
Pull it Together! Reusing Your Own Metadata and Augmenting Collections with OpenRefine

Ruth Kitchin Tillman

Publication Date

08-12-2023

License

This work is made available under a CC BY 4.0 license and should only be used in accordance with that
license.

Citation for this work (American Psychological Association 7th edition)

Kitchin Tillman, R. (2016). Pull it Together! Reusing Your Own Metadata and Augmenting Collections with
OpenRefine (Version 1). University of Notre Dame. https://doi.org/10.7274/R09Z92TF

This work was downloaded from CurateND, the University of Notre Dame's institutional repository.

For more information about this work, to report or an issue, or to preserve and share your original work,
please contact the CurateND team for assistance at curate@nd.edu.

mailto:curate@nd.edu

Slide 1

Pull it Together!
REUSING YOUR OWN METADATA AND AUGMENTING
COLLECTIONS WITH OPENREFINE

Good morning. Name is Ruth Kitchin Tillman. I’m the Digital Collections Librarian at the
University of Notre Dame. However, today I’m going to be talking about work I did in a position I
left earlier this year at the NASA Goddard Library. At Goddard, as at Notre Dame, I work a great
deal with our institutional repository, built on the Fedora Commons Repository software. This
project is one I did last Fall to export, augment, and batch update data from the repository.

Slide 2

First, a quick introduction to the system on which I was working. The Goddard Library
Repository was launched to the public in February of 2011. It provides a central location for
collection work produced by the Goddard Space Flight Center. It has 5 collections: Authors &
Publications, Colloquia, Case Studies, Balloon Technology, and a newly-added collection for
scanned issues of the Goddard News. The repository runs on a custom Fedora 3.3/Drupal 7
interface.

Slide 3

Terminology
PID – Permanent IDentifier, formatted as prefix:suffix

Object – A single thing in Fedora

Datastream – XML files storing Fedora Data

Relationships – RDF Relationships using Fedora’s model

RELS-EXT – Fedora datastream storing relationships

I’m not going to assume you already know Fedora terms, so I’ll briefly define a few. These apply
to Fedora 3 but not to Fedora 4. When talking about Fedora 4, I’ll note differences. First the PID
or Permanent IDentifier. Each PID consists of a PID prefix and a PID suffix. The former may be
the same for an entire repository or, in this case, different for every collection.

Objects are what we would consider things in Fedora. An object may be a metadata record
about an item with the item, such as a PDF, attached. An object may just be the metadata,
possibly with a link. And object may be a link with very bare metadata.

Fedora Objects are made up of datastreams, three common ones are – audit files noting
changes made, brief Dublin Core records, and records recording relationships relationships.
Core Fedora datastreams are XML files, but datastreams can be any attachment as well.

Objects in Fedora may have relationships with each other. For example, if I have a record or for
an article and a local authority record for a creator, I can create a relationship between the two.
I can say “Article 29” dc:creator “Author 13.” I could also say “Article 29” isMemberOfCollection
“collection:5”. I would define article and author or collection using their PIDs as you will see
later on.

RELS-EXT is the core Fedora datastream where it stores those kind of relationships. Each object
has a RELS-EXT datastream. Relationships can get very complex but the ones I’m talking about
today are pretty simple.

Slide 4

Challenge

The focus of this talk will be on reusing our own data to augment other data. However, steps 2-4
of the process could be done using data from an external source as well. Let’s start with my
particular challenge. The five collections in the repository all have different purposes and come
from different sources. Each is its own silo of information and relationships. However, two of the
collections could augment each other, if only we could bring together the data.

Those two collections are the Authors & Publications collection and the Colloquia collection.

Slide 5

Tale of Two Silos: Authors and Colloquia

On the left is the repository’s author page for Gordon D. Holman, including his organizational
code/position/title, his Goddard co-authors, and a list of his publications. On the right is a
colloquia Holman delivered in 2014. In its sidebar, we get a link to a textual search of colloquia
for any other presentations under his and a similar search for code 671. These two do not meet.
One cannot move from an author’s colloquia to their publications nor from publications to
colloquia. Searching for other colloquia also relies on a textual search, which may be a problem
depending on the type of data we’re given. So what are the collections and why were they built
this way?

In brief, Authors and Publications records the publication output of all Goddard-affiliated
authors. We harvested publication records from 4 indexing services, crosswalked them into the
PUB_MD article XML format, attached Open Access PDFs when possible, and created local
authority files for each author using extended MADS XML. The collection currently dates back to
2003 and will not go back beyond 2000.

The Colloquia collection, on the other hand, provides information about and access to colloquia
delivered at Goddard by a variety of speakers and scientists. It goes back much farther than
Authors & Publications, including information about presentations delivered as far back as the
1970s, with newer videos online and physical copies of older ones, or audiocassettes of their
recordings, available in the library. The metadata is recorded in the Goddard Extended
Metadata Schema, GEMS, based on whatever information was recorded by the colloquia’s
organizer. When the speaker was from Goddard, we worked to get their organizational code,
but hadn’t done any further authority control.

As you see, the collections differ greatly in purposes and sources. Add to this that less than 20%
of colloquia are delivered by Goddard authors and you’ll understand why the two weren’t
created to interrelate.

Slide 6

Still, we asked, what would it take to create relationships between the two collections? As we
re-envisioned the site in terms of Fedora 4, which will involve a large transition anyway, as we
thought more about RDF and relationships between objects, could we bring these two
together?

Slide 7

When relating one object to another, it uses Fedora’s Permanent Identifier, or “PID.” I’ll be
referring to the AuthorPID or unique identifier for an author’s record as well as the
ColloquiaPID, the unique identifier for a colloquia’s record. As I said earlier, Fedora’s
architecture traditionally uses a file called RELS-EXT to store relational metadata, or how one
object relates to collections, other objects, and models in Fedora. Based our models in Fedora 3
and our tentative remodeling for Fedora 4, we’d need to be update the record with either a
RELS-EXT statement that Colloquia rel:isPartOf AuthorPID for Fedora 3 or a simple dc:creator
relationship to the speaker’s object record in Fedora 4.

Slide 8

The process took four stages: Using the author data to create a reconciliation service, extracting
the colloquia data to be reconciled, performing the reconciliation in OpenRefine, and finally
updating the colloquia in both Fedora 3 and Fedora 4 test instances.

Slide 9

Phase 1: Create a Reconciliation Service
Tools:

- Resource index (<#ri>)

- Sublime Text & Regex

- OpenRefine

- GRefine RDF Extension (DERI)

First, I had to come up with a way to match names from the Author collection with names in the
Colloquia collection. To do this, I created a very basic reconciliation service with one or two
versions of the author’s name (depending on whether they used middle initials in their
publications) and the URL of the author’s page. This took a few steps and used the tools above,
but was much less painful than it initially sounds.

Slide 10

Phase 1: Create a Reconciliation Service
- Use <#ri> query to export names and PIDs to CSV

- Sample:
"Atlas, David",gsfcirGaca:823462024

"Tilton, James C.",gsfcirGaca:411735411

"Esaias, Wayne E.",gsfcirGaca:868841903

"Lyon, Richard G.",gsfcirGaca:982601626

"Schnase, John L.",gsfcirGaca:580647414

"Esper, Jaime",gsfcirGaca:564921526

We’ve all experienced difficulty in figuring out the best way to get our data back out of our
systems, whether proprietary like an ILS or open-source and locally hosted, like Fedora. Fedora 3
indexes can be rather difficult to work with if you don’t use an external indexer like Solr (and if
you do). The Fedora Resource Index, for example, did not index our MADS authority files. Its
gSearch index returned far more than I needed to work, although I could have parsed through
that as I later did with colloquia. Fortunately, we stored the most authoritative versions of
author names as Last, First Middle in a core Dublin Core file attached to the author object which
contained the MADS file and which I could query from the resource index interface. I queried
the Authors collection and pulled out the authoritative name and the author’s PID into a CSV.

Slide 11

Phase 1: Create a Reconciliation Service
Regex

Find:
("(.+?),(\sDr.\s|\s{2}|\s))(.+?)(\s(\w\.)"|"|"),gsfcirGaca:(\d{9})

Replace: <http://gsfcir.gsfc.nasa.gov/authors/id/\7> a
foaf:Person;\n foaf:name "\2, \4", "\2, \4 \6".\n\n

Find: foaf:name "(.+?)", "\1 ".

Replace: foaf:name "\1".

I could have used OpenRefine’s functions to create an RDF file with author information.
However, I needed to edit the author information with Regular Expressions to add a plain
Lastname, Firstname in addition to Last, First Middle and decided to make the file as a part of
that process. First query looks a bit like gibberish, but it sorts out the possible ways names
might appear and captures them individually to be returned in the replacement. However, some
people didn’t have middle initials at all, which would make their record have two identical
names, one with a space on the end—not a problem for the project, but also not good data—so
I cleaned it up with the second Find and Replace. You may notice “Dr.” in the “find” query. All I
can say is that I did not create most of that name metadata.

I did all the regular expressions work in this project in Sublime Text 2, which has excellent Regex
support.

Slide 12

Phase 1: Create a Reconciliation Service
Result:

<http://gsfcir.gsfc.nasa.gov/authors/id/823462024> a foaf:Person;

foaf:name "Atlas, David".

<http://gsfcir.gsfc.nasa.gov/authors/id/411735411> a foaf:Person;

foaf:name "Tilton, James", "Tilton, James C.".

<http://gsfcir.gsfc.nasa.gov/authors/id/868841903> a foaf:Person;

foaf:name "Esaias, Wayne", "Esaias, Wayne E.".

Here’s what that apparent-gibberish on the previous screen returns. This is RDF which I’ll then
use to populate the reconciliation service. A URL to the author’s page, an RDF type of
foaf:Person (which makes OpenRefine happier than no rdf:type), and one or two versions of
their name. I chose FOAF because, as you’ll see later, it’s one of the default vocabularies
supported by the tool I would be using. I added the necessary PREFIX information above the
names and saved it as a Turtle/RDF file. Turtle is the kind of RDF I find personally most usable
because I can see that X has property Y very easily.

Even though I was going to attempt to create a relationship between two kinds of Objects,
Author Objects and Colloquia Objects, I used URLs instead of Fedora’s default Object identifier,
PIDs, here for reasons I’ll explain during the reconciliation process.

Slide 13

Phase 1: Create a Reconciliation Service

I had already added the DERI-RDF plugin to my OpenRefine instance. From the RDF drop-down,
I selected “Add reconciliation service” and “based on an RDF file.”

Slide 14

Phase 1: Create a Reconciliation Service

Adding a file-based reconciliation service with the DERI plugin is quite easy. I simply had to give
it a name, upload the file, and select label properties that the service should look for. As you
see, foaf:name is one of the default label properties.

Now OpenRefine is set up to use the Authors collection names and URIs for reconciliation, but
what about the colloquia data?

Slide 15

Phase 2: Extract Data to Reconcile
- Affiliation saved in local GEMS XML, can’t be accessed via
<#ri>

- Affiliation indexed in gSearch.

- Raw XML gSearch on affiliation variations: “Goddard”,
“GSFC”

- XSLT into CSV for OpenRefine

Extracting colloquia data proved to be trickier than using the resource index. Since we have over
5,000 colloquia and fewer than 20% have Goddard authors, I wanted to limit my dataset to
colloquia where at least one Author came from Goddard.

Fortunately, our affiliation data was indexed in the larger gSearch, Fedora’s internal site search.
So I performed a gSearch query to return raw XML results for two affiliation variations—any
affiliation containing Goddard or GSFC.

I used XSLT to crosswalk only the important data into a CSV, which could then be imported into
OpenRefine.

Slide 16

Phase 2: Extract Data to Reconcile

This is a sample of the gSearch result data. As you see, the affiliation search highlights Goddard
even when it’s only a part of the field. That way I could be sure I was getting results for any
variations that existed such as NASA Goddard, NASA Goddard Space Flight Center, and plain old
Goddard.

Slide 17

Phase 2: Extract Data to Reconcile
Extracted, for each AUTHOR (not each Colloquia):

- PID

- Name

- Date

- Title

"gsfcirCollq:5088","McElwain, Michael","10/8/2014","See the
Ball, Be the Ball: How to Find and Characterize Planets
Beyond our Solar System"

While the results I returned were for full colloquia records, each with one to many speakers, I
was able to write an XSL Transformation that focused on extracting data for each creator
mentioned in the record.

For each speaker in a colloquia, my resulting CSV had a line with the object PID, the speaker’s
name (note the same Lastname, Firstname format), and the date and title of the presentation in
case they proved helpful in determining whether or not something was a match.

I then imported the CSV into OpenRefine.

Slide 18

Phase 3: Reconcile Data in OpenRefine
- Reconcile CSV against Phase 1 RDF file in 2 steps:

- automatic matching

- manual matching

- Derive PID for reconciled names

The RDF reconciliation service is remarkably straightforward. I set it running on the data, took a
walk around the building, and came back to 180 matches. I then went through the rest of the
results and selected from possible matches where the names didn’t quite line up. Once that was
done, I used Google Refine Expression Language to extract the author URI into a new column
and derived the PID.

Slide 19

Phase 3: Reconcile Data in OpenRefine

To reconcile on a column of data, simply select Reconcile from the drop-down menu and click
Start reconciling.

Slide 20

Phase 3: Reconcile Data in OpenRefine

The reconciliation popup shows services active, including the Goddard one, and you just need
to click to get it started querying the service. Even a pre-loaded set of triples like mine has to be
re-parsed by the service in the context of the data you’re using before it offers options for
reconciling.

Slide 21

Phase 3: Reconcile Data in OpenRefine

Since the only rdf:type of data was foaf:Person, it selects that as the default type against which
you can reconcile. You could also specify another type or choose to reconcile against no
particular type if you had multiple types. Sadly, the side column which lets you include
additional data is not currently working for services with the DERI RDF plugin. In some cases,
including another project of mine, it have been very useful.

Slide 22

Phase 3: Reconcile Data in OpenRefine

Here’s an example of matches after the basic reconciliation has been run. The green line shows
the percentage of matches found. Each of the others is followed by one or two links along with
their matching confidence factor. This is where it’s helpful to have URLs instead of system PIDs
as a person’s identifier. While Nat Gopalswamy and Gail Skofronick-Jackson are clear matches,
it’s helpful to click David Folta’s link and see that yes, he works on flight dynamics analysis and
thus is likely to be talking about the interplanetary transport network (title cut off in this image).

Slide 23

Phase 3: Reconcile Data in OpenRefine

I quickly reconciled the data. Once I finished, I had the data to update over 250 colloquia. But
next, I needed to get it out of OpenRefine.

Slide 24

Phase 3: Reconcile Data in OpenRefine

To retrieve reconciliation data, you must pull it into another column. From the column
dropdown, choose to add a column based on this column.

Slide 25

Phase 3: Reconcile Data in OpenRefine

Then, using GREL, you can extract the cell reconciliation match id into your new column. The
result is in the preview, a name in the original column and a second column with the URI.

Slide 26

Phase 3: Reconcile Data in OpenRefine
- Replaced URL prefix with Author PID prefix.

- http://gsfcir.gsfc.nasa.gov/authors/id/128120310 becomes

gsfcirGaca:128120310

- Exported as spreadsheet.

- Removed all columns except Colloquia PID and Author PID

Since I’ll need the Author PID, I choose to do a quick find & replace on the column using the
author PID prefix. I then exported it as a spreadsheet and removed the author name, colloquia
title, and date, leaving only the Colloquia PID and the Author PID.

Slide 27

Phase 4: Updating Colloquia Objects
Challenges:

- Fedora 3 requires complete rewrite of any updated file

- Fedora 4 allows partial updates, but using Postman requires
object-by-object updates

Getting data out proved easy enough. Reconciling data wasn’t even that hard. Getting the data
back in? This is where it gets tricky. Doing it manually might be a last resort for 250 objects, but
for larger projects it would be prohibitive.

One of the first things I did after starting the project was look into how one could do batch
updates in Fedora 3. I’d seen an option in the client, but had never experimented with the
language. Fedora 3 uses Fedora Batch Modify files, which allow you to create, delete, or update
any datastream within any object. The catch? When updating a datastream, you must replace
the file with a new one. So if I wanted to add a new rel:isPartOf, I’d have to completely recreate
the RELS-EXT datastream.

Since we were unsure about doing the project until after migration to Fedora 4 and I wanted to
examine the differences between the two, I also looked into what it would take to update the
objects in Fedora 4. Fortunately, the language it uses, SPARQL-update, is great for updating
objects, but at first glance it looked like it would take even longer. The Postman interface I’d
been using to send update queries would be more time consuming than a Fedora Batch Modify
file because I’d have to do it one-by-one.

Slide 28

Phase 4a: Updating Fedora 3
- Language: Fedora Batch Modify XML

- Minimal wrapper but complete datastream contents

- All RELS-EXT data can be extracted through the <#ri>

- Broke down into steps:

• What is the same across Colloquia RELS-EXT?

• What is different?

• What will the new info be?

Let’s look first at Fedora 3. What is Fedora Batch Modify language? It’s a very minimal XML
wrapper which includes PID, datastream ID or the official name of the datastream such as (RELS-
EXT or DC for the Dublin Core datastream), and replacement datastream title enclosing a
complete XML file.

So in order to do the update, I was going to have to recreate the RELS-EXT for every single
colloquia I wanted to update. Since RELS-EXT data can all be extracted through the resource
index, I broke it down into steps to determine what I’d need to recreate a file. What is the same
across all Colloquia RELS-EXT files? What can just be part of my template? Next, what is
different? What am I going to have to get out of the current system? And finally, what does the
new info I’m adding look like?

Slide 29

Phase 4a: Updating Fedora 3
- Same:

• Collection membership – rel:isMemberOfCollection

• Models – fedora-model:hasModel

- Different:
• Subcollection membership – rel:isMemberOf

- New:

• Author relationship – rel:isPartOf

Fortunately, our RELS-EXT files defining relationships for colloquia were pretty straightforward.
All colloquia belong to the colloquia collection. All use the same two Fedora models, which are
also expressed via relationships.

What’s different between colloquia is that we subdivide our colloquia by the hosting
organization—engineering, science, systems, etc. Of course, some co-host, which means a
colloquia may have several subcollection memberships. We use rel:isMemberOf here instead of
isMemberOfCollection to avoid system confusion.

And finally, the new data is the author PIDs using the rel:isPartOf.

Slide 30

Phase 4a: Updating Fedora 3
- Extracted Colloquia PIDs and Subcollection PIDs from <#ri>

- Combined in Excel with Colloquia PIDs and Author PID.

- Result file:

Colloquia PID Subcollection PID Author PID

- One line per relationship. No order.

So, I extracted all Colloquia PIDs and their respective Subcollection PIDs from the resource
index. I added a new column in the Excel file which already had Colloquia and Author PIDs (bear
with me, I know it sounds a little odd) and put them in following the other pairs.

In the resulting file, each line had a single relationship, a Colloquia PID and either a
Subcollection PID or an Author PID. A colloquia with 2 subcollections and 3 authors would have
5 rows. Most just had one row with a subcollection, since I’d exported subcollection info for
every single colloquia as it was much faster than extracting based on several hundred PIDs.
Obviously, it needed more work done to get it usable.

First, I ordered the rows on the Colloquia PID, so that the information for each object would be
adjacent. This was critical for the next steps, after I imported it into OpenRefine.

Slide 31

Phase 4a: Updating Fedora 3

Here’s an example of what the data looked like in OpenRefine for a colloquia with one
subcollection and three authors. First column is ColloquiaPIDs, second is subcollections, third is
authors. Looking back at this, I find myself shocked that I ever got it into the right XML format
and uploadd.

Slide 32

Phase 4a: Updating Fedora 3

I used the “Blank Down” feature in OpenRefine, which removes duplicate data in subsequent
(and only adjacent) rows…

Slide 33

Phase 4a: Updating Fedora 3

To end up with this. Now OpenRefine allows you to toggle at the top from viewing this as 4 rows
to viewing it as one “record.”

Slide 34

Phase 4a: Updating Fedora 3

Since OpenRefine now views it as one record with several rows, I can then manipulate the data
further. The join multi-valued cells function combines multiple rows in a record which all fall
into the same column.

Slide 35

Phase 4a: Updating Fedora 3

I just choose a separator, in this case the default comma OpenRefine suggests…

Slide 36

Phase 4a: Updating Fedora 3

And here we go. I now have all my data on one line.

Slide 37

Phase 4a: Updating Fedora 3
Result:

- Tab-separated rows of comma-separated PIDs.

Transforming:

- Basic template for finished RELS-EXT

- Regular Expression using capture and backreferences, to
populate template

This resulting data is tab-separated with sibling PID-types comma-separated, which will matter
for later manipulation with Regular expressions. I exported it back into Excel, where I sorted
again and removed all rows which didn’t have anything in the authors column.

Now I just needed to get it into RELS-EXT. My thoughts first went to scripting or even XSLT, but
just as I found when creating the authors RDF file, I quickly realized that the simplest method
would be to use regular expressions. I created a template for the RELS-EXT file with variations to
allow for up to three subcollections and up to four authors (both the maximum number my
visual scans had observed).

I then wrote the surprisingly-simple regular expression and variations thereof necessary to
capture the PIDs and populate the template using backreferences.

Slide 38

Phase 4a: Updating Fedora 3
Sample line:

gsfcirCollq:5056 subcollection:5 gsfcirGaca:196599745,
gsfcirGaca:530890245, gsfcirGaca:939436726

Sample Matching Regex:

(gsfcirCollq:\d{1,4})\t(subcollection:\d)\t(gsfcirGaca:\d{9}),
(gsfcirGaca:\d{9}), (gsfcirGaca:\d{9})

Here’s the example from previous images, one Colloquia PID, one Subcollection PID, and three
Author PIDs. This variation on the regular expression looks for this combo of PIDs and wraps
each in parentheses to be returned later.

Slide 39

Phase 4a: Updating Fedora 3
<fbm:modifyDatastream pid="\1" dsID="RELS-EXT" dsControlGroupType="X" dsLabel="colloquia_RELS-EXT_ds"
logMessage="BatchModify - modifyDatastream">

<fbm:xmlData>

<rdf:RDF xmlns:rel="info:fedora/fedora-system:def/relations-external#" xmlns:fedora-model="info:fedora/fedora-
system:def/model#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<rdf:Description rdf:about="\1">

<rel:isMemberOfCollection rdf:resource="info:fedora/collection:3"/>

<rel:isMemberOf rdf:resource="\2"/>

<fedora-model:hasModel rdf:resource="info:fedora/cmodel:2"/>

<fedora-model:hasModel rdf:resource="info:fedora/cmodel:4"/>

<rel:isPartOf rdf:resource="\3"/>

</rdf:Description>

</rdf:RDF>

</fbm:xmlData>

</fbm:modifyDatastream>

This is the overall file, but it’s a bit hard to read on the screen, so let me pare down to the RDF
Description section.

Slide 40

Phase 4a: Updating Fedora 3
<rdf:Description rdf:about="\1">

<rel:isMemberOfCollection

rdf:resource="info:fedora/collection:3"/>

<rel:isMemberOf rdf:resource="\2"/>

<fedora-model:hasModel rdf:resource="info:fedora/cmodel:2"/>

<fedora-model:hasModel rdf:resource="info:fedora/cmodel:4"/>

<rel:isPartOf rdf:resource="\3"/>

...

</rdf:Description>

As you see, in rdf:about, I have a backreference, backslash 1. This refers to the Colloquia Object
PID capture. I use that backreference in the larger file as well. Backreference 2 occurs within a
rel:isMemberOf statement for the Subcollection PID and backreference 3 occurs within a
rel:isPartOf statement for the first Author PID. Backreferences 4 and 5 would be duplicates of
that isPartOf statement.

After I’d run through the variations, I added Fedora Batch Modify XML headers and footers and
checked the document’s XML validity to confirm that I hadn’t missed a line of data. But my
calculations had been correct and the document was good to go. I ran it against one of our
sandboxes and then ran queries to confirm that it functioned as expected. The site didn’t yet
support display, but I could use the same queries that returned an author’s publications to now
return their colloquia as well.

On to Fedora 4!

Slide 41

Phase 4b: Updating Fedora 4
- Simply adding dc:creator with Fedora Object URI (not PID)

- Initial test using Postman

- Postman too time-consuming

- Used Postman to generate sample CURL

- Updated using single CURL file with multiple PATCHes

As I’d mentioned previously, what we needed to do in Fedora 4 would be far simpler. I simply
needed to send a SPARQL-update with additional dc:creator information and the author’s
Fedora object URI.

I did several updates using Postman, a service that allowed me to send update queries with
complete success, but quickly realized it would be far too time-consuming. So I investigated
alternatives. Postman helpfully let me export one of my queries in a syntax called CURL, which is
a method of creating or updating certain kinds of resources, and I was soon up and running with
the same Regular Expression method to batch-generate what are called PATCH updates in one
giant CURL file. A PATCH update doesn’t need to overwrite the whole thing, it essentially says
“oh hey, add this piece of information to this other bigger piece of information.” It’s what a lot
of database updating looks like, in fact, but not nearly as possible in XML.

Slide 42

Phase 4b: Updating Fedora 4
Sample data:

gsfcirCollq:1430 gsfcirGaca:160862315

gsfcirCollq:1471 gsfcirGaca:160862315

gsfcirCollq:2087 gsfcirGaca:290886104

gsfcirCollq:3608 gsfcirGaca:166053105

No subcollections here and no need to combine all updates for an object into a single
statement. I could PATCH a colloquia as many times as I wanted, which made the process very
simple. I took my original OpenRefine export…

Slide 43

Phase 4b: Updating Fedora 4
Find: gsfcirCollq:(\d{4})\tgsfcirGaca:(\d{9})

Replace:

curl -X PATCH -H "Content-Type: application/sparql-update" -H "Cache-
Control: no-cache" -d 'PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

DELETE { }

INSERT {

<> dc:creator <http://localhost:8080/fedora/rest/authors/\2>. }

WHERE { }' 'http://localhost:8080/fedora/rest/colloquia/\1'\n

…and ran this find and replace to generate the PATCH. You may notice that instead of using PIDs,
I’m using the Fedora object URLs. We’re still figuring out how we want to transition PIDs, but my
current model has a similar structure to our front-end URL model. Thus, I captured the numeric
portion of the PID and concatenated it with the collection’s base internal URL.

Slide 44

Phase 4b: Updating Fedora 4
Advantages to Fedora 4 Method:

- Lower risk: update not replacement

- Less information: no need for subcollections or grouping
together

- Simple update: CURL runs from command line

Unsurprisingly, I found the Fedora 4 method much simpler to work with, assuming we will be
able to derive the URLs of our final repository structure from the current PIDs. It was much
lower-risk and for a collection with a more complicated RELS-EXT, we would definitely have to
wait until Fedora 4 to do this kind of project.

Because there was less information to update, there were far fewer steps.

And finally, CURLs are simply easier to run.

Slide 45

Next steps
- Well this is awkward…I’m 600 miles away now.

All in all, I was surprised by how little this project took—3 days total with less than half of each
spent on the project. I did a great deal of intellectual groundwork beforehand by working with
OpenRefine or regular expressions and thanks to Christina Harlow’s excellent Code4Lib DMV
workshop last summer which made me decide the project was feasible to begin with.

Our timeline on implementation was uncertain when I left, just as was our Fedora 4 migration
timeline. While I could have added the data right away, our Drupal modules wouldn’t search for
and thus wouldn’t display it. One major decision we’d needed to make is whether we were only
going to record colloquia author information for authors who also have publications in our
repository or whether we might add new records for Goddard employees who’ve never
published but delivered colloquia.

Since I explored both Fedora 3 and Fedora 4 options, however, the data was ready for whenever
we decide to move forward on implementation.

Slide 46

Read More About It
Tillman, Ruth K. "Extracting, Augmenting, and Updating
Metadata in Fedora 3 and 4 Using a Local OpenRefine
Reconciliation Service." Code4Lib Journal, no. 31 (January 28,
2016). Accessed May 9, 2016.
http://journal.code4lib.org/articles/11179

Github: https://github.com/ruthtillman/local-reconciliation-

project or http://bit.ly/1WkkDWq

Slide 47

Thanks
Christina Harlow - @cm_harlow for OpenRefine tutorials and
write-ups.

Kate Deibel - @metageeky & Ben Armintor - @BArmintor for
listening as I worked through roadblocks in the process.

I’d like to close with especial thanks to Christina Harlow, whom many of you may know, for her
OpenRefine workshop and her tutorials. Without her work, this would’ve taken much longer
and I wouldn’t have had nearly such a good footing to start. I also greatly appreciate Kate Deibel
and Ben Armintor, who helped me talk through a few issues I encountered.

Slide 48

Tools Used:
OpenRefine: https://github.com/OpenRefine or
http://openrefine.org/

DERI RDF Refine plugin for OpenRefine: http://refine.deri.ie/

Sublime Text (trial version available):
http://www.sublimetext.com/

cURL: http://curl.haxx.se/

Postman (Chrome only): https://www.getpostman.com/

Slide 49

Code & Contact
Code:

Presentation repository: https://github.com/ruthtillman/local-reconciliation-
project

Christina Harlow’s C4L Presentation:
https://github.com/cmh2166/c4lMDCpres

Contact Me:

rtillman@nd.edu / @ruthbrarian

I’ve put these slides and a selection of code snippets used in the project in a repository which
you can visit here. I’m also happy to share that link afterward. You can contact me at
rtillman@nd.edu

Slide 50

Attributions
Image 1: “Silos” by Anthony Arrigo, Flickr. https://www.flickr.com/photos/anthonyfarrigo/

Image 2/3: “Skybridge” by Billie Ward. Flickr.
https://www.flickr.com/photos/wwward0/21180929605/

