction mixture indicated a diastereomeric ratio of 3.6:1.  

The two diastereomers were separable by chromatography.  The major diastereomer 

dihydropyran 2S-5.71h was obtained in 67% with as a colorless oil (90 mg, 0.328 mmol).  

1H NMR (500 MHz, CDCl3): δ (ppm) = 7.30 – 7.27 (2H, m), 7.22 – 7.18 (3H, m), 5.94 

(1H, dddd, J = 10.5, 4.0, 4.0, 2.5 Hz), 5.69 (1H, dddd, J = 10.5, 2.0, 2.0, 2.0, 2.0 Hz), 

4.41 (1H, p, J = 2.5 Hz), 4.08 (1H, dddd, J = 7.0, 7.0, 5.0, 5.0 Hz), 3.59 (3H, s), 2.95 (1H, 

dd, J = 13.5, 7.5 Hz), 2.72 (1H, dd, J = 13.5, 6.0 Hz), 2.18 (1H, ddddd, J = 17.0, 4.5, 4.5, 

2.0, 2.0 Hz), 1.87 (1H, m), 1.13 (3H, s), 1.12 (3H, s).  13C NMR (125 MHz, CDCl3): δ 

(ppm) = 176.92, 138.87, 129.29, 128.17, 126.04, 125.70, 125.08, 75.17, 71.71, 51.77, 

47.35, 40.10, 28.61, 21.50, 20.84.  IR (cm-1): f = 3029, 2977, 2947, 1736, 1455, 1263, 

1135, 1088, 700.  HRMS-FAB: (M+H)+ = 275.1647 calculated for C17H23O3, 

experimental = 275.1642.  The relative 2,6-trans stereochemistry of the ring was deduced 

from a ROESY experiment.  
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The minor diastereomer dihydropyran 2R-5.71h was obtained in 15% yield as a 

colorless oil (20 mg, 0.0723 mmol).  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.28 – 7.25 

(2H, m), 7.22 – 7.17 (3H, m), 5.88 (1H, dddd, J = 10.5, 6.0, 2.0, 2.0 Hz), 5.58 (1H, dddd, 

J = 10.5, 1.5, 1.5, 3.0 Hz), 4.30 (1H, m), 3.74 (1H, dddd, J = 10.5, 7.5, 4.5, 3.0 Hz), 3.59 

(3H, s), 2.83 (1H, dd, J = 14.0, 8.0 Hz), 2.70 (1H, dd, J = 14.0, 4.5 Hz), 2.01 (1H, m), 

1.90 (1H, m), 1.16 (3H, s), 1.13 (3H, s).  13C NMR (125 MHz, CDCl3): δ (ppm) = 

177.05, 138.89, 129.47, 127.96, 126.79, 126.03, 125.94, 79.16, 74.36, 51.69, 46.45, 

42.21, 30.79, 20.87, 19.79.  IR (cm-1): f = 3031, 2979, 2948, 2849, 1739, 1469, 1263, 

1189, 1135, 1083, 700.  HRMS-FAB: (M+H)+ = 275.1647 calculated for C17H23O3, 

experimental = 275.1629. 
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(-)-(2S,3S)-4-((2S,6R)-6-allyl-3,6-dihydro-2H-pyran-2-yl)-3-methoxy-2- methylbutan-1-ol 

5.74 

 

O N

O

O

O

Bn

OH
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MeOTf,
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O N

O

O

O
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OMe
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MeOH

O

OMe

5.74

OH

 

 

Aldol product 5.82 (847 mg, 2.12 mmol) was dissolved in CH2Cl2 (50 mL).  2,6-

di-tert-butyl-4-methylpyridine (4.35 g, 21.1 mmol) and MeOTf (2.40 mL, 21.2 mmol) 

were sequentially added, and the reaction mixture was gently refluxed for 36 hours.  

After cooling to 0°C, the reaction was quenched with careful addition of MeOH (10 mL) 

followed by a saturated aqueous solution of NaHCO3 (50 mL).  After separation of 

layers, the aqueous layer was extracted with CH2Cl2 (2 x 50 mL).  The organic layers 

were combined, dried over MgSO4, filtered, and concentrated under vacuum.  The crude 

oil was chromatographed in a silica gel column with 80:20 hexanes : EtOAc to give title 

product 5.82a in 74% yield (649 mg, 1.57 mmol) as a clear oil. 1H NMR (500 MHz, 

CDCl3): δ (ppm) = 7.34 – 7.31 (2H, m), 7.27 (1H, m), 7.22 – 7.20 (2H, m), 5.87 – 5.79 

(2H, m), 5.72 (1H, dddd, J = 10.5, 3.0, 3.0, 1.5 Hz), 5.09 (1H, dddd, J = 17.0, 1.5, 1.5, 1.5 

Hz), 5.04 (1H, dddd, J = 10.5, 2.5, 1.5, 1.5 Hz), 4.65 (1H, dddd, J = 9.5, 6.5, 3.0, 3.0 Hz), 

4.19 – 4.14 (3H, m), 4.07 (1H, dq, J = 7.0, 1.0 Hz), 3.85 (1H, m), 3.56 (1H, ddd, J = 6.5, 

6.5, 4.5 Hz), 3.37 (3H, s), 3.27 (1H, dd, J = 13.0, 3.0 Hz), 2.77 (1H, dd, J = 13.0, 9.5 Hz), 
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2.45 (1H, m), 2.29 (1H, m), 2.04 (1H, m), 1.94 (1H, ddddd, J = 17.0, 9.0, 3.0, 3.0, 3.0 

Hz), 1.82 (1H, ddd, J = 14.5, 7.0, 7.0 Hz), 1.72 (1H, ddd, J = 14.5, 5.5, 4.5 Hz), 1.27 (1H, 

d, J = 7.0 Hz).  13C NMR (125 MHz, CDCl3): δ (ppm) = 175.37, 153.00, 135.28, 135.05, 

129.42, 129.12, 128.88, 127.28, 123.95, 116.72, 79.59, 72.44, 66.01, 64.84, 57.58, 55.56, 

41.15, 38.81, 37.77, 37.14, 30.59, 13.31.  IR (cm-1): f = 3030, 2976, 2928, 2827, 1782, 

1695, 1382, 1350, 1211, 1198, 1105, 704.  HRMS-FAB: (M+H)+ = 414.22280 calculated 

for C24H32O5N, experimental = 414.2258.  [α]20
D = -130° (c = 1.93 in CHCl3). 

 Compound 5.82a (180 mg, 0.435 mmol) was dissolved in Et2O (10 mL) and 

cooled to -78°C.  In a separate flask, MeOH (0.35 mL, 8.70 mmol) and a solution of 

LiBH4 (1.09 mL, 2.18 mmol, 2.0 M in THF) was sequentially added to Et2O (10 mL) at 

0°C, stirred for 5 minutes, and transferred to the solution of 5.82a via cannula.  The 

reaction mixture was warmed slowly to 0°C.  After stirring for one hour, an aqueous 

solution of 2 M NaOH (20 mL) was cautiously added dropwise, and the resulting mixture 

was stirred vigorously for 10 minutes.  After separation of layers, the aqueous layer was 

extracted with Et2O (2 x 20 mL).  The organic layers were combined, dried over MgSO4, 

filtered, and concentrated under vacuum.  The crude material was then purified in a silica 

gel column chromatography with 70:30 hexanes : EtOAc to give alcohol 5.74 in 78% 

yield (82 mg, 0.341 mmol) as a clear oil.  1H NMR (500 MHz, CDCl3): δ (ppm) = 5.89 – 

5.81 (2H, m), 5.72 (1H, dddd, J = 10.0, 2.5, 2.5, 1.0 Hz), 5.09 (1H, m), 5.07 (1H, m), 

4.24 (1H, m), 3.75 (1H, h, J = 4.5 Hz), 3.68 – 3.62 (2H, m), 3.52 (1H, ddd, J = 6.5, 6.5, 

3.5 Hz), 3.36 (3H, s), 2.73 (1H, b), 2.39 (1H, m), 2.26 (1H, m), 2.04 – 1.93 (3H, m), 1.90 

(1H, ddd, J = 14.5, 8.5, 6.0 Hz), 1.59 (1H, ddd, H = 14.5, 7.5 Hz), 0.89 (3H, d, J = 7.0 

Hz).  13C NMR (125 MHz, CDCl3): δ (ppm) = 135.08, 129.11, 124.08, 116.84, 81.30, 
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72.43, 66.65, 64.92, 57.02, 38.67, 36.32, 35.37, 30.78, 11.14.  IR (cm-1): f = 3437, 3034, 

2925, 1462, 1434, 1393, 1184, 1087, 1026, 914, 708.  HRMS-FAB: (M+H)+ = 241.1804 

calculated for C14H25O3, experimental = 241.1818.  [α]20
D = -86.1° (c = 3.80 in CHCl3). 

 

(-)-((3S,5R)-3-((phenylsulfonyl)methoxy)-6-iodo-5-methoxyhexyl)(tert-

butyl)diphenylsilane 5.76 
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Homoallylic alcohol 5.75 (11.9 g, 33.5 mmol, >95% ee) was dissolved in CH2Cl2 

(100 mL), and DIPEA was then added (17.5 mL, 100 mmol).  After cooling the mixture 

to 0°C, MOMCl (25.1 mL, 50.2 mmol, 2.0 M in toluene) was added dropwise.  The 

reaction was warmed to room temperature and stirred overnight.  The reaction was then 

diluted with CH2Cl2 (100 mL) and washed subsequently with aqueous solutions of 2 M 

HCl (100 mL) and then saturated NaHCO3 (100 mL).  The organic layer was then dried 

over MgSO4 and filtered.  A yellow oil was obtained upon removal of CH2Cl2 under 

vacuum.  The crude material was purified with column chromatography using 90:10 

hexanes : EtOAc to give the title product 5.75a in 96% as a colorless oil (12.8 g, 32.1 

mmol).  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.68 – 7.64 (4H, m), 7.45 – 7.36 (6H, 
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m), 5.81 (1H, m), 5.09 – 5.05 (2H, m), 4.64 (1H, d, J = 7.0 Hz), 4.63 (1H, d, J = 7.0 Hz), 

3.86 (1H, dddd, J = 7.5, 5.5, 5.5, 5.5 Hz), 3.78 (1H, ddd, J = 10.5, 8.0, 6.0 Hz), 3.74 (1H, 

ddd, J = 10.5, 6.5, 5.5 Hz), 3.32 (3H, s), 2.36 – 2.26 (2H, m), 1.81 – 1.69 (2H, m), 1.05 

(9H, s).  13C NMR (125 MHz, CDCl3): δ (ppm) = 135.54, 134.62, 133.82, 129.56, 

127.61, 117.19, 95.68, 74.00, 60.42, 55.46, 39.23, 37.11, 26.82, 19.16.  IR (cm-1): f = 

3072, 2931, 2987, 2858, 1428, 1112, 1040, 702.  HRMS-FAB: (M+H)+ = 399.2355 

calculated for C24H35O3Si, experimental = 399.2359.  [α]20
D = +6.87° (c = 7.13 in 

CHCl3). 

Compound 5.75a (12.8 g, 32.1 mmol) was dissolved in toluene (500 mL), and 

12.8 grams of 4 Å molecular sieves were then added.  After cooling this solution to -

78°C, iodine monochloride (38.5 mL, 38.5 mmol, 1.0 M in CH2Cl2) was added dropwise 

while maintaining an internal temperature of the reaction below -75°C.  The solution 

became dark red and was stirred for 30 minutes.  Then, TEA (13.4 mL, 96.3 mmol) was 

added in one injection, followed by PhSH (4.61 mL, 44.9 mmol) in which the solution 

immediately turned cloudy grey.  The reaction was warmed to room temperature over one 

hour and then quenched with a 1:1 mixture of saturated NaHCO3 and Na2S2O3 (300 mL).  

After separating the organic and aqueous layers, the aqueous layer was washed with Et2O 

(2 x 100 mL).  The organic layers were then combined, dried over MgSO4, and filtered.  

The organic solvent was removed under vacuum leaving behind a yellow oil.  The crude 

material was purified with column chromatography using 98:2 → 80:20 hexanes : EtOAc 

to give ether transfer product 5.75b in 84% yield with a diastereomeric ratio of 22:1 as a 

colorless oil (17.1 g, 27.0 mmol).  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.67 – 7.64 

(4H, m), 7.45 – 7.35 (8H, m), 7.27 – 7.24 (2H, m), 7.18 (1H, tt, J = 7.5, 1.5 Hz), 5.10 
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(1H, d, J = 12.0 Hz), 4.91 (1H, d, J = 12.0 Hz), 3.99 (1H, p, J = 5.5 Hz), 3.76 (1H, ddd, J 

= 10.5, 6.5, 6.5 Hz), 3.72 (1H, ddd, J = 10.5, 6.0, 6.0 Hz), 3.29 (1H, dd, J = 10.5, 4.0 Hz), 

3.26 (1H, dd, J = 10.5, 4.0 Hz), 3.22 (3H, s), 2.94 (1H, dddd, J = 6.0, 6.0, 4.0, 4.0 Hz), 

1.82 – 1.68 (4H, m), 1.06 (9H, s).  13C NMR (125 MHz, CDCl3): δ (ppm) = 136.03, 

135.55, 135.54, 133.67, 133.65, 129.65, 129.63, 128.93, 128.86, 127.68, 127.67, 126.20, 

75.83, 72.87, 71.11, 60.12, 56.53, 38.86, 36.76, 26.87, 19.15, 10.67.  IR (cm-1): f = 3070, 

2930, 2857, 1428, 1111, 1088, 1051, 738, 702. HRMS-FAB: (M-SPh)+ = 525.1322 

calculated for C24H34O3SiI, experimental = 525.1302.  [α]20
D = -35.7° (c = 9.90 in 

CHCl3). 

 Compound 5.75b (16.9 g, 26.6 mmol) was dissolved in ethanol (660 mL, 200 

proof), and the solution was cooled to 0°C.  In a separate flask, ammonium (VI) 

molybdate tetrahydrate (6.64 g, 5.32 mmol) was dissolved in a cold aqueous hydrogen 

peroxide solution (30%, 330 mL).  This Mo(VI) – H2O2 mixture was immediately poured 

to the solution of 5.75b in one portion causing the reaction to turn yellow and cloudy  

(the cloudiness eventually dissipated).  The reaction was stirred at 0°C for one hour and 

then at room temperature for two more hours.  Addition of DI water (400 mL) quenched 

the reaction, and the aqueous layer was extracted with CH2Cl2 (3 x 200 mL).  The pink 

organic layers were combined, dried over MgSO4, filtered, and rotovaped to produce a 

dark red oily residue.  The crude material was then loaded onto silica gel and 

chromatographed with 90:10 → 80:20 hexanes : EtOAc to afford the corresponding 

sulfone 5.76 in 83% yield as a yellow oil (14.8 g, 22.2 mmol).  1H NMR (500 MHz, 

CDCl3): δ (ppm) = 7.88 – 7.86 (2H, m), 7.66 – 7.61 (5H, m), 7.52 – 7.49 (2H, m), 7.46 – 

7.37 (6H, m), 4.53 (2H, s), 4.02 (1H, p, J = 6.0 Hz), 3.72 – 3.64 (2H, m), 3.29 (1H, dd, J 
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= 11.0, 5.5 Hz), 3.27 (3H, s), 3.24 (1H, dd, J = 10.5, 3.5 Hz), 3.03 (1H, dddd, J = 6.5, 5.5, 

5.5, 4.0 Hz), 1.80 – 1.70 (4H, m), 1.05 (9H, s).  13C NMR (125 MHz, CDCl3): δ (ppm) = 

137.38, 135.51, 135.50, 133.93, 133.47, 133.42, 129.74, 129.72, 129.13, 128.70, 127.72, 

127.70, 84.13, 77.25, 75.83, 59.82, 56.56, 38.90, 36.77, 26.84, 19.09, 9.93.  IR (cm-1): f = 

3070, 2930, 2857, 1738, 1588, 1428, 1325, 1299, 1151, 1112, 1080, 743, 703. HRMS-

FAB: (M+H)+ = 667.1411 calculated for C30H40O5SSiI, experimental = 667.1401.  [α]20
D 

= -2.58° (c = 9.70 in CHCl3). 

 

(+)-(2-((2R,4R)-3,4-dihydro-4-methoxy-2H-pyran-2-yl)ethoxy)(tert-butyl)diphenylsilane 

5.77 
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HMDS (7.07 mL, 33.3 mmol) was dissolved in THF (100 mL) and cooled to -

78°C.  A solution of n-BuLi (14.5 mL, 33.3 mmol, 2.3 M in hexanes) was then added 

dropwise rapidly, and the solution was stirred for 10 minutes prior to the addition of 

HMPA (11.6 mL, 66.6 mmol).  This LiHMDS solution was further stirred for 10 minutes.  

In a separate flask, sulfone 5.76 (14.8 g, 22.2 mmol) was dissolved in THF (500mL), and 
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the solution was cooled to -78°C.  The freshly prepared, cold LiHMDS solution was then 

added to this solution via cannula dropwise over 30 minutes.  The reaction was further 

stirred for 2 hours, and then quenched with a half-saturated aqueous NH4Cl solution (200 

mL).  After separating the organic and aqueous layers, the aqueous layer was washed 

with Et2O (2 x 100 mL).  The organic layers were then combined, dried over MgSO4, 

filtered, and concentrated under vacuum leaving behind a yellow oil.  The crude material 

was flushed through a thick silica pad with 70:30 hexanes : EtOAc.  The solvent was then 

evaporated to leave a mixture of diastereomers 5.76a as a yellow oil (11.7 g). 

Sulfonylpyran 5.76a (11.7 g) as a mixture of diastereomers was dissolved in THF 

(300 mL).  Upon addition of TEA (30.2 mL, 217 mmol) and MgBr2·OEt2 (16.8 g, 65.1 

mmol), the suspension mixture was agitated in an ultrasound bath at 50°C until the 

starting material was completely consumed.  The reaction was cooled to room 

temperature and quenched with a saturated aqueous NaHCO3 solution (300 mL).  After 

separation of organic and aqueous layers, the aqueous solution was extracted with Et2O 

(2 x 100 mL).  The organic layers were combined, dried over MgSO4, filtered, and 

concentrated under vacuum.  The crude material was flushed through a thick silica pad 

with 95:5 hexanes : EtOAc, and after concentration, dihydropyran 5.77 was produced in 

74% yield (6.52 g, 16.4 mmol) over two steps as a yellow oil.  1H NMR (500 MHz, 

CDCl3): δ (ppm) = 7.69 – 7.66 (4H, m), 7.44 – 7.36 (6H, m), 6.48 (1H, d, J = 6.5 Hz), 

4.96 (1H, ddd, J= 6.0, 5.5, 2.0 Hz), 4.09 (1H, dddd, J = 12.0, 7.0, 5.0, 2.0 Hz), 3.86 – 

3.78 (2H, m), 3.63 (1H, m), 3.33 (3H, s), 1.98 (1H, dddd, J = 14.0, 2.0, 2.0, 2.0 Hz), 1.94 

– 1.80 (2H, m), 1.55 (1H, ddd, J = 14.0, 12.0, 4.0 Hz), 1.05 (9H, s).  13C NMR (125 MHz, 

CDCl3): δ (ppm) = 147.11, 135.57, 135.55, 133.86, 133.76, 129.54 (2C), 127.61, 127.60, 
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100.07, 68.87, 68.35, 60.23, 55.07, 37.99, 26.82, 19.17.  IR (cm-1): f = 3071, 2930, 2858, 

2817, 1639, 1428, 1246, 1094, 702. HRMS-FAB: (M-H)+ = 395.2042 calculated for 

C24H31O3Si, experimental = 395.2068.  [α]20
D = +67.3° (c = 3.13 in CHCl3). 

 

(-)-(2-((2S,6R)-6-allyl-3,6-dihydro-2H-pyran-2-yl)ethoxy)(tert-butyl)diphenylsilane 5.78 

 

O OBPS

OMe

5.77
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1 mol% TMSOTf
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5.78  

 

Dihydropyran 5.77 was dissolved in CH2Cl2 (300 mL), and the solution was 

cooled to -78°C.  Upon addition of allyltrimethylsilane (7.53 mL, 47.4 mmol), a freshly 

prepared solution of TMSOTf (0.16 mL, 1.0 M in CH2Cl2) was added dropwise.  The 

reaction mixture was stirred for two hours, warmed to 0°C, and then poured into an 

extraction funnel containing phosphate buffer (pH 7.00, 200 mL).  After separation of 

layers, the aqueous layer was washed with CH2Cl2 (2 x 100 mL).  The organic layers 

were combined, dried over MgSO4, filtered, and concentrated under vacuum leaving 

behind a yellow oil.  The crude oil was then loaded into a silica gel column and 

chromatographed using 95:5 hexanes : EtOAc.  After concentration, title product 5.78 

was obtained in 99% yield (6.39 g, 15.7 mmol) with a diastereomeric ratio of >20:1 as a 

clear oil.  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.69 – 7.65 (4H, m), 7.44 – 7.36 (6H, 

m), 5.87 – 5.79 (2H, m), 5.71 (1H, m), 5.06 (1H, m), 5.02 (1H, m), 4.15 (1H, m), 3.96 

(1H, h, J = 4.0 Hz), 3.85 (1H, ddd, J = 10.0, 7.5, 5.5 Hz), 3.76 (1H, ddd, J = 10.5, 5.5, 5.5 
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Hz), 2.40 (1H, m), 2.24 (1H, m), 2.01 (1H, m), 1.92 (1H, ddddd, J = 17.0, 8.0, 3.0, 3.0, 

3.0 Hz), 1.81 (1H, dddd, J = 13.5, 8.0, 5.5, 5.5 Hz), 1.72 (1H, dddd, J = 14.0, 8.0, 6.5, 4.5 

Hz), 1.06 (9H, s).  13C NMR (125 MHz, CDCl3): δ (ppm) = 135.57, 135.55, 135.13, 

134.02, 133.99, 129.53 (2C), 129.21, 127.60 (2C), 124.37, 116.71, 72.11, 64.71, 60.54, 

38.85, 38.23, 30.62, 26.87, 19.19.  IR (cm-1): f = 3072, 3033, 2931, 2858, 1642, 1472, 

1428, 1112, 1084, 702.  HRMS-FAB: (M-H)+ = 405.2250 calculated for C26H33O2Si, 

experimental = 405.2250.  [α]20
D = -43.9° (c = 3.55 in CHCl3).   

 

(-)-2-((2S,6R)-6-allyl-3,6-dihydro-2H-pyran-2-yl)acetaldehyde 5.79 

 

O OBPS
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Dihydropyran 5.78 (2.00 g, 4.92 mmol) was dissolved in THF (50 mL), and the 

solution was cooled to 0°C.  A solution of tetrabutylammonium fluoride (9.84 mL, 9.84 

mmol, 1.0 M in THF) was then added dropwise.  The reaction was warmed to room 

temperature, stirred until starting material was fully consumed, poured into an extraction 

funnel, and washed with a half-saturated aqueous solution of NH4Cl (100 mL).  After 

separation of layers, the aqueous layer was extracted with Et2O (3 x 50 mL).  The 

combined organic layers were dried over MgSO4, filtered, and concentrated under 
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vacuum.  The residual yellow oil was chromatographed on silica gel using 70:30 hexanes 

: EtOAc to give alcohol 5.78a as a clear oil in 97% yield (800 mg, 4.76 mmol).  1H NMR 

(500 MHz, CDCl3): δ (ppm) = 5.89 – 5.80 (2H, m), 5.70 (1H, dddd, J = 10.5, 3.0, 3.0, 1.5 

Hz), 5.13 (1H, dddd,  J = 17.0, 1.5, 1.5, 1.5 Hz), 5.10 (1H, m), 4.25 (1H, m), 3.91 (1H, 

dddd, J = 9.5, 9.5, 3.5, 3.5 Hz), 3.77 (2H, b), 2.73 (1H, b), 2.44 (1H, m), 2.28 (1H, ddddd, 

J = 14.5, 6.5, 5.5, 1.5, 1.5 Hz), 2.03 (1H, ddddd, J = 17.5, 9.5, 2.5, 2.5, 2.5 Hz), 1.95 (1H, 

ddddd, J = 17.0, 5.0, 3.5, 1.0, 1.0 Hz), 1.82 – 1.69 (2H, m).  13C NMR (125 MHz, 

CDCl3): δ (ppm) = 134.98, 128.78, 124.18, 117.20, 72.38, 67.91, 61.34, 38.66, 37.36, 

30.71.  IR (cm-1): f = 3399, 3076, 3033, 2917, 1431, 1077, 1057, 914, 708.  HRMS-FAB: 

(M+H)+ = 169.1229 calculated for C10H17O2, experimental = 169.1226.  [α]20
D = -181° (c 

= 1.55 in CHCl3). 

Alcohol 5.78a (780 mg, 4.64 mmol) was dissolved in CH2Cl2 (50 mL).  Solid 

sodium bicarbonate (3.90 g, 46.4 mmol) was then added, and the suspension was cooled 

to 0°C.  After dropwise addition of a Dess-Martin periodinane solution (26.2 mL, 9.28 

mmol, 15% w/v in CH2Cl2), the mixture was allowed to warm up to room temperature 

and stirred until starting material has been completely oxidized.  The reaction was 

quenched with slow addition of a saturated aqueous NaHCO3 solution (100 mL) until no 

more gas was evolved.  After separation of layers, the aqueous layer was extracted with 

CH2Cl2 (2 x 50 mL).  The organic layers were combined, dried over MgSO4, filtered, and 

concentrated under vacuum.  The crude oil was then loaded into a column containing 

silica gel and eluted using 90:10 hexanes : EtOAc to produce aldehyde 5.79 in 93% yield 

(721 mg, 4.34 mmol) as a yellow oil.  1H NMR (500 MHz, CDCl3): δ (ppm) = 9.80 (1H, 

dd, J = 3.0, 2.0 Hz), 5.87 – 5.78 (2H, m), 5.73 (1H, dddd, J = 10.5, 3.0, 3.0, 1.5 Hz), 5.09 
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(1H, m), 5.06 (1H, m), 4.28 (1H, h, J = 4.0 Hz), 4.21 (1H, m), 2.65 (1H, ddd, J = 16.5, 

9.0, 3.0 Hz), 2.50 (1H, ddd, J = 16.0, 4.0, 1.5 Hz), 2.42 (1H, ddddd, J = 14.0, 8.0, 6.5, 

1.0, 1.0 Hz), 2.28 (1H, ddddd, J = 13.0, 7.0, 6.0, 1.0, 1.0 Hz), 2.09 (1H, ddddd, J = 17.0, 

5.0, 3.5, 1.5, 1.5 Hz), 1.99 (1H, ddddd, J = 16.5, 9.0, 2.5, 2.5, 2.5 Hz).    13C NMR (125 

MHz, CDCl3): δ (ppm) = 201.31, 134.72, 129.10, 123.55, 117.10, 72.34, 63.41, 48.77, 

38.70, 30.06.  IR (cm-1): f = 3076, 3035, 2898, 2833, 2729, 1727, 1392, 1079, 917, 710.  

HRMS-FAB: (M+H)+ = 167.1072 calculated for C10H15O2, experimental = 167.1062.  

[α]20
D = -143° (c = 2.27 in CHCl3). 
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 Oxazolidinone 5.80 (1.92 g, 8.22 mmol) was charged into in a flask containing 2 

grams of 4 Ǻ molecular sieves.  CH2Cl2 (10 mL) was then added to dissolve the solid, 

and the resulting solution was then transferred to a reaction flask via cannula.  The 

molecular sieves were rinsed with CH2Cl2 (4 x 5 mL) to ensure that oxazolidinone 5.80 

was completely transferred to the reaction flask.  After cooling the solution to -78°C, a 

solution of Bu2BOTf (8.63 mL, 8.63 mmol, 1.0 M in CH2Cl2) was added dropwise over 

10 minutes followed by TEA (1.43 mL, 10.3 mmol).  The mixture was stirred for 45 
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minutes at -78°C, warmed to 0°C for 15 minutes, and then recooled to -78°C.  In the 

meantime, in a separate flask containing aldehyde 5.79 (683 mg, 4.11 mmol) and 1 gram 

of 4 Ǻ molecular sieves, CH2Cl2 (5 mL) was added. The solution was cooled to -78°C 

and then transferred via cannula to the reaction flask containing a solution of the boron 

enolate of 5.80.  The flask was rinsed with CH2Cl2 (3 x 3 mL) to ensure that aldehyde 

5.79 was completely transferred.  The reaction mixture was allowed to warm up to -5°C 

over 2 hours and stirred for 12 hours at this temperature.  Phosphate buffer (pH 7.00, 50 

mL) was then added in one portion, and the mixture was stirred vigorously.  A H2O2 

solution (30% in H2O) was added dropwise until no sharp increase in the internal 

temperature was observed.  The internal temperature was crucially maintained around 

0°C during this process.  The organic layer was then separated, and the aqueous layer was 

extracted with CH2Cl2 (2 x 50 mL).  After combining the organic layers, the solvent was 

removed under vacuum after subsequent drying over MgSO4 and filtration.  The crude 

material was loaded into a silica gel column, and aldol product 5.82 was eluted with 

80:20 → 60:40 hexanes : EtOAc to give a clear thick oil in 82% yield (1.35 g, 3.38 

mmol) as a single diastereomer.  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.34 – 7.31 (2H, 

m), 7.27 (1H, m), 7.22 – 7.20 (2H, m), 5.87 – 5.79 (2H, m), 5.70 (1H, dddd, J = 10.0, 2.5, 

2.0, 2.0 Hz), 5.12 (1H, dddd, J = 17.0, 1.5, 1.5, 1.5 Hz), 5.08 (1H, dddd, J = 10.0, 2.0, 

1.0, 1.0 Hz), 4.69 (1H, dddd, J = 10.0, 7.0, 3.0, 3.0 Hz), 4.25 (1H, m), 4.21 – 4.13 (3H, 

m), 3.94 (1H, m), 3.85 (1H, dq, J = 7.0, 5.0 Hz), 3.79 (1H, d, J = 0.5 Hz), 3.29 (1H, dd, J 

= 13.5, 3.5, Hz), 2.77 (1H, dd, J = 13.5, 9.5 Hz), 2.43 (1H, m), 2.29 (1H, m), 2.01 – 1.98 

(2H, m), 1.75 (1H, ddd, J = 14.0, 9.5, 9.5 Hz), 1.66 (1H, ddd, J = 14.5, 3.0, 3.0 Hz), 1.27 

(3H, d, J = 7.0 Hz).  13C NMR (125 MHz, CDCl3): δ (ppm) = 175.62, 153.10, 135.22, 
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134.59, 129.36, 128.86, 128.54, 127.26, 123.89, 117.28, 72.51, 71.79, 68.35, 66.03, 

55.44, 42.86, 39.22, 38.65, 37.70, 30.77, 11.40.  IR (cm-1): f = 3498, 3066, 3031, 2978, 

2918, 1781, 1695, 1386, 1211, 1076, 972, 705.  HRMS-FAB: (M+H)+ = 400.2124 

calculated for C23H30O5N, experimental = 400.2105.  [α]20
D = -117° (c = 3.95 in CHCl3). 

 

8.5.  Experimental Procedures for Chapter Six 

 

(+)-Neopeltolide Macrolactone 6.5 

 

H2, Pd/C

OBn

O

OMe

OO

6.42

OH

O

OMe

OO

6.5  

 

Macrolide 6.42 (100 mg, 0.239 mmol) was dissolved in EtOAc (50 mL), and 10% 

Pd/C (26 mg, 0.024 mmol) was then added.  The solution was then bubbled with nitrogen 

gas for 10 minutes followed by hydrogen gas for 30 minutes at which all starting material 

was completely consumed.  Nitrogen gas was then reintroduced to the system for 5 

minutes, and the solution was then filtered over celite.  Removal of solvent yielded 

neopeltolide macrolactone 6.5 in 99% yield as a clear oil (78 mg, 0.238 mmol).  1H NMR 

(600 MHz, CDCl3): δ (ppm) = 5.17 (1H, dddd, J = 9.6, 9.6, 4.8, 0.6 Hz, C13–H), 4.22 

(1H, b, C5–H), 4.17 (1H, dddd, J = 11.4, 11.4, 4.8, 2.4 Hz, C3–H), 3.66 (1H, ddd, J = 

11.4, 9.0, 2.4 Hz, C7–H), 3.58 (1H, dddd, J = 10.8, 9.6, 2.4, 1.2 Hz, C11–H), 3.29 (3H, s, 
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C11– OME), 2.56 (1H, dd, J = 14.4, 4.2 Hz, C2–Ha), 2.32 (1H, dd, J = 15.0, 11.4 Hz, 

C2–Hb), 1.86 (1H, b, C5O–H), 1.83 (1H, ddd, J = 15.0, 10.8, 1.8 Hz, C12–Ha), 1.69 – 

1.62 (2H, m, C6–Heq, C4–Heq), 1.55 (1H, ddd, J = 13.2, 11.4, 2.4 Hz, C10–Ha), 1.55 – 

1.44 (5H, m, C4–Hax, C6–Hax, C9–H, C14–Ha, C14–Hb), 1.39 (1H, ddd, J = 15.0, 9.0, 

5.4 Hz, C8–Ha), 1.37 – 1.29 (3H, m, C12–Hb, C15–H2 ), 1.21 (1H, dd, J = 15.6, 1.8 Hz, 

C8–Hb), 1.12 (1H, ddd, J = 13.2, 10.8, 2.4 Hz, C10–Hb), 0.95 (3H, d, J = 7.2 Hz, C9–

CH3), 0.89 (3H, t, J = 7.8 Hz, C16–H3).  13C NMR (125 MHz, CDCl3): δ (ppm) = 171.11, 

75.59, 74.85, 72.74, 69.09, 64.74, 56.15, 44.12, 42.43, 42.27, 40.09, 39.32, 38.21, 36.89, 

31.37, 25.65, 18.87, 13.86.  IR (cm-1): f = 3436, 2917, 1732, 1462, 1385, 1277, 1080, 

986.  HRMS-FAB: (M+H)+ = 329.2328  calculated for C18H33O5, experimental = 

329.2325.  [α]20
D = +30.0° (c = 1.13 in CHCl3). 

 

(+)-(S)-1-(phenylthio)pentan-2-ol 6.18 

 

O PhSH, NaH

6.21 6.18

OH

SPh

 

 

NaH (2.31 g, 96.4 mmol) was suspended in THF (200 mL) and cooled to 0°C.  

PhSH (7.62 mL, 74.2 mmol) was then carefully added dropwise and stirred for 30 

minutes.  After dropwise addition of epoxide 6.21 (10 mL, 96.4 mmol), the reaction 

mixture was allowed to warm to room temperature and stirred for 4 hours.  Upon 

recooling to 0°C, the reaction was carefully quenched with MeOH until no more gas 

evolution was observed.  The mixture was poured into a separatory funnel containing a 
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half-saturated NH4Cl solution (200 mL).  The layers were separated, and the aqueous 

layer was washed with Et2O (2 x 100 mL).  The organic layers were then combined, dried 

over MgSO4, filtered, and concentrated under vacuum to provide β-hydroxysulfide 6.18 

in 95% yield as a yellow oil (13.8 g, 70.3 mmol).  1H NMR (500 MHz, CDCl3): δ (ppm) 

= 7.40 – 7.37 (2H, m), 7.31 – 7.27 (2H, tt, J = 7.0, 1.5 Hz), 7.21 (1H, tt, J = 7.5, 1.0 Hz), 

3.68 (1H, m), 3.15 (1H, dd, J = 13.5, 3.5 Hz), 2.84 (1H, dd, J = 13.5, 9.0 Hz), 2.42 (1H, d, 

J = 3.5 Hz), 1.56 – 1.43 (3H, m), 1.42 – 1.33 (1H, m), 0.91 (3H, t, J = 7.0).  13C NMR 

(125 MHz, CDCl3): δ (ppm) = 135.56, 130.26, 129.31, 126.83, 69.33, 42.50, 38.50, 

19.18, 14.31.  IR (cm-1): f = 3401, 3059, 2958, 2930, 2872, 1584, 1480, 1438, 1025, 738, 

690.  HRMS-FAB: M·+ = 196.0922 calculated for C19H30O4N, experimental = 196.0931.  

[α]20
D = +45.8° (c = 4.47 in CHCl3). 

 

(-)-(R)-3-(formylmethyl)-N-methoxy-N-methylbutanamide 6.19 

 

N OH

O

6.28

MeO

Me

DMP

N O

O

6.19

MeO

Me  

 

Alcohol 6.28 (10.3 g, 58.9 mmol) was dissolved in CH2Cl2 (300 mL) in a round-

bottomed flask, and the flask was then placed in a water bath at room temperature.  

NaHCO3 (24.7 g, 295 mmol) was then added followed by the Dess-Martin reagent (30.0 

g, 70.7 mmol) in three 10-gram portions over 15 minutes.  After stirring the suspension 

for one hour, the reaction was very carefully quenched with the slow addition of a 

saturated aqueous solution of NaHCO3 until no more gas evolution was observed.  After 
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separation of layers, the aqueous layer was extracted with CH2Cl2 (2 x 100 mL).  The 

organic layers were then combined, dried over MgSO4, filtered, and concentrated under 

vacuum to give a white solid, which was then taken up in hexanes (100 mL).  The white 

residue was filtered over celite and washed with hexanes (2 x 50 mL).  Removal of 

solvent under vacuum then afforded aldehyde 6.19 in 99% yield as a yellow oil (10.1 g, 

58.3 mmol).  1H NMR (500 MHz, CDCl3): δ (ppm) = 9.71 (1H, m), 3.64 (3H, s), 3.14 

(3H, s), 2.60 (1H, o, J = 7.0 Hz), atropisomers 2.51 and 2.50 (1H, ddd, J = 16.5, 6.0, 1.5 

Hz), 2.38 (2H, d, J = 6.5 Hz), atropisomers 2.30 and 2.29 (1H, ddd, J = 16.5, 7.5, 2.5 Hz), 

atropisomers 1.01 and 1.00 (3H, d, J = 6.5 Hz).  13C NMR (125 MHz, CDCl3): δ (ppm) = 

202.11, 172.87, 61.13, 50.34, 38.22, 31.93, 24.79, 20.40.  IR (cm-1): f = 3585, 2963, 

2826, 2727, 1723, 1652, 1456, 1418, 1386, 1179, 1003.  HRMS-FAB: (M+H)+ = 

174.1130 calculated for C8H16O3N, experimental = 174.1138.  [α]20
D = -4.61° (c = 7.13 

in CHCl3).  
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(-)-(R)-5-hydroxy-N-methoxy-N,3-dimethylpentanamide 6.28 

 

MeO OH

O O BH3•SMe2

6.22

MeO OH

O

6.26

O

O

+

6.27

(OMe)MeNH2Cl,
i-PrMgCl

N OH

O

6.28

MeO

Me  

 

(R)-4-(methoxycarbonyl)-3-methylbutanoic acid 6.22 (13.2 g, 82.4 mmol) was 

dissolved in THF (300 mL), and the solution was cooled to 0°C.  BH3•SMe2 (8.2 mL, 

86.5 mmol) was then added dropwise over three hours via a syringe pump.  The reaction 

was allowed to warm to room temperature and stirred overnight.  After recooling the 

reaction mixture to 0°C, DI H2O (5 mL) was added very carefully to quench any 

unreacted borane.  Removal of organic solvent under vacuum resulted in white residue.  

EtOAc (40 mL) was then added, followed by MgSO4 and then hexanes (60 mL).  After 

stirring the suspension for 15 minutes, the solid was then filtered through a pad of silica 

and rinsed with 40:60 hexanes : EtOAc.  The filtrate was then concentrated under 

vacuum to yield 11.5 g of a colorless oil.  Crude NMR analyses of the oil indicated a 92:8 

mixture of alcohol 6.26 and lactone 6.27.   
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This oil was dissolved in THF (250 mL) followed by addition of (MeO)MeNH2Cl 

(15.2 g, 155.4 mmol).  The suspension was then cooled to 0°C.  A solution of i-PrMgCl 

(195 mmol, 389 mmol) was added via addition funnel over three hours in which all 

starting material was completely consumed.  The reaction was quenched carefully with a 

half-saturated solution of NH4Cl (100 mL) and warmed up to room temperature.  After 

separation of layers, the aqueous layer was extracted with EtOAc (12 x 100 mL).  Note: 

the product is readily soluble in water.  The organic layers were combined, dried over 

MgSO4, filtered, and concentrated under vacuum to give Weinreb amide 6.28 in 87% 

yield over two steps as a colorless oil (12.5 g, 71.3 mmol).  1H NMR (500 MHz, CDCl3): 

δ (ppm) = 3.66 (3H, s), 3.64 – 3.56 (2H, m), 3.16 (3H, s), 2.41 (1H, dd, J = 16.0, 8.0 Hz), 

2.32 (1H, dd, J = 16.0, 5.0 Hz), 2.22 (1H, o, J = 7.0 Hz), 1.69 (1H, b), 1.56 (1H, m), 1.47 

(1H, m), atropisomers 0.98 and 0.97 (1H, d, J = 7.0 Hz).  13C NMR (125 MHz, CDCl3): δ 

(ppm) = 174.15, 61.03, 60.17, 39.82, 38.59, 31.93, 25.97, 20.59.  IR (cm-1): f = 3418, 

2934, 1660, 1456, 1386, 1180, 1057, 1004.  HRMS-FAB: (M+H)+ = 176.1287 calculated 

for C8H18O3N, experimental = 176.1267.  [α]20
D = -4.93° (c = 7.00 in MeOH). 
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(+)-(3R,5S)-5-hydroxy-N-methoxy-N,3-dimethyloct-7-enamide 6.29 

 

B

TMS

allylMgBr, BF3•OEt2;
NaOH, H2O2

3.100a

O

Ph

HN

Me

N O

O

6.19

MeO

Me

N (S)

O

MeO

Me

OH

6.29
411

 

 

(-)-9-(1R, 2R-Pseudoepehdrinyl)-(10S)-(trimethylsilyl)-9-borabicyclo[3.3.2]dec-

ane 3.100a (3.09 g, 8.31 mmol) was suspended in Et2O (100 mL).  The suspension was 

cooled to -78°C followed by addition of allylmagnesium bromide (8.31 mL, 8.31 mmol, 

1.0 M in Et2O) dropwise.  The reaction was stirred for one hour while warming up to 

room temperature, and then recooled to -78°C.  In a separate flask, aldehyde 6.19 (960 

mg, 5.54 mmol) was dissolved in Et2O (150 mL) and cooled to -78°C.  BF3•OEt2 (0.70 

mL, 5.54 mmol) was subsequently added, and the solution was stirred for five minutes.  

The solution of allylborane was then added cold via cannula, and the mixture was stirred 

for 20 minutes at which aldehyde 6.19 was fully consumed.  A premixed solution of 

NaOH (13.9 mL, 27.8 mmol, 2.0 M in H2O) and H2O2 (3.1 mL, 27.8 mmol, 30% in H2O) 

was added to quench the reaction, and the mixture was stirred for two hours while 

warming up to room temperature.  DI water (100 mL) was then added.  After separation 

of layers, the aqueous phase was extracted with EtOAc (3 x 50 mL).  The organic layers 

were combined, dried over MgSO4, and rotovaped to give a yellow oil.  Purification of 

the crude material with Biotage purification system gave homoallylic alcohol 6.29 in 

60% yield as a pale yellow oil (720 g, 3.34 mmol) and the minor C7(R) diastereomer in 

 452



5% yield a clear oil (60 mg, 0.050 mmol).  Biotage conditions: 40+M column, 70:30 → 

25:75 hexanes : EtOAc linear gradient over 1200 mL, followed by 25:75 → 0:100 

hexanes : EtOAc linear gradient over 240 mL, then 90:10 EtOAc : MeOH over 500 mL.  

1H NMR (500 MHz, CDCl3): δ (ppm) = 5.81 (1H, dddd, J = 16.5, 11.0, 7.0, 7.0 Hz), 5.10 

– 5.06 (2H, m), 3.71 (1H, dddd, J = 10.0, 7.5, 5.5, 3.5 Hz), 3.65 (3H, s), 3.16 (3H, s), 2.45 

(1H, b), 2.42 (1H, dd, J = 16.0, 7.5 Hz), 2.33 (1H, dd, J = 15.0, 7.0 Hz), 2.28 – 2.14 (3H, 

m), 1.45 (1H, ddd, J = 14.0, 9.5, 4.5 Hz), 1.31 (1H, ddd, J = 14.0, 8.5, 3.0 Hz), 0.97 (3H, 

d, J = 6.5 Hz).  13C NMR (125 MHz, CDCl3): δ (ppm) = 174.01, 134.97, 117.57, 68.91, 

61.10, 44.09, 42.75, 39.35, 32.00, 26.56, 20.33.  IR (cm-1): f = 3428, 3075, 2962, 2931, 

1644, 1463, 1386, 1002, 913.  HRMS-FAB: (M+H)+ = 216.1600 calculated for 

C11H22O3N, experimental = 216.1580.  [α]20
D = +12.6° (c = 3.07 in CHCl3). 

 

(+)-(3R,5S)-5-((benzyloxy)methoxy)-N-methoxy-N,3-dimethyloct-7-enamide 6.30 

 

N

O

MeO

Me

OH

6.29

BOMCl, DIPEA

N

O

MeO

Me

OBOM

6.30  

 

  In a thick-walled reaction vessel, homoallylic alcohol 6.29 (2.92 g, 13.6 mmol) 

was dissolved in CH2Cl2 (50 mL).  DIPEA (50 mL) was then added followed by BOMCl 

(5.67 mL, 40.8 mmol).  The vessel was sealed and heated in a 100°C sand bath for 48 

hours.  The reaction mixture was then cooled to room temperature, poured into a 

separatory funnel, and washed with DI H2O (100 mL).  After separation of layers, the 

aqueous layer was extracted with CH2Cl2 (2 x 50 mL).  The organic layers were then 
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combined, dried over MgSO4, filtered, and concentrated under vacuum to give a dark red 

oil.  This crude material was chromatographed in a silica gel column, and the elution was 

made with 95:5 → 90:10 hexanes : i-PrOH.  Removal of solvent under vacuum gave 

homoallylic BOM ether 6.30 in 92% yield as a yellow oil (4.20 g, 12.5mmol).  1H NMR 

(500 MHz, CDCl3): δ (ppm) = 7.36 – 7.32 (4H, m), 7.28 (1H, m), 5.82 (1H, dddd, J = 

17.0, 10.0, 6.5, 6.5 Hz), 5.09 (1H, m), 5.06 (1H, m), 4.84 (1H, d, J = 7.5 Hz), 4.77 (1H, d, 

J = 7.0 Hz), 4.66 (1H, d, J = 11.5 Hz), 4.62 (1H, d, J = 12.0 Hz), 3.80 (1H, m), 3.65 (3H, 

s), 3.17 (3H, s), 2.41 – 2.25 (5H, m), 1.61 (1H, ddd, J = 13.5, 8.5, 4.5 Hz), 1.35 (1H, ddd, 

J = 14.0, 8.5, 4.0 Hz), 0.98 (3H, d, J = 6.5 Hz).  13C NMR (125 MHz, CDCl3): δ (ppm) = 

173.71, 137.89, 134.58, 128.35, 127.86, 127.59, 117.30, 93.38, 74.69, 69.66, 61.11, 

41.75, 39.54, 39.37, 32.00, 26.33, 19.87.  IR (cm-1): f = 3067, 2936, 1663, 1455, 1382, 

1101, 1041.  HRMS-FAB: (M+H)+ = 336.2175 calculated for C19H30O4N, experimental = 

336.2176.  [α]20
D = +22.1° (c = 4.80 in CHCl3). 

 

(+)-(4S,8R,10S)-10-((benzyloxy)methoxy)-4-hydroxy-8-methyltridec-12-en-6-one 6.32 

 

N

O

MeO

Me

OBOM

6.30

6.18

OH

SPh

n-BuLi;
LiDBB; O OBOM

6.32

OH

 

 

THF used in this reaction was purified via distillation over Na/Ph2CO.  Alcohol 

6.18 (5.75 g, 29.3 mmol) was dissolved in THF (150 mL).  A few crystals of 1,10-

phenanthroline was added, and the solution was cooled to -78°C.  n-BuLi (~13.5 mL, 2.3 
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M in hexanes) was then added dropwise until dark red color persisted.  Afterward, a 

freshly prepared solution of LiDBB (~160 mL, 0.4 M in THF) was added dropwise until 

dark green color persisted.  This solution was transferred cold via cannula to a solution of 

amide 6.30 (3.27 g, 9.75 mmol) which was dissolved in THF (150 mL, distilled over 

Na/Ph2CO, and precooled to -78°C) and resulted in a dark red solution.  The reaction was 

stirred at this temperature for 2 hours, slowly warmed to -40°C over 30 minutes, and 

subsequently quenched with MeOH (50 mL).  After allowing the mixture to warm to 

0°C, a half-saturated solution of NH4Cl (200 mL) was then added.  The layers were 

separated.  After the ensuing extraction of the aqueous layer with EtOAc (3 x 50 mL), the 

organic layers were then combined, dried over MgSO4, filtered, and concentrated under 

vacuum to give a yellow oil.  The crude oil was loaded into a silica gel column, and the 

product was eluted with 80:20 → 70:30 hexanes : EtOAc.  Upon concentration, the title 

product 6.32 was isolated in 92% yield as a yellow oil (3.25 g, 8.97 mmol).  1H NMR 

(500 MHz, CDCl3): δ (ppm) = 7.37 – 7.33 (4H, m), 7.28 (1H, m), 5.79 (1H, dddd, J = 

17.0, 10.5, 7.0, 7.0 Hz), 5.09 (1H, m), 5.07 (1H, m), 4.85 (1H, d, J = 7.0 Hz), 4.77 (1H, d, 

J = 7.0 Hz), 4.66 (1H, d, J = 11.5 Hz), 4.61 (1H, d, J = 11.5 Hz), 4.02 (1H, m), 3.76 (1H, 

m), 3.09 (1H, b), 2.56 (1H, dd, J = 17.5, 2.5 Hz), 2.45 (1H, dd, J = 17.5, 9.5 Hz), 2.41 

(1H, m), 2.36 – 2.25 (4H, m), 1.54 – 1.40 (3H, m), 1.38 – 1.25 (3H, m), 0.91 (3H, d, J = 

6.5 Hz), 0.92 (3H, t, J = 6.5 Hz).  13C NMR (125 MHz, CDCl3): δ (ppm) = 211.93, 

137.78, 134.34, 128.42, 127.81, 127.69, 117.51, 93.44, 74.64, 69.77, 67.34, 51.46, 49.42, 

41.60, 39.39, 38.51, 25.68, 19.71, 18.63, 13.97.  IR (cm-1): f = 3476, 3067, 2958, 2931, 

2874, 1707, 1456, 1379, 1100, 1040.  HRMS-FAB: (M+H)+ = 363.2535 calculated for 

C19H30O4N, experimental = 363.2554.  [α]20
D = +51.2° (c = 5.20 in CHCl3). 
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(+)-(4S,6S,8S,10S)-10-((benzyloxy)methoxy)-6-hydroxy-8-methyltridec-12-en-4-yl 

benzoate 6.34 

 

O OBOM

6.32

OH SmI2, PhCHO OH OBOM

6.34

OBz

 

 

THF used in this reaction was purified via distillation over Na/Ph2CO.  Into a 

solution of freshly distilled benzaldehyde (1.01 mL, 9.96 mmol) in THF (20 mL) 

precooled to -10°C, a freshly prepared solution of SmI2 (8.30 mL, 0.83 mmol, 0.1 M in 

THF) was added dropwise over 15 minutes.  This solution was then transferred via 

cannula to a solution of β-hydroxy ketone 6.32 (600 mg, 1.66 mmol) in THF (100 mL, 

precooled to -10°C).  After stirring the reaction mixture at this temperature until starting 

material was fully consumed (~ 5 hours), a saturated aqueous solution of NaHCO3 (100 

mL) was slowly added.  The mixture was then warmed to room temperature and 

vigorously stirred for 15 minutes.  The organic layer was separated, and the aqueous layer 

was extracted with Et2O (3 x 50 mL).  The organic layers were then combined, dried over 

MgSO4, filtered, and concentrated under vacuum.  The crude oil was loaded into a silica 

gel column, and product elution was made with 90:10 → 80:20 hexanes : EtOAc.  

Removal of solvent under vacuum then provided the title product 6.34 in 80% yield (621 

mg, 1.33 mmol) as a yellow oil.  1H NMR (500 MHz, CDCl3): δ (ppm) = 8.08 – 8.05 

(2H, m), 7.58 (1H, tt, J = 7.5 Hz), 7.46 (2H, tt, J = 8.0, 1.5 Hz), 7.34 – 7.31 (4H, m), 7.28 

(1H, m), 5.80 (1H, dddd, J = 17.0, 10.0, 7.0, 7.0 Hz), 5.36 (1H, dddd, J = 11.0, 8.5, 5.0, 

3.0 Hz), 5.05 (1H, m), 5.02 (1H, m), 4.81 (1H, d, J = 7.0 Hz), 4.74 (1H, d, J = 7.0 Hz), 

 456



4.63 (1H, d, J = 11.5 Hz), 4.60 (1H, d, J = 12.0 Hz), 3.78 (1H, m), 3.63 (1H, m), 3.13 

(1H, dd, J = 2.5, 1.0 Hz), 2.31 (1H, ddd, J = 7.0, 1.0, 1.0 Hz), 2.30 (1H, ddd, J = 7.0, 1.0, 

1.0 Hz), 1.92 (1H, m), 1.81 – 1.58 (4H, m), 1.56 – 1.49 (2H, m), 1.48 – 1.35 (2H, m), 

1.24 (1H, ddd, J = 14.0, 9.0, 4.5 Hz), 1.12 (1H, ddd, J = 13.0, 9.5, 3.0 Hz), 0.93 (3H, t, J 

= 7.5 Hz), 0.84 (3H, d, J = 6.5 Hz).  13C NMR (125 MHz, CDCl3): δ (ppm) = 167.72, 

137.93, 134.67, 133.16, 129.99, 129.72, 128.43, 128.37, 127.86, 127.60, 117.20, 93.42, 

74.86, 72.26, 69.61, 64.83, 44.83, 43.80, 42.40, 39.37, 37.21, 25.82, 19.49, 18.79, 13.88.  

IR (cm-1): f = 3516, 3062, 2954, 2926, 1715, 1696, 1274, 1107, 1038.  HRMS-FAB: 

(M+H)+ = 469.2954  calculated for C29H41O5, experimental = 469.2951.  [α]20
D =     

+22.7° (c = 3.60 in CHCl3). 

 

(+)-(4S,6S,8S,10S)-10-((benzyloxy)methoxy)-6-methoxy-8-methyltridec-12-en-4-yl 

benzoate 6.35 

 

OH OBOM

6.34

OBz Me3OBF4,
Proton Sponge

OMe OBOM

6.35

OBz

 

 

Alcohol 6.34 (2.00 g, 4.27 mmol) was dissolved in CH2Cl2 (100 mL).  After 

cooling the reaction to 0°C, Proton Sponge (5.49 g, 25.6 mmol) and Me3OBF4 (3.17 g, 

21.4 mmol) were sequentially added.  The reaction mixture was warmed to room 

temperature and stirred for one hour at which starting material was fully consumed.  The 

reaction was diluted with CH2Cl2 (200 mL) and washed sequentially with aqueous 

solutions of NaHCO3 (50 mL), 2.0 M HCl (2 x 50 mL), and then NaHCO3 (50 mL).  The 
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organic layer was then dried over MgSO4, filtered, and concentrated under vacuum.  

Filtration of the crude oil through a pad of silica gave the title product 6.35 in 99% as a 

yellow oil (2.04 g, 4.23 mmol).  No chromatography was necessary as the crude NMR 

indicated only a single compound.  1H NMR (500 MHz, CDCl3): δ (ppm) = 8.08 – 8.06 

(2H, m), 7.55 (1H, tt, J = 7.5, 1.5, 1.5 Hz), 7.43 (2H, tt, J = 8.0, 1.5, 1.5 Hz), 7.34 – 7.32 

(4H, m), 7.29 (1H, m), 5.78 (1H, dddd, J = 17.0, 1.0, 7.0, 7.0 Hz), 5.36 (1H, 9.0, 7.0, 5.0, 

3.0 Hz), 5.05 (1H, m), 5.02 (1H, m), 4.82 (1H, d, J = 7.5 Hz), 4.74 (1H, d, J = 7.0 Hz), 

4.64 (1H, d, J = 12.0 Hz), 4.60 (1H, d, J = 12.0 Hz), 3.77 (1H, m), 3.32 (1H, m), 3.28 

(3H, s), 2.35 – 2.24 (2H, m), 1.84 (1H, dd, J = 9.5, 4.0 Hz), 1.82 (1H, dd, J = 9.0, 3.5 Hz), 

1.76 (1H, dd, J = 9.0, 3.5 Hz), 1.70 (1H, m), 1.61 (1H, m), 1.58 (1H, m), 1.53 (1H, ddd, J 

= 13.5, 8.5, 4.0 Hz), 1.44 – 1.35 (2H, m), 1.26 – 1.16 (2H, m), 0.92 (3H, t, J = 7.5 Hz), 

0.91 (3H, d, J = 6.5 Hz).  13C NMR (125 MHz, CDCl3): δ (ppm) = 166.19, 137.89, 

134.59, 132.73, 130.69, 129.56, 128.39, 128.31, 127.77, 127.63, 117.25, 93.36, 75.84, 

74.63, 72.13, 69.60, 56.98, 42.49, 42.10, 39.83, 39.48, 37.24, 25.91, 19.96, 18.46, 14.03.   

IR (cm-1): f = 3063, 2931, 1718, 1452, 1273, 1110, 1042, 1027, 712.  HRMS-FAB: (M-

H)+ = 481.2954  calculated for C30H41O5, experimental = 481.2532.  [α]20
D =     +65.0° (c 

= 1.80 in CHCl3). 
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(+)-(4S,6S,8R,10R,12R)-12-(benzyloxy)-10-hydroxy-13-iodo-6-methoxy-8-

methyltridecan-4-yl benzoate 6.36 

 

OMe OBOM

6.35

OBz
ICl

OMe OH

6.36

OBz OBn

I

 

 

Homoallylic BOM ether 6.35 (480 mg, 0.994 mmol) was dissolved in toluene 

(200 mL), and the solution was cooled to -78°C.  Iodine monochloride (1.1 mL, 1.10 

mmol, 1.0 M in CH2Cl2) was added dropwise over 30 minutes while maintaining an 

internal temperature below -75°C.  Immediately, the reaction mixture was poured into a 

separatory funnel containing a saturated aqueous solution of Na2S2O3 (100 mL) and the 

mixture was shaken vigorously.  After separation of layers, the aqueous layer was 

extracted with Et2O (2 x 50 mL).  The organic layers were combined, dried over MgSO4, 

filtered, and concentrated under vacuum.  The crude material was then loaded into a silica 

gel column and chromatographed with 80:20 hexanes : EtOAc.  Removal of solvent 

under vacuum gave title product 6.36 in 71% yield with a diastereomeric ratio of >20:1 as 

a yellow oil (420 mg, 0.704 mmol).  1H NMR (500 MHz, CDCl3): δ (ppm) = 8.07 – 8.04 

(2H, m), 7.54 (1H, tt, J = 7.5, 1.5, 1.5 Hz), 7.43 (2H, tt, J = 7.5, 1.5, 1.5 Hz), 7.37 – 7.34 

(4H, m), 7.31 (1H, m), 5.34 (1H, dddd, J = 8.5, 7.5, 5.0, 3.0 Hz), 4.70 (1H, d, J = 11.0 

Hz), 4.44 (1H, d, J = 11.0 Hz), 3.86 (1H, dddd, J = 10.0, 8.0, 3.5, 3.5 Hz), 3.52 (1H, 

dddd, J = 9.5, 5.0, 5.0, 5.0 Hz), 3.33 (2H, d, J = 4.5 Hz), 3.29 (1H, m), 3.28 (3H, s), 2.96 

(1H, b), 1.85 (1H, ddd, J = 14.5, 9.5, 3.5 Hz), 1.81 (1H, m), 1.75 – 1.66 (4H, m), 1.62 

(1H, m), 1.56 (1H, ddd, J = 13.0, 6.5, 6.5 Hz), 1.46 (1H, ddd, J = 13.5, 9.5, 4.0 Hz), 1.43 
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– 1.35 (2H, m), 1.24 (1H, ddd, J = 13.5, 7.0, 6.0 Hz), 1.06 (1H, ddd, J = 13.5, 3.5, 9.5 

Hz), 0.92 (3H, t, J = 7.5 Hz), 0.91 (3H, d, J = 7.0 Hz).  13C NMR (125 MHz, CDCl3): δ 

(ppm) = 166.22, 137.09, 132.76, 130.63, 129.55, 128.60, 128.36, 128.11, 128.06, 77.45, 

76.07, 72.26, 71.13, 67.99, 57.01, 45.02, 42.53, 42.32, 39.69, 37.19, 25.82, 19.90, 18.48, 

14.01, 9.32.  IR (cm-1): f = 3512, 3064, 2957, 2939, 2872, 1716, 1452, 1314, 1275, 1112, 

713.  HRMS-FAB: (M+H)+ = 597.2077  calculated for C29H42O5I, experimental = 

579.2063.  [α]20
D = +37.9° (c = 3.47 in CHCl3). 

 

(+)-(4S,6S,8S,10R,12R)-10-((E)-2-(ethoxycarbonyl)vinyloxy)-12-(benzyloxy)-13-iodo-6-

methoxy-8-methyltridecan-4-yl benzoate 6.37. 

 

Ethyl PropiolateOMe OH

6.36

OBz OBn

I
PBu3

OMe O
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OBz OBn

I

O

OEt

 

 

Alcohol 6.36 (700 mg, 1.17 mmol) was dissolved in CH2Cl2 (150 mL), and one 

gram of 4 Ǻ molecular sieves was added.  Freshly prepared solutions of ethyl propiolate 

(7.0 mL, 3.51 mmol, 0.5 M in CH2Cl2) and tributylphosphine (7.0 mL, 4.21 0.6 mmol, 

0.6 M in CH2Cl2) were simultaneously added dropwise via syringe pump over 30 minutes 

at which the color of the solution turned to brown.  The reaction was then quenched with 

H2O2 aqueous solution (100 mL, 3% in H2O) and stirred vigorously for 10 minutes.  

After separation of layers, the aqueous layer was extracted with CH2Cl2 (2 x 50 mL).  
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The organic layers were combined, dried over MgSO4, filtered, and concentrated under 

vacuum to leave a black oil.  Purification of the crude material in a silica gel column with 

80:20 hexanes : Et2O gave title product 6.37 in 98% yield as a pale yellow oil (796 mg, 

1.15 mmol).  1H NMR (500 MHz, CDCl3): δ (ppm) = 8.07 – 8.05 (2H, m), 7.56 (1H, tt, J 

=7.0, 1.5 Hz), 7.48 (1H, d, J = 12.5 Hz), 7.46 – 7.42 (2H, m), 7.37 – 7.27 (5H, m), 5.35 

(1H, dddd, J = 8.5, 7.5, 5.5, 3.5 Hz), 5.29 (1H, d, J = 12.5 Hz), 4.61 (1H, d, J = 11.0 Hz), 

4.36 (1H, d, J = 11.5 Hz), 4.16 (2H, q, J = 7.0 Hz), 4.12 (1H, m), 3.33 – 3.23 (4H, m), 

3.27 (3H, s), 1.98 (1H, ddd, J = 14.0, 8.5 Hz), 1.83 – 1.76 (2H, m), 1.74 – 1.66 (3H, m), 

1.65 – 1.58 (2H, m), 1.50 (1H, ddd, J = 14.0, 7.0, 7.0 Hz), 1.44 – 1.36 (2H, m), 1.27 (3H, 

t, J = 7.0 Hz), 1.26 – 1.15 (2H, m), 0.93 (3H, t, J = 7.5 Hz), 0.83 (3H, d, J = 7.0 Hz).  13C 

NMR (125 MHz, CDCl3): δ (ppm) = 168.03, 166.16, 161.76, 137.37, 132.83, 130.63, 

129.56, 128.53, 128.39, 127.99 (2C), 97.58, 78.17, 75.85, 74.18, 72.08, 71.17, 59.72, 

57.07, 42.18, 41.50, 39.73, 39.68, 37.25, 25.74, 19.74, 18.48, 14.38, 14.00, 9.10.  IR  

(cm-1): f = 3028, 2963, 2925, 1710, 1639, 1619, 1273, 1129, 712.  HRMS-FAB: (M+H)+ 

= 695.2445  calculated for C34H48O7I, experimental = 695.2452.  [α]20
D = +10.0° (c = 

0.87 in CHCl3). 
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(+)-(4S,6S,8S)-9-((2R,4R,6R)-6-((ethoxycarbonyl)methyl)-4-(benzyloxy)-tetrahydro-2H-

pyran-2-yl)-6-methoxy-8-methylnonan-4-yl benzoate 6.39 
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β-Alkoxyacrylate 6.37 (760 mg, 1.09 mmol) was dissolved in toluene (250 mL).  

AIBN (18 mg, 0.109 mmol) and Bu3SnH (0.59 mL, 2.18 mmol) were sequentially added, 

and the mixture was rapidly brought to reflux, stirred for 5 minutes, and then immediately 

cooled to room temperature in a water bath.  The solvent was removed under vacuum, 

and the crude oil was loaded into and purified with Biotage chromatography system: 

25+M column, 100:0 → 60:40 hexanes : EtOAc linear gradient over 720 mL.  Removal 

of solvent under vacuum gave title product 6.39 in 95% yield as a light yellow oil (589 

mg, 1.04 mmol) with a diastereomeric ratio of 19:1.  1H NMR (500 MHz, CDCl3): δ 

(ppm) = 8.07 – 8.04 (2H, m), 7.55 (1H, tt, J = 7.5, 1.5 Hz), 7.43 (2H, tt, J = 7.5, 1.5 Hz), 

7.36 – 7.32 (4H, m), 7.28 (1H, m), 5.36 (1H, dddd, J = 9.5, 6.5, 5.5, 3.5 Hz), 4.54 (1H, d, 

J = 12.0 Hz), 4.49 (1H, d, J = 12.0 Hz), 4.19 (1H, dddd, J = 11.0, 8.0, 5.0, 2.0 Hz), 4.11 

(2H, dq, J = 7.0, 2.0 Hz), 3.84 (1H, m), 3.82 (1H, p, J = 2.5 Hz), 3.28 (1H, m), 3.26 (3H, 

s), 2.48 (1H, dd, J = 15.0, 8.5 Hz), 2.35 (1H, dd, J = 15.0, 5.5 Hz), 1.92 (1H, dddd, J = 

13.5, 2.5, 2.0, 2.0 Hz), 1.82 (2H, ddd, J = 14.5, 9.5, 3.5 Hz), 1.78 – 1.67 (3H, m), 1.64 – 

1.53 (2H, m), 1.48 – 1.33 (3H, m), 1.31 – 1.14 (3H, m), 1.23 (3H, t, J = 7.0 Hz), 1.01 

(1H, ddd, J = 13.5, 9.5, 3.0 Hz), 0.92 (3H, t, J = 7.5 Hz), 0.88 (3H, d, J = 6.5 Hz).  13C 
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NMR (125 MHz, CDCl3): δ (ppm) = 171.28, 166.18, 138.77, 132.69, 130.75, 129.57, 

128.35, 128.28, 127.45, 127.37, 75.90, 72.19, 71.30, 70.04, 69.62, 69.07, 60.31, 56.88, 

43.27, 42.17, 41.61, 39.81, 37.25, 36.20, 35.15, 25.74, 19.70, 18.49, 14.22, 14.02.  IR 

(cm-1): f = 3030, 2956, 2922, 1734, 1717, 1452, 1273, 1111, 1068, 1027, 713.  HRMS-

FAB: (M+H)+ = 569.3478  calculated for C34H49O7, experimental = 569.3497.  [α]20
D = 

+17.4° (c = 2.20 in CHCl3). 

 

(+)-(1R,5S,7S,9S,11R,13R)-13-(benzyloxy)-7-methoxy-9-methyl-5-propyl-4,15-dioxa-

bicyclo[9.3.1]pentadecan-3-one 6.42 
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Tetrahydropyran 6.39 (164 mg, 0.288 mmol) was dissolved in MeOH (30 mL).  

Upon addition of a solution of KOH (5.8 mL, 5.76 mmol, 1 M in H2O), the mixture was 

warmed to 45°C.  After stirring overnight, the reaction was sequentially cooled to room 

temperature, diluted with H2O (100 mL), and acidified with 2 M HCl until the pH = 2.  
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The aqueous layer was then extracted with EtOAc (4 x 50 mL).  The organic layers were 

combined, dried over MgSO4, filtered, and concentrated under vacuum to leave ~ 2 mL 

of solvent at which hexanes (4 mL) was then added.  This solution was then loaded into 

and purified with Biotage chromatography system: 25+M column, 80:20 → 50:50 

hexanes : EtOAc linear gradient over 270 mL, then 50:50:1 hexanes : EtOAc : AcOH 

over 450 mL.  Removal of solvent gave seco acid 6.39a in 95% yield as a yellow oil (120 

mg, 0.275 mmol).  HRMS-FAB: (M+H)+ = 437.2903  calculated for C25H41O6, 

experimental = 437.2924. 

Seco acid 6.39a (120 mg, 0.275 mmol) was dissolved in 50 mL THF and cooled 

to 0°C.  TEA (0.38 mL, 2.75 mmol) and TCBCl (0.22 mL, 1.38 mmol) were sequentially 

added.  The solution was stirred for one hour, warmed to room temperature, and diluted 

with toluene (200 mL).  This solution was added dropwise via cannula over 24 hours into 

a solution of DMAP (841 mg, 6.88 mmol) in toluene (500 mL) in which the solution 

turned cloudy white.  Upon completion, the solvent was evaporated under vacuum.  The 

white residues was taken up in hexanes and filtered.  The solution was concentrated and 

purified with Biotage chromatography system: 25+M column, 98:2 → 80:20 hexanes : 

EtOAc linear gradient over 720 mL to yield macrolactone 6.42 in 87% yield as a clear oil 

(100 mg, 0.239 mmol).  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.38 – 7.35 (4H, m), 

7.29 (1H, m), 5.19 (1H, ddd, J = 9.0, 9.0, 4.5 Hz), 4.55 (1H, d, J = 12.5 Hz), 4.52 (1H, d, 

J = 12.0 Hz), 4.17 (1H, dddd, J = 11.0, 11.0, 4.0, 2.0 Hz), 3.84 (1H, p, J = 3.0 Hz), 3.66 

(1H, t, J = 10.5 Hz), 3.60 (1H, dddd, J = 10.5, 9.5, 2.5, 1.0 Hz), 3.31 (3H, s), 2.59 (1H, 

dd, J = 14.5, 4.5 Hz), 2.34 (1H, dd, J = 14.5, 11.5 Hz), 1.88 – 1.83 (2H, m), 1.73 (1H, 

dddd, J = 14.0, 3.0, 2.0, 2.0 Hz), 1.68 (1H, dddd, J = 14.5, 9.0, 9.0, 5.5 Hz), 1.57 (1H, 
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ddd, J = 13.5, 11.5, 3.0 Hz), 1.49 (1H, dddd, J = 14.0, 9.5, 7.0, 4.5 Hz), 1.48 (1H, b), 1.43 

– 1.32 (6H, m), 1.23 (1H, dd, J = 15.0, 1.5 Hz), 1.14 (1H, ddd, J = 13.0, 11.0, 2.5 Hz), 

0.97 (3H, d, J = 6.5 Hz), 0.91 (3H, t, J = 7.5 Hz).  13C NMR (125 MHz, CDCl3): δ (ppm) 

= 171.13, 138.67, 128.42, 127.59, 127.41, 75.60, 75.28, 72.80, 71.72, 70.31, 69.51, 

56.21, 44.26, 42.54, 42.39, 40.17, 36.94, 36.54, 35.27, 31.23, 25.69, 18.94, 13.90.  IR 

(cm-1): f = 2917, 2870, 1730, 1456, 1341, 1276, 1198, 1087.  HRMS-FAB: (M+H)+ = 

419.2797  calculated for C25H39O5, experimental = 419.2778.  [α]20
D = +32.9° (c = 1.33 

in CHCl3). 
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CHAPTER NINE 

 

SUPPORTING INFORMATION: NMR SPECTRA  

 

9.1.  General Information 

 

Unless otherwise noted, all 1H and 13C NMR spectra were recorded in CDCl3 

using either Varian Unity Plus 300 spectrometers operating at 299.88 MHz for 1H and 

75.37 MHz for 13C, Varian Inova 500 spectrometers operating at 499.86 MHz for 1H and 

125.69 MHz for 13C, or Varian VNMRS 600 operating at 599.87 MHz for 1H and 150.84 

MHz for 13C.  Chemical shifts (δ) were reported in ppm relative to residual CHCl3 as an 

internal reference (1H: 7.26 ppm, 13C: 77.00 ppm).  Coupling constants (J) were reported 

in Hertz (Hz). Peak multiplicity is indicated as follows: s (singlet), d (doublet), t (triplet), 

q (quartet), p (pentet), x (septet), h (heptet), b (broad), and m (multiplet).   
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