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SYSTEMS

Abstract

by

Alejandro Garciadiego Del Rio

Humanity’s energy consumption is enormous, accompanied by high costs and

CO2 emissions. Separation processes account for 45-55% of industrial energy con-

sumption in the United States. There exists ample opportunity for reducing and

replacing high-energy separation processes with innovative separation agents. This

thesis explores methods to aid the search for novel materials integrating data science

and process systems engineering tools to find property targets for separation agents

and contemplate which data is more valuable to screen these separation agents. Two

frameworks are proposed in this thesis:

1. Molecular design targets and optimization framework of low-temperature ther-
mal desalination systems. The framework focuses on finding molecular design
targets for directional solvents for water desalination.

2. Measuring what data are most valuable to screen ionic liquid entrainers for ex-
tractive distillation. The framework focuses on screening ILs as entrainers for
separating high Global Warming Potential (GWP) mixtures of hydrofluorocar-
bons (HFCs).

Multi-scale optimization frameworks are proposed to facilitate and accelerate sol-

vent discovery. Using molecular-systems engineering, the proposed frameworks aim

to identify properties that significantly influence the cost of the separation process.

Once the impactful properties are identified, the framework can be used to study
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which data is more valuable for multi-scale modeling and what accuracy in the data

is necessary for entrainer screening. Finally, an added value metric is included to

understand the economics of a separation process.
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CHAPTER 1

INTRODUCTION

1.1 Society Needs Inexpensive Sustainable Separation

Growing human population and industrialization have caused increased green-

house gas atmospheric concentrations[126], global temperature increase[136] and wa-

ter scarcity for over 50% of the world population[78]. Separation proceses demands

account for 45-55% of all industrial energy requirements in the U.S.[135]. The solu-

tion to such problems relies on viable separation processes such as CO2 capture, high

GWP mixture separation, water decontamination, and desalination, to name a few.

However, separation processes, in general, are energy-intensive, and they account for

10-15% of the energy consumed in the world[135]. There exists ample opportunity for

reducing and replacing high-energy separation processes with innovative separation

agents and sustainable technologies[107].

Developing new separation solvents is crucial to reducing the energy intensity

and environmental footprint of modern society. This thesis studies two separation

methods that require new separation agents. Azeotropic distillation and extraction

have been assessed as technologies that can be integrated with novel materials to

reduce energy intensity[107]. Extractive systems reduce energy intensity by utilizing

a solvent that changes the solubilities of the mixture’s components. However, the

energy requirements can be dramatically impacted by the thermophysical properties

of the separation agents.
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1.1.1 Directional Solvent Extraction (DSE)

Directional solvent extraction is an emerging membrane-free liquid-liquid extrac-

tion process to desalinate water using low-grade heat. Several unique features make

DSE a potentially disruptive desalination technology: 1) it is thermally driven and

utilizes low-grade heat; 2) it does not require the use of membranes; 3) there are op-

portunities to intensify, modularize and customize the process; 4) there is a vast

solvent molecular design space. However, the energy intensity of DSE depends

entirely on the solvent. Even though carboxylic acids have been explored for the

separation[18, 9], the separation’s Levelized Cost of Water (LCOW) is higher than

competing technologies, which requires new solvents to be explored. Chapter 2 ex-

plores the thermophysical limitations of carboxylic acids and provides a framework

to analyze the properties a new solvent would require to make DSE an economically

competitive technology.

1.1.2 Separation of high global warming potential HFCs

Hydrofluorocarbon (HFC) mixtures are commonly used as refrigerants. Unfortu-

nately, some pure HFCs and HFC mixtures exhibit high global warming potentials

(GWP)[50]. To reduce the impact of these mixtures, in recent years, several interna-

tional and national mandates[142, 52] have sought to reduce the use of these types

of refrigerants. However, some refrigerants are azeotropic or near-azeotropic. Sepa-

rating these mixtures is complex and energy-intensive as the components condense

and evaporate simultaneously at a constant temperature[95]. Separating azeotropic

mixtures of hydrofluorocarbons (HFCs) for reuse and recycling is environmentally

and economically imperative. However, an entrainer that breaks the azeotrope and

reduces energy demands for the separation is necessary. Chapter 3 explores which

data is most important and what data accuracy the data is needed for entrainer

screening.
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1.2 Ionic Liquids (IL) Are Compelling Designer Solvents

Ionic liquids are a promising group of separation agents[127]. ILs are organic

salts with asymmetric size and shape of ions which weakens their mutual electrostatic

interactions[150]. These weaker interactions result in lower melting points than in-

organic salts and good thermal stability and extremely low volatility, allowing them

to be operated at ambient conditions[115, 66]. Some ILs make for ideal separation

agents, as they can change mixture solubilities, and their properties can be tailored

[129, 115, 132, 27]. ILs are broadly applicable in other processes such as refriger-

ant separation, liquid-liquid extraction, and CO2 capture, to name a few. Designing

optimal fit-for-use ionic liquids for these separations will reduce energy intensity.

However, the vast space of possibilities for molecular design space (106 estimated

possible ionic liquids)[128] makes optimizing systems and solvents simultaneously an

intensive problem.

1.3 Computer-Aided Molecular Design (CAMD) for Molecular-systems Modeling

for IL

To bridge molecular and systems design, CAMD leverages the advancements in

chemical and process modeling to reverse engineer molecular structure for an opti-

mal material for a process. CAMD is a collection of tools developed over the past 30

years[14] for designing tailored molecules depending on the optimal properties for a

specific application. CAMD extends process-scale optimization[26] as it can simul-

taneously optimize molecular composition, operating conditions, equipment design,

and process topology.

CAMD requires property models to obtain solubility predictions in separation

methods, heat capacities for energy requirements, and densities, among other prop-

erties. The effectiveness of CAMD depends on the suitability of the thermodynamic

3



model employed[123]. Most CAMD studies use group contribution methods[77] to

find a combination of structural groups that satisfies a required property specifica-

tion. UNIniversal QUAsiChemical (UNIQUAC) Functional-group Activity Coeffi-

cients (UNIFAC) models have been used for almost two decades[77, 123, 35]. In

recent years, commercial tools employed equations based on Statistical Associating

Fluid Theory (SAFT)[75, 70] and COnductor like Screening Model for Real Solvents

(COSMO-RS)[23]. Superstructure optimization is also used to find the combination

of ions in ionic-liquid design[35] by evaluating all possible pairing of specific ions to

obtain a required property.

Different CAMD tools have been utilized to design ILs for over two decades[151,

33]. These tools include characterization-based reverse design[40], using property

clustering and decomposition techniques[63], and by coming Quantitative structure-

property relationships (QSPRs) with structural feasibility constraints in a combi-

natorial optimization problem [96] solid-liquid equilibria model[117]. Additionally

CAMD has been used for extractive separations such as desulfurization [137, 110]

and extractive distillation of n-hexane-methylcyclopentane[32].

However, the large process design decision space and an even larger space for

molecular design decisions make CAMD problems computationally challenging to

solve, often even after employing model simplifications. Additionally, optimizing

process design and molecules involve discrete and continuous choices, which adds

complexity to the problem. Even though superstructure optimization is commonly

used to mitigate the size of the problem[156, 8], the amount of possible ILs makes

CAMD for ILs a complex and computationally expensive task. Additionally, the

accuracy of thermophysical property predictions limits all CAMD approaches.[7].

However, CAMD in ILs has been slowed by a lack of accurate models in estimating

ionic liquid properties. This problem increases in novel materials due to scarcity of

data. Group contribution models require extensive data sets to parametrize interac-
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tion parameters, which is not readily available.

To facilitate the use of CAMD tools for IL separation solvents in systems with data

scarcity, this thesis proposes to: i) study which properties are the most important in

a separation process that would reduce energy intensity and overall costs, ii) analyze

which data is more important to represent the thermodynamics accurately, iii) inform

experimental design on the accuracy of the data required, and iv) evaluate the added

value of the separation.

1.4 Setting Molecular Design Targets for ILs

Chapter 2 establishes a technoeconomic modeling framework to simultaneously

optimize and heat integrate the DSE process. Rapid bottom-up screening is per-

formed to predict the energy intensity and levelized cost of water (LCOW) of organic

acid and ionic liquid directional solvents (DS) in an optimized DSE process. Likewise,

top-down analysis is performed to set continuous solvent property targets necessary

to realize a LCOW of less than $0.5/m3. LCOW is most sensitive to the solubility of

the DS in water and thermoresponsive ability (a.k.a., yield) of the solvent, i.e., the

change in the solubility of water in the DS with temperature. Despite their lower cost,

organic acids have a small thermoresponsive ability and LCOW of at least $1.3/m3.

Setting modest quantitative thermophysical property targets for ionic liquid DS to

achieve below $0.5/m3 LCOW.

1.5 Defining Data and Accuracy Necessary for Multi-scale Modeling and IL Screen-

ing

In Chapter 3, an open-source equation-oriented modeling framework is proposed

to rapidly translate HFC/IL solubility data into regressed thermodynamic models,

which can be used for process design under uncertainty and rapid IL screening. More-

over, using data science and process systems engineering tools to contemplate which
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data are the most valuable for IL screening. Finding that binary solubility data

collected at multiple temperatures is adequate for separation process design, and

newly available ternary solubility measurements should be reserved for validation.

Additionally, uncertainty quantification analyses are used to show that up to 10%

experimental error is acceptable for IL screening decisions. These results recommend

a multi-step workflow for IL screening.

1.6 Open-Source Software Development

In all aspects of this thesis, we strive to implement open-source software in cre-

ating the frameworks and allowing for easy extension of the framework to other

separation processes. Open-source software also facilitates validation, reproducibil-

ity, and accountability of the research developed. The work in this thesis is done in

the Python Optimization Modeling Objects (Pyomo) and IDAES-PSE. Pyomo is an

open-source software package for modeling and solving mathematical programs[68]

which supports the formulation models for complex optimization applications[31].

The Institute for the Design of Advanced Energy Systems Process Systems Engineer-

ing (IDAES-PSE) is an extensible, equation-oriented process model Python library

based on Pyomo[82]. This endeavor has been achieved with several undergraduate

students to encourage the use of optimization and its tools and expose students to

research. These goals were:

• The work shown in Chapter 2 was originally developed in Julia. However, it
has been translated into Pyomo1 to make it more accessible and mantainable.

• To develop the work shown in the thesis, during a three month-long intern-
ship at NETL, IDAES-PSE utilities were expanded, such as bubble and dew
temperature phase plotting. Furthermore, helped in testing key features of the
infrastructure needed for the frameworks with an air separation and a CO2-IL

1https://github.com/dowlinglab/pyomo-directional-solvents
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absorption property packages2.

• The Duran-Grossmann heat integration formulation[45] was included in order
to expand the capabilities of the IDAES-PSE library3. This formulation lo-
cates the minimum driving force of the heat exchanger. It solves the optimiza-
tion of the process and the heat integration simultaneously, anticipating in the
optimization that the problem will be heat integrated, adding the flow rates,
temperatures, and compositions as degrees of freedom (the detailed formulation
can be found in Chapter 2 Section 2.3.3). A repository with the formulations of
the heat integration network to minimize energy and pairing of heat exchangers
was also created4.

• Finally, utilizing IDAES-PSE, contributing to the National Science Foundation
(NSF) Center for Innovative and Strategic Transformation of Alkane Resources
(CISTAR). CISTAR works on transforming light hydrocarbons in shale gas into
liquid fuels. A property package was created with the necessary equations and
models to calculate the thermodynamic properties of the components of shale
gas and light liquid fuels. Additionally, a packed bed reactor in IDAES-PSE
was included to explore the property targets for new catalysts for transforming
light hydrocarbons. These models are being used to prepare a collaborative
paper and are not discussed further in this thesis.

1.7 Thesis Organization

Chapter 2 presents a technoeconomic analysis for molecular design targets and

optimization of DSE. The DSE system is optimized, heat integrated simultaneously

utilizing decanoic acid, and validated with data from Altoabi et al. [9]. Following the

validation, different carboxylic acids are compared as directional solvents. Next the

analysis is conducted utilizing [emim][Tf2N]. Finally, with [emim][Tf2N] as a bench-

mark, properties are set as continuous variables and find molecular design targets for

future ILs.

Chapter 3 proposes an eight-step framework to screen ILs as entrainers and

inform experimental design over experimental conditions and data accuracy. HFC-

2https://github.com/IDAES/examples-pse/pull/27

3https://github.com/IDAES/idaes-pse/pull/348

4https://github.com/dowlinglab/heat-integration
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IL solubility data is compiled and introduced in the 8-step open-source framework.

Thermodynamic binary parameters are calibrated, and the quality of fit is assessed.

Utilizing the binary parameters, early process design calculations are performed and

screen different ILs as entrainers for separating HFC mixtures. Finally, uncertainty is

propagated through the thermodynamic models and informs experiments over which

data is more valuable and the necessary data accuracy.

Chapter 4 studies the economic viability of HFC separation over the present and

future prices of pure HFCs and ILs. The HFC-IL separation process is simulated in

Aspen Plus and performs a sensitivity analysis over seven variables in the flowsheet.

Next, economic calculations of the process for five different HFC mixtures are shown.

Finally, an added value of the separation metric is used to inform the required price

of the HFC mixtures and pure HFC for the separation to be economically viable.

8



CHAPTER 2

MOLECULAR DESIGN TARGETS AND OPTIMIZATION OF

LOW-TEMPERATURE THERMAL DESALINATION SYSTEMS

This chapter is based on previously published work:

A. Garciadiego, T. Luo, A. W. Dowling. Molecular design targets and optimization

of low-temperature thermal desalination systems, Desalination, 504: 114941, 2021.

doi:10.1016/j.desal.2021.114941.

2.1 Introduction

Water consumption is critical to modern society; the average American family uses

approximation 1140 liters of municipal water per day [52], and 130 million Americans

face severe water scarcity at least part of the year [97]. Globally, 3.8 billion people

currently experience water scarcity [78], and it is estimated that 66% of the world’s

population could be living under water-stressed conditions by 2025 [143]. Although

the costs of water obtained from desalination have fallen in the last decade, they

are higher than obtaining freshwater from rivers, groundwater, or water recycling.

In 2019, less than one percent of the water consumed globally was produced by

desalination [146, 73, 120].

The expansion of oil and gas extraction in the US has created new water and en-

vironmental challenges [52]. In 2012, 3.57 billion m3 of produced water was extracted

in the US. In the Delaware Basin, up to 4 barrels of water are produced per barrel of

oil [13]; to put this number in perspective, around 0.50 liters of produced water may
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be generated to supply energy for one hour in an average American household. The

salinity of produced water is typically 35,000 ppm to 300,000 ppm, which may be up

to eight times higher than seawater salinity (35,000 ppm) [98]. Unfortunately, current

desalination technologies are unpractical to treat such high salinity brines [47]. Large

water volumes (about 20,000 m3 on average per well) from oil and gas production also

remain challenging, even after water supply chain optimization. [154, 155]. There is

a pressing need and opportunity for new technologies to treat produced water.

There is no one-size-fits-all technology for water treatment, including desalination.

Instead, there is a growing emphasis on fit-for-purpose treatment in decentralized

networks [166]. In this paradigm, water is treated to only the specifications needed

for specific end uses. Table 2.1 highlights different water quality levels (salinity),

appropriate end uses, and candidate desalination technologies. While evaporative

and reverse osmosis desalination technologies are commonly deployed, they remain

energy-intensive and unable to treat high salinity water sources. In the context of

fit-for-purpose water, there is a great need for new technologies to treat a wide range

of water quality levels in distributed networks while using renewable energy.
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Directional solvent extraction (DSE) uses a thermoresponsive solvent to facilitate

treatment over a wide salinity range [92]. DSE does not require membranes, which of-

ten foul at high salinities, and can utilize low-grade heat, including waste or renewable

(solar) sources. Prior work in DSE includes characterization of molecular phenom-

ena, bench-scale demonstrations, and limited process analysis [17, 18, 92, 9, 91, 10].

This paper presents a technoeconomic optimization framework with two new capa-

bilities: first, we perform simultaneous process optimization and heat integration to

rapidly screen directional solvent candidates in seconds. Second, we perform a sen-

sitivity analysis to identify the necessary solvent properties to enable cost-effective

DSE processes for treating high salinity water, which is difficult/impossible to desali-

nate with other technologies. We emphasize these advances in process-scale models

can rapidly accelerate DSE development by reducing the need for expensive experi-

ments and guiding (computational) molecular design. To our knowledge, this is the

first application of equation-oriented process optimization to facilitate bottom-up and

top-down analysis of the DSE process.

The remainder of this paper is organized as follows. Section 2 reviews literature

on desalination and DSE, with an emphasis on the scope for optimization. Section

3 describes the optimization framework and mathematical models. Section 4 stud-

ies the impact of heat source temperature and solvent properties on the optimized

process’s minimum specific energy. Section 5 presents quantitative solvent property

goals to achieve $0.50/m3 levelized cost of water (LCOW) target for two classes of

molecules: carboxylic acids and ionic liquids. Finally, Section 6 summarizes conclu-

sions, limitations, and future work.
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2.2 Literature Review

2.2.1 Desalinaton technologies

Modern desalination technologies, including evaporative and reverse osmosis sys-

tems, are energy-intensive and not suitable to treat high salinity water. Evaporative

systems such as multi-stage flash (MSF) and multi-effect distillation (MED) utilize

thermal energy (typically 90◦C and 55◦C, respectively) to evaporate and conden-

sate water [98]. These systems require highly corrosion-resistant and costly materials

[2] and are heat-intensive (26.29-83.06 kW/m3); they require three or four times the

theoretical minimum energy of separation [47, 98]. In contrast, membrane-based tech-

nologies such as reverse osmosis (RO) use mechanical work to overcome the osmotic

pressure across a membrane. Membrane-based technologies use significant electricity

inputs, need frequent membrane replacement, and have limited effectiveness when

treating concentrated brines [47]. New technologies, including electrodialysis and

forward osmosis, show promise to reduce energy consumption and lower costs. For

example, osmotically assisted reverse osmosis (OARO) and mechanical vapor com-

pression (MVC) are suitable to treat high salinity brines (140,000 ppm and 150,000

ppm respectively) [21, 20, 140]. Nevertheless, MVC energy consumption is high

(single-effect MVC 23–42 kW/m3, double-effect MVC 20 kW/m3) [140]. OARO, RO,

and other membrane-based technologies are often susceptible to membrane fouling at

high salt concentrations [138]. While hybrid desalination systems paired with renew-

able energy sources are well-studied [90, 104, 46], there is limited work of technologies

suitable for high salinity brines.

13



T
A

B
L

E
2.

2

C
O

M
P

A
R

IS
O

N
O

F
E

N
E

R
G

E
T

IC
S

,
C

O
S

T
S

,
A

N
D

L
IM

IT
A

T
IO

N
S

O
F

C
O

M
M

O
N

D
E

S
A

L
IN

A
T

IO
N

T
E

C
H

N
O

L
O

G
IE

S
[9

8,
13

8]

T
ec

h
n

ol
og

y
M

u
lt

i-
S

ta
ge

F
la

sh
M

u
lt

i-
E

ff
ec

t
D

is
ti

ll
at

io
n

R
ev

er
se

O
sm

os
is

(M
S

F
)

(M
E

D
)

(R
O

)

S
p

ec
ifi

c
en

er
gy

26
.2

9-
83

.0
6

k
W

/m
3

26
.2

9-
76

.2
6

k
W

/m
3

3.
05

-8
.3

3
k
W

/m
3

T
h

er
m

al
in

p
u

t
te

m
p

er
at

u
re

90
◦ C

55
-7

0
◦ C

am
b

ie
n
t

G
lo

b
al

d
ep

lo
y
m

en
t

8%
27

%
60

%

C
os

t
0.

27
-1

.4
9

$/
m

3
0.

80
-1

.5
0

$/
m

3
0.

45
-1

.6
2

$/
m

3

T
h

er
m

al
en

er
gy

in
p

u
t

H
ig

h
H

ig
h

L
ow

E
le

ct
ri

c
en

er
gy

in
p

u
t

L
ow

L
ow

H
ig

h

E
q
u

ip
m

en
t

si
ze

L
ar

ge
L

ar
ge

S
m

al
l

M
em

b
ra

n
e

re
p

la
ce

m
en

t
or

fo
u

li
n

g
N

o
N

o
Y

es

14



2.2.2 Directional solvent extraction

Directional solvent extraction can overcome limitations of thermal and membrane-

based systems by efficiently separating high salinity feeds with low-grade waste heat

(approximately 40 to 80 ◦C). DSE exploits thermoresponsive solvents that extract

water from salty mixtures at elevated temperatures and release water (phase sepa-

rate) when cooled. Directional Solvents (DS) have several features: (1) water can

dissolve in the solvent, and the solubility increases with temperature; (2) the sol-

vent is virtually insoluble in water; (3) the solvent does not dissolve salts. The

DSE process, which is explained in Figure 2.1, is based on liquid-liquid extraction;

the solubility of water increases in the directional solvent as temperature increases

(thermoresponsiveness), which enables simple regeneration. These features give DSE

several distinct advantages compared to existing technologies: (1) DSE is membrane-

free and thus is not restricted by membrane fouling concerns for high salinity water;

(2) DSE operates in the liquid state, which reduces the size and complexity of the

equipment; (3) DSE can be paired with a low-temperature renewable heat source

(e.g., low-cost thermal solar).
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Figure 2.1. Illustration of the basic directional solvent extraction (DSE)
process. Seawater (stream 1) is heated to the maximum allowable tempera-
ture (80◦C is shown) in the process and mixed with the directional solvent
(stream 8). The mixed emulsion of water and directional solvent (stream 9)
settles in the warm settling tank. Water dissolves in the directional solvent,
and concentrated brine (stream 4) is extracted from the mixture by grav-
ity. The directional solvent and dissolved water (stream 3) are then cooled
down. Freshwater is expelled from the mixture and decanted (stream 6).
Decanoic acid is reheated and recycled (stream 8). A small amount of di-
rectional solvent dissolves in the freshwater and is lost (stream 6). Thus a
small directional solvent make-up feed is added to the system (stream 12) to
ensure steady-state operation.

Amines [39], and alcohols [71] were explored over fifty years ago as the first direc-

tional solvents for desalination. These solvents can only treat low salinity water (5000

ppm) and have a high solubility in water, leading to high solvent losses [48]. In the

1990s, The Puraq Company proposed a liquid polymers-based [80, 81] directional sol-
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vent, which was commercially unsuccessful due to elevated solvent production costs

[3], although recent work by Thanaplan et al. [139] reexamines the energetics of the

Puraq Company’s process. Recently, Luo and co-workers proposed fatty acids, in-

cluding decanoic acid (CH3(CH2)8COOH) and octanoic acid (CH3(CH2)6COOH) as

directional solvents. The highly polar C−−0 and O−H groups in the fatty acids facili-

tate the formation of hydrogen bonds with water molecules, which enables carboxylic

acids to dissolve water. The chain end is hydrophilic, however, the rest of the fatty

acid molecule is hydrophobic, which helps ensure the solubility of the acids in water

is negligible (30 - 150 ppm) [18]. In recent work, Guo et al. [62] proposed the use

of ionic liquids, which have a greater thermoresponsivness ability compared to fatty

acids. In this work, we will assess the technoeconomic potential of fatty acid and

ionic liquid directional solvents in the context of an optimized DSE process.

2.2.2.1 Effectively utilize low-grade heat and no/limited membrane costs

Luo and co-workers [17, 18, 92, 9, 91, 10] recently demonstrated octanoic and

decanoic acid can efficiently desalinate water. Specifically, they experimentally ob-

served the solubility of water in decanoic acid changes from 3.8 wt% at 34◦C to 5.9%

at 80◦C, with negligible solubility of fatty acid in water [9]. This thermoresponsive

characteristic of the directional solvent enables thermal regeneration and is essential

to the DSE process. Luo and co-workers then demonstrated the DSE concept in a

continuous bench-scale process, successfully extracting 2.5 gallons of freshwater per

day from a 700 ppm to 1100 ppm salinity feed (0.07-0.11 wt%) utilizing octanoic

acid [9]. Based on these experiments, they estimated a total energy consumption

of 184 kW/m3 for decanoic acid and 101 kW/m3 for octanoic acid, assuming heat

integration with 90% heat exchanger efficiency[9].
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2.2.2.2 Demonstrated performance for higher salinities

Bajpayee et al. [17] demonstrated the effectiveness of octanoic acid to treat salty

brines from 3,667 ppm to 58,333 ppm TDS (total dissolved solids). Likewise, they

successfully treated saturated brines show water extraction with DSE of brine with

290,000 ppm (NaCl) [17]. These results suggest DSE can treat produced water with

high TDS from oil and gas extraction (up to 460,000 ppm).

2.2.2.3 Scope for molecular-to-systems optimization

There are vast unexplored opportunities to optimize DSE across molecular and

process scales. Existing fatty solvents require approximately 90 m3 of recycle per

1 m3 of freshwater, which makes the processes remain energy-intensive. Alotaibi

et al. [9] performed heat integration for a single-stage continuous process for DSE

utilizing octanoic and decanoic acids using flowrates obtained from bench-scale ex-

periments [9]. Their analysis used the transshipment heat integration model, which

assumes fixed flowrates and temperatures [111]. While insightful, this analysis tech-

nique often overlooks opportunities to reduce energy intensity that are only realizable

by simultaneously optimizing process conditions (flowrates, temperatures, composi-

tions) and performing heat integration [26]. In this work, we show the benefits of

more extensive process optimization. At the molecular scale, Guo et al. [62] recently

measured the thermophysical properties of a handful of ionic liquids as candidate

directional solvents. However, there are well over a billion candidate solvents to

consider. In this work, we use rigorous process modeling and optimization to set

quantitative solvent thermophysical property targets as a means to narrow the vast

molecular design space.
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2.3 Methods: Technoeconomic Optimization Framework

As a first step to realize molecular-to-system optimization of the DSE platform,

we propose a computational framework for rapid bottom-up screening of candidate

solvent and top-down identification of continuous solvent properties. In this section,

we fully define the mathematical models and computational implementation.

2.3.1 Problem statement

Given inlet water salinity (e.g., 35,000 ppm NaCl), water rejection ratio (e.g., 50%

water rejection rate, which is defined by the percentage of water that will become

freshwater over the total water inlet), physical properties of the directional solvent,

and a maximum temperature of the heat input, manipulate the temperature and

material flows in the DSE process (streams in Figure 2.1) to minimize the specific

energy of the problem. We formulate this as a nonlinear optimization problem (M1):

min Specific Thermal Energy

s.t. Unit Operation Models Table 2.3

Embedded Heat Integration Eq.(2.2)− (2.11)

Physical Bounds

50% Water RejectionRate

Inlet Water Specification (Seawater)

We use variations of the optimization problem (M1) for both bottom-up screening

and top-down analysis. We adopt an equation-oriented (EO) approach, wherein all

of the process specifics and governing engineering phenomena (e.g., thermodynamics,

equipment performance, energy costs, etc.) are expressed as mathematical equations

that are simultaneously converged during optimization. This approach is extremely

flexible. It naturally accommodates variable bounds and facilitates embedded heat
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integration during the optimization procedure. (M1) is a nonconvex optimization

problem with 77 linear equality constraints, 26 nonlinear equality constraints, 6 lin-

ear inequality constraints, 6 nonlinear equality constraints, 30 quadratic equality

constraints, and 136 variables. Using the Julia [25] and JuMP [44] computational en-

vironment, we can efficiently solve (M1) using IPOPT solver [147] and HSL (MA27)

[1] in approximately 0.2 seconds after thoughtful initialization. The remainder of this

section describes all of the mathematical equations and input data used in (M1).

2.3.2 Unit operation models

The DSE process is a collection of tanks, heat exchangers, splitters, and mixers,

as shown in Figure 2.1, connected by thirteen streams contained in set S. Variables

flowrate F and temperature T are indexed by set S. The mole fraction variable is

indexed by the set of streams (S) and the set of components (C), which includes

the directional solvent, water, and salt. Mass and energy balances and liquid-liquid

equilibria equations, shown in Table 2.3, relate these variables for inlet and outlet

streams. We assume the entire process operates at a steady-state, and there are no

chemical reactions.
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2.3.2.1 Liquid-liquid phase separation

The DSE process relies on temperature varying solubility of water in the direc-

tional solvent. Unfortunately, temperature-dependent ternary phase data for water,

solvent, and salt are not available in the literature. For preliminary process analysis,

we assume the solubility of water in the solvent is linearly dependent on temperature

shown in Eq. (2.1). We fit A and B via regression analysis using experimental data

for the mixture decanoic acid, water, and salt from Bajpayee et al. [17] and Oliveira

et al. [108] for the mixture decanoic acid and water. Figure 2.2 shows this simple

model fits the data well. Fitted parameters are reported in Table 2.4. We assume

the direction solvent has a fixed solubility in the aqueous phase, denoted κd. Values

are given in Table 2.5. Likewise, we assume salt has a solubility of κs = 0.000003

mol/mol in the solvent at 35◦C and a solubility of κs = 0.00030 mol/mol in the

solvent at 80◦C

xw = A + BT (2.1)
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Figure 2.2. We perform linear regression on solubility to calculate the tem-
perature swing (thermoresponsiveness) of the solubility of water in the car-
boxylic acid (solvent phase) using two sets of experimental data. Bajpayee
et al. [17] provides data for ternary mixtures C8 and C10 fatty acids, water,
and salt. Oliveira et al. [108] provides data for binary mixtures of C6 to C10

fatty acids and water.
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TABLE 2.4

COEFFICIENTS FOR THE EQUATION xw = A + BT FOR

SOLUBILITY CORRELATION FOR CARBOXYLIC ACIDS AND

[EMIM][TF2N][62]

Bajpayee et al. [17]

Number of carbons A (mol/mol) B (mol/mol K)

8 -0.8304 0.0032

10 -0.4091 0.0022

Oliveira et al. [108]

Number of carbons A (mol/mol) B (mol/mol K)

6 -0.8784 0.0039

7 -0.7367 0.0031

8 -0.7618 0.0031

9 -0.5743 0.0023

10 -0.8187 0.0036

Ionic liquid A (mol/mol) B (mol/mol K)

[emim][Tf2N] -1.3417 0.0063
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TABLE 2.5

SOLUBILITY OF CARBOXYLIC ACIDS AND IONIC LIQUID IN

WATER [22, 62]

Acid Nc Solubility in water Solubility in water

(mol/mol) [ppm]

Hexanoic 6 1.678E-3 10,820

Heptanoic 7 3.348E-4 2,419

Octanoic 8 8.495E-5 680

Nonanoic 9 3.416E-5 300

Decanoic 10 1.339E-5 128

Ionic Liquid Solubility in water Solubility in water

(mol/mol) [ppm]
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2.3.2.2 Single-phase heat exchanger

The heat duty in the heat exchanger is Q = CpFin(Tout − Tin), where Cp is the

heat capacity, Fin is the flowrate, and Tout − Tin is the temperature difference. We

calculate Cpi for the organic solvent i with the capacity group contribution method

[106]:

Cpi =
∑
k∈G

Nk(Ak + Bkt) t = T/1000 (2.2)

Eq. (2.2) captures the influence of Nk times of functional group k appears in the

organic component i. For water we use coefficients given in Table 2.7[106]:

Cpi = A + Bt + Ct2 + Dt3 + E/t2, t = T/1000 (2.3)

and for the ionic liquid, we use coefficients given in Table 2.7 and Eq. (2.4) [56].

Cpi = A + BT (2.4)

We then calculate the Cp of each stream (mixtures) using the the component heat

capacities Cpi and the mole fractions xi:

Cp =
∑
i∈C

Cpixi (2.5)

The heat capacity of NaCl is considered constant with a value of 15.058 J/mol-K

[106]. Coefficients for Eqs. (2.2)-(2.4) are given in Tables 2.6 and 2.7.
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TABLE 2.6

HEAT CAPACITY PARAMETERS FOR GROUP CONTRIBUTION

METHOD [106]

Functional group A B

J/molK J/mol-K2

CH3 14.5504 54.060

CH2 19.539 32.21

COOH -49.7595 421.11
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2.3.3 Embedded heat integration

We embed the Duran-Grossmann heat integration equations [45] directly into the

process optimization problem. This allows us to simultaneously optimize the process

operating conditions (flowrates, compositions, temperatures) while minimizing the

thermal energy input per unit of freshwater product. This analysis goes beyond that

of Alotaibi et al. [9] which only considers heat integration for fixed process operating

conditions. Our approach optimizes more degrees of freedom. The optimizer manipu-

lates flowrates, compositions, and temperatures to balance complex interdependencies

between temperature-dependent phase equilibria and the pinch point, which limits

heat integration. For completeness, we now summarize the heat integration model.

Each single-phase heat exchanger half is designated as a hot stream (requires cool-

ing) or a cold stream (requires heating), denoted with sets SH and SC, respectively.

We then consider the inlet of each heat exchanger as a pinch candidate temperature

T p and add the minimum driving force ∆Tmin to the cold stream temperatures:

T p =

 T in
p ∀ p ∈ SH

T in
p + ∆Tmin ∀ p ∈ SC

(2.6)

We use the set P = SC ∪SH to denote all pinch candidate temperatures. For each

pinch candidate p ∈ P , we calculate the heat content above pinch temperature T p:

QAp
H =

∑
i∈SH

FCpi[mãx(T in
i − T p)−mãx(T out

i − T p)], ∀p ∈ P (2.7)

Similarly, we calculate the heat content below pinch temperature T p:

QAp
C =

∑
i∈SC

FCpi[mãx(T out
j − T p + ∆Tmin)−mãx(T in

i − T p −∆Tmin)], ∀p ∈ P

(2.8)
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The minimum hot utility duty QS must be larger than the difference between the

heat contents below and above each pinch candidate.

QS︸︷︷︸
heating utility

≥ QAp
C︸ ︷︷ ︸

heat content above

pinch candidate

− QAp
H︸ ︷︷ ︸

heat content below

pinch candidate

∀ p ∈ P (2.9)

Finally, we use an energy balance to calculate the minimum cold utility duty QW :

QW︸︷︷︸
cooling utility

= QS︸︷︷︸
heating utility

+
∑
j∈SC

Qin
j︸ ︷︷ ︸

internal heating

−
∑
i∈SH

Qout
i︸ ︷︷ ︸

internal cooling

(2.10)

To ensure optimization problem is differentiable, we use a smoothed approxima-

tion for the max operator:

mãx(x) =
1

2

(√
x2 + ϵ2

)
≈ max(x, 0), ϵ2 = 10−6 (2.11)

This model is effective because the combinatorial search for the pinch candidate

is cast as the inequality constraint Eq. (2.9), which is efficiently handled in equation

oriented process optimization.

2.3.4 Cost model

After solving (M1), we estimate equipment and operating costs and then calculate

the price per unit of freshwater production.

The heat integration model described above only computes the minimum hot and

cold utilities when solving (M1). As a post-processing step, we perform sequential

optimization to design the heat exchanger network. We first solve a mixed integer

linear program to predict matches to minimize the number of heat exchangers. We

then solve a nonlinear program to calculate the heat exchanger areas.[111, 26]. Fi-
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nally, we use Guthrie’s Method [26] to calculate the equipment costs. We used the

present cost index of December 2018 (613.6) and assumed a salvage value of 20% of

the cost of the assets after the useful life of the plant.

Eq. (2.12) calculates the annualized capital cost Canm in which CRF is the capital

recovery factor, CNPC is the net present cost (calculated thorugh Guthrie’s Method),

i is the real discount rate, i′ is the nominal discount rate, and f is the expected

inflation rate. We used a nominal discount rate of 8%, and an expected inflation rate

of 3.5% over a 20 year period obtaining a real discount rate of 4.5%. Utilizing the

previous values, we calculate a CRF of 0.077.

Canm = (CRF )× (CNPC) (2.12)

CRF =
i(1 + i)N

(1 + i)N − 1
(2.13)

i =
i′ − f

1 + f
(2.14)

We assume a cost of electricity of 0.05 $/kW (average price of Texas, Oklahoma,

Lousiana, New Mexico, Georgia, and Utah) [6]. We assume a 2 psi pressure drop

every 100 feet, and the heigh of the tanks is calculated for every process solution

for pumping electricity. We assume a cost of heating utilities of 2.778 $/GJ from

waste heat, a similar cost to solid waste, coal, or nuclear energy [141]. We assume

the system has a useful life of 20 years for cost calculations, and we selected stainless

steel for the material of the equipment because the plant handles saline brines and

freshwater. The cost of decanoic acid is set to 12 $/kg [4]. Finally, we calculate

levelized cost of water (LCOW) as:

LCOW =
Equipment costs + Utility costs + Solvent Costs

Total lifetime freshwater generation
(2.15)
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2.4 Results: Bottom-up Process Optimization

We now solve the optimization problem (M1) in several bottom-up case studies

to predict the best possible performance of candidate directional solvents in a fully

optimized process. We first compare our optimized reference design with Alotaibi

et al. [9]. Then, we perform a sensitivity analysis to quantify the impact of ∆Tmin

(heat exchanger size) and the maximum temperature (heat source quality). Finally,

we compare candidate organic acid solvents.

2.4.1 Reference design for decanoic acid directional solvent

We set the temperature bounds between 34◦C and 80◦C, specify a 50% reject

ratio, and set ∆Tmin = 6◦C1 to match Altoabi et al. [9]. (See Section 5.2 for bound

and ∆Tmin sensitivity analysis.) Results from solving (M1) are shown in Tables 2.8,

2.9, 2.10 and Figure 2.3. From the results, we draw five observations:

Observation A1. A considerable portion of the decanoic acid (128 ppm) is

solubilized in the outlet of freshwater and salty brine. We calculate that, at steady-

state, the process requires 10−4 kmol/s of make-up directional solvent. We emphasize

this make-up was not considered by Alotaibi et al.[9], who based their process analysis

on pseudo-steady-state experimental data.

Observation A2. Our approach finds the same pinch point, 50◦C, as

Altoabi et al. [9].

Observation A3. Solving (M1) predicts specific (thermal) energy of 191

kWt/m3 of freshwater with decanoic acid as a solvent, whereas Alotaibi et al. [9] re-

port 180 kWt/m3 of freshwater. We highlight two differences that can explain our

9% larger specific energy: first, the addition of a feed (make-up) stream of decanoic

acid. Second, we cool down the solvent-water emulsion stream to 34◦C (limiting

1Altoabi et al. [9] report a heat exchanger effectiveness of 90%, which we convert to ∆Tmin =
6◦C.
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temperature due to solvent crystallization) in contrast to the 40◦C used by Alotaibi

et al. [9].

Observation A4. Solving the cost analysis for treating 1 m3 of water

results in a cost of $3.31 /m3 of freshwater. The cost is high compared to modern

technologies: between $0.27 /m3 and $1.62 /m3 of freshwater. Solvent loss has a

significant influence on the cost of DSE desalination.

Observation A5. To validate the heat capacities, we repeated the analysis

with Cp experimental data [152, 124] and found that this leads to a 7% difference in

specific energy. Due to the lack of data for other species, we will use the correlation

in Eqs. (2.2) throughout the analysis to be consistent.
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TABLE 2.8

STREAM RESULTS FOR REFERENCE DESIGN WITH DECANOIC

ACID AS SOLVENT USING 80◦C AS MAXIMUM ALLOWABLE

TEMPERATURE ∆Tmin=6◦C.

Stream Flow Temperature xd xw xs

kmol/s ◦C %mol %mol %mol

1 0.5 25 0.00 98.89 1.11

2 0.5 80 0.00 98.89 1.11

3 1.81 80 63.18 36.78 10−4

4 0.25 80 10−3 97.97 1.99

5 1.81 34 63.18 36.78 10−4

6 0.25 34 10−4 99.78 0.21

7 1.56 34 73.33 26.66 10−4

8 1.56 80 73.33 26.66 10−4

9 2.06 80 55.50 44.22 0.26

10 0.25 25 10−3 97.97 1.99

11 0.25 25 10−4 99.78 0.21

12 10−4 34 100 0.00 0.00

13 10−4 80 100 0.00 0.00

See Figure 2.1 for schematics. Flowrates are comparable to Table
3 in Alotaibi et al. [9]
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TABLE 2.9

HEAT EXCHANGER SIZES AND TEMPERATURES FOR THE

REFERENCE DESIGN (DECANOIC ACID AS SOLVENT, 80◦C AS

MAXIMUM ALLOWABLE TEMPERATURE).

Heat exchanger Stream Temp (◦C) Q (kW)

Inlet Outlet Inlet Outlet

HX1 S1 S2 25 80 2.09

HX2 S3 S5 80 34 -23.44

HX3 S7 S8 34 80 23.00

HX4 S4 S10 80 25 -1.045

HX5 S6 S11 34 25 -0.17

HX6 S12 S13 34 80 3.2E-3

More than 90% of the heating and cooling occurs in heat exchangers
HX3 and HX2, respectively. This is due to the large amount of decanoic
acid that must be recycled to a achieve an overall 50% extraction ratio.
For practical considerations, one may choose not to add HX6 due to the
low heat duty of the heat exchanger and the small flow of solvent
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TABLE 2.10

HEAT INTEGRATION RESULTS FOR THE REFERENCE DESIGN.

Heat Exchanger Type of QAh QAc QAc-QAh

exchanger Inlet Stream (kW) (kW) (kW)

HX1 S1 Cold 24.03 24.31 0.28

HX2 S3 Hot 0.01 3.12 3.11*

HX3 S7 Cold 20.77 23.88 3.10

HX4 S4 Hot 0.01 3.12 3.11*

HX5 S6 Hot 23.88 24.17 0.28

HX6 S12 Cold 20.77 23.88 3.10

* Pinch temperature

QAh is the heat exchanged above the pinch temperature and QAc is the heat below the
pinch temperature. Both streams S3 and S4 are at the pinch temperature of 50◦C
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Figure 2.3. Composite curves for the reference design, including utilities.
Most of the heat exchange is done in HX2 and HX3, which have the largest
temperature difference and the highest flowrates. Recall HX1 heats inlet
seawater to the temperature of the warm settling tank, HX2 cools the water-
decanoic acid emulsion, and HX3 heats the recycled directional solvent. HX4
and HX5 cool the outlet concentrated brine and freshwater, respectively.
QS and QW are defined as the minimum heating and cooling utility duties,
respectively.
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2.4.2 Sensitivity analysis: Maximum temperature and ∆Tmin

Next, we considered the sensitivity of process designs to both the maximum tem-

perature and ∆Tmin, which controls the heat exchanger size and effectiveness. We

solve (M1) with three different sets of experimental data as the LLE correlation input:

decanoic acid-water data form Oliveira et al. [108], decanoic acid-water-salt data from

Bajpayee et al. [18], and [emim][Tf2N]-water-salt data from Guo et al. [62]. Figure

2.4 shows specific energy at six maximum temperature between 40 ◦C and 90 ◦C and

ten different ∆Tmin between 1 ◦C and 10 ◦C. Figure 2.5 shows specific energy at five

maximum temperature between 35 ◦C and 75 ◦C and ten different ∆Tmin between

1 ◦C and 10 ◦C. Solving (M1) 169 times to generate Figures 2.4 and 2.5 took less

than 1 minute. Table 2.12 gives the stream information for a single design from the

sensitivity analysis (Tmax =50◦C, ∆Tmin =6 ◦C). From these results, we observe:

Observation B1. We find consistent trends with both sets of solubility

data. Bajpayee et al. data[18] showed 2.6% more solubility of water in the solvent

phase, which leads to 2 times lower energy insensity because the recycle ratio is

decreased. The difference between the solubilities is because Oliveira et al. only

considered binary water-acid mixtures.

Observation B2. As expected, higher maximum temperatures enable

higher per pass extraction, which allows for a lower recycle flowrate (1.81 kmol/s for

Tmax= 80◦C versus 4.91 kmol/s for Tmax=50◦C) and lower energy intensity (191.84

kWt/m3 for Tmax= 80◦C verus 551.90kWt/m3 for Tmax=50◦C). This suggests that

manipulating the solvent chemistry to increase the per pass extraction at a lower

temperature will decrease the energy intensity.

Observation B3. The specific energy difference between temperature

≤80◦C and ≤90◦C is negligible. This is because increasing the pass per extrac-

tion increases the fraction of water in the solvent-water emulsion, which decreases

the Cp of the mixture. As the amount of heat required to heat the mixture de-
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creases at a higher maximum allowable temperature, so does the specific energy of

the process. This result emphasizes little benefit for heat sources greater than 80◦C

for off-the-shelf organic acid solvents.

Observation B4. Heat exchangers with a temperature difference of less

than 3◦C are likely required to achieve less than 50kWt/m3 and 4◦C to achieve less

than 100kWt/m3 utilizing decanoic acid as a solvent. The heat exchangers would need

to have an effectiveness of approximately 96% or higher to achieve the 50kWt/m3

goal utilizing decanoic acid.

Observation B5. We observe the IL the solvent [emim][Tf2N] can achieve

50 kWt/m3 using maximum allowable temperature of 65◦C and ∆Tmin of 6◦C. Our

analysis shows that, from an energetics perspective, ILs are a more promising class

of directional solvents.
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Figure 2.4. Sensitivity of specific energy to maximum temperature (heat
source quality) and ∆Tmin (heat exchanger size). Bajpayee et al. [18] data
showed 2.6% more solubility of water in the solvent phase from Oliveira et
al. [108]. The difference may be explained by the interaction of salt in the
mixture. Higher maximum temperatures enable higher per pass extraction,
which allows for a lower recycle flowrate and lower energy intensity. Solvents
that enables higher per pass extraction at a lower temperature, the decrease
in energy intensity would be higher. The specific energy difference between
allowing (M1) to reach 80◦C and 90◦C is negligible. Heat exchangers with a
temperature difference of less than 3◦C are to achieve less than 50 kWt/m3.
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Figure 2.5. Effects of maximum temperature allowed for the process utilizing
[emim][Tf2N] as solvent. The specific energy of the process is greatly reduced
compared to carboxylic acids.

42



TABLE 2.12

STREAM RESULTS FOR REFERENCE DESIGN WITH DECANOIC

ACID AS SOLVENT USING 50◦C AS MAXIMUM ALLOWABLE

TEMPERATURE ∆Tmin=6◦C.

Stream Flow Temperature xd xw xs

kmol/s ◦C %mol %mol %mol

1 0.5 25 0.00 98.89 1.11

2 0.5 50 0.00 98.89 1.11

3 5.16 50 69.79 30.18 0.03

4 0.25 50 10−3 98.41 1.58

5 5.16 34 69.79 30.18 0.03

6 0.25 34 10−4 99.37 0.62

7 4.91 34 73.33 26.66 10−4

8 4.91 50 73.33 26.66 10−4

9 5.16 50 66.56 33.33 0.10

10 0.25 25 10−3 98.41 1.58

11 0.25 25 10−4 99.37 0.63

12 10−4 34 100 0.00 0.00

13 10−4 50 100 0.00 0.00

See Figure 2.1 for stream numbers
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2.4.3 Sensitivity analysis: Length of the chain of carboxylic acids

We now rapidly screen five carboxylic acids as directional solvents. We solve (M1)

using acid-water mixture data for Oliveira et al. [108]. We set the amount of acid

dissolved in the aqueous phase as the solubility of the fatty acid at 20◦C, shown

in Table 2.5. The minimum temperature for the process is set as the larger of the

melting temperature of the acid or 25◦C at ambient temperature. The 120 instances

of (M1) shown in Figure 2.6 were solved in approximately 25 seconds total. From

the results, we observe:

Observation C1. In Figure 2.2, we see there is not a clear relationship

between the solubility of water in organic acid and the length of the carbon chain.

However, we find the slope B, i.e., the thermoresponsiveness of solubility, is most

influential on specific energy.

Observation C2. For solvent selection, the three most important factors

are i) the change in water solubility for a fixed temperature change (thermorespon-

siveness); ii) the melting temperature of the fatty acid, which limits the minimum

operating temperature; and iii) the solubility of the directional solvent in freshwater.

Observation C3. Similar to observation B4, high-performance heat ex-

changers are required to achieve less than 50 kWt/m3 using C6 to C10 fatty acids

Observation C4. The cost of the process decreases with the length of the

carboxylic acid chain. The solvent solubility in water decreases as the carbon chain

increases, diminishing the amount of solvent loss and the solvent make-up cost in the

process.

Observation C5. DSE process using fatty acids are not economically vi-

able, with a best-case scenario of $1.29 per m3 of freshwater for decanoic acid with

heat exchangers with ∆Tmin of 1◦C.
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Figure 2.6. Effects on specific energy using different carboxylic acids as the
DS. There is not a clear influence in the length of the chain of carbons (Nc) in
the energy required for the process. DSE remains energy intensive utilizing
any C6 to C10 carboxylic acid and suffers from solvent loss.

45



Figure 2.7. Effects on the cost of the DSE process utilizing C6 to C10 fatty
acids. The cost of the process increases with the increase of solubility of
the solvent in water. The LCOW for ∆Tmin from 1◦C to 10◦C for different
carboxylic acids are 107.91-108.99 $/m3 for Nc = 6, 21.91-23.55 $/m3 for Nc

= 7, 5.90-7.86 $/m3 for Nc = 8, 3.00-6.18 $/m3 for Nc = 9, and 1.29-3.79
$/m3 for Nc = 10. See Table 2.5 for specific quantities of solvent loss.
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2.5 Results: Top-Down Solvent Property Targets

Based on the bottom-up analysis in Section 5, we conclude that known carboxylic

acids are not an economical solution for directional solvent extraction. Although

[emim][Tf2N] is, from an energetic perspective, a more promising directional solvent,

limited data for IL-water-salt mixtures prevents bottom-up screening of more candi-

date IL solvents.

In this section, we generalize the optimization problem (M1) to consider hypo-

thetical directional solvent molecule parameterized by three continuous properties:

solubilities in the aqueous and solvent phases and cost of the solvent. Thus we per-

turb four parameters in the technoeconomic analysis: A, B, solvent cost, and κd.

We then perform top-down sensitivity analysis to identify idealized directional

solvent property targets to aid in molecular discovery. These continuous physical

property targets are a precursor to discrete molecular optimization [19].

2.5.1 Top-down analysis: Carboxylic acids

We start by performing a sensitivity analysis for hypothetical carboxylic acid

solvents over a grid for three properties: 1) the thermoresponsiveness of the solubility

of the solvent (B), 2) the amount of water that solubilizes in the solvent at a reference

temperature (A), and 3) the amount of solvent dissolved in the freshwater at the

outlet of the DSE process (κd). Each candidate set of properties is first checked to

ensure the solubility correlation Eq. (2.1) predicts a valid mole fraction between 0

and 1 at the process temperature bounds (Tmin and Tmax):

0 ≤ A + BTmax, 1 ≥ A + BTmax, 0 ≤ A + BTmin, 1 ≥ A + BTmin (2.16)

We found Eq. (2.16) is extremely effective at predicting if (M1) will be infeasible. For

each set of properties that satisfy Eq. (2.16), we solve (M1) to compute flowrates and
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temperatures that minimize specific energy. For each solution of (M1), we estimate

LCOW for a few solvent costs. From the results shown in Figure 2.8, we conclude:

Observation D1. For a directional solvent similar to a fatty acid, increas-

ing thermoresponsive ability (B) and decreasing solubility of the solvent in water

(κd) would cause the greatest reduction in LCOW. Likewise, increasing the solu-

bility of water in the solvent at a reference temperature (B) reduces the recycle

ratio by decreasing the amount of solvent needed for water to dissolve. We calcu-

late LCOW of $3.30/m3 and $4.13/m3 for decanoic and octanoic acids, respectively.

Even though the energy contribution to LCOW is lower from octanoic acid ($1.62/m3

versus $2.20/m3), the overall LCOW is larger because the higher solubility of the sol-

vent κd is larger (128 ppm for decanoic acid versus 300 ppm for octanoic acid), which

causes larger solvent make-up costs ($1.03/m3 of freshwater for decanoic acid versus

$2.48/m3 of freshwater for octanoic acid).

Observation D2. Figure 2.8 gives quantitive targets to reduce LCOW

for a fatty acid-like directional solvent. For example, doubling the thermoresponsive

ability (B) and reducing the solubility of the solvent in water by 10-fold (κd=128

ppm to 12.8ppm) relative to decanoic would give a LCOW less than $0.50/m3.

Observation D3. The recycle ratio is reduced as the thermoresponsive

ability (B) of the solvent and the base solubility of water in the solvent (A) increase.

This reduces the thermal and electric energy required to heat, pump, and cool the

recycle of the DSE-water emulsion. Reducing the recycle ratio also drastically shrinks

the size of the equipment. For example, increasing the thermoresponsiveness of the

solvent by a factor of 2 decreases the recycle ratio by a factor of 20, which decreases

the heat and electricity costs from $2.20 per m3 of freshwater to $0.21 per m3 of

freshwater and decreases equipment sizes by 400%.
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Figure 2.8. The colored contours show LCOW calculated using $12/kg cost
of decanoic acid as a function of thermoresponsivness (A, vertical axis) and
the solubility of water at 40 ◦C(B, horizontal axis). Both axes are scaled
such that 1.0, which is marked with a ⋆, corresponds to decanoic acid. (Top)
Using the current solubility of the solvent in water (κd=128 ppm), a 2-fold
improvement in both properties A and B result in a LCOW above $1/m3.
(Bottom) Reducing the solubility of the solvent in water by 10-fold (κd=12.8
ppm) reduces the LCOW to $2.88/m3. Even with this improvement, A and
B both need to increase by 1.5-fold to reach the $0.5/m3 LCOW goal.
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2.5.2 Top-down analysis: Ionic liquids

Next, we perform a sensitivity analysis for hypothetical IL directional solvents.

Compared to carboxylic acids, ILs are a less mature chemical technology. We con-

sider a current benchmark price of $1,000/kg of [emim][Tf2N] [5]. However, many

expect economies of scale to dramatically reduce the cost of ILs as the market for

these solvents grows. For example, Shiflett et al. [128] shows a price reduction of

92% for [C2MIM]+[Ace]− and 90% for [C2MIM]+[BF4]
−. For the sensitivity analysis,

we consider three IL costs - $1,000/kg, $100/kg, and $10/kg - to quantify order of

magnitude changes. Due to these comparatively high costs, solvent loss is especially

important for ILs compared to carboxylic acids. Thus, it is desirable to consider

solvent recovery systems, such as a membrane for post-treatment.2 For simplicity,

we consider the complete recovery of the solvent from the freshwater feed product,

which can be recovered with a nanofiltration polishing step.

Observation E1. The sensitivity analysis assumes a perfect recovery of

the solvent with nanofiltration on the freshwater side. For [emim][Tf2N] we found a

LCOW of $22.11/m3. If only 90% of the IL on the freshwater side is recovered, we

predict a LCOW of $24.28/m3. This suggests that the highest cost is the solvent loss

in the salty brine, where nanofiltration is not viable due to membrane fouling.

Observation E2. [emim][Tf2N] is approximately 2 times more thermore-

sponsive (A) than decanoic acid (0.0063 mol/mol/◦C vs. 0.0022 mol/mol/◦C). How-

ever, at the current price of the ionic liquid, the solvent loss (κd) is critical. Figure

2.9 predicts that a ten-fold decrease in κd decrease LCOW to only 12% of the orig-

inal cost. Improving the thermoresponsiveness (B) alone is insufficient for ILs to

2We anticipate IL recovery from the freshwater stream is achievable with off-the-shelf filtration
systems. Post-treatment for the brine reject is much more challenging due to concerns of membrane
fouling. Full costing of the freshwater post-treatment system is beyond the scope of this work.
Instead, we neglect capital costs and energy usage. As such, the property targets are optimistic but
informative.
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Figure 2.9. The colored contours show LCOW calculated using $1,000/kg
cost of [emim][Tf2N] as a function of thermoresponsivness (A, vertical axis)
and the solubility of water at 40 ◦C (B, horizontal axis). Both axes are scaled
such that 1.0, which is marked with a ⋆, corresponds to [emim][Tf2N]. Three
scenarios for the solubility of IL in water κd are considered: (top) baseline,
(middle) 10-fold decrease, and (bottom) 100-fold decrease.
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be LCOW-competitive with carboxylic acids. Assuming the current price of IL, the

solvent would still require a 100 fold reduction of the solvent solubility (xo1,d).

Observation E3. Assuming a 90% cost reduction, the thermoresponsivness

would need to be increased 1.5 times or the solubility of water 1.25 times. However,

the solvent’s solubility in water would need to be reduced by a ten-fold, as shown in

Figure 2.9.

Observation E4. For a cost of [emim][Tf2N] of $10/kg, the solvent sol-

ubility in water should be 10 times lower to achieve the goal of $0.50/m3 LCOW.

However, it is also possible to reach this goal by increasing the solubility of water in

the solvent by 1.2 times or increasing the thermoresponsiveness by 1.5 times.

Observation E5. For solvent with a cost as high as [emim][Tf2N], the

thermoresponsivness (B) and the solubility of water in the solvent (κd) are the most

important properties. With the current solvent solubility data, one would need to

reduce the solvent loss at least ten-fold for ILs to be LCOW-competitive, even with

a solvent cost reduction of 99%.
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Figure 2.10. Colored contours show LCOW calculated using $100/kg of
[emim][Tf2N]. (Top) Assuming κd=130 ppm, the solvent loss severely raises
LCOW. (Middle) Assuming a ten-fold decrease in κd, only a 1.25-fold increase
in A or a 1.5-fold increase in B is needed to achieve a LCOW less than
$0.50/m3. New unpublished data suggest these low solubility scenario is
reasonable for a salty brine. (Bottom) A 100-fold decrease in κd alone gives
a LCOW of $0.49/m3 under this low IL cost scenario.
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Figure 2.11. Sensitivity of LCOW (contours) assuming a cost of $10/kg of
[emim][Tf2N]. (Top) With current solubility, either the thermoresponsivness
needs to increase by 1.7-fold or the solubility of water needs to increase by
1.3-fold to decrease the LCOW from $0.69/m3 (⋆) to the $0.50/m3 target.
(Bottom) With a 10-fold reduction of the solubility of the solvent in water,
we predict a LCOW of $0.46/m3 (⋆) without improving thermoresponsivness
or the solubility of water in the DS.
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2.6 Conclusions and Future Work

Directional solvent extraction is a membrane-free desalination technology that

can treat high salinity water resources using low-grade heat. DSE can be paired with

other technologies, e.g., renewable solar thermal collectors, to create hybrid sustain-

able systems. In this work, we created a computational framework that facilitates the

optimization of the process and rapid sensitivity analysis. Through these analyses, we

found that higher maximum temperatures enable higher per pass extraction, which

allows for a lower recycle flowrate and lower energy intensity. For solvent selection,

we found that the length of the carbon chain has no apparent influence and that the

most critical factors are the change in water solubility for a low-temperature swing

(40◦C-80◦C), the melting temperature of the fatty acid, which limits the minimum

operating temperature and the solubility of DS in freshwater. Technoeconomic opti-

mization was performed for five candidate fatty directional solvents ranging, giving

LCOW predictions between $1.3/m3 and $109/m3. Sensitivity analysis shows signifi-

cant improvements in three solubility properties are needed for the hypothetical fatty

acid-like DS to achieve less than $0.5/m3. In contrast, ILs show much greater promise

as directional solvents. Using newly published data from [emim][Tf2N] and assuming

a moderate solvent price of $100/kg, we predict a modest $2.65/m3 LCOW. Sensitiv-

ity analysis shows the required combination of thermophysical properties necessary

to achieve LCOW to below $0.5/m3. These results emphasize the potential of IL

directional solvents to desalinate high salinity water, which is currently challenging

with existing technologies.

As future work, we plan to set quantitive thermophysical property targets over

a wide-range of feed salinity conditions, which will better characterize the potential

competitive advantage of DSE versus other desalination technologies. We also plan to

explore process intensification opportunities (stage configuration, nanofiltration for

solvent loss, electrocoalescer) and consider more detailed equipment models (nanofil-
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tration to recovery solvent, electrocoalescer to replace settling tanks). Computer-

aided molecular design (CAMD) approaches [14, 57, 105] offer promise to system-

atically search the billions of possible ionic liquids or other solvent chemistries. We

ultimately see computational molecular, and process scale modeling greatly acceler-

ate the search for economically viable directional solvents. We also plan to explore

the opportunities and costs of coupling DSE with inexpensive solar heating for sus-

tainable and distributed desalination.
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CHAPTER 3

WHAT DATA ARE MOST VALUABLE TO SCREEN IONIC LIQUID

ENTRAINERS FOR HYDROFLUOROCARBON REFRIGERANT REUSE AND

RECYCLING?

This chapter is based on work currently under review:

A. Garciadiego, B. J. Befort, G. Franco, M. Mazumder, and A. W. Dowling. What

Data Are Most Valuable to Screen Ionic Liquid Entrainers for Hydrofluorocarbon

Refrigerant Reuse and Recycling? ChemRxiv. doi:10.26434/chemrxiv-2022-b60nn.

Cambridge: Cambridge Open Engage; 2022. (Under Review)

3.1 Introduction

Due to their high ozone depletion potential, chlorofluorocarbon (CFC) refrigerants

were phased out under the 1987 Montreal Protocol and replaced by their close molec-

ular relative, hydrofluorocarbons (HFCs), which had similar excellent refrigeration

properties. However, more recently, many of these second generation HFC refriger-

ants have been shown to have high global warming potentials (GWPs), caused by

their ability to block infrared radiation[93] and extended atmospheric lifetimes, rang-

ing from five to forty-seven years[36, 153]. In fact, 2019 United States (US) industrial

HFC emissions accounted for more than 175 million metric tons of carbon dioxide

equivalents in the atmosphere[50]. This alarming environmental impact has sparked

renewed global concern resulting in fresh mandates for environmentally detrimental

refrigerant phase out. For example, the 2016 Kigali Amendment[142] to the Montreal
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Protocol aims to cooperatively achieve an 85% reduction of HFC use by 2036 among

industrialized countries. The American Innovation and Manufacturing (AIM) Act of

2020[51] authorized the U.S. Environmental Protection Agency (EPA) to limit HFC

production to 15% of the present values by 2036[51]. In addition to environmental

incentives, the EPA estimates this future reduction of fluorinated gas emissions can

have an annual social benefit of up to $2.8 billion [49]. Also important to consider is

the huge economic value of HFCs. For example, there are approximately 100 million

kilograms of HFC-32, a low GWP HFC used in many refrigerant mixtures, in global

circulation worth around half a billion dollars[38].

The combined environmental, social, and economic impact of HFC refrigerants

makes it imperative to develop a sustainable path forward for their phaseout. For-

tunately, there remain new opportunities to reuse low GWP HFCs, either as pure

refrigerants[38] or in next generation refrigerant mixtures[29], and recycle high GWP

HFCs into new products. However, complicating this phaseout and transition to

more environmentally-friendly chemicals is the fact that most refrigerants are manu-

factured and deployed as azeotropic mixtures of HFCs. While this azeotropic nature

creates an ideal refrigerant with a single boiling point that will not separate in a leak,

conventional technologies, i.e., distillation, become impractical when separating the

components of these mixtures at the end of their utility.

Ionic liquid (IL) entrainers can effectively separate HFC mixtures, overcoming the

energy costs of traditional separation technologies[83, 84, 127]. Over the past eighteen

years, IL and HFC systems have been studied in a variety of contexts including the

characterization of their individual and mixture physical properties[87, 88, 89, 132,

133, 130, 131, 134, 157, 158, 159] and their use in extractive distillation, membrane,

and adsorption separation processes[84]. More recent work has used data generated

from these studies to regress thermodynamic models then perform process design,

optimization, technoeconomic analyses, and life cycle assessments for IL-enabled HFC
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separation schemes[127, 55, 102, 58]. However, because millions of theoretical ILs are

available, each with unique properties, trial-and-error molecular and process design

is intractable since each HFC within a refrigerant blend exhibits a different boiling

point and solubility with an IL[115]. This necessitates a framework which integrates

experiments, mathematical models, and computational optimization to concurrently

design ILs and separation processes for azeotropic HFC refrigerant mixtures. Thus,

several opportunities remain to explore the intersection between IL discovery and

design, thermophysical property measurements, and process engineering.

Here, we integrate published HFC/IL solubility data and process systems engi-

neering approaches to answer the question: what data are most valuable to screen IL

entrainers for HFC reuse and recycling? We investigate the use of first-of-their-kind

thermophysical property measurements of ternary mixtures of HFCs and ILs, i.e.,

two HFCs mixed with an IL[15], within an HFC separation process design frame-

work, determining how to best incorporate these new measurements to effectively

screen ILs for use as entrainers. This enables us to begin to bridge the gap between

experimental thermophysical property characterization, which is often driven by sci-

entific goals, and process design decisions, which are guided by engineering principles,

by addressing the following questions:

• What is the best way to use the new HFC/IL ternary mixture data to accelerate
the design of HFC separation systems and the screening of IL entrainers?

• What is the uncertainty in property predictions for regressed thermodynamic
models using various types of HFC/IL mixture data (e.g., binary versus ternary
mixture data at single versus multiple temperatures)? How does this uncer-
tainty propagate through process design calculations?

• What experimental precision for HFC/IL mixture data is sufficient to screen
IL entrainers?

We propose an open-source, equation-oriented modeling framework to rapidly

translate HFC/IL mixture data into regressed thermodynamic models for rapid IL
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screening. In contrast to prior work, this framework propagates uncertainty in ex-

perimental data to process-level physical properties. This allows us to evaluate pre-

cision between experimental measurements versus model predictions, providing the

opportunity to systematically guide laboratory and simulation experiments on the

data types and accuracy that are needed for HFC separation process design and IL

screening.

3.2 Literature rReview

3.2.1 Azeotropic distillation process design and entrainer screening

Separating mixtures with very close boiling points, such as azeotropic HFC mix-

tures, using conventional distillation requires a large number of trays, making the sep-

aration energy intensive and uneconomical[95]. To overcome this challenge, azeotropic

and extractive distillation schemes have been used to separate these types of mixtures

for more than 90 years[84]. Introducing an entrainer, i.e., a mass separating agent, to

a close-boiling mixture creates a new mixture comprised of the entrainer and one of

the original azeotropic mixture components. This new mixture, which may form its

own azeotrope, has a different boiling point, breaking the original azeotrope to allow

separation[116]. Techniques to identify ideal entrainers include using the molecular

structure [24], residue curve maps[114], volatilities[86], process simulations[34], and

entrainer selection rules developed by Rodrıguez-Donis et al. [121]. Yet, the search for

entrainers is challenging and time consuming. For example, optimization of entrain-

ers for separating water and ethanol has been ongoing since the 1930s[149, 61, 118].

However, for HFC systems especially, environmental regulations and global economics

necessitate rapid innovation within the next decade.
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3.2.2 Ionic liquids as entrainers

ILs are generally defined as organic salts with melting points below 100◦C that

are soluble with a wide range of organic compounds[54, 94]. ILs exhibit many traits

which make them ideal entrainers. For example, ILs have tunable structure-property

relationships such that the cation and anion which comprise the molecule can be

selected from among a variety of options to achieve a specific chemical purpose.

ILs have negligible vapor pressure which leads to easy recovery and essentially no

contamination of products within a separation scheme, allowing ILs to be recycled

in a separation process, reducing material demands and improving the separation

economics[163]. ILs also have been shown to have excellent ability to separate a wide

range of azeotropic and close-boiling mixtures[74, 127, 165, 145]. Other convenient

properties of ILs include their existence in a liquid state over a wide temperature

range and their high thermal and chemical stability[85, 162, 164, 125]. Since the

feasibility of using ILs in extractive distillation schemes[83, 84] was shown in the

early 2000s, many studies have evaluated their properties in mixtures with fluorinated

refrigerants[87, 88, 89, 132, 133, 130, 131, 134, 157, 158, 159] and examined their

use in HFC separations[127, 55]. ILs have also been the subject of computer-aided

molecular design research, which has aimed to take advantage of their tunability to

simultaneously design IL entrainers and optimize the separation processes in which

they are used[112, 122].

3.2.3 Regression of thermodynamic models

Because equations of state (EoS) are continuous and differentiable functions, they

are well-suited for computer-aided process design and optimization[42, 41, 43]. EoS

models, including van der Waals[160, 103], Peng-Robinson[16], Redlich-Kong[130,

131], and soft-SAFT EoS[12], have been shown to reliably predict thermodynamic

properties of HFC and IL mixtures. Yet, many of these models include parameters
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which must be calibrated from data before they are used in process design. These

parameters are often fitted using a minimizing least-squares approach [60, 59] involv-

ing the pressure of the system[160, 103, 130, 131, 16]. However, different objective

functions, such as those involving liquid or vapor compositions, can be utilized in

practice and may provide different parameter values[79].

There is a rich history of nonlinear parameter estimation within the chemical

engineering discipline and, more specifically, thermodynamics community. It is well

known that EoS parameter estimation is a nonconvex optimization problem and

local optima are common and either multi-start initialization or rigorous global op-

timization methods are recommended[37, 53, 59, 11]. Besides local minima, spurious

solutions are another key challenge for EoS calibration. Common mitigation strate-

gies include bilevel optimization methods[28, 101], branch and bound methods[11], or

the addition of penalty terms to the optimization problem[161]. Post regression tests

can be implemented, including the Gibbs tangent plane method[100], which enforces

a stable solution of the phase equilibrium problem if and only if the tangent plane

lies below the Gibbs free energy surface for all compositions.

Once parameterized, EoS models are used for process design and optimization, yet

thermodynamic model parameterization is often one of the most significant sources

of uncertainty and risk in process design. For example, Hajipour and Satryo[64, 65]

show how underestimating critical temperature by 2% while fitting binary interac-

tion parameters may produce errors of 20% to 60% in vapor pressure predictions

for petroleum engineering systems. However, out of the numerous thermodynamic

modeling studies for HFC/IL systems, we are aware of only two papers, co-authored

by us, which investigate EoS parameter uncertainties. In Morais et al [103], we use

Monte Carlo techniques to calculate the uncertainty of parameters for the van der

Waals EoS and describe the apparent over-parameterization of the model due to

observed parameter sloppiness. In Baca et al [15], we report and interpret the covari-
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ance matrix of estimated Peng-Robinson EoS parameters. However, there remains a

need to understand how these uncertainties impact separation process design and IL

screening decisions, which is a key contribution of this work.

3.3 Methods

To address the aforementioned gap, this paper presents an equation-oriented mod-

eling framework to systematically translate binary or ternary vapor-liquid equilibrium

(VLE) data into regressed thermodynamic and process models for rapid IL screen-

ing. Figure 3.1 depicts the workflow, which starts by specifying the system VLE data

(Step 1) and EoS model (Step 2), which are inputs for parameter estimation (Step

3). The parameterized models are then used to make phase predictions (Step 4) and

generate process designs, specifically flash calculations in this work (Step 5). Addi-

tionally, we use these parameters to calculate the pressure of the mixture to compare

the quality of fit of our models (Step 6). Finally, ILs are screened for their HFC

separations ability via a comparison of HFC relative volatility in the IL entrainer

(Step 7) and uncertainty analysis is performed to inform experimental design (Step

8). The framework leverages tools from the open-source Institute for the Design of

Advanced Energy Systems (IDAES) Integrated Platform[82] and the Pyomo Python

library [31, 68]. Utilizing these open-source packages for modeling and optimization

facilitates validation, reproducibility, and accountability, and allows for easy exten-

sion of the framework to other systems.

As a case study, we apply this workflow to screen six ILs for the separation of

HFC-32 and HFC-125, which comprise the refrigerant R-410a. The remainder of this

section describes the individual steps of the workflow.
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Step 1
Generate or Compile Data

Step 2
Select Thermodynamic Model
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Step 4
Calculate Phase 

Equilibrium
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Perform Process 

Calculations

Step 6
Assess Quality of 

Fit

Step 7
Screen ILs via Relative 
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Step 8
Quantify Uncertainty & 

Inform Experiments

Step 3
Estimate Parameters

Figure 3.1. Open-source, equation-oriented modeling framework for HFC
separation process design and IL entrainer screening.
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3.3.1 Step 1. Generate or compile data

Based on previous studies from Morais et al. [103] and Baca et al. [16, 15], three

types of data are considered in this work:

1. Binary HFC/IL solubility data for HFC-32 or HFC-125 in [bmim][PF6], [bmim]
[BF4], [emim][TF2N], [bmim][Ac], [hmim][Cl], and [hmim][FAP] collected with
a gravimetric microbalance[133, 131, 103, 16].

2. HFC-32/HFC-125 binary equilibrium data collected with gas chromatograph
equipped with a flame ionization detector[67].

3. Ternary mixture data for HFC-32 and HFC-125 in [bmim][PF6] and [bmim][BF4]
collected from XEMIS and IGA gravimetric microbalances with the integral
mass balance method[15].

3.3.2 Step 2. Select thermodynamic model

3.3.2.1 Peng-Robinson EoS

We correlate experimental data utilizing the Peng-Robinson EoS:

P =
RT

V − b
− am

V 2 − 2bmV − b2m
(3.1)

where pressure P is a function of temperature T , volume V , and the intermediate

variables am and bm. The substance-specific parameters aj and bj for each component

j are calculated with:

aj = 0.421875
R2T 2

c,j

Pc,j

αj (3.2)

αj =
(
1 + (1− T 2

r )(0.37464− 1.54226ωj − 0.26992ω2
j )
)2

(3.3)

bj = 0.125
RTc,j

Pc,j

(3.4)

where R is the ideal gas constant, Pc and Tc are the pressure and temperature,

respectively, at the critical point, and ωj is the acentric factor. am and bm are
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calculated with the mixing rule recommended for cubic EoS [119]:

am =
∑
i

∑
j

yiyj
√
aiaj (1− κi,j(T )) (3.5)

bm

N∑
i=1

xi = 1 (3.6)

where κi,j is the binary interaction parameter function:

κi,j(T ) = κAi,j + κBi,j · T (3.7)

Specifying κBi,j = 0 removes the temperature dependence for Eq. (3.7).

3.3.2.2 Regressed models

To study the differences between the use of different combinations of binary and

ternary data sets, as well as to study the influence of temperature on fitted param-

eters in Eq. (3.7), we postulate five combinations of fitting data sets and models for

comparison:

• MB: EoS parameterized with binary data without binary interaction tempera-
ture dependence, i.e., κBi,j = 0.

• MB,K : EoS parameterized with binary data taking into account binary inter-
action temperature dependence.

• MT : EoS parameterized with ternary data without binary interaction temper-
ature dependence, i.e., κBi,j = 0.

• MBT : EoS parameterized with binary data and ternary data without binary
interaction temperature dependence. Data are weighted based on the number
of observations in each data set and normalized by the average pressure.

• MBT,K : EoS parameterized with binary data and ternary taking into account
binary interaction temperature dependence. Data are weighted the same as for
MBT .

Here, the subscript B denotes a model was parameterized with binary data, the sub-
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TABLE 3.1

POSTULATED MODELS TO PREDICT HFC/IL PHASE

EQUILIBRIUM

Model κBi,j Binary data Ternary data

MB 0 Yes No

MB,K Optimized Yes No

MT 0 No Yes

MBT 0 Yes Yes

MBT,K Optimized Yes Yes

script T denotes the model was parameterized with ternary data, and the subscript

BT indicates a model was parameterized with both binary and ternary data. The

subscript K (for Kelvin) denotes a temperature dependence of the binary parameters,

i.e., κBi,j was calibrated. Table 3.1 compactly summarizes the models.

3.3.3 Step 3. Estimate parameters

Nonlinear least-squares optimization was performed in Pyomo using parmest[76]

to calculate the binary parameters κ via Eq. (3.5):

min
κl≤κ≤κu

D∑
d=1

[
wd

nd

nd∑
i=1

(P̂ (κ, Ti,d, xi,d)− Pi,d)
2

]
s.t. Eqs. (3.1)− (3.10)

(3.8)

Here Pi is the experimentally measured pressure value, P̂ is the model prediction of

pressure, D is the total number of data sets, nd is the number of observations in data

set d, and the weight wd is the average pressure of the data set. Minimizing the least-

squares error of the calculated pressure P̂ and experimental pressure P is consistent

with prior literature on EoS calibration for IL and HFC mixtures[160, 103, 130, 131].
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The model is constrained by Eqs. (3.1) to (3.10). With D = 1 and n = 32 ,where n

is the number of fitted points n =
∑D

d=1 nd, the model contains 434 variables and 432

equality constraints for the case in which only κAi,j is fit. We can estimate parameters

for the full [bmim][PF6] data set using IPOPT[147] solver and HSL (MA27)[1] in

approximately 30 seconds with thoughtfully chosen initial parameter values. The

bounds κl and κu were set to -3 and 3, respectively. In all obtained optimal solutions

these bounds were not active.

Alternatively, we can estimate the parameters by minimizing the least squares

error of the composition:

min
κl≤κ≤κu

D∑
d=1

[
wd

nd

nd∑
i=1

(x̂(κ, Ti,d, Pi,d)− xi,d)
2

]
s.t. Eqs. (3.1)− (3.10)

(3.9)

Here xi,d is the experimentally measured liquid phase composition and, x̂(κ, Ti,d, Pi,d)

is the model prediction of the liquid composition. With D = 1 and n = 32 the model

contains 434 variables and 432 equality constraints for the two-parameter κAi,j sys-

tem. We can estimate parameters for the full [bmim][PF6] data set using IPOPT[147]

solver and HSL (MA27)[1] in approximately 31 seconds. Although both formula-

tions are computationally tractable, Eq. (3.8) is predominatenly used in previous IL

literature[160, 103, 130, 131, 15]. To be consistent, Eq. (3.8) is used throughout the

remainder of the analysis.

3.3.4 Step 4. Calculate phase equilibrium

We use the phi-phi method[109] to calculate VLE at temperature Teq:

Φvap,i(Teq) = Φliq,i(Teq) (3.10)
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Here the Peng-Robinson EoS is used to calculate the fugacities of both phases, Φvap,i

and Φliq,i[30]. However, Eq. (3.10) is only valid in the two-phase region. It is relaxed

as follows as part of the smooth flash formulation[30]:

T1 = max(Tbubble, T ) (3.11)

Teq = min(T1, Tdew) (3.12)

where T1 is an intermediate variable, and T is the outlet temperature. Thus if T <

Tbubble, then the VLE is calculated at Tbubble. Likewise if T > Tdew, then the VLE

is calculated at Tdew. The calculation is reformulated with smooth min and max

operators to improve numerical performance with derivative-based equation solving

and optimization algorithms.

T1 = 0.5
[
T + Tbubble +

√
(T − Tbubble)2 + ϵ21

]
(3.13)

Teq = 0.5
[
T + Tdew +

√
(T − Tdew)2 + ϵ22

]
(3.14)

where ϵ1 = 0.01 and ϵ2 = 5.0× 10−5 are smoothing parameters[30].

3.3.5 Step 5. Perform process calculations

Shiflett and Yokozeki[127] presented an extractive distillation flowsheet uses an IL

entrainer to separate R-410A, which is a 50/50 mol% mixture of HFC-32 and HFC-

125. In this extractive distillation column, HFC-125 is the top product and HFC-32

and the IL are the bottom products. The HFC-32 and IL mixture is then sent to the

recycling section of the flowsheet with two sequential flash vessels to separate HFC-32

from the IL entrainer. The IL is then recycled to the extractive distillation column.

The first vessel is operated at 0.1 MPa and 371 K. With a feed composition xin of

21.6 mol% of HFC-32, 0.3 mol% of HFC-125, and 78.1 mol% of [bmim][PF6][127].
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We simulate this flash vessel to illustrate the impact of data and model uncertainty

on process modeling calculations. The flash is modeled as follows:

Fin =
∑
l∈O

Fl (3.15)

Finxin,c =
∑
l∈O

Flxl,c, ∀c ∈ C (3.16)

∑
c∈C

(xvap,c − xliq,c) = 0 (3.17)

Eq. (3.15) is a total mole balance that equates the inlet total molar flowrate, Fin,

with the sum of the outlet, Fl. Eq. (3.16) is the component balance and equates the

product of the inlet flow Fin and the inlet composition xin,c of a component c to the

sum of the flow of the outlet streams Fl and the mole fraction xl,c of component c

in the outlet streams l. Finally, Eq. (3.17), commonly known as the Rachford–Rice

equation, ensures the sum of the differences between vapor and liquid fractions of the

components, xvap,c and xliq,c, must be equal to zero.

3.3.6 Step 6. Assess quality of fit

We utilize the mean absolute percent error (MAPE) metric to quantify the fit

and the accuracy of our model predictions:

MAPE =
D∑

d=1

[
1

nd

nd∑
i=1

∣∣∣∣∣ P̂ (κ, Ti,d, xi,d)− Pi,d

P̂ (κ, Ti,d, xi,d)

∣∣∣∣∣
]

(3.18)

Here we compare the accuracy of the calculated pressure P̂ and experimental

pressure P , normalizing by the number of observations nd in data set d for all the

data sets D. We calculate two types of MAPE: in-sample, which corresponds to data

used for parameter calibration, and out-of-sample, which corresponds to data not

used for the parameter calibration.

70



3.3.7 Step 7. Screen ILs via relative volatility

Relative volatility is a good indicator of an IL’s potential as an entrainer and is

a popular screening metric[86]. We screen prospective ILs by calculating the relative

volatility, αi,j(T, P, xin), for species i relative to species j at different compositions of

the species:

αi,j =
yi/xi

yj/xj

(3.19)

Here, xi and xj are the predicted molar compositions of the liquid phase in the flash

calculation, and yi and yj are the predicted molar compositions of the vapor phase.

In this work, the relative volatility is calculated between HFC-32 and HFC-125 in a

given IL.

3.3.8 Step 8. Quantify uncertainty to inform experiments

Finally, we quantify how experimental measurement uncertainty impacts relative

volatility and similar calculations. We utilize two different uncertainty quantification

methods: Monte Carlo sampling and bootstrap re-sampling. Algorithm 1 describes

our Monte Carlo approach, a standard method for uncertainty quantification and

propagation[99, 144]. The main idea is to simulate experimental uncertainty by

adding normally distributed noise ϵ to the experimental composition. We choose to

add this uncertainty to the compositions, as pressure and temperature are easier to

control in laboratory experiments. We then resolve the flash calculation utilizing the

newly regressed parameters and propagate this error to αi,j. Alternatively, we used

Parmest bootstrap re-sampling of the data to quantify uncertainty. We eliminate two

data points randomly, estimate the parameters, then re-sample and repeat the process

to estimate the binary parameters. We draw 50 bootstrap samples from the data,

with n-2 samples. For each instance of regressed parameters, the relative volatility
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is computed. The key distinction between these approaches is that for Monte Carlo

we must specify the measurement noise probability distribution; in contrast, with

bootstrap, the measurement uncertainty is implicitly inferred from the data.

Algorithm 1 Monte Carlo Uncertainty Analysis

1: for ϵ = 1–10% proportional to experimental composition do
2: for iteration = 1, 2, . . . , 100 do
3: Add noise proportional to experimental composition, xϵ

i,d ← N (xi,d, xi,d ·ϵ)
4: Enforce composition bounds of 0 and 1
5: Estimate parameters via Eq. (3.8) using xϵ

i,d

6: Perform flash calculation via Eq. (3.15) –(3.17)
7: Calculate relative volatility via Eq. (3.19)
8: Store results
9: end for
10: Calculate and store average volatility
11: Calculate and store volatility standard deviation
12: end for
13: Plot the mean of the volatility and standard deviation vs. error %

3.4 Results

3.4.1 Peng-Robinson EoS accurately describes HFC/IL binary solubility data be-

havior

We begin our analysis by comparing the parameter regression results for the five

postulated models. In Figure 3.2, we compare the predictions of solubility isotherms

of HFC-32 and HFC-125 in [bmim][PF6] as a function of composition computed using

the regressed values for κi,j with experimental binary solubility isotherm data. Table

3.2 shows the regressed parameters for the [bmim][PF6] system. To assess the quality

of fit, in Step 6, we utilize Eq. (3.18) to calculate the in-sample MAPE.
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TABLE 3.2

BINARY INTERACTION PARAMETERS FOR THE FIVE

POSTULATED MODELS FOR HFC-32 OR HFC-125 SOLUBILITY IN

[BMIM][PF6]

Model MB MB,K MB,K MT MBT MBT,K MBT,K

Parameter κAi,j κAi,j κBi,j κAi,j κAi,j κAi,j κBi,j

i = HFC-32, j = [bmim][PF6] -0.0261 0.0270 -0.0488 -0.0435 -0.0328 -0.0248 -0.0056

i = [bmim][PF6], j = HFC-32 -0.0704 0.2680 -0.3153 -0.3506 -0.1131 -0.0106 -0.0910

i = HFC-125, j = [bmim][PF6] 0.0589 -0.1114 0.1703 0.0604 0.0595 -0.1612 0.2123

i = [bmim][PF6], j = HFC-125 0.3454 -1.6016 2.0860 1.6779 0.4138 -1.7646 2.1235

i = HFC-32, j = HFC-125 0.0093 0.3926 -0.3891 0.0093 0.0093 0.3926 -0.3891

i = HFC-125, j = HFC-32 0.0074 -0.3754 0.3892 0.0074 0.0074 -0.3754 0.3892

We first compare the models calibrated only using experimental binary solubility

data (MB, MB,K). Figure 3.2(a) and 3.2(b) shows the pressure predictions of the

models MB and MB,K compared to the experimental data. We observe that the fit

is more accurate at lower concentrations of the HFCs. For HFC-32/[bmim][PF6], we

calculate an in-sample MAPE between predicted and experimental pressures of 7% for

MB and 5% for MB,K . We also observe that for HFC-125/[bmim][PF6], the fit is con-

siderably better for MB,K at 7% MAPE, as it accounts for temperature dependency

for binary parameters, compared to a MAPE of 15% for MB. We find the binary

parameters are more dependent on temperature in the HFC-125/[bmim][PF6] system

than HFC-32/[bmim][PF6] system. We hypothesize that temperature dependence is

necessary because of the concave shape of the HFC-125 isotherm. We emphasize that

the temperature dependence shown in Eq. (3.7) can only be regressed with data sets

that contain measurements at two or more temperatures.

Next, we compare the models that are calibrated using only experimental ternary
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solubility data (MT ) and both experimental binary and ternary solubilty data (MBT ,

MBT,K). Figure 3.2(c) and 3.2(d) shows that model MT , calibrated only with exper-

imental ternary solubility data has an out-of-sample MAPE of at least 30% when

predicting solubility for binary HFC/IL systems. This is explained by two different

features of the experimental ternary solubility data set. The first is that the data

set contains only two binary HFC/IL data points for each HFC, one at each of the

two experimental pressures. In other words, the experimental ternary solubility data

set includes an HFC-32/IL data point at 0.1 MPa and an HFC-32/IL data point at

0.25 MPa, as well as two data points at the same pressures for HFC-125. Second,

the availability of this experimental data at only two pressures and one temperature

(298 K) necessitates extrapolation to higher pressures and different temperatures.

We calculate the in-sample MAPE between predicted and experimental pres-

sures for HFC-32/[bmim][PF6] as 7.5% for MBT and 5.2% for MBT,K . For HFC-

125/[bmim][PF6] the in-sample MAPE is 15.8% for MBT and 7.4% for MBT,K . We

note that in-sample MAPE of the predicted pressure of MB versus MBT and MB,K

versus MBT,K are almost identical, which is attributed to the exclusion or inclusion

of temperature-dependent binary parameters. We can also observe from Table 3.2

the order of magnitude change in κAi,j. MBT and MBT,K , calibrated with binary and

ternary data, estimate binary solubility with higher accuracy than MT , as the addi-

tion of binary data reduces the interpolation problem of MT . None of the calibrated

models using only ternary data or a combination of binary and ternary data, MT ,

MBT , and MBT,K , have a significantly lower in-sample MAPE than MB and MB,K ,

the models calibrated only with experimental binary solubility data.
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Figure 3.2. Comparison of experimental solubility isotherms (points) and sol-
ubility predictions (dashed lines) made with models MB (no κ temperature
dependence, fitted to experimental binary data[133]), MB,K (κ temperature
dependence, fitted to experimental binary data[133]), MT (no κ tempera-
ture dependence, fitted to experimental ternary data[15]), MBT (no κ tem-
perature dependence, fitted to both experimental binary[133] and ternary
data[15]) and MBT,K (κ temperature dependence, fitted to both experimen-
tal binary[133] and ternary data[15]).
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3.4.2 EoS parameterized with binary or ternary data give accurate phase equilib-

rium predictions

Figure 3.3 compares ternary solubility predictions for models MB to MBT,K against

experimental ternary solubility of HFC-32/HFC-125/[bmim][PF6] in a ternary phase

diagram (Step 4) using the regressed parameters in Table 3.2. We calculate the

vapor and liquid phase compositions with Eqs. (3.1) to (3.10) at 298 K and 1 MPa

and compositions of the ternary mixture extracted from the ternary data set.

As expected, we find that the predictions utilizing MT , which has no κ tem-

perature dependence and was calibrated only with experimental ternary data, has

a 1% in-sample MAPE. In contrast, we find that the predictions of MB and MB,K

(both models only calibrated with experimental binary solubility data) have an out-

of-sample MAPE of 10.1% and 10.2%, compared to the ternary experimental com-

positions in Baca et al. [16]. The error is consistent with the difference observed

between the data sets in Figure 3.3. We emphasize these measurements we obtained

with different experimental methods and equipment (as described in the references),

so a modest difference is to be expected.

Predictions made with models MBT and MBT,K (models calibrated from both

data sets) have an in-sample MAPE of 9.5% and 9.2%, respectively. The predictions

are qualitatively consistent between models calibrated from experimental binary or

ternary solubility data sets. The findings give us confidence in the EoS and provide

a benchmark to compare the results of the binary prediction (see below). This sig-

nificant result allows us to compare different IL behavior qualitatively as the ternary

data now acts as an out-of-sample validation for the binary models MB and MB,K .

Similarly, Figure 3.4 shows the absorption of each HFC and the total absorption

to the IL phase. We first note that the difference between the absorption predicted in

both experimental data sets is consistent with the differences shown in Figure 3.2, i.e.,

the data sets have a better agreement with respect to HFC-32 than HFC-125. MB

76



Figure 3.3. Ternary diagram liquid compositions calculated from two differ-
ent data sets. MB, MB,K were calibrated with binary data.
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prediction is consistent with the binary data with a MAPE of 2.7%. However, MB,K

prediction has a MAPE of 1% compared to the binary experimental data, consistent

with the finding in the pressure prediction shown in Figure 3.2, as it accounts for the

temperature dependency.

MT gives an accurate prediction compared to the ternary experimental data, as

it was calibrated with this data. In comparison, MBT predicts approximately the

average of the two data sets. We note how weighing the ternary data changes the

behavior of the temperature dependence. MB,K predicted less absorption of HFC-32

than MB while, MBT,K considers more absorption of HFC-32 than MBT . This is

explained by the addition in the weighted parameterization of the ternary data set,

which contains more data at low pressures and 298 K. Although MT predictions show

the lower MAPE with respect to absorption, we caution against the use of the model

at higher pressures: as shown in Figure 3.2(c) and 3.2(d), MT does not have a good

quality of fit at high pressures as it was only calibrated at a maximum of 0.25 MPa

and 298 K.

3.4.3 Binary data and PR EoS models are sufficiently accurate to perform early

process design and relative volatility estimation

We now quantify how the differences between the models MB through MBT,K

impact process design and IL screening calculations. We calculate a flash unit from

Shiflett et al. [127] described in the Methods (Step 5), which is a proxy for the

overall separation process design. In Figure 3.5, we systematically vary the outlet

temperature from 280 K to 325 K to compare the predicted HFC-32 vapor recovery

fraction. From the results, we observe a 4% to 20% difference between the vapor

recovery fraction predictions from the models at low temperatures. The difference in

models is consistent with Figure 3.4. MB and MB,K show a maximum discrepancy

of 10% of the vapor recovery fraction. Additionally, MBT and MBT,K reconcile the
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Figure 3.4. Predicted HFC-32/HFC-125/[bmim][PF6] ternary absorption
compared to experimental data from Baca et al. [15]. MB and MB,K were
only calibrated with experimental binary solubility data. MT was calibrated
with only with experimental ternary solubility data. MBT and MBT,K where
calibrated with both experimental binary and ternary solubility data.
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models calibrated with binary data and MT . The models that show the highest

difference in predicted HFC-32 vapor recovery (20%) are MB,K and MT . We also

note that the flash vapor is enriched in HFC-32 (above 98 mol%), at which, as

seen in Figures 3.2(a) and 3.2(c), MT solubility predictions show a MAPE of only

5%. However, as shown in Figure 3.2(d), MT should be used with caution when

calculating equilibrium at pressures above 0.25 MPa and temperatures different than

298 K and in mixtures with concentrations of HFC-125 above 10 mol%. The fact

that any of the models can qualitatively predict the vapor recovery fraction of the

flash calculation shows that we can perform early process design with our models and

one or both data sets. If multiple unique data sets are available, i.e., both binary and

ternary solubility data, we recommend using the EoS model calibrated with the most

data for process design. Leave-one-out (i.e., jackknife resampling) analysis can be

used to estimate the out-of-sample prediction uncertainty which can be propagated

through the process design analysis (as described below).

To determine if the qualitative results translate to relative volatility, we calculate

the phase equilibrium of a 0 mol% HFC-125, 70 mol% HFC-32, and 30 mol% of

[bmim][PF6] mixture. We then increased the concentration of HFC-125 by 5 mol%

and reduced the HFC-32 by the same amount until 70 mol% of HFC-125 had been

reached and recalculated the relative volatility. We do this for all the models and plot

the results in Figure 3.6. We observe the same qualitative trend of 2.8 to 3.4 relative

volatility consistent across all the models, as the flash calculation results shown in

Figure 3.5. We note the experimental relative volatility was calculated with ternary

data and, as a consequence, MT gives the best relative volatility prediction because

it was calibrated with the same ternary data. However, these results suggest that

MB, the simplest model, is sufficient for ranking ILs as candidate entrainers.
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Figure 3.5. HFC-32 vapor phase recovery from [bmim][PF6] versus temper-
ature predicted with models MB to MBT,K .
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Figure 3.6. Relative volatility predictions for HFC-32 and HFC-125 in
[bmim][PF6] calculated with models MB to MBT,K .

3.4.4 The framework evaluates candidate IL entrainers in minutes

Ultimately, we envision using this framework to facilitate data-driven IL entrainer

screening and selection (Step 7). To demonstrate this, we calculate the relative

volatility of HFC-125 with respect to HFC-32 in six different ILs at varying liquid

concentrations of HFC-125, shown in Figure 3.7(a). Visually, the relative volatility

metric does not seem to vary with HFC-125 liquid composition. However, there

is a 5% decrease in volatility as the HFC-125 liquid mole fraction increases, which

is consistent across all of the six ILs studied. This result is on the same order

of magnitude as findings from Li et al.[86] which showed that with a 30 mol% IL

feed, relative volatility decreased by approximately 14% as the composition of the

other mixture component changed. We hypothesize this small change in volatility

as liquid HFC composition changes results from weak molecular-level interactions

between HFCs in the liquid phase, i.e., if there were more interactions between the
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liquid phase HFCs, there would be more significant relative volatility variations.

This suggests that in the search for an IL entrainer, the focus should be given to

ILs which interact more strongly with HFCs to prevent further HFC interactions.

For IL screening, these results show that evaluating the relative volatility metric at

a single composition is sufficient. These results guide us to select [bmim][PF6] as the

entrainer for separating R-410A from the set of ILs in this study. We note that even

though the relative volatility is an essential factor in an HFC separation process, it is

necessary to model other properties, such as the density, viscosity, and heat capacity

of the ILs so that their impact on the economics of the process can be analyzed.

We profile computational times of the workflow using a Windows PC with Intel(R)

Core(TM) i7-7500U CPU with 2.90 GHz and 16 GB of RAM. Overall, implementing

the entire workflow to screen a single IL takes between 7 and 25 minutes, depending

on the amount of available data and the thermodynamic model. The time require-

ments of Steps 1 and 2 is negligible. In Step 3, thermodynamic model parameter

estimation, for a data set containing six data points (e.g., [bmim][Ac], [hmim][FAP],

[hmim][Cl]), parameterization took two minutes, while for a data set containing sixty

data points (e.g., [bmim][PF6]), parameterization took twenty minutes. (The optimal

parameters for each HFC/IL dataset are reported in Table 3.3). We believe there

are opportunities to optimize the model initialization in IDAES-PSE and parmest to

reduce this time significantly. Steps 4, 5, and 7, which are necessary for performing

the relative volatility and screening analysis, took on average five minutes to com-

plete. Thus, Step 3 is the most computationally demanding step of the workflow. We

emphasize that this framework can be used for entrainer screening via other metrics,

such as ternary diagram evaluation or selectivity analysis because phase equilibrium

(Steps 4 and 5) can be computed in minutes. In total, we applied the complete

framework to the six ILs in two hours, analyzing each IL sequentially. However, we

note that the calculations in this workflow, which are independent for each IL, would
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TABLE 3.3

BINARY INTERACTION PARAMETERS FOR MODEL MB FOR

HFC-32 OR HFC-125 SOLUBILITY IN VARIOUS ILS

IL Model Parameter
HFC-32/ IL/ HFC-125/ IL/ HFC-32/ HFC-125/

IL HFC-32 IL HFC-125 HFC-125 HFC-32

[bmim][BF4] MB κAi,j -0.0068 -0.0282 0.0645 0.5715 0.0093 0.0074

[bmim][Ac] MB κAi,j -0.0254 -0.0313 -0.0214 -0.1105 0.0093 0.0074

[emim][Tf2N] MB κAi,j -0.0261 -0.0704 -0.0215 -0.1106 0.0093 0.0074

[hmim][Cl] MB κAi,j 0.0271 -0.2974 -0.0469 -0.0550 0.0093 0.0074

[hmim][FAP] MB κAi,j -0.0254 -0.0155 -0.0418 -0.1354 0.0093 0.0074

be trivial to parallelize with multiple CPU cores or computers.

3.4.5 What experimental precision is adequate for IL screening?

To aid experimental design we estimate how measurement uncertainty impacts

relative volatility calculations by applying the Monte Carlo and bootstrap algorithms

(Step 8). In Figure 3.7(b), we plot the mean of the volatility calculated using MB and

the standard deviation versus the percentage of experimental error. Table 3 presents

the mean and standard deviation of the regressed parameters, which are consistent

using both uncertainty quantification techniques.

From Figure 3.7(b) and Table 3, we observe that a 5% error in experimental mea-

surements translates 5% deviation in relative volatility. We also observe that the

standard deviation is higher in systems where the volatility is higher and where data

at different temperatures is available, as is the case for [bmim][PF6] and [bmim][BF4].

We observe that the error bars induced are more significant than the change in volatil-

ity compared to Figure 3.7(a). We note that the experimental precision required

depends on the closeness of the volatilities of the mixtures and the type of data from
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Figure 3.7. Comparing the relative volatility of HFC-32 and HFC-125 in
different ILs provides a qualitative reason for understanding which ILs may
be optimal entrainers.
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TABLE 3.4

UNCERTAINTY IN BINARY INTERACTION PARAMETERS FOR

MODEL MONE FOR HFC-32 OR HFC-125 SOLUBILITY IN

[BMIM][PF6]

Model Stat MB MB MB MB MB MB

1% error 2% error 5% error 9% error 10% error bootstrap

HFC-32/[bmim][PF6] mean -0.0272 -0.0274 -0.0276 -0.0276 -0.0276 -0.0271

HFC-32/[bmim][PF6] standard dev. 0.0001 0.0004 0.0004 0.0006 0.0006 0.0022

[bmim][PF6]/HFC-32 mean -0.0781 -0.0757 -0.0751 -0.0724 -0.0724 -0.0886

[bmim][PF6]/HFC-32 standard dev. 0.0007 0.0071 0.0139 0.0200 0.0201 0.0391

HFC-125/[bmim][PF6] mean 0.0584 0.0579 0.0534 0.0468 0.0470 0.0636

HFC-125/[bmim][PF6] standard dev. 0.0014 0.0019 0.0034 0.0043 0.0050 0.0074

[bmim][PF6]/HFC-125 mean 0.3367 0.3331 0.3365 0.3320 0.3348 0.4941

[bmim][PF6]/HFC-125 standard dev. 0.0163 0.0276 0.2338 0.2397 0.2440 0.2065

which the parameters are fitted. In the case of the ILs being compared in this study,

only error values above 8% to 9% (when the error bars overlap) could change the

decision from [bmim][PF6] to [bmim][BF4]. Recall, each error bar corresponds to

one standard deviation in the relative volatility estimate. Thus the probability of

experimental errors at the upper extreme for one IL candidate, e.g., [bmin][PF6], and

lower extreme for another, e.g., [bmin][BF4], is low. Based on the results for these

two ILs, we conclude a 10% experimental precision is adequate to rank ILs with a

relative volatility difference of 0.3 (≈ 3.03 − 2.74 at 50 mol% HFC-125) based on

Fig. 3.7(a). To our knowledge, this is one of the first studies to recommend a quan-

titative threshold for acceptable experimental error based on process metrics such as

relative volatility for IL screening.
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3.5 Conclusions and Future Work

We developed a data analysis toolkit, built upon the open-sourced IDAES-PSE

framework and Pyomo ecosystem, to calculate the VLE of HFC and IL mixtures and

then rapidly screen IL entrainers. The approach calibrates PR EoS binary interaction

parameters to binary and first-of-their-kind ternary HFC and IL mixture data. We

harness the fitted EoS to study phase predictions, flash calculations, and in-sample

and out-of-sample error metrics. Next, relative volatility of HFCs is computed for

IL screening. Finally, Monte Carlo and bootstrap methods are used to quantify and

propagate uncertainty in the data and EoS models through process design calcula-

tions and to inform experimental design. We applied this framework to screen six ILs

([bmim][PF6], [bmim][BF4], [emim][Tf2N], [bmim][Ac], [hmim][FAP], [hmim][Cl]) and

found that [bmim][PF6] is the ideal entrainer for HFC-32/HFC-125, which comprise

the refrigerant R-410a, separations. This workflow can be implemented in minutes to

hours to rapidly assess up to hundreds of IL entrainers, if data is available. We em-

phasize that the proposed framework is flexible and can be easily extended to consider

additional thermophysical properties such as density, viscosity, and heat capacity, and

other environmentally important systems in need of rapid evaluation techniques, such

as CO2 capture and biomass energy sources (tert-butanol/ethanol/water mixtures).

Using the proposed framework, we gained several insights regarding the search

for IL entrainers to facilitate separations of HFC refrigerants for their reuse and

recycle. We found that experimental binary HFC/IL solubility measurements taken

at multiple temperatures are more valuable than the new ternary HFC/IL mixture

measurements conducted at a single temperature. The reason for this is two-fold: a)

accurate phase predictions, flash calculations, and ternary mixture predictions can

be made using PR EoS models parameterized with binary solubility data; and b) the

binary interaction parameters are influenced by temperature, indicating the need for

data measured at a range of temperatures. Additionally, we show that binary data
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is sufficient to show qualitative results for IL entrainer screening and preliminary

process design. Finally, we found that for a given IL, the relative volatility between

the two HFCs studied remains relatively constant as the HFC composition within the

mixture changes. This implies that that qualitative screening of ILs can be rapidly

accomplished via straightforward relative volatility calculations at a single HFC/IL

mixture composition. Our results show that these IL screening decisions can be made

with up to ten percent error in a given data sets.

Thus, moving forward, we recommend a multistage IL screening approach. First,

relative volatility of HFCs in many ILs should be measured at a single composition

to facilitate initial IL screening and down-selection. Second, binary HFC/IL data at

multiple temperatures should be gathered for the most promising ILs. Third, using

this data, thermodynamic and process modeling calculations with uncertainty analy-

sis should be performed. Fourth, for the best IL entrainer separation systems, sparse

ternary mixture measurements should be made to validate liquid phase predictions.

Thus, for IL screening, emphasis should be placed on gathering a variety of data over

experimental accuracy. While not essential for preliminary HFC separation process

design and IL entrainer screening, ternary data is useful in the further validation and

refinement of predictions made with models parameterized with binary data and can

provide additional enrichment of a data set.

We note that our recommendations are pragmatically engineering focused and

may be at odds with current practices of gathering full isotherm data for each HFC/IL

mixture before considering process scale implications. Hence, this work highlights a

possible tension between scientific goals, e.g., understanding mechanisms and pub-

lishing full HFC/IL solubility isotherms, and engineering needs. Our intention with

these findings is to guide both laboratory and molecular simulation data generation

efforts, which have been focusing in recent years more on studying ILs at a single

temperature and creating new tools to gather increasingly complex data (e.g., ternary
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mixture measurements), by understanding what data are sufficient for molecular and

process design decisions. Within this context, there are several outstanding research

questions which can be addressed in the future with extensions of our proposed

framework: a) Which thermodynamic model is best in terms of fit and simplicity

for a given HFC/IL mixture? b) Are alternate parameter temperature dependencies

(beyond linear) supported by the data? c) How do properties other than relative

volatility and phase equilibrium, such as density, viscosity, and heat capacity, affect

the cost of an HFC separation process? d) How does uncertainty impact the optimal

flowsheet configuration and detailed process design for each HFC/IL system? More

broadly, these open questions are pertinent to practically all green solvent design

applications.
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CHAPTER 4

MODELING AND OPTIMIZATION OF IONIC LIQUID ENABLED

EXTRACTIVE DISTILLATION OF TERNARY AZEOTROPIC MIXTURES

This chapter is based on previously published work:

A. Garciadiego, M. Mazumder, B. J. Befort, and A. W. Dowling. Modeling and

optimization of ionic liquid enabled extractive distillation of ternary azeotrope mix-

tures. In Y. Yamashita and M. Kano editors, 14th International Symposium on

Process Systems Engineering volume 49 of Computer Aided Chemical Engineering,

pages 307–312. Elsevier, 2022.

4.1 Introduction

Thousands of tons of HFC refrigerant mixtures, commonly used in industrial,

commercial, and residential applications, are scheduled for phase-out worldwide under

the 2016 Kigali amendment to the Montreal Protocol, the European Union F-Gas

regulations (2015)[142], and the American Innovation and Manufacturing (AIM) Act

of 2020[49]. The latter directs EPA to phase down production and consumption of

HFCs in the US by 85 percent over the next 15 years. Common HFC mixtures such as

R-410A (50 %mol R-32, 50 %mol R-125), R-404A (44 %mol R-125, 4 %mol R-134a,

52 %mol R-143a), and R-407C (23 %mol R-32, 25 %mol R-125, 52 %mol R-134a) are

targeted for phase-out because of their high global warming potential (GWP): R-410A

with 2088 GWP, R-404A with 3922 GWP, and R-407C with 2107 GWP, where CO2

has a GWP of 1 by definition. However, R-32 and other HFCs have a low GWP and

90



could be reused as part of global phase-out. R-134a is used in R-450A, offering similar

performance but with a lower GWP (547)[69]. Unfortunately, there is no means

to easily separate HFC mixtures due to their azeotropic or near azeotropic nature.

Without a new economically viable separation process, the phase-out will require

all HFCs to be collected and incinerated. Extractive distillation, the most common

method for separating azeotropic or close-boiling mixtures, is a promising approach

to separate HFC mixtures. Moreover, tailored IL solvents can enable extractive

distillation of near-azeotropic HFC mixtures. In 2003, Lei et al. [83]. first proposed

extractive distillation with ILs as entrainers, and discussed the use of ILs in extractive

distillation in detail[84]. ILs have exhibited high capacity as entrainers to separate

azeotropic or close-boiling mixtures[113]. ILs can be recycled in separation processes,

reducing the material demands and improving the economics[163, 164]. Shiflett and

Yokozeki et al. [127] proposed extractive distillation to separate fluorinated refrigerant

mixtures using ILs.

4.2 Methods

4.2.1 HFC separation process development and modeling

In this work, we design three extractive distillation processes to separate three

ternary azeotrope mixtures, R-404A, R-407C, and a mixture of R-410A and R-22

using an IL entrainer. Table 4.1 summarizes these three case studies [55]. We use the

Peng-Robison (PENG-ROB) equation of state to calculate thermodynamic proper-

ties. We fit the HFC binary interaction parameters similar to Shiflett and Yokozeki

[132, 133, 130].
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TABLE 4.1

COMPOSITIONS OF HFCS MIXTURES SEPARATED AND IL USED

R-404A R-407C R-410A

HFC mol/mol mol/mol mol/mol

R-32 0.00 0.23 0.45

R-125 0.44 0.25 0.45

R-134a 0.04 0.52 0.00

R-143a 0.52 0.00 0.00

R-22 0.00 0.00 0.10

IL used [emim][Tf2N] [bmim][PF6] [bmim][PF6]

IL (kg/h) 2000 400 750

4.2.2 Sensitivity analysis

We performed single-parameter sensitivity over eight variables. The base case

used 20 theoretical stages, a flowrate of IL of 1000 kg/h, IL is feeding in stage 2,

and the HFC mixture feeding stage is stage 15, the inlet temperature of 25◦C, the

pressure of 10 bar, a reboiler temperature of 130◦C, and a reboiler ratio of 2.5. We

found that the extractive distillation column’s pressure and reflux ratio are most

important to minimize energy consumption while obtaining 99.5 mol% purity of all

HFC products. Through our sensitivity analysis, we look to obtain the desired purity

(99.5 mol%) of R-134a in the distillate of the extractive distillation in the presence of

[emim][Tf2N] with moderate energy consumption. We found that it is impossible to

reach the required purity without 25 theoretical stages and a flowrate of IL of 2000

kg/h, even though they significantly influence the capital cost. The IL is fed in stage

2, and the HFC mixture is fed in stage 20 at a temperature of 20◦C. We selected
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a pressure of 7 bar in the column and a reboiler temperature of 90◦C to ensure the

energy consumption was as low as possible while reaching the purity target. Finally,

following the same analysis, we selected a reflux ratio of 3. Aspen equipment sizing

tools were used to size the equipment.

T = 20°C
P = 7 bar
F = 100 kg/h

T = 1°C
P = 7 bar
F = 96 kg/h

T = 24°C
P = 7 bar
F = 4 kg/h

T = 20°C
P = 7 bar
F = 0 kg/h

T = 130°C
P = 7 bar
F = 2000 kg/h

T = 130°C
P = 0.1 bar
F = 44 kg/h

T = 130°C
P = 0 bar
F = 2000 kg/h

T = 8°C
P =5 bar
F = 52 kg/h

T = 20°C
P = 7 bar
F = 96 kg/h

T = 20°C

HFC mix

IL

IL Recycle

R-143a

R-125

IL
F = 0 kg/h

R-134a

Figure 4.1. Process flow diagram of the developed HFC separation process

4.3 Economic Performance Evaluation

We now analyze the economics of the design HFC separation processes. We

evaluate the capital cost, shown in Eq. (4.1), which includes equipment, installation

cost, and the price of the IL as expressed in units of M$/y.
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Capital cost

(
M$
y

)
= Equipment cost

(
M$
y

)
+

Installation cost

(
M$
y

)
+ IL price

(
M$
y

) (4.1)

We assume a 20-year (N) plant lifetime and a salvage value of 20 % of the cost

of the plant assets (excluding the IL). We assume 24 hours a day workload for 330

days in a year for all calculations. We calculate the annualized capital cost (Canm)

using Eq. (4.2), in which CRF is the capital recovery factor, CNPC is the net present

cost estimated in AspenPlus. We assume a nominal discount rate (i′) of 8 % and an

expected inflation rate (f) of 3.5 % to calculate the real discount rate (i). With the

assumptions above, we calculate a capital recovery factor (CRF ) of 0.077 using Eqs.

(4.3) and (4.4). We estimate 2,000 kg/h of IL, which corresponds to a column fill of

65 %. We estimate operation costs using AspenPlus V.11 and the following utility

costs: electricity (0.07$/KW), cooling water (120 $/MMGAL), and high-pressure

steam (8.22 $/Klb).

Canm = (CRF )× (CNPC) (4.2)

CRF =
i(1 + i)N

(1 + i)N − 1
(4.3)

i =
i′ − f

1 + f
(4.4)

As shown in Figure 4.2, the capital and operating costs ($/kg of HFC feed) of

the R-404A, R-407C, and R-410A separation increase as we decrease the mixture

feed flow rate. We observe that the significant increase in the capital cost is due to

the amount of IL necessary to achieve the 99.5 mol% purity of HFCs desired in the

separation. The cost of equipment and installation have minor variations as the size

of the equipment is nearly minimum or standard size. As observed in Figure 4.2, the
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capital cost may increase to up to 60 % of the total cost. The rise in total capital

cost is dependent on the ratio of IL/HFC mixture required for each process. 1 % to

2 % of IL degradation per year corresponds to an increase of the operating cost of

0.03 $/kg to 0.05 $/kg, respectively.

Currently, most ILs are only available in high purity for laboratory-scale experi-

ments at high prices of $1,000/kg. Historically, after an IL is selected for a commercial

application and production increases, the price decreases by 90-92 % [128]. In antic-

ipation of a similar economy of scale, we consider five IL price scenarios: 1,000 $/kg,

750 $/kg, 500 $/kg, 250 $/kg, and 100 $/kg. Figure 4.3 shows the impact of IL price

on capital costs. Specifically, the capital cost (M$/y) increases linearly with the IL

flowrate (kg/h) at a given IL price. As expected, changing the IL price changes the

slope of this relationship. Moreover, the capital cost is extremely sensitive to the

IL price. For example, at 5000 kg/h IL flowrate, decreasing the IL price from 1000

$/kg (laboratory scale specialty chemical) to 100 $/kg (commercial IL) decreases the

capital cost from 8 M$/y to 1.5 M$/y. We reiterate that previous commercialization

of ILs suggests a 90 % reduction in IL price is reasonable[128].

Added value

(
$
kg

)
=

Sell price low GWP components

(
$
kg

)
− Cost of recovered HFCs

(
$
kg

)
︸ ︷︷ ︸

Price diferential

−Capital Cost

(
$
kg

)
−Operating cost

(
$
kg

)
︸ ︷︷ ︸

Costs

(4.5)

Next, we propose added value, with units $/kg of HFC feed, as a metric to eas-

ily compare different hypothetical scenarios. Eq. (4.5) calculates added value from

the price differential and costs. The selling price of low GWP components is the

value of the recycled products, and the cost of recovery HFC mixture corresponds
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Figure 4.2. Capital and operating cost of the R-404A, R-407C, and R-
410A AspenPlus model. The capital cost of the separation process increases
rapidly as we increase the inlet flowrate.
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to the value of the used HFC refrigerant mixtures (half of the cost of production

and transportation of the HFC mixture used as a base and worst-case scenario). A

negative cost of recovery HFC mixture is possible with government subsidies incen-

tivizing HFC recycling (instead of illegal venting). Figure 4.2 reports the operating

and capital costs ($/kg) as a function of the HFC feed rate. Similarly, Figure 4.3

shows the dependence of capital cost ($/kg) on IL price. Because the added value

metric represents profit per kilogram of HFC processed, it allows quick evaluation of

different market scenarios (e.g., HFC and IL prices).

Using values from these plots, the added value metric can quickly evaluate the

benefits of new ILs for the separation process; for example, if a new hypothetical

IL required 20 % less mass than the analyzed ILs, the cost in Figure 3 can be pro-

portionally reduced. Likewise, if a new hypothetic IL reduces the separation energy

requirement by 50 %, the operating cost value used in Eq. (4.5) can be reduced by

approximately 50 %. This metric gives valuable insights and enables fast “what if”

analyses to guide IL and process design.

Under current market conditions, we found that R-410A separation has an added

value of 0.55 to 0.72 $/kg with an IL price of 1000 $/kg and 100 $/kg, respectively.

Under a futuristic scenario where phase-outs in production doubles the market price

for R-32, the added value of the separation of R-410A could be as high as 5.60 $/kg

to 5.78 $/kg with an IL price of 1000 $/kg and 100 $/kg respectively. If the price

of R-32 increases by 50 %, the added value would reach 3.08 $/kg. We found that

the price of ILs has the most significant impact on the capital cost, and the price

differential between the HFC mixture and the pure HFC impacts the added value

and the payback period.
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4.4 Conclusions

In this paper, we show that separating and recycling HFCs with extractive dis-

tillation utilizing ILs is economically attractive, especially under anticipated future

scenarios. It is important to note that ILs are viscous, and a rate base model is

needed for rigorous design and more accurate technoeconomic analyses. The pre-

sented results are based on currently available ILs [bmim][PF6] and [emim][Tf2N].

However, ILs can be tailored for specific purposes due to the vast diversity of anions

and cations available. For example, tailored ILs with higher selectivity would reduce

the amount of IL required and thus capital costs. Tailoring other properties of the

ILs, such as the density, viscosity, and thermal capacity could reduce the operating

costs of the process. There are also unexplored opportunities to optimize the ex-

tractive distillation process. While the one and two-dimensional sensitivity analyses

presented here show 25 theoretical stages and the amount of IL necessary for the

separation, rigorous optimization may find additional opportunities for improvement

by exploiting interactions across multiple design decision variables. Moreover, si-

multaneous process optimization (e.g., flowrates, temperatures) and heat integration

may further reduce the energy intensity of the process by systematically balancing

reboiler duty and compression costs (e.g., by changing column pressure).
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CHAPTER 5

THESIS CONCLUSIONS AND RECOMMENDED FUTURE WORK

The main contribution of this thesis is to advance multi-scale modeling for sol-

vent design by leveraging our open-source equation-oriented modeling framework to

inform molecular design on properties, data, and accuracy necessary to design new

tailored solvents for energy-intensive separations. This thesis presents frameworks

for information transfer and uncertainty propagation from data to multi-scale pro-

cess design.

In Chapter 2, through a non-intuitive informed collaboration with Prof. Luo, we

found the most influential properties to make DSE an economically competitive tech-

nology in desalination. We found solubility and its swing with respect to temperature

to be the focus of tailoring ILs to decrease costs and energy intensity. Additionally,

we found specific quantitative targets for the properties required.

The framework in Chapter 3 gives pragmatically engineering-focused recommen-

dations on experimental conditions to support rapid material screening for materials

design and engineering needs. Chapter 3 intention is to guide laboratory and molec-

ular simulation data generation efforts by understanding what data are sufficient for

molecular and process design decisions.

Finally, the added value metric presented in Chapter 4 informs separation pro-

cesses with little data on a process’s economic viability due to lack of data or uncer-

tainty due to changes in prices and regulations. The metric allows to compare the

price differential of mixtures and pure products to capital and operations costs and

to explore under what future market conditions a process would be profitable.
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5.1 Contributions of the Thesis

The main contributions of this thesis are as follows:

• Creation of a technoeconomic framework for property target search for direc-
tional solvent extraction

• Creation of a rapid open-source framework for screening new ILs as HFC sep-
aration entrainers

• Demonstration of the importance of data selection for entrainer screening

• Demonstration of accuracy necessary for experimental or molecular simulation
data for accurate screening selection

• Demonstration of added value metric concerning HFC separations

5.2 Recommendations for Future Work

The frameworks presented in this thesis have the ability and should be expanded

in several directions. In both applications, the influence of viscosity is critical, as

some ILs can have high viscosity, which is why the framework should be expanded

to include Rate-based modeling. Additionally, optimization of properties other than

relative volatility and phase equilibrium, such as density and heat capacity.

Ongoing work includes the ability of the framework to systematically select ther-

modynamic models based on fit and simplicity. The framework’s planned expansion

includes adding different thermodynamic models, such as activity coefficient models.

And as more data become available on the system studied, predictive models should

be included to predict ILs as entrainers. Additionally, the frameworks should be

paired with model-based design of experiments[148] to maximize information gained

from experiments and mathematically improve experimental design conditions. And

finally, optimize the collection of simulation and experimental data.

Finally, ongoing work includes expanding the work to other systems. In collabora-

tion with Kanishka Ghosh, a similar framework is utilized for model-form uncertainty
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propagation and property target search for catalyst and separation methods for light

hydrocarbons conversion.
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