
Novel Computational Approaches for Multi-network Analysis to Improve Protein Function Prediction

Shawn Gu

Publication Date

03-02-2022

License

This work is made available under a All Rights Reserved license and should only be used in accordance with
that license.

Citation for this work (American Psychological Association 7th edition)

Gu, S. (2022). Novel Computational Approaches for Multi-network Analysis to Improve Protein Function
Prediction (Version 1). University of Notre Dame. https://doi.org/10.7274/2227mp51r18

This work was downloaded from CurateND, the University of Notre Dame's institutional repository.

For more information about this work, to report or an issue, or to preserve and share your original work,
please contact the CurateND team for assistance at curate@nd.edu.

mailto:curate@nd.edu

NOVEL COMPUTATIONAL APPROACHES FOR MULTI-NETWORK

ANALYSIS TO IMPROVE PROTEIN FUNCTION PREDICTION

A Dissertation

Submitted to the Graduate School

of the University of Notre Dame

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

Shawn Gu

Tijana Milenković, Director

Graduate Program in Computer Science and Engineering

Notre Dame, Indiana

February 2022

NOVEL COMPUTATIONAL APPROACHES FOR MULTI-NETWORK

ANALYSIS TO IMPROVE PROTEIN FUNCTION PREDICTION

Abstract

by

Shawn Gu

Networks can be used to model complex real-world systems from many domains,

including computational biology. A protein-protein interaction (PPI) network (PPIN),

in which nodes are proteins and edges are PPIs, is a popular type of biological net-

work. While PPIN data are becoming widely available thanks to biotechnological

advancements, functions of many proteins remain unknown. As such, many compu-

tational techniques have been developed to analyze PPINs in order to gain insights

into proteins’ functions.

One such technique is biological network alignment (NA), which aims to find a

node mapping between species’ molecular networks that uncovers similar network

regions, thus allowing for the transfer of functional knowledge between the aligned

nodes. However, a major issue of NA methods is that often aligned nodes (proteins)

do not actually share the same function. So we aim to address such challenges by

introducing several novel computational advances, such as allowing for the alignment

of heterogeneous biological networks for the first time, or by learning from -omics data

what patterns of network topological relatedness (rather than similarity) correspond

to functional relatedness between biological networks of different species. We show

that the novel computational advances improve the accuracy of across-species protein

functional prediction compared to existing NA methods.

Shawn Gu

One limitation of across-species NA is that it only considers biological networks at

the same scale: PPINs. However, at a more fine-grained scale, a protein’s 3D struc-

ture has important implications for its function. Such structures have been modeled

using protein structure networks (PSNs), where nodes are amino acids and edges

join those that are close in the 3D crystal structure, to great success. Thus, we argue

that PPIN and PSN data should be integrated as a “network of networks” (NoN).

We aim to answer whether NoN-based data integration is effective, by evaluating

whether NoN-based protein functional prediction, fusing the complementary PPIN

and PSN information, is more accurate than single-scale functional prediction, using

only PPIN or only PSN information. We show that NoN-based data integration has

the potential to uncover novel biological knowledge compared to only considering a

single scale, and thus is an exciting direction for future research.

CONTENTS

Figures . v

Tables . xxxii

Chapter 1: Introduction . 1
1.1 Overview . 1
1.2 Network alignment . 4

1.2.1 Background . 4
1.2.2 Related work . 7
1.2.3 Research questions and our contributions 8

1.3 Modeling multi-scale data via a network of networks 14
1.3.1 Background . 14
1.3.2 Related work . 15
1.3.3 Research questions and our contributions 16

1.4 Organization of the dissertation . 19

Chapter 2: Pairwise versus multiple network alignment 20
2.1 Introduction . 20

2.1.1 Background and motivation 20
2.1.2 Our contributions . 22

2.2 Methods . 25
2.2.1 Data . 25
2.2.2 Network alignment methods that we evaluate 27
2.2.3 Alignment quality measures 28
2.2.4 Evaluation framework . 32

2.3 Results and discussion . 37
2.3.1 Topology versus topology+sequence alignments 37
2.3.2 Method comparison: evaluation details 39
2.3.3 Method comparison: results in the pairwise evaluation framework 42
2.3.4 Method comparison: results in the multiple evaluation framework 45
2.3.5 Method comparison: focusing on accuracy of protein function

prediction . 49
2.4 Conclusion . 51

ii

Chapter 3: Heterogeneous network alignment 55
3.1 Introduction . 55

3.1.1 Background and motivation 55
3.1.2 Our contributions . 56

3.2 Results and discussion . 62
3.2.1 Evaluation . 63
3.2.2 Comparison of homogeneous and heterogeneous network align-

ment . 67
3.3 Methods . 78

3.3.1 Calculating node similarities, i.e., node conservation 78
3.3.2 From homogeneous to heterogeneous node conservation 79
3.3.3 From homogeneous to heterogeneous edge conservation 81
3.3.4 From homogeneous to heterogeneous network alignment 82

3.4 Conclusion . 85

Chapter 4: Data-driven network alignment . 87
4.1 TARA: Data-driven network alignment 87

4.1.1 Introduction . 87
4.1.2 Methods . 95
4.1.3 Results and discussion . 103
4.1.4 Conclusion . 123

4.2 TARA++: Data-driven network alignment that integrates topology
and sequence to predict function . 125
4.2.1 Introduction . 125
4.2.2 Methods . 131
4.2.3 Results and discussion . 141
4.2.4 Conclusion . 155

Chapter 5: Modeling multi-scale data via a network of networks 157
5.1 Introduction . 157

5.1.1 Our contributions . 158
5.1.2 Related work . 160

5.2 Methods . 162
5.2.1 Network of networks definition 162
5.2.2 Problem statement . 162
5.2.3 Data . 163
5.2.4 Approaches for label prediction 168
5.2.5 Evaluation . 171

5.3 Results and discussion . 172
5.3.1 Accuracy on synthetic networks of networks 172
5.3.2 Accuracy on the biological network of networks 176
5.3.3 Running time analysis . 181

5.4 Conclusion . 182

iii

Chapter 6: Concluding remarks . 185

Appendix A: Pairwise versus multiple network alignment 190
A.1 Methods . 190

A.1.1 NA methods that we evaluate 190
A.1.2 Alignment quality measures 196
A.1.3 Evaluation framework . 202
A.1.4 T versus T+S alignments . 204
A.1.5 Method comparison in the ME framework: accuracy versus

running time . 204
A.2 Results . 206
A.3 Supplementary files . 238

Appendix B: Heterogeneous network alignment 239
B.1 Results . 239

Appendix C: Data-driven network alignment 252
C.1 TARA: Data-driven network alignment 252

C.1.1 Results . 252
C.1.2 Supplementary files . 265

C.2 Towards TARA++: Integrating topology and sequence to prediction
function . 266
C.2.1 Methods . 266
C.2.2 Results . 268

Appendix D: Modeling multi-scale data via a network of networks 291
D.1 Methods . 291

D.1.1 Data . 291
D.1.2 Existing approaches for label prediction 294
D.1.3 Our integrative GCN approach 296
D.1.4 Evaluation . 300

D.2 Results . 304
D.2.1 Synthetic NoNs . 304
D.2.2 Biological NoN . 304
D.2.3 Running times . 317

D.3 Supplementary files . 319

Bibliography . 320

iv

FIGURES

1.1 Illustration of alignments produced by (a) local and (b) global NA.
Dashed lines are between nodes that are aligned to each other. This
figure is adapted from [110]. 5

1.2 Illustration of a (a) pairwise one-to-one alignment; (b) multiple one-
to-one alignment; (c) pairwise many-to-many alignment; and (d) mul-
tiple many-to-many alignment. In this toy example we only show three
networks for multiple NA, but multiple NA can be used on more than
three networks as well. 7

1.3 Illustration of two heterogeneous networks, each containing different
node as well as edge types (or colors). In a given network, different
node shapes represent different node types, and different line styles
represent different edge types. If we do not consider the ovals with red
edges (the bottom portion of the network), then we have a heteroge-
neous network with different node types, and thus implicitly different
edge types. If we only consider the ovals with blue or red edges, then
we have a heterogeneous network with different edge types but a sin-
gle node type (also called multimodal networks with two edge modes).
The goal of HetNA as we define it is to find a node mapping between
heterogeneous networks that contain different node types, different
edge types, or both. 10

v

1.4 Illustration of the existing notion of topological similarity versus our
new notion of topological relatedness. Suppose that we are aligning
PPI networks of two different species, where for simplicity, only parts
of the whole networks are shown. Also, suppose that a color corre-
sponds to the function that a node performs, in this case the “purple”
function or the “orange” function. (a) An NA method based on topo-
logical similarity will produce an alignment with low functional quality
on our example networks. Such a method will align nodes d, e, f , and
g in species 1 to nodes 1, 2, 3, and 8 in species 2 because each set
of nodes forms the same subgraph: a square with a diagonal (square-
with-diagonal). However, the species 1 nodes perform the “orange”
function, while the species 2 nodes perform the “purple” function –
the nodes are not functionally related. (b) On the other hand, an
NA method based on topological relatedness will produce an align-
ment with high functional quality on our example networks. This is
because such a method will learn that 3-node paths in species 1 should
be aligned to square-with-diagonals in species 2, since the 3-node path
consisting of nodes a, b, and c in species 1 performs the same function
(“purple”) as the square-with-diagonal consisting of nodes 1, 2, 3, and
8 in species 2; and that square-with-diagonals in species 1 should be
aligned to squares in species 2, since the square-with-diagonal consist-
ing of nodes d, e, f , and g in species 1 performs the same function
(“orange”) as the square consisting of nodes 4, 5, 6, and 7 in species
2. Using these learned patterns, the method will try to align the rest
of the nodes between the networks (not shown in the figure), trans-
ferring the functions of 3-node paths to square-with-diagonals, and
of squares-with-diagonals to squares. In essence, noisy data or evo-
lutionary events can be captured by topological relatedness but not
topological similarity. 13

1.5 Illustration of a two-level biological NoN. Level 2 nodes (proteins) in
(a) the level 2 network (PPI network) are joined to their correspond-
ing (b) level 1 networks (PSNs) by dotted lines. Only three level 1
networks are shown for simplicity, but generally every level 2 node can
have a corresponding level 1 network. Nodes in the PSNs are colored
based on their corresponding amino acids in the ribbon diagram and
are not indicative of node labels. 15

2.1 Overview of our PNA versus MNA evaluation framework. 23
2.2 Illustration of different alignment types. 25

2.3 Illustration on a set of three networks (G1, G2, and G3) of how we
convert: (a) a multiple alignment to pairwise alignments, (b) one-
to-one pairwise alignments to a multiple alignment, and (c) many-to-
many pairwise alignments to a multiple alignment. 35

vi

2.4 Comparison of the quality of T alignments versus the corresponding
T+S alignments, under each of the PE and ME frameworks. Each
bar shows the number of cases (here, a case refers to a combination of
NA method, a network pair/set, and an alignment quality measure) in
which the T alignment is superior, the T+S alignment is superior, or
the two alignments are tied (i.e., within 1% of each other’s accuracy).
The cases are separated into network pairs/sets with known true node
mapping and network pairs/sets with unknown true node mapping. . 38

2.5 Alignment category comparison results for each of the PE and ME
frameworks over all evaluation tests for T+S alignments. The align-
ment categories (i.e., PE-P-P, etc.) are color-coded. View I. Overall
ranking of the NA methods. The “Overall rank” column shows the
rank of each method averaged over all evaluation tests, along with the
corresponding standard deviation (in brackets). View II. Alternative
view of ranking of the NA methods. Each pie chart shows the frac-
tion of evaluation test ranks that fall into the 1–4, 5–8, and 9–12 rank
bins out of all evaluation test ranks in the given alignment category.
The pie charts are color-coded with respect to alignments of network
pairs/sets with known and unknown node mapping, and TQ and FQ
measures. View III. Overall ranking of an NA method versus its run-
ning time for the Y2H1 network set. The size of each point visualizes
the overall ranking of the corresponding method over all evaluation
tests, corresponding to the “Overall rank” column in View I; the larger
the point size, the better the method. 40

2.6 Comparison of protein function prediction accuracy between the new
(approach 3) versus existing (approach 2) prediction approach for mul-
tiple alignments. Each bar on the left of the figure shows the number
of cases (i.e., alignments) in which the new approach is superior, the
existing approach is superior, or the two approaches are tied. Each
table shows the precision, recall, and number of predictions averaged
over all tests. In parentheses, we show standard deviations. The re-
sults are separated into network sets with known and unknown node
mapping. 50

2.7 Comparison of protein function prediction accuracy under the the PE
and ME frameworks. The figure can be interpreted the same way as
Fig. 2.6. Here, we use new approach 3 for the ME framework. 52

vii

3.1 Illustration of (a) node-colored and (b) edge-colored graphlets. (a)
With the exhaustive approach for enumerating all possible hetero-
geneous graphlets corresponding to homogeneous graphlet G1, i.e.,
a 3-node path, given two colors, there would be six heterogeneous
graphlets, each accounting for both which colors are present in the
graphlet and which node position has which color. On the other hand,
with our approach, there are three possible colored graphlets, denoted
by tcn1u, tcn2u, and tcn1 , cn2u, each accounting only for which colors are
present in the graphlet, ignoring the node-specific color information.
Consequently, with our approach, the last four graphlets on the right
of the arrow, which all have the same two colors present in them, are
treated as the same heterogeneous graphlet. We design our approach
in this way primarily to reduce the time complexity of counting het-
erogeneous graphlets in a network (but consequently, we also reduce
the space complexity compared to the exhaustive approach). Namely,
with our approach, the computational time complexity of searching
for a given colored graphlet in a heterogeneous network remains the
same as that of searching for its homogeneous equivalent. This is
because the former involves: 1) counting in the heterogeneous net-
work all graphlets, independent of their colors (which is the same as
counting homogeneous graphlets in the network), and 2) for each of
the homogeneous graphlets found in the network, simply determining
which node colors appear in it and thus which node-colored graphlet
the non-colored graphlet corresponds to. Step 1 is the time consum-
ing part of the node-colored graphlet counting process, unlike step 2,
which is trivial (can be done in constant time). (b) We develop a
similar approach for edge-colored graphlets. 59

viii

3.2 Illustration of HomEC and HetEC for an alignment between networks
G and H. Arrows represent one possible alignment (mapping) be-
tween the networks, i.e., their nodes. Note that this node mapping is
not the best alignment possible with respect to HomEC, but we use
it to illustrate the concepts involved. In the homogeneous case (i.e.,
if all nodes were of the same color), there exist four conserved edges:
the one formed by pa, aq and pa1, a1q – because a is aligned to a1, b
is aligned to b1, and an edge exists both between a and b as well as
between a1 and b1; the one formed by pa, cq and pa1, c1q; the one formed
by pc, dq and pc1, d1q; and the one formed by pb, dq and pb1, d1q. On
the other hand, pa, dq and pa1, d1q form a non-conserved edge, because
while a is aligned to a1 and d is aligned to d1, there is an edge between
a and d but not between a1 and d1. For a similar reason, pb, cq and
pb1, c1q form another non-conserved edge. So, given the existence of
four conserved edges and two non-conserved edges, homogeneous S3 is

conserved edges
p# conserved edges`# non-conserved edgesq

“ 4{p4 ` 2q “ 0.67. In the heteroge-
neous case, for an edge to be conserved, the homogeneous condition is
still required. However, we also account for colors of the aligned end
nodes of a conserved edge and penalize for color mismatches. Specif-
ically, pa, bq and pa1, b1q are counted as a fully conserved edge (with
conservation weight of 1), because in addition to the fact that this
edge is conserved in the homogeneous case, a has the same color as a1,
and b has the same color as b1. pa, cq and pa1, c1q are counted as a less
conserved edge (with conservation weight of 2

3
), because while a and a1

have the same color, c and c1 do not. Similarly, pb, dq and pb1, d1q form a
partly conserved edge with conservation weight of 2

3
. pc, dq and pc1, d1q

are counted as an even less conserved edge (with conservation weight
of 1

3
) because neither c and c1 nor d and d1 have the same color. Finally,

pa, dq and pa1, d1q form a non-conserved edge, just as in the homoge-
neous case. Given the total edge conservation of 1` 2

3
` 2

3
` 1

3
“ 8

3
and

two non-conserved edges (the same ones as in the homogeneous case),
heterogeneous S3 uses the same formula as S3 and is 8

3
{p8

3
` 2q “ 0.57. 61

ix

3.3 Summarized results regarding the effect of the number of considered
node colors on alignment quality for (a) synthetic networks, (b) PPI
networks, and (c) protein-GO networks. In panels (a) and (b), there
are up to four considered node colors, while in panel (c), there are up
to two considered node colors (see Section 3.2.1 for details). For each
case (see below), we compare the different color levels (i.e., numbers
of considered colors shown on x -axes) and rank them from the best
(rank 1) to the worst (rank 4 in panels 1 and b, and rank 2 in panel c).
Then, we compute the percentage or frequency of all cases (see below)
in which the given color level is ranked as the first (rank 1), second
(rank 2), third (rank 3), or fourth (rank 4) best among all considered
color levels. In panel (a), there are 3 methods (WAVE, MAGNA++,
SANA) ˆ 2 networks (geometric, scale-free) ˆ 5 noise levels (0%, 10%,
25%, 50%, 75%) = 30 cases. In panel (b), there are 2 methods (WAVE,
SANA) ˆ 4 networks (APMS-Expr, APMS-Seq, Y2H-Expr, Y2H-Seq)
ˆ 5 noise levels (0%, 10%, 25%, 50%, 75%) = 40 cases. In panel
(c), there are 2 methods (WAVE, SANA) ˆ 2 networks (protein-GO-
APMS, protein-GO-Y2H) ˆ 5 noise levels (0%, 10%, 25%, 50%, 75%)
= 20 cases. Note that we analyzed an additional noise level (100%), but
we leave the corresponding results from this summary figure, because
at this level all cases are expected to result in the same (random)
alignments (Section 3.2.1 – Creating noisy counterparts of a synthetic,
PPI, or protein-GO network). Instead, we show the results for the
noise level of 100% in the detailed figures (Figs. 3.4, 3.5, 3.6). Also,
note that in this figure, for each case, we choose the best between
HetNC-HomEC and HetNC-HetEC. 70

3.4 Detailed alignment quality results regarding the effect of the number
of node colors on alignment quality as a function of noise level for
synthetic, specifically geometric, networks, using (a) WAVE, (b)
MAGNA++, and (c) SANA. Gray squares, light blue circles, dark blue
triangles, and black stars indicate the aligned networks containing one,
two, three, and four node colors, respectively. For two or more node
colors, solid lines represent using HetNC-HomEC, and dashed lines
represent using HetNC-HetEC. Equivalent results for the remaining
synthetic, specifically scale-free, networks are shown in Supplementary
Fig. B.2. 71

3.5 Detailed alignment quality results regarding the effect of the number
of node colors on alignment quality as a function of noise level for
PPI, specifically APMS-Expr, networks using (a) WAVE and (b)
SANA. The figure can be interpreted in the same way as Fig. 3.4. Re-
call that for these larger networks, we have not run MAGNA++ due to
its high computational complexity. Equivalent results for the remain-
ing PPI, specifically APMS-Seq, Y2H-Expr, and Y2H-Seq, networks
are shown in Supplementary Figs. B.4, B.5, and B.6. 71

x

3.6 Detailed alignment quality results regarding the effect of the number
of node colors on alignment quality as a function of noise level for
protein-GO, specifically protein-GO-APMS, networks using (a)
WAVE and (b) SANA. The figure can be interpreted in the same way
as Fig. 3.4. Recall that for these larger networks, we have not run
MAGNA++ due to its high computational complexity. Equivalent re-
sults for the remaining protein-GO, specifically protein-GO-Y2H, net-
works are shown in Supplementary Fig. B.8. 72

3.7 Summarized results regarding the effect of using HetEC over HomEC
(both with HetNC) on alignment quality for (a) synthetic networks,
(b) PPI networks, and (c) protein-GO networks. In all panels, there
are two evaluation scenarios (HetNC-HomEC and HetNC-HetEC). For
each case (see below), we compare the two considered evaluation sce-
narios and rank them from the best (rank 1) to the worst (rank 2).
Then, we compute the percentage or frequency of all cases (see be-
low) in which the given scenario is ranked as the first (rank 1) and
second (rank 2) best among the considered scenarios. In panel (a),
there are 2 methods (MAGNA++, SANA) ˆ 2 networks (geometric,
scale-free) ˆ 5 noise levels (0, 10, 25, 50, 75) ˆ 3 colors (1 color does
not have a HetEC counterpart) = 60 cases. In panel (b), there is 1
method (SANA) ˆ 4 networks (APMS-Expr, APMS-Seq, Y2H-Expr,
Y2H-Seq) ˆ 5 noise levels (as before) ˆ 3 colors (as before) = 60
cases. In panel (c), there is 1 method (SANA) ˆ 2 networks (protein-
GO-APMS, protein-GO-Y2H) ˆ 5 noise levels (as before) ˆ 1 color
(maximum 2 colors, but 1 color does not have a HetEC counterpart)
= 10 cases. Note that we analyzed an additional noise level (100%),
but we leave the corresponding results from this summary figure, be-
cause at this level all cases are expected to result in the same (random)
alignments (Section 3.2.1 – Creating noise counterparts of a synthetic,
PPI, or protein-GO network). Instead, we show the results for the
noise level of 100% in the detailed figures (Figs. 3.4, 3.5, 3.6). 73

3.8 Detailed alignment quality results regarding the effect of HomNC-
HetEC compared to HomNC-HomEC, HetNC-HomEC, and HetNC-
HetEC on alignment quality for the two considered case study evalua-
tion tests: (a) geometric networks using MAGNA++ and (b) APMS-
Expr networks using SANA. The figure can be interpreted in the same
way as Fig. 3.4, except that now solid lines represent HetNC-HomEC,
short-long dotted lines represent HomNC-HetEC, and finely dotted
lines represent HetNC-HetEC. 74

xi

3.9 Summarized results regarding the effect of the alignment method
on alignment quality for (a) synthetic networks, (b) PPI networks,
and (c) protein-GO networks. In panel (a), there are three consid-
ered alignment methods (WAVE, MAGNA++, and SANA). In panels
(b) and (c), there are two considered alignment methods (WAVE and
SANA; MAGNA++ was not tested because of its high computational
complexity). For each case (see below), we compare the alignment
methods and rank the different methods from best (rank 1) to worst
(rank 3 in panel (a), and rank 2 in panels (b) and (c)). Then, we com-
pute the percentage of all cases in which the given method is ranked
as the first (rank 1), second (rank 2), or third (rank 3) best among
all considered methods. In panel (a), there are 2 networks (geometric,
scale-free) ˆ 5 noise levels (0, 10, 25, 50, 75) = 10 cases. In panel
(b), there are 4 networks (APMS-Expr, APMS-Seq, Y2H-Expr, Y2H-
Seq) ˆ 5 noise levels (as above) = 20 cases. In panel (c), there are 2
networks (protein-GO-APMS, protein-GO-Y2H) ˆ 5 noise levels (as
above) = 10 cases. Note that we analyzed an additional noise level
(100%), but we leave the corresponding results from this summary fig-
ure, because at this level all cases are expected to result in the same
(random) alignments (Section 3.2.1 – Creating noise counterparts of a
synthetic, PPI, or protein-GO network). Instead, we show the results
for the noise level of 100% in the detailed figures (Figs. 3.4, 3.5, 3.6).
Also, note that in this figure, we give each method the best case ad-
vantage. That is, we show results for the best of HetNC-HomEC and
HetNC-HetEC, and also only for the maximum node color level (four
colors in panels (a) and (b), and two colors in panel (c)). We do the
latter because of all color levels, it is the maximum color level at which
the given method performs the best, for each method. Nonetheless, the
results remain qualitatively the same if we account for all considered
colored levels. 76

3.10 Summarized results comparing the running times verus accuracy
of different methods for 25% and 50% noise on (a) synthetic, specif-
ically geometric and scale-free, (b) PPI, specifically APMS-Expr and
APMS-Seq, and (c) protein-GO, specifically APMS and Y2H, net-
works. The x -axis is the running time of the given method on the given
network data at the given noise level, and the y-axis is the alignment
quality score. Here we use different shapes to represent the different
methods, different colors to represent the different noise levels, and
solid or broken lines to represent the different network data. Lines
are drawn between the different methods for the same noise level and
network data, for easier comparison of the different methods. Detailed
running time results for all other noise levels and network data are
shown in Supplementary Figs. B.9–B.16. 77

xii

4.1 Distribution of topological similarity (GDV similarity) between node
pairs of a geometric random graph (i.e., a synthetic network) and its
(a) 0% and (b) 25% randomly perturbed counterparts. We show three
lines representing the distribution of topological similarity for match-
ing (i.e., functionally related) node pairs (blue), for non-matching, i.e.,
functionally unrelated, node pairs (red), and for 10 random samples
of the same size as the set of matching pairs, averaged (purple). Re-
sults are qualitatively similar for 50% random perturbation, scale-free
random graphs (a different type of synthetic networks), and GHOST’s
and IsoRank’s similarity measures. (Supplementary Figs. C.1-C.3). . 104

4.2 Distribution of topological similarity (GDV similarity) versus sequence
similarity (E-value) between yeast and human PPI networks of those
yeast-human protein pairs that are (a) functionally related (i.e., share
at least one biological process GO term such that the protein-GO term
annotation was experimentally inferred) and (b) functionally unre-
lated (i.e., share zero GO terms). The color of a pixel represents how
many node pairs have a given topological similarity and given sequence
similarity. The red horizontal and vertical lines indicate the thresh-
olds for topologically similar (y ě 0.85) or sequence similar (x ď 10´10)
pairs, and the percentages indicate the fraction of pairs that are in a
given quadrant. 106

4.3 Average prediction accuracy of (a) 10-fold cross-validation and (b)
percent training tests for a geometric network and its randomly per-
turbed counterparts. In panel (b), different colored lines represent how
much data is used for training; these colors do not apply to panel (a).
A dotted black line indicates the accuracy expected if the classifier
makes random predictions. Qualitatively similar results for AUROC
and for scale-free networks are shown in Supplementary Figs. C.4–C.5. 107

4.4 Average prediction accuracy of (a) 10-fold cross-validation and (b)
percent training tests for real-world networks. In panel (b), differ-
ent colored lines represent how much data is used for training; these
colors do not apply to panel (a). A dotted black line indicates the
accuracy expected if the classifier makes random predictions. Quali-
tatively similar results for AUROC are shown in Supplementary Figs.
C.6–C.7. 109

xiii

4.5 Comparison of different TARA evaluation tests in the task of protein
function prediction, for the ALL GO term rarity threshold. Differ-
ent percent training tests, specifically 10, 50, and 90, are compared
within each panel, and different ground truth datasets, specifically (a)
atleast1-EXP, (b) atleast2-EXP, and (c) atleast3-EXP, are compared
across panels. The alignment size (i.e., the number of aligned yeast-
protein pairs) and number of functional predictions (i.e., predicted
protein-GO term associations) made by each method, averaged over
the 10 instances we perform for each test, are shown on the top. For
example, the alignment for TARA-90 for the atleast2-EXP dataset
contains 1,327 aligned yeast-human protein pairs, and predicts 5,657
protein-GO term associations. Raw precision, recall, and F-score val-
ues are color-coded inside each panel. Complete results for the other
rarity thresholds are shown in Supplementary Fig. C.8. 110

4.6 Comparison of the six considered NA methods for rarity thresholds
(a, d) ALL, (b, e) 50, and (c, f) 25 using ground truth datasets
(a, b, c) atleast1-EXP and (d, e, f) atleast2-EXP in the task of
protein function prediction. The alignment size (i.e., the number of
aligned yeast-protein pairs) and number of functional predictions (i.e.,
predicted protein-GO term associations) made by each method. For
example, the alignment for TARA in panel (a) contains 27,155 aligned
yeast-human protein pairs, and predicts 91,618 protein-GO term as-
sociations. Raw precision, recall, and F-score values are color-coded
inside each panel. Results for atleast3-EXP are shown in Supplemen-
tary Fig. C.9. 115

4.7 Overlap of the functional predictions made by TARA and PrimAlign
for atleast2-EXP at the 50 rarity threshold. Percentages are out of
the total number of unique predictions made by both methods com-
bined. Complete results for all methods and parameters are shown in
Supplementary Fig. C.10 and Supplementary File C.1. 117

4.8 Distribution of TARA’s redefined topological relatedness between node
pairs of a geometric random graph (i.e., a synthetic network) and its
(a) 0% and (b) 25% randomly perturbed counterparts. We show three
lines representing the distribution of topological relatedness for match-
ing (i.e., functionally related) node pairs (blue), for non-matching, i.e.,
functionally unrelated node pairs (red), and for 10 random samples of
the same size as the set of matching pairs, averaged (purple). 120

xiv

4.9 Comparison of TARA on the 2017 versus 2020 networks for rarity
thresholds (a, d) ALL, (b, e) 50, and (c, f) 25 using ground truth
datasets (a, b, c) atleast1-EXP and (d, e, f) atleast2-EXP in the task
of protein function prediction. The alignment size (i.e., the number of
aligned yeast-protein pairs) and number of functional predictions (i.e.,
predicted protein-GO term associations) made by each method. For
example, the alignment for TARA-2017 in panel (a) contains 27,155
aligned yeast-human protein pairs, and predicts 91,618 protein-GO
term associations. Raw precision, recall, and F-score values are color-
coded inside each panel. Results for atleast3-EXP are shown in Sup-
plementary Fig. C.11. 124

4.10 Summary of TARA-TS and our evaluation framework. (a) TARA-
TS aims to align two networks (in this study, yeast and human PPI
networks). Besides the networks, TARA-TS also uses sequence sim-
ilar yeast-human protein pairs as anchor links. See Section “4.2.2 –
Data”. (b) From the networks and anchor links, TARA-TS builds an
integrated yeast-human network and extracts integrated topology- and
sequence-based features of node (protein) pairs. See Section “4.2.2 –
TARA-TS’s feature extraction methodology”. (c) Given the features,
TARA-TS trains a classifier on a training set to learn what features dis-
tinguish between functionally related and functionally unrelated node
pairs, and then the classifier is evaluated on a testing set. To perform
this classification, yeast-human node pairs are labeled. If the two nodes
in a given pair are functionally related (intuitively, share GO terms),
they are labeled with the positive class; if they are functionally unre-
lated, they are labeled with the negative class. See Section “4.2.2 –
Data”. Then, the set of labeled node pairs is split into training and
testing sets to perform the classification. Only if classification accuracy
is high, i.e., if TARA-TS accurately predicts functionally (un)related
nodes to be functionally (un)related, does it make sense to use TARA-
TS to create an alignment for protein functional prediction. (d) Node
pairs from the testing set that are predicted as functionally related
are taken as TARA-TS’s alignment. Note that relying on testing data
only to create an alignment avoids any circular argument. See Section
“4.2.2 – TARA-TS’s classification and alignment generation”. (e) Any
alignment, of TARA-TS or an existing NA method such as PrimAlign
and TARA, can be given to a protein functional prediction framework
to predict protein-GO term annotations. Then, the different methods’
alignments are evaluated in terms of their prediction accuracy (we also
evaluate their running times). See Section “4.2.2 – Using an alignment
for protein functional prediction”. 129

xv

4.11 Comparison of the three TARA-TS versions and TARA. Comparison of
the three TARA-TS versions and TARA for GO term rarity threshold
25 and ground truth dataset atleast1-EXP, in terms of: (a) classifica-
tion accuracy, (b) protein functional prediction accuracy, (c) overlap
between aligned yeast-human protein pairs, and (d) overlap between
predicted protein-GO term associations. In panel (b), the alignment
for e.g., TARA contains 1,716 aligned protein pairs and predicts 3,474
protein-GO term associations. In panels (c)-(d), the pairwise over-
laps are measured via the Jaccard index. Panel (a) encompasses all
y percent training tests. Panels (b)-(d) are for the 90% training test.
Comparisons of different metapath choices for metapath2vec can be
found in Supplementary Fig. C.12. Results for the other ground-truth
rarity datasets and percent training tests are shown in Supplementary
Figs. C.13–C.19. 143

4.12 Comparison of TARA-TS and TARA in terms of their alignment and
prediction overlaps. Comparison of the selected TARA-TS version and
TARA for GO term rarity threshold 50, ground truth dataset atleast1-
EXP, and the 90% training test, in terms of overlap between their: (a)
aligned yeast-human protein pairs and (b) predicted protein-GO term
associations. In panel (b), precision and recall are shown for each of
the three prediction sets captured by the Venn diagram; TARA++’s
predictions are those in the overlap. The overlaps are for one of the
10 balanced datasets; so, the alignment size and prediction number of
a method may differ from those in Fig. 4.11(b), where the statistics
are averaged over all balanced datasets. Results for the other ground
truth-rarity datasets are shown in Supplementary Figs. C.20–C.21. . 147

4.13 Comparison of TARA++ and three existing methods in the task of
protein functional prediction. Comparison of TARA++ and three ex-
isting methods in the task of protein functional prediction, for rar-
ity thresholds (a) 50 and (b, c) 25, and for ground truth datasets
(a, b) atleast1-EXP and (c) atleast2-EXP. The alignment size (the
number of aligned yeast-protein pairs) and number of functional pre-
dictions (predicted protein-GO term associations) are shown for each
method, except that TARA++ does not have an alignment per se. i.e.,
TARA++ comes from the overlap of predictions made by TARA and
TARA-TS; hence the “N/A”s. For TARA++ and TARA, results are
averages over all balanced datasets; the standard deviations are small
and thus invisible. Results for the other ground truth-rarity datasets
are shown in Supplementary Fig. C.22. 149

xvi

4.14 Comparison of TARA++ and three existing methods when all make
the same number of predictions. Representative results (for one ground
truth-rarity dataset) comparing TARA++ and three existing methods
in the same way as in Fig. 4.13(a) except that here all methods make
the same number of predictions. The remaining results (for the other
ground truth-rarity datasets) are shown in Supplementary Fig. C.23. 150

4.15 Comparison of TARA++ and PrimAlign in terms of their prediction
overlaps. Representative results (for GO term rarity threshold 50 and
ground truth dataset atleast1-EXP) comparing TARA++ and Pri-
mAlign in the same way as TARA and TARA-TS are compared in
Fig. 4.12(b). The remaining results (for the other ground truth-rarity
datasets) are shown in Supplementary Fig. C.24. 151

4.16 Robustness of TARA++ to data noise. Robustness of TARA++ pro-
tein functional prediction accuracy as data noise increases from 0%
to 100%, for GO term rarity threshold 25 and ground truth dataset
atleast2-EXP. 153

5.1 A toy synthetic NoN generated from two random graph models. Large
dotted circles represent level 2 node groups (originating from isolated
NoNs) whose level 2 nodes are connected in a random geometric-
(GEO) or scale-free-like (SF) fashion. Small solid circles represent level
2 nodes whose level 1 networks are of the random graph type indicated.
Level 1 nodes and edges are not shown. Level 2 nodes are colored based
on their label, i.e., their combination of level 1 and level 2 network
topology (tpGEO,GEOq, pGEO,SF q, pSF,GEOq, and pSF, SF q}). . 166

5.2 Comparison of the nine considered approaches in the task of label
prediction for synthetic NoNs with the following parameters: (a) 5%
across-edge and 0% rewire-noise amount, (b) 5% across-edge and 75%
rewire-noise amount, (c) 95% across-edge and 0% rewire-noise amount,
and (d) 95% across-edge and 75% rewire-noise amount. “Combined
all” refers to L1 GDVM + L2 GDV + L1 DiffPool + L2 SIGN. Ac-
curacy is shown above the bars. Standard deviations are indicated
at the top of each bar; some have very small values and are thus not
visible. We expect an approach that only uses a single level and does
not capture clustering information to have around # of models

of labels , or 0.5,
accuracy when both across-edge and rewire-noise amount are low (Sup-
plementary Section D.2.1). Results for other parameter combinations
are shown in Supplementary Figs. D.2-D.6. 175

xvii

5.3 Summarized results of the eight considered approaches (as GCN-3 is
not used for the biological NoN) in the task of protein functional pre-
diction in terms of AUPR. For each GO term (out of the 131 total),
we rank the eight approaches’ from best (rank 1) to worst (rank 8).
Then, we calculate the proportion of GO terms each approach achieves
each rank. “Combined all” refers to L1 GDVM + L2 GDV + L1 Diff-
Pool + L2 SIGN. Results for other evaluation measures are shown in
Supplementary Fig. D.7 . 177

A.1 Clustering of NA methods, each with its T and T+S versions, using
each of the PE and ME frameworks. Clustering is based on pairwise
method similarities, which we compute as follows. The similarity be-
tween two NA methods is the mean of the Adjusted Rand Index (ARI;
explained below) of each pair of corresponding alignments produced by
the two NA methods, over all network pairs/sets. Each alignment of a
network pair/set is a set of node groups, i.e., a partition of the nodes in
all of the networks in the network pair/set, and we measure similarity
between two alignments by comparing their partitions using ARI. ARI
[167] is a widely used measure to calculate the similarity between two
partitions. Given the similarities between all pairs of the NA meth-
ods, we cluster using complete linkage hierachical clustering [50] and
visualize the clustering using a dendrogram. The results shown in this
figure rely on all alignments over all network sets (Yeast+%LC, PHY1,
PHY2, Y2H1, and Y2H2). Equivalent results broken down into results
for networks with known node mapping and results for networks with
unknown node mapping are shown in Supplementary Figs. A.2 and
A.3, respectively. 227

A.2 Clustering of NA methods, each with its T and T+S versions, using
all network sets with (a) known node mapping and (b) unknown
node mapping in the PE framework. The figure can be interpreted
the same way as Supplementary Fig. A.1. 228

A.3 Clustering of NA methods, each with its T and T+S versions, using
all network sets with (a) known node mapping and (b) unknown
node mapping in the ME framework. The figure can be interpreted
the same way as Supplementary Fig. A.1. 228

xviii

A.4 Overall ranking of an NA method versus its running time for the PE
framework over all evaluation tests (where a test is a combination
of an NA method, a network pair, and an alignment quality mea-
sure). By NA method, here, we mean the combination of a PNA or
MNA method and the alignment category (Chapter 2.2.4 of the main
document). Namely, there are 12 NA methods in the PE framework
(four PNA methods associated with the PE-P-P categories and four
MNA methods associated with each of the PE-M-M and PE-M-P cat-
egories). The running time results are when aligning all network pairs
in the Y2H1 network set, where each method is restricted to use a
single core. The size of each point visualizes the overall ranking of
the corresponding method over all evaluation tests over all network
pairs/sets, corresponding to the “Overall rank” column in View I of
Fig. 2.5 in the main document; the larger the point size, the better
the method. In order to allow for easier comparison between the differ-
ent alignment categories, “Average” shows the average running times
and average rankings of the methods in each alignment category. . . . 229

A.5 Overall ranking of an NA method versus its running time for the ME
framework over all evaluation tests (where a test is a combination
of an NA method, a network pair, and an alignment quality mea-
sure). By NA method, here, we mean the combination of a PNA or
MNA method and the alignment category (Chapter 2.2.4 of the main
document). Namely, there are 12 NA methods in the ME framework
(four PNA methods associated with the ME-P-P categories and four
MNA methods associated with each of the ME-M-M and ME-M-P cat-
egories). The running time results are when aligning the Y2H1 network
set, where each method is restricted to use a single core. The size of
each point visualizes the overall ranking of the corresponding method
over all evaluation tests over all network pairs/sets, corresponding to
the “Overall rank” column in View I of Fig. 2.5 in the main document;
the larger the point size, the better the method. In order to allow
for easier comparison between the different alignment categories, “Av-
erage” shows the average running times and average rankings of the
methods in each alignment category. 230

xix

A.6 Method comparison results for each of the PE and ME frameworks
over all evaluation tests (where a test is a combination of an NA
method, a network pair/set, and an alignment quality measure), for
T alignments. By NA method, here, we mean the combination of a
PNA or MNA method and the alignment category (Chapter 2.2.4 of
the main document). Namely, there are 12 NA methods in the PE
framework (four PNA methods associated with the PE-P-P categories
and four MNA methods associated with each of the PE-M-M and PE-
M-P categories) and 12 NA methods in the ME framework (four PNA
methods associated with the ME-P-P categories and four MNA meth-
ods associated with each of the ME-M-M and ME-M-P categories).
The alignment categories are color coded. View I. Overall ranking
of the NA methods. The “Overall rank” column shows the rank of
each method averaged over all evaluation tests, along with the corre-
sponding standard deviation (in brackets). Since there are 12 meth-
ods in a given framework, the possible ranks range from 1 to 12. The
lower the rank, the better the given method. The “p1-value” column
shows the statistical significance of the difference between the rank-
ing of each method and the 1st best ranked method. The “p2-value”
column shows the statistical significance of the difference between the
ranking of each method and the 2nd best ranked method. The “Non.
sig. (fail)” column shows the fraction of evaluation tests in which the
alignment quality score is not statistically significant, and, in brackets,
the fraction of evaluation tests in which the given NA method failed to
produce an alignment. Equivalent results over all evaluation tests bro-
ken down into functional and topological alignment quality measures,
as well as over all evaluation tests broken down into network pairs/sets
with known and unknown node mapping, are shown in Supplementary
Tables A.4–A.11. View II. Alternative view of ranking of the NA
methods. Each pie chart shows the fraction of evaluation test ranks
that fall into the 1–4, 5–8, and 9–12 rank bins out of all evaluation test
ranks in the given alignment category. For example, for the PE frame-
work, in the PE-P-P alignment category, 56%, 26%, and 18% of the
evaluation test ranks fall into ranks 1–4, 5–8, and 9–12, respectively,
totaling to 100% of the evaluation test ranks in the PE-P-P alignment
category. The pie charts allow us to compare the three alignment cate-
gories rather than individual NA methods in each category. The larger
the pie chart for the better (lower) ranks, and the smaller the pie chart
for the worse (higher) ranks, the better the alignment category. For
example, in the PE framework, PE-P-P has the most evaluation tests
ranked 1–4 and the fewest evaluation tests ranked 9–12, followed by
PE-M-P, followed by PE-M-M. This implies that PE-P-P is superior
to PE-M-P and PE-M-M. The pie charts are color coded with respect
to alignments of network pairs/sets with known and unknown node
mapping, and FQ and TQ measures. 231

xx

A.7 Comparison of protein function prediction accuracy between the new
(approach 3) versus the existing prediction approach for multiple
alignments (approach 2), for all alignments from the ME framework
(i.e., ME-P-P, ME-M-P, and ME-M-M categories). We calculate the
prediction accuracy as described in Fig. 2.6 in the main document.
Each column shows the precision and recall achieved by the new or ex-
isting prediction approach for each NA method, as well as the number
of predictions made by the approach. The alignments are separated
into networks sets with known and unknown mapping. 234

A.8 Comparison of protein function prediction accuracy under the PE
framework (i.e., PE-P-P, PE-M-P, and PE-M-M categories) and ME
framework (i.e., ME-P-P, ME-M-P, and ME-M-M categories). We
calculate the prediction accuracy as described in Fig. 2.6 in the main
document. Each column shows the precision and recall achieved by
the new or existing prediction approach for each NA method, as well
as the number of predictions made by the approach. The alignments
are separated into networks sets with known and unknown mapping. . 235

A.9 Illustration of the effect of the choice of scaffold network on alignment
quality when combining pairwise alignments into a multiple alignment.
These are representative results for one of the analyzed TQ measures
(NCV-CIQ; panel (a)), one of the analyzed FQ measures (GO correct-
ness – GC; panel (b)), one of the analyzed network sets (Y2H1), and
one of the analyzed NA methods (WAVE). Clearly, different choices
of scaffold network (x-axis) yield different alignment quality scores (y-
axis). The same holds for other combinations of alignment quality
measures, network sets, and NA methods. In our evaluation, of all
scaffold network choices, the one that yields the best multiple align-
ment is chosen. In this particular representative scenario, it is the
human network that was chosen as the scaffold, since this scaffold
choice clearly yields significantly better alignment quality than any
other scaffold choice. 236

A.10 Comparison of protein function prediction accuracy under the the PE
and ME frameworks, where we use approach 2 for the ME framework
(rather than using approach 3 for the ME framework like we do in Fig.
2.7 of the main document). The figure can be interpreted the same
way as Fig. 2.6 in the main document. 237

xxi

B.1 Detailed alignment quality results regarding the effect of the number
of node colors on alignment quality as a function of noise level for
synthetic, specifically geometric, networks using (a) WAVE, (b)
MAGNA++, and (c) SANA. Gray squares, light blue circles, dark blue
triangles, and black stars indicate the aligned networks containing one,
two, three, and four node colors, respectively. For two or more node
colors, solid lines represent using HetNC-HomEC, and dashed lines
represent using HetNC-HetEC. 239

B.2 Detailed alignment quality results regarding the effect of the number
of node colors on alignment quality as a function of noise level for
synthetic, specifically scale-free, networks using (a) WAVE, (b)
MAGNA++, and (c) SANA. The figure can be interpreted in the same
way as Supplementary Figure B.1. 240

B.3 Detailed alignment quality results regarding the effect of the number
of node colors on alignment quality as a function of noise level for
PPI, specifically APMS-Expr, networks using (a) WAVE and (b)
SANA. The figure can be interpreted in the same way as Supplemen-
tary Figure B.1. Recall that for these larger networks, we have not
run MAGNA++ due to its high computational complexity. 240

B.4 Detailed alignment quality results regarding the effect of the number
of node colors on alignment quality as a function of noise level for
PPI, specifically APMS-Seq, networks using (a) WAVE and (b)
SANA. The figure can be interpreted in the same way as Supplemen-
tary Figure B.1. Recall that for these larger networks, we have not
run MAGNA++ due to its high computational complexity. 241

B.5 Detailed alignment quality results regarding the effect of the number
of node colors on alignment quality as a function of noise level for
PPI, specifically Y2H-Expr, networks using (a) WAVE and (b)
SANA. The figure can be interpreted in the same way as Supplemen-
tary Figure B.1. Recall that for these larger networks, we have not
run MAGNA++ due to its high computational complexity. 241

B.6 Detailed alignment quality results regarding the effect of the num-
ber of node colors on alignment quality as a function of noise level
for PPI, specifically Y2H-Seq, networks using (a) WAVE and (b)
SANA. The figure can be interpreted in the same way as Supplemen-
tary Figure B.1. Recall that for these larger networks, we have not
run MAGNA++ due to its high computational complexity. 242

xxii

B.7 Detailed alignment quality results regarding the effect of the number
of node colors on alignment quality as a function of noise level for
protein-GO, specifically protein-GO-APMS, networks using (a)
WAVE and (b) SANA. The figure can be interpreted in the same way
as Supplementary Figure B.1. Recall that for these larger networks,
we have not run MAGNA++ due to its high computational complexity.242

B.8 Detailed alignment quality results regarding the effect of the num-
ber of node colors on alignment quality as a function of noise level
for protein-GO, specifically protein-GO-Y2H, networks using (a)
WAVE and (b) SANA. The figure can be interpreted in the same way
as Supplementary Figure B.1. Recall that for these larger networks,
we have not run MAGNA++ due to its high computational complexity.243

B.9 Detailed results comparing the running time and effect of the num-
ber of node colors for different methods for all tested noise levels
on synthetic, specifically geometric, networks. The x -axis the the
running time of the method, and the y-axis is the alignment quality.
Here we use different shapes to represent the different methods and
different colored lines to represent how many node colors are used.
Lines are drawn between methods using the same number of colors. . 244

B.10 Detailed results comparing the running time and effect of the num-
ber of node colors for different methods for all tested noise levels
on synthetic, specifically scale-free, networks. The figure can be
interpreted in the same way as Supplementary Figure B.9. 245

B.11 Detailed results comparing the running time and effect of the num-
ber of node colors for different methods for all tested noise levels
on PPI, specifically APMS-Expr, networks. The figure can be
interpreted in the same way as Supplementary Figure B.9. 246

B.12 Detailed results comparing the running time and effect of the num-
ber of node colors for different methods for all tested noise levels
on PPI, specifically APMS-Seq, networks. The figure can be in-
terpreted in the same way as Supplementary Figure B.9. 247

B.13 Detailed results comparing the running time and effect of the num-
ber of node colors for different methods for all tested noise levels
on PPI, specifically Y2H-Expr, networks. The figure can be inter-
preted in the same way as Supplementary Figure B.9. 248

B.14 Detailed results comparing the running time and effect of the num-
ber of node colors for different methods for all tested noise levels on
PPI, specifically Y2H-Seq, networks. The figure can be interpreted
in the same way as Supplementary Figure B.9. 249

xxiii

B.15 Detailed results comparing the running time and effect of the num-
ber of node colors for different methods for all tested noise levels
on protein-GO, specifically protein-GO-APMS, networks. The
figure can be interpreted in the same way as Supplementary Figure B.9.250

B.16 Detailed results comparing the running time and effect of the num-
ber of node colors for different methods for all tested noise levels on
protein-GO, specifically protein-GO-Y2H, networks. The figure
can be interpreted in the same way as Supplementary Figure B.9. . . 251

C.1 Distribution of topological similarity (GDV-similarity) between node
pairs of a (a,b,c) geometric and (d,e,f) scale-free network and their
(a,d) 0%, (b,e) 25% noisy, and (c,f) 50% noisy counterparts. We
show three lines representing the distribution of topological similar-
ity for matching, i.e., functionally related, node pairs (blue), for non-
matching, i.e., functionally unrelated, node pairs (red), and for 10 ran-
dom samples of the same size as the set of matching pairs, averaged
(purple). 252

C.2 Distribution of topological similarity (GHOST) between node pairs of
a (a,b,c) geometric and (d,e,f) scale-free network and their (a,d) 0%,
(b,e) 25% noisy, and (c,f) 50% noisy counterparts. We show three
lines representing the distribution of topological similarity for match-
ing, i.e., functionally related, node pairs (blue), for non-matching, i.e.,
functionally unrelated, node pairs (red), and for 10 random samples of
the same size as the set of matching pairs, averaged (purple). 253

C.3 Distribution of topological similarity (IsoRank) between node pairs of
a (a,b,c) geometric and (d,e,f) scale-free network and their (a,d) 0%,
(b,e) 25% noisy, and (c,f) 50% noisy counterparts. We show three
lines representing the distribution of topological similarity for match-
ing, i.e., functionally related, node pairs (blue), for non-matching, i.e.,
functionally unrelated, node pairs (red), and for 10 random samples of
the same size as the set of matching pairs, averaged (purple). 254

C.4 Average (a,b) prediction accuracy and (c,d) AUROC of 10-fold cross
validation for (a,c) geometric and (b,d) scale-free networks. 255

C.5 Average (a,b) prediction accuracy and (c,d) AUROC of percent train-
ing tests for (a,c) geometric and (b,d) scale-free networks. 256

C.6 Average (a) prediction accuracy and (b) AUROC of 10-fold cross val-
idation for real-world networks. 256

C.7 Average (a) prediction accuracy and (b) AUROC of percent training
tests for real-world networks. 257

xxiv

C.8 Comparison of different TARA evaluation tests in the task of protein
function prediction, for GO term rarity thresholds (a, d, g) ALL, (b,
e) 50, and (c, f) 25 using ground truth datasets (a, b, c) atleast1-
EXP, (d, e, f) atleast2-EXP, and (g) atleast3-EXP. Different percent
training tests, specifically 10, 50, and 90, are compared within each
panel. The alignment size (i.e., the number of aligned yeast-protein
pairs) and number of functional predictions (i.e., predicted protein-
GO term associations) made by each method, averaged over the 10
instances we perform for each test, are shown on the top. For example,
the alignment for TARA-90 in (a) contains 27,155 aligned yeast-human
protein pairs, and predicts 91,618 protein-GO term associations. Raw
precision, recall, and F-score values are color-coded inside each panel. 258

C.9 Comparison of the six considered NA methods for rarity thresholds (a,
d, g) ALL, (b, e) 50, and (c, f) 25 using ground truth datasets (a, b,
c) atleast1-EXP, (d, e, f) atleast2-EXP, and (g) atleast3-EXP in the
task of protein function prediction. The alignment size (i.e., the num-
ber of aligned yeast-protein pairs) and number of functional predictions
(i.e., predicted protein-GO term associations) made by each method.
For example, the alignment for TARA in (a) contains 27,155 aligned
yeast-human protein pairs, and predicts 91,618 protein-GO term as-
sociations. Raw precision, recall, and F-score values are color-coded
inside each panel. 260

C.10 Overlap of the functional predictions made by TARA and PrimAlign
for GO term rarity thresholds (a, d, g) ALL, (b, e) 50, and (c, f) 25
using ground truth datasets (a, b, c) atleast1-EXP, (d, e, f) atleast2-
EXP, and (g) atleast3-EXP. Percentages are out of the total number
of unique predictions made by both methods combined. 262

C.11 Comparison of TARA on the 2017 versus 2020 networks for rarity
thresholds (a, d, g) ALL, (b, e) 50, and (c, f) 25 using ground
truth datasets (a, b, c) atleast1-EXP, (d, e, f) atleast2-EXP, and (g)
atleast3-EXP in the task of protein function prediction. The alignment
size (i.e., the number of aligned yeast-protein pairs) and number of
functional predictions (i.e., predicted protein-GO term associations)
made by each method. For example, the alignment for TARA-2017
in panel (a) contains 27,155 aligned yeast-human protein pairs, and
predicts 91,618 protein-GO term associations. Raw precision, recall,
and F-score values are color-coded inside each panel. 263

xxv

C.12 Comparison of different metapath choices for rarity thresholds (a, d,
g) ALL, (b, e) 50, and (c, f) 25 using ground truth datasets (a,
b, c) atleast1-EXP, (d, e, f) atleast2-EXP, and (g) atleast3-EXP
in the task of protein functional prediction. “mp2v-n” refers to the
paths “humanˆn Ñ yeastˆn” and “yeastˆn Ñ humanˆn” (Chapter
“4.2.2 – TARA-TS’s feature extraction methodology”). The alignment
size (i.e., the number of aligned yeast-protein pairs) and number of
functional predictions (i.e., predicted protein-GO term associations)
made by each method are shown above. For example, the alignment
for mp2v-3 in (a) contains 27,799 aligned yeast-human protein pairs,
and predicts 88,130 protein-GO term associations. Raw precision and
recall values are color-coded inside each panel. 272

C.13 Average prediction accuracy of percent training tests for rarity thresh-
olds (a, d, g) ALL, (b, e) 50, and (c, f) 25 using ground truth
datasets (a, b, c) atleast1-EXP, (d, e, f) atleast2-EXP, and (g)
atleast3-EXP. A dotted black line indicates the accuracy expected if
the classifier makes random predictions. Qualitatively similar results
for AUROC are shown in Supplementary Figs. S2. 274

C.14 Average AUROC of percent training tests for rarity thresholds (a, d,
g) ALL, (b, e) 50, and (c, f) 25 using ground truth datasets (a,
b, c) atleast1-EXP, (d, e, f) atleast2-EXP, and (g) atleast3-EXP. A
dotted black line indicates the AUROC expected if the classifier makes
random predictions. 275

C.15 Comparison of TARA and TARA-TS using 10% of the data as training
for rarity thresholds (a, d, g) ALL, (b, e) 50, and (c, f) 25 using
ground truth datasets (a, b, c) atleast1-EXP, (d, e, f) atleast2-
EXP, and (g) atleast3-EXP in the task of protein functional prediction.
The alignment size (i.e., the number of aligned yeast-protein pairs)
and number of functional predictions (i.e., predicted protein-GO term
associations) made by each method are shown above. For example, the
alignment for TARA-10 in (a) contains 244,433 aligned yeast-human
protein pairs, and predicts 538,397 protein-GO term associations. Raw
precision and recall values are color-coded inside each panel. 276

xxvi

C.16 Comparison of TARA and TARA-TS using 50% of the data as training
for rarity thresholds (a, d, g) ALL, (b, e) 50, and (c, f) 25 using
ground truth datasets (a, b, c) atleast1-EXP, (d, e, f) atleast2-
EXP, and (g) atleast3-EXP in the task of protein functional prediction.
The alignment size (i.e., the number of aligned yeast-protein pairs)
and number of functional predictions (i.e., predicted protein-GO term
associations) made by each method are shown above. For example, the
alignment for TARA-10 in (a) contains 244,433 aligned yeast-human
protein pairs, and predicts 538,397 protein-GO term associations. Raw
precision and recall values are color-coded inside each panel. 278

C.17 Comparison of TARA and TARA-TS using 90% of the data as training
for rarity thresholds (a, d, g) ALL, (b, e) 50, and (c, f) 25 using
ground truth datasets (a, b, c) atleast1-EXP, (d, e, f) atleast2-
EXP, and (g) atleast3-EXP in the task of protein functional prediction.
The alignment size (i.e., the number of aligned yeast-protein pairs)
and number of functional predictions (i.e., predicted protein-GO term
associations) made by each method are shown above. For example, the
alignment for TARA-10 in (a) contains 244,433 aligned yeast-human
protein pairs, and predicts 538,397 protein-GO term associations. Raw
precision and recall values are color-coded inside each panel. 280

C.18 Pairwise overlap, measured by Jaccard index, of the alignments made
by TARA and TARA-TS for rarity thresholds (a, d, g) ALL, (b, e)
50, and (c, f) 25 using ground truth datasets (a, b, c) atleast1-EXP,
(d, e, f) atleast2-EXP, and (g) atleast3-EXP, using percent training
amounts described in Chapter “4.2.3 – TARA-TS versus TARA in the
task of protein functional prediction: toward TARA++”. 282

C.19 Pairwise overlap, measure by Jaccard index, of the predictions made
by TARA and TARA-TS for rarity thresholds (a, d, g) ALL, (b, e)
50, and (c, f) 25 using ground truth datasets (a, b, c) atleast1-EXP,
(d, e, f) atleast2-EXP, and (g) atleast3-EXP, using percent training
amounts described in Chapter “4.2.3 – TARA-TS versus TARA in the
task of protein functional prediction: toward TARA++”. 283

C.20 Overlap of the alignments made by TARA and TARA-TS for rarity
thresholds (a, d, g) ALL, (b, e) 50, and (c, f) 25 using ground
truth datasets (a, b, c) atleast1-EXP, (d, e, f) atleast2-EXP, and
(g) atleast3-EXP. Percentages are out of the total number of unique
aligned node pairs made by both methods combined. The overlaps
are for one of the 10 balanced datasets; so, the alignment size of a
method may differ from those in Supplementary Figs. S3-S5, where
the statistics are averaged over all balanced datasets. 284

xxvii

C.21 Overlap of the predictions made by TARA and TARA-TS for rarity
thresholds (a, d, g) ALL, (b, e) 50, and (c, f) 25 using ground
truth datasets (a, b, c) atleast1-EXP, (d, e, f) atleast2-EXP, and
(g) atleast3-EXP. Percentages are out of the total number of unique
predictions made by both methods combined. Precision and recall are
shown for each of the three prediction sets captured by the Venn dia-
gram; TARA++’s predictions are those in the overlap. The overlaps
are for one of the 10 balanced datasets; so, the prediction number of
a method may differ from those in Supplementary Figs. S3-S5, where
the statistics are averaged over all balanced datasets. 285

C.22 Comparison of four NA methods for rarity thresholds (a, d, g) ALL,
(b, e) 50, and (c, f) 25 using ground truth datasets (a, b, c) atleast1-
EXP, (d, e, f) atleast2-EXP, and (g) atleast3-EXP in the task of
protein functional prediction. The alignment size (i.e., the number
of aligned yeast-protein pairs) and number of functional predictions
(i.e., predicted protein-GO term associations) made by each method
are shown above, except that TARA++ does not have an alignment
per se. i.e., TARA++ comes from the overlap of predictions made by
TARA and TARA-TS; hence the “N/A”s. For example, the alignment
for TARA in (a) contains 27,155 aligned yeast-human protein pairs,
and predicts 91,618 protein-GO term associations. Raw precision and
recall values are color-coded inside each panel. For TARA++ and
TARA, results are averages over all balanced datasets; the standard
deviations are small and thus invisible. 288

C.23 Comparison of four NA methods for rarity thresholds (a, d, g) ALL,
(b, e) 50, and (c, f) 25 using ground truth datasets (a, b, c) atleast1-
EXP, (d, e, f) atleast2-EXP, and (g) atleast3-EXP in the task of
protein functional prediction. The alignment size (i.e., the number
of aligned yeast-protein pairs) and number of functional predictions
(i.e., predicted protein-GO term associations) made by each method
are shown above, except that TARA++ does not have an alignment
per se. i.e., TARA++ comes from the overlap of predictions made by
TARA and TARA-TS; hence the “N/A”s. For example, the alignment
for TARA in (a) contains 27,155 aligned yeast-human protein pairs,
and predicts 91,618 protein-GO term associations. Raw precision and
recall values are color-coded inside each panel. For TARA++ and
TARA, results are averages over all balanced datasets; the standard
deviations are small and thus invisible. 289

xxviii

C.24 Overlap of the predictions made by TARA++ and PrimAlign for rarity
thresholds (a, d, g) ALL, (b, e) 50, and (c, f) 25 using ground
truth datasets (a, b, c) atleast1-EXP, (d, e, f) atleast2-EXP, and
(g) atleast3-EXP. Percentages are out of the total number of unique
predictions made by both methods combined. Precision and recall
are shown for each of the three prediction sets captured by the Venn
diagram. The overlaps are for one of the 10 balanced datasets. 290

D.1 Illustration of the two part NoN-GCN layer. In the level 1 NoN-GCN
layer, the level 1 node circled in red receives features from its neighbors
in its level 1 network as well as features of the level 2 node its level 1
network corresponds to. This is done for every level 1 node in every
level 1 network. In the level 2 NoN-GCN layer, the level 2 node circled
in red received features from its neighbors in the level 2 network as
well as features of each of the level 1 nodes in its level 1 network. This
is done for every level 2 node in the level 2 network. 298

D.2 Comparison of the nine relevant approaches in the task of entity label
prediction for synthetic NoNs with 5% across-edge amount and the
following rewire-noise amounts: (a) 0%, (b) 10%, (c) 25%, (d) 50%,
(e) 75%, and (f) 100%. “Combined all” refers to L1 GDVM + L2
GDV + L1 DiffPool + L2 SIGN. Raw prediction accuracies are shown
above. “Combined all” refers to L1 GDVM + L2 GDV + L1 DiffPool
+ L2 SIGN. Accuracy is shown above the bars. 305

D.3 Comparison of the nine relevant approaches in the task of entity label
prediction for synthetic NoNs with 25% across-edge amount and the
following rewire-noise amounts: (a) 0%, (b) 10%, (c) 25%, (d) 50%,
(e) 75%, and (f) 100%. “Combined all” refers to L1 GDVM + L2
GDV + L1 DiffPool + L2 SIGN. Raw prediction accuracies are shown
above. “Combined all” refers to L1 GDVM + L2 GDV + L1 DiffPool
+ L2 SIGN. Accuracy is shown above the bars. 306

D.4 Comparison of the nine relevant approaches in the task of entity label
prediction for synthetic NoNs with 50% across-edge amount and the
following rewire-noise amounts: (a) 0%, (b) 10%, (c) 25%, (d) 50%,
(e) 75%, and (f) 100%. “Combined all” refers to L1 GDVM + L2
GDV + L1 DiffPool + L2 SIGN. Raw prediction accuracies are shown
above. “Combined all” refers to L1 GDVM + L2 GDV + L1 DiffPool
+ L2 SIGN. Accuracy is shown above the bars. 307

xxix

D.5 Comparison of the nine relevant approaches in the task of entity label
prediction for synthetic NoNs with 75% across-edge amount and the
following rewire-noise amounts: (a) 0%, (b) 10%, (c) 25%, (d) 50%,
(e) 75%, and (f) 100%. “Combined all” refers to L1 GDVM + L2
GDV + L1 DiffPool + L2 SIGN. Raw prediction accuracies are shown
above. “Combined all” refers to L1 GDVM + L2 GDV + L1 DiffPool
+ L2 SIGN. Accuracy is shown above the bars. 308

D.6 Comparison of the nine relevant approaches in the task of entity label
prediction for synthetic NoNs with 95% across-edge amount and the
following rewire-noise amounts: (a) 0%, (b) 10%, (c) 25%, (d) 50%,
(e) 75%, and (f) 100%. “Combined all” refers to L1 GDVM + L2
GDV + L1 DiffPool + L2 SIGN. Raw prediction accuracies are shown
above. “Combined all” refers to L1 GDVM + L2 GDV + L1 DiffPool
+ L2 SIGN. Accuracy is shown above the bars. 309

D.7 Summarized results of the eight relevant approaches in the task of
protein functional prediction for evaluation measures (a) AUPR, (b)
precision, (a) recall, and (a) F-score. For each GO term (out of the
131 total), we rank the eight approaches’ classification performances
from best (rank 1) to worst (rank 8). If an approach’s performance
is not significantly better than expected by random we deem it “non-
significant” instead. Then for each approach, we calculate the propor-
tion of times it achieves each rank. “Combined all” refers to L1 GDVM
+ L2 GDV + L1 DiffPool + L2 SIGN. 310

D.8 Overlap of GO terms for which L2 SIGN is the best with those for
which (a, e, i, m) L1 GCM + L2 GDV, (b, f, j, n) L1 DiffPool +
L2 SIGN, (c, g, k, o) Combined all (aka L1 GDVM + L2 GDV + L1
DiffPool + L2 SIGN), and (d, h, l, p) GCN-2 are the best in terms
of (a, b, c, d) AUPR, (e, f, g, h) precision, (i, j, k, l) recall, and
(m, n, o, p) F-score. 311

D.9 Overlaps of the four combined level approaches for groups (a, c, e, g)
“S ă C” and (b, d, f, h) “C only” in terms of (a, b) AUPR, (c, d)
precision, (e, f) recall, (g, h) F-score. 312

D.10 Classification performance of the eight relevant approaches for each
GO term in terms of AUPR. GO term IDs and the number of positive
instances for that GO term are shown above. Random performance is
indicated by the dotted black line. Approaches with performance not
significantly greater than random are shown in a lighter shade. GO
terms are split into the six groups based on how single versus combined
level approaches perform. “Combined all” refers to L1 GDVM + L2
GDV + L1 DiffPool + L2 SIGN. Raw scores for each approach for
each GO term can be found in Supplementary File D.1. 313

xxx

D.11 Classification performance of the eight relevant approaches for each
GO term in terms of precision. GO term IDs and the number of
positive instances for that GO term are shown above. Random per-
formance is indicated by the dotted black line. Approaches with per-
formance not significantly greater than random are shown in a lighter
shade. GO terms are split into the six groups based on how single
versus combined level approaches perform. “Combined all” refers to
L1 GDVM + L2 GDV + L1 DiffPool + L2 SIGN. Raw scores for each
approach for each GO term can be found in Supplementary File D.2. 314

D.12 Classification performance of the eight relevant approaches for each
GO term in terms of recall. GO term IDs and the number of positive
instances for that GO term are shown above. Random performance is
indicated by the dotted black line. Approaches with performance not
significantly greater than random are shown in a lighter shade. GO
terms are split into the six groups based on how single versus combined
level approaches perform. “Combined all” refers to L1 GDVM + L2
GDV + L1 DiffPool + L2 SIGN. Raw scores for each approach for
each GO term can be found in Supplementary File D.3. 315

D.13 Classification performance of the eight relevant approaches for each
GO term in terms of F-score. GO term IDs and the number of positive
instances for that GO term are shown above. Random performance is
indicated by the dotted black line. Approaches with performance not
significantly greater than random are shown in a lighter shade. GO
terms are split into the six groups based on how single versus combined
level approaches perform. “Combined all” refers to L1 GDVM + L2
GDV + L1 DiffPool + L2 SIGN. Raw scores for each approach for
each GO term can be found in Supplementary File D.4. 316

xxxi

TABLES

3.1 Number of nodes and edges in the two considered PPI networks . . . 64

3.2 Number of nodes in the two considered heterogeneous protein-GO net-
works . 66

3.3 Number of edges in the two considered heterogeneous protein-GO net-
works . 67

4.1 Table of notations and their meanings 97

4.2 Representative choices of TARA’s percent training tests for each of the
9 ground truth datasets . 111

4.3 Comparability of the existing methods considered in this study to
TARA in terms of type of information used (T versus S versus TS)
and alignment type (one-to-one versus many-to-many) 114

4.4 Running time (rounded to the nearest second) comparison of TARA,
WAVE, SANA, PrimAlign-T, and PrimAlign-TS for ALL GO terms . 118

4.5 Three NA method groups based on how input data are processed . . 126

4.6 Categories that relevant NA methods belong to 128

5.1 Existing approaches that we consider and their generalized NoN coun-
terparts . 170

5.2 Description of the six GO term groups based on how single-level (S)
and combined-level (C), i.e., NoN, approaches perform 179

5.3 Number of GO terms in each of the six groups for AUPR, precision,
recall, and F-score . 180

A.1 Details on the PINs that we use in our study 207

A.2 Method parameters for PNA that we use in our study 208

A.3 Theoretic time complexity . 210

A.4 Overall ranking of the NA methods for the PE framework 211

A.5 Overall ranking of the NA methods for the PE framework 213

A.6 Overall ranking of the NA methods for the PE framework 214

A.7 Overall ranking of the NA methods for the PE framework 215

xxxii

A.8 Overall ranking of the NA methods for the ME framework 216

A.9 Overall ranking of the NA methods for the ME framework 217

A.10 Overall ranking of the NA methods for the ME framework 218

A.11 Overall ranking of the NA methods for the ME framework 219

A.12 Overall ranking of the NA methods for the ME framework 220

A.13 Overall ranking of the NA methods for the ME framework 221

A.14 Overall ranking of the NA methods for the ME framework 222

A.15 Overall ranking of the NA methods for the ME framework 223

A.16 Overall ranking of the NA methods for the ME framework 224

A.17 Overall ranking of the NA methods for the ME framework 225

A.18 Overall ranking of the NA methods for the ME framework 226

C.1 Running times (in seconds) of TARA-TS, TARA, PrimAlign, and Se-
quence, when considering ALL GO terms 287

D.1 Running times of each approach in seconds. “Combined all” refers to
L1 GDVM + L2 GDV + L1 DiffPool + L2 SIGN 318

xxxiii

CHAPTER 1

INTRODUCTION

1.1 Overview

Many real-world systems, from microscopic proteins to worldwide human civi-

lization, are comprised of different kinds of entities and relationships between them.

Representing such systems as networks (graphs) [11], in which the entities are mod-

eled as nodes and the relationships as edges, allows for one to study them math-

ematically. This means that domain scientists can take advantage of the vast and

rapidly growing amount of computational approaches for analyzing these networks,

deepening the understanding of the systems they model. This dissertation focuses

on the development of novel computational approaches for analyzing networks in the

biology domain, since understanding the systems modeled by biological networks can

give insights into human health, and because most of biological network data is pub-

licly available, unlike in many other domains. However, the ideas in this dissertation

are applicable to any network type in any domain.

Protein-protein interaction (PPI) networks are a widely studied type of biological

networks since they can be used to model cellular functioning. In such networks,

nodes are proteins and edges are PPIs. While biotechnological advancements have

made PPI network data available for many species [21, 9, 38, 82], functions of many

proteins in many of these species remain unknown [46]. But understanding these

functions is important because, for example, understanding proteins’ roles in a dis-

ease such as cancer can lead to the development of better preventative measures or

1

treatments. While researches would ideally perform wet lab experiments to uncover

proteins’ functions, doing so can be expensive, time consuming, and potentially eth-

ically restricted if e.g., dealing with the human species. Therefore, computational

analyses for determining proteins’ functions, including PPI network analyses, are

used in a complementary fashion to deepen the protein functional knowledge that

wet lab experiments alone cannot uncover.

Many important proteins and their roles in cellular functioning are (partially)

conserved across different species due to evolution. So, one way to uncover pro-

teins’ functions is by transferring biological knowledge from a well-studied species,

such as Saccharomyces cerevisiae (yeast), Caenorhabditis elegans (worm), Drosophila

melanogaster (fly), or Mus musculus (mouse), to a less-well-studied one, such as

Homo sapiens (human). Genomic sequence alignment has traditionally been used

for this task, by transferring functional knowledge between conserved (aligned) se-

quence regions of proteins in different species. However, genomic sequence alignment

does not consider the interactions between proteins, which are ultimately what carry

out cellular function. So, network alignment (NA) can be used in a complementary

fashion to predict what sequence alignment alone cannot [146, 53, 110, 48, 47, 72].

NA aims to find a node mapping (i.e., an alignment) between the compared networks

that uncovers regions of high topological (and often sequence) similarity. Then, NA

methods assume that aligned proteins across these regions of high topological similar-

ity perform similar functions, i.e., are functionally related. So, analogous to genomic

sequence alignment, NA can be used to transfer knowledge across species between

their conserved network (rather than just sequence) regions, predicting functions of

proteins in the less-well-studied species based on functions of their aligned coun-

terparts in the well-studied species. This task of across-species protein functional

prediction is one of the ultimate goals of biological NA. So, one of the key goals of

2

this dissertation is to introduce novel computational directions for the problem of

biological NA.

However, across-species knowledge transfer is not the only way to uncover func-

tions of proteins. Instead, one can infer proteins’ functions based on the proteins’

relationships to other proteins with known functions within the same species. Node

label prediction [20], a general network science task under the “graph (machine)

learning” umbrella, is one such way to do this. Given a single network, the goal is

to predict labels of its nodes ; for example, given proteins in a PPI network, one can

train a classifier to uncover patterns between proteins’ PPI network-based features

and their functions.

Both NA and node label prediction, in the context of protein functional predic-

tion, deal with networks at the same scale: PPI networks. However, at a finer-grained

scale, proteins themselves consist of a sequence of amino acids that folds in 3D space.

This structure of a protein has important implications for its function, so computa-

tional analysis of protein structure is another lens under which one can study proteins.

While traditional structural analysis typically relies on 3D geometric transformations

[182], methods based on protein structure networks (PSNs), in which nodes are amino

acids and edges join amino acids that are close to each other with respect to the folded

protein, have been shown to outperform non-network-based models in tasks such as

protein structural comparison/classification [55, 125] and protein functional predic-

tion [63]. This introduces another way to uncover proteins’ functions, by analyzing

proteins’ structure networks. In particular, graph label prediction [128], a comple-

mentary task to node label prediction, can be used. Given multiple networks, the

goal is to predict labels of those networks ; for example, given multiple PSNs, one can

train a classifier to uncover patterns between proteins’ PSN-based structural features

and their functions.

3

An interesting multiscale (i.e., multilevel) relationship is evident here. Namely,

proteins interact with each other, modeled as PPI networks, and proteins themselves

consist of interacting amino acids, modeled as PSNs. That is, nodes in a network at

a higher level are themselves networks at a lower level – some entities, in this case

proteins, both participate in and are themselves composed of interactions. So, as

another key contribution of this dissertation, we argue that such a system of systems

should be integrated as a “network of networks” (NoN), and that another type of

method, namely entity label prediction using information (features) from both levels

of an NoN, is worth exploring for protein functional prediction.

In summary, in this dissertation, we develop novel computational approaches for

two kinds of multi-network analyses under the task of protein function prediction:

across-species PPI network alignment (Section 1.2) and multilevel NoN-based entity

(protein) label prediction (Section 1.3). Again, we note that while this dissertation

focuses on the computational biology application of NoNs, systems in other domains

can also exhibit this multilevel relationship (Section 1.3.2), and our idea are also

applicable to them.

1.2 Network alignment

1.2.1 Background

NA is closely related to the NP-complete subgraph isomorphism, or subgraph

matching, problem, in which the goal is to find a node mapping such that one network

is an exact subgraph of another network [35]. However, NA is more general in that

it aims to find the best “fit” of one network into another network, even if the first is

not an exact subgraph of the second. A widely used measure to quantify this “fit”

is the amount of conserved (aligned) edges, i.e., the size of the common conserved

4

subgraph between the aligned networks. But because maximizing edge conservation

is NP-hard [95], all NA methods are heuristics.

NA can be categorized into several broad types, whose high-level input / output

/ goal differences are as follows.

First, NA can be local or global (Fig. 1.1), like sequence alignment. Local NA

aims to find highly conserved network regions but usually results in such regions

being small [16, 17, 58, 89, 94, 98, 147, 29, 117]. Global NA aims to maximize overall

network similarity; while it usually results in large aligned network regions, these

regions are suboptimally conserved [54, 59, 91, 95, 96, 99, 114, 122, 126, 130, 153,

154, 178]. Both have their own (dis)advantages [110, 72]. As global NA has received

more attention recently than local NA, we focus on global NA in this dissertation.

(a) (b)

Figure 1.1. Illustration of alignments produced by (a) local and (b) global
NA. Dashed lines are between nodes that are aligned to each other. This
figure is adapted from [110].

Second, NA can be one-to-one (each node can be aligned to exactly one distinct

node in another network) or many-to-many (a node may be aligned to more than

one node in another network). Since both one-to-one and many-to-many alignments

5

can be used in our considered task of across-species protein functional prediction, we

consider both in this dissertation.

Given these categorizations of local, global, one-to-one, and many-to-many NA,

it is important to clear up some terminology regarding them (even though we do

not consider local NA in this dissertation, we include it below for completeness).

Traditionally, given networks G1 “ pV1, E1q and G2 “ pV2, E2q, where, without loss

of generality, |V1| ď |V2|, local NA has meant the same as many-to-many NA: a

relation R Ď V1 ˆ V2 (Fig. 1.1(a)). Also, global NA has meant the same as one-

to-one NA: an injective function f : V1 Ñ V2 (Fig. 1.1(b)). However, over time,

methods claiming to be local and one-to-one, or global and many-to-many, have been

proposed.

Thus, there are actually four combinations from the aforementioned categoriza-

tions, defined as follows. Given S1 Ď V1, local one-to-one NA should be thought of

as an injection from S1 to V2 where S1 is much smaller than V1 (few nodes in G1 are

mapped to nodes in G2). Global one-to-one NA should be thought of as an injection

from S1 to V2 where S1 and V1 have similar, or are the same, size (most nodes in

G1 are mapped to nodes in G2). Local many-to-many NA should be thought of as a

relation R Ď S1 ˆ V2 where S1 is much smaller than V1. And global many-to-many

NA should be thought of as a relation R Ď S1 ˆ V2 where S1 and V1 have similar, or

are the same, size.

Third, NA can be pairwise (aligns two networks) or multiple (aligns three or more

networks) [53, 72]. Both pairwise (Fig. 1.2(a, c)) and multiple (Fig. 1.2(b, d)) NA

can produce one-to-one (Fig. 1.2(a, b)) or many-to-many (Fig. 1.2(c, d)) alignments.

We consider all four possible combinations in this dissertation.

6

One-to-one
2 networks

(a)

One-to-one
>2 networks

(b)

Many-to-many
2 networks

(c)

Many-to-many
>2 networks

(d)

Figure 1.2. Illustration of a (a) pairwise one-to-one alignment; (b) mul-
tiple one-to-one alignment; (c) pairwise many-to-many alignment; and (d)
multiple many-to-many alignment. In this toy example we only show three
networks for multiple NA, but multiple NA can be used on more than three
networks as well.

1.2.2 Related work

To find a good “fit” between networks, NA methods generally consist of two al-

gorithmic components. First, a mathematical heuristic is used to quantify the topo-

logical similarity (how close to isomorphic two nodes’ extended neighborhoods are)

between nodes across networks [153, 130, 96, 114, 95, 107, 102, 158, 164, 103, 53, 72].

Nodes’ topological similarities are also sometimes combined with non-network-based

similarities; for biological NA, incorporating the corresponding proteins’ sequence

similarities is popular [153, 95, 130].

Second, these (possibly combined) node similarities are given to an alignment

strategy that aims optimize some objective function. Early NA methods’ alignment

strategies aimed to maximize the overall similarity between nodes in the alignment,

in hopes that doing so would conserve edges and achieve an isomorphic-like matching.

For example, methods used matching algorithms, such as a simple greedy approach

[153] or the Hungarian algorithm [114], on the nodes’ similarities. As another ex-

ample, seed-and-extend approaches were also developed [96, 130, 158, 95]; in such

approaches, first two highly similar nodes are aligned, i.e., seeded. Then, the most

similar of the seed’s neighboring nodes, the neighbors of the seed’s neighbors, etc.

are aligned. This step of extending around the seed is intended to improve the over-

7

all similarity between nodes as well as implicitly conserve edges. Later NA methods’

alignment strategies shifted to search algorithms. By efficiently searching through the

space of possible alignments via genetic algorithms [143, 164] or simulated annealing

[103], such algorithms could explicitly optimize for (i.e., find) alignments with high

overall node similarity and high edge conservation.

However, as we discuss in Sections 1.2.3.2 and 1.2.3.3 (correspondingly, Chapters

3 and 4), these existing NA methods have drawbacks that we aim to address in this

dissertation.

1.2.3 Research questions and our contributions

1.2.3.1 Pairwise versus multiple network alignment

It is hypothesized that multiple NA leads to higher quality alignments than pair-

wise NA [99, 163, 74, 4, 28], and thus to deeper biological insights, since the former

considers information from more networks at once compared to pairwise NA. How-

ever, because fairly comparing pairwise and multiple NA is difficult due to their

different output types (Fig. 1.2), the hypothesis that multiple NA is superior to

pairwise NA had not been tested previously.

Research question. So, the work in this dissertation aims to answer whether

multiple NA indeed leads to deeper biological insights, i.e., to higher across-species

protein functional prediction accuracy, than pairwise NA.

Our contributions. To answer this, we develop an evaluation framework to allow

for a fair comparison of pairwise and multiple NA [166]. In particular, we evaluate

prominent pairwise and multiple NA methods on synthetic and real-world biological

networks, using topological (are aligned regions isomorphic-like) and functional (are

aligned nodes functionally related) alignment quality measures. We compare pairwise

and multiple NA in both a pairwise (native to pairwise NA) and multiple (native to

multiple NA) manner. Pairwise NA is expected to perform better under the pairwise

8

evaluation framework. Indeed this is what we find. Multiple NA is expected to

perform better under the multiple evaluation framework. Shockingly, we find this

not always to hold; pairwise NA is often better than multiple NA in this framework,

depending on the choice of evaluation test. Furthermore, pairwise NA is faster than

multiple NA on average. For these reasons, we focus on pairwise NA for the remainder

of the dissertation.

1.2.3.2 Heterogeneous network alignment

Regardless of the NA category, one issue of existing biological NA methods is that

the alignments they produce are of low functional alignment quality. In particular,

when comparing PPI networks of different species, aligned nodes (proteins) often do

not correspond to proteins that perform the same biological function [130, 115, 30,

110, 72]. In other words, current NA methods are not achieving their goal, and thus

NA cannot effectively transfer functional knowledge across networks.

This could be because existing NA methods deal with homogeneous networks,

where nodes are of a single type and edges are of a single type. However, networks

can have nodes or edges of more than one type (Fig. 1.3). For example, different

biological entities, such as proteins, phenotypes, or drugs, can be modeled as nodes,

and different types of interactions, such as protein-protein, phenotype-phenotype,

drug-drug, protein-phenotype, protein-drug, or phenotype-drug associations can be

modeled as edges. Even within PPI networks, proteins themselves can be categorized

in different ways, for example based on if they are associated with a certain disease or

not. Capturing such heterogeneous information via a new node similarity heuristic,

or developing an alignment strategy that favors aligning nodes of the same type,

could lead to higher quality alignments.

Research question. So, the work in this dissertation aims to answer whether

heterogeneous NA is superior to homogeneous NA.

9

(a)

Figure 1.3. Illustration of two heterogeneous networks, each containing dif-
ferent node as well as edge types (or colors). In a given network, different
node shapes represent different node types, and different line styles repre-
sent different edge types. If we do not consider the ovals with red edges (the
bottom portion of the network), then we have a heterogeneous network with
different node types, and thus implicitly different edge types. If we only con-
sider the ovals with blue or red edges, then we have a heterogeneous network
with different edge types but a single node type (also called multimodal net-
works with two edge modes). The goal of HetNA as we define it is to find a
node mapping between heterogeneous networks that contain different node
types, different edge types, or both.

Our contributions. To answer this, we generalize three prominent homogeneous

NA methods, WAVE [158], MAGNA++ [164], and SANA [103], to their heteroge-

neous counterparts to allow for heterogeneous NA for the first time [70]. We introduce

several algorithmic novelties for this. Namely, these existing methods compute ho-

mogeneous graphlet-based node similarities and then find high-scoring alignments

with respect to these similarities, while simultaneously maximizing the amount of

conserved edges. Instead, we extend homogeneous graphlets to their heterogeneous

counterparts, which we then use to develop a new measure of heterogeneous node

similarity. Also, we extend S3, a state-of-the-art measure of edge conservation for

homogeneous NA, to its heterogeneous counterpart. Then, we find high-scoring align-

ments with respect to our heterogeneous node similarity and edge conservation mea-

sures. In evaluations on synthetic and real-world biological networks, our proposed

heterogeneous NA methods lead to higher-quality alignments, are more robust to

10

noise in the data, and are comparable in terms of running time compared to their

homogeneous counterparts.

1.2.3.3 Data-driven network alignment

Another possible reason that existing NA methods produce alignments of low

functional quality is due to the assumption that they make. Namely, they assume that

topologically similar nodes, i.e., those with isomorphic-like neighborhoods to each

other, are functionally related. Hence, many existing NA methods use node similarity

heuristics that quantify this isomorphic-like matching. However, this assumption may

be flawed. In the context of PPI networks, much data is still incomplete or noisy

[93]. This alone can cause mismatches between proteins’ topological similarity and

functional relatedness. For example, if a set of three proteins that are all linked to

each other via PPIs (i.e., a triangle) is in reality fully evolutionary conserved (i.e.,

perform similar functions) between two species, then the two triangles in the two

species are topologically similar. But say that one of the three PPIs that actually

exists in reality is missing in exactly one of the two species’ current PPI networks

due to data noise. Then, it is a 3-node path in that species that should be aligned

to a triangle in another species in order to identify functional relatedness. That is,

proteins that perform similar functions are now topologically dissimilar due to the

data noise.

Even when PPI network data become complete, the traditional assumption of

topological similarity is unlikely to hold due to biological variation between species.

Namely, molecular evolutionary events such as gene duplication, deletion, or mutation

may cause PPI network topology to differ across species’ evolutionary conserved (i.e.,

functionally related) network regions. Even for protein sequence alignments, pairwise

sequence identity as low as 30% is sufficient to indicate evolutionary conservation (i.e.,

11

homology) for 90% of all protein pairs [140]. So, one can perhaps expect evolutionary

conserved PPI networks of different species to be as topologically dissimilar.

Research question. The work in this dissertation aims to answer whether the pre-

defined topological similarity assumption of existing NA methods holds, and if not,

to shift the paradigm of NA so that it does not rely on this assumption, instead

learning from the data what nodes should be aligned.

Our contributions. We find that the topological similarity assumption does not

hold well. Namely, given node pairs known to be functionally related and node pairs

known to be functionally unrelated, we analyze the distributions of topological sim-

ilarity for the two groups. If the topological similarity distribution of functionally

related pairs is very different from that of functionally unrelated pairs, then topo-

logical similarity can distinguish between functionally related and unrelated pairs.

However, we find that the topological similarity distributions of the two groups are

actually close to each other – if one selects a topologically similar pair, it is almost

an equal chance for that pair to be functionally related as functionally unrelated.

Consequently, we shift the paradigm of how the NA problem is approached.

Specifically, we redefine NA as a data-driven framework, called TARA (data-driven

NA), which attempts to learn the relationship between nodes’ “topological related-

ness” and their functional relatedness without assuming that topological relatedness

means topological similarity [68]. Because the distinction between topological relat-

edness and similarity is crucial to understanding our framework, we illustrate and

describe the difference in Fig. 1.4.

TARA makes no assumptions about what nodes should be aligned, distinguish-

ing it from existing NA methods. Specifically, TARA trains a classifier to predict

whether two nodes from different networks are functionally related based on their

network topological patterns (features). We find that TARA is able to make accu-

12

(a) (b)

Figure 1.4. Illustration of the existing notion of topological similarity versus
our new notion of topological relatedness. Suppose that we are aligning
PPI networks of two different species, where for simplicity, only parts of
the whole networks are shown. Also, suppose that a color corresponds to
the function that a node performs, in this case the “purple” function or the
“orange” function. (a) An NA method based on topological similarity will
produce an alignment with low functional quality on our example networks.
Such a method will align nodes d, e, f , and g in species 1 to nodes 1, 2,
3, and 8 in species 2 because each set of nodes forms the same subgraph: a
square with a diagonal (square-with-diagonal). However, the species 1 nodes
perform the “orange” function, while the species 2 nodes perform the “purple”
function – the nodes are not functionally related. (b) On the other hand,
an NA method based on topological relatedness will produce an alignment
with high functional quality on our example networks. This is because such a
method will learn that 3-node paths in species 1 should be aligned to square-
with-diagonals in species 2, since the 3-node path consisting of nodes a, b,
and c in species 1 performs the same function (“purple”) as the square-with-
diagonal consisting of nodes 1, 2, 3, and 8 in species 2; and that square-with-
diagonals in species 1 should be aligned to squares in species 2, since the
square-with-diagonal consisting of nodes d, e, f , and g in species 1 performs
the same function (“orange”) as the square consisting of nodes 4, 5, 6, and 7
in species 2. Using these learned patterns, the method will try to align the
rest of the nodes between the networks (not shown in the figure), transferring
the functions of 3-node paths to square-with-diagonals, and of squares-with-
diagonals to squares. In essence, noisy data or evolutionary events can be
captured by topological relatedness but not topological similarity.

rate predictions. TARA then takes each pair of nodes that are predicted as related

to be part of an alignment, thus achieving high functional quality.

13

Recall that NA methods can either rely solely on topological information to align

nodes, or they can use both topological and protein sequence information. TARA

as initially implemented is of the former, using only topological information. In

this context, we find that TARA outperforms existing state-of-the-art NA methods

that also use topological information, WAVE and SANA, and even outperforms or

complements a state-of-the-art NA method that uses both topological and sequence

information, PrimAlign [87]. Thus, we go further and extend TARA into TARA++

[69], which uses both topological and sequence information. We do so by creating

an integrated network. In particular, we convert two homogeneous networks (PPI

networks of the species being compared) into one combined network consisting of

proteins of species 1, proteins of species 2, PPIs of species 1, PPIs of species 2, and

across-species links based on sequence information between the proteins. Then, we

adapt social network embedding to extract features from this integrated network,

which we then use in TARA’s data-driven framework. We find that in doing so,

TARA++ improves upon both TARA and PrimAlign.

1.3 Modeling multi-scale data via a network of networks

1.3.1 Background

To reiterate, sometimes the entities (e.g., proteins) that are represented by nodes

in a network (e.g., a PPI network) can themselves be modeled as networks (e.g.,

PSNs). We argue that the systems involving such entities should be integrated into

a “network of networks” (NoN), where nodes in a network at a higher level are them-

selves networks at a lower level (Fig. 1.5). More specifically, we refer to the higher

level of the NoN as the level 2 network (Fig. 1.5(a)), which contains level 2 nodes and

level 2 edges. Each level 2 node has a corresponding level 1 network at the lower level

of the NoN (Fig. 1.5(b)), which contains level 1 nodes and level 1 edges. We number

14

levels in this way with the idea that lower-level networks are the building blocks of

higher-level networks. However, we tend to discuss level 2 networks first, as doing so

is often more convenient for developing intuition. Even though we analyze two-level

NoNs in this dissertation, NoNs can encompass more: proteins interact with each

other to carry out cellular functioning, cells interact with each other to form tissues,

and so on, up the levels of biological organization.

Figure 1.5. Illustration of a two-level biological NoN. Level 2 nodes (pro-
teins) in (a) the level 2 network (PPI network) are joined to their corre-
sponding (b) level 1 networks (PSNs) by dotted lines. Only three level 1
networks are shown for simplicity, but generally every level 2 node can have
a corresponding level 1 network. Nodes in the PSNs are colored based on
their corresponding amino acids in the ribbon diagram and are not indicative
of node labels.

1.3.2 Related work

Some other network models of higher-order data do exist. These include: multi-

plex, multimodal, multilevel, and interdependent networks [141, 119, 25, 97, 40, 134],

which are sometimes used interchangeably and sometimes also referred to as “net-

works of networks”; hierarchical networks [31]; higher-order networks [172]; hyper-

graphs [18]; and simplicial complexes [121]. However, these all model different types

15

of data compared to NoNs as we define them, so we cannot consider these other

network types in our dissertation.

There are also studies that do model data as NoNs. However, they differ from

our work in terms of data analyzed, application domain, and/or network science

task. With respect to data, besides synthetic NoNs, we analyze a PPI network-PSN

biological NoN. However, these other studies analyze NoNs where the level 2 network

is a disease-disease similarity network and the level 1 networks are disease specific

PPI networks [127], where the level 2 network is a social network and the level 1

networks are individuals’ brain networks [56, 129, 12], or where the level 2 network is

a chemical-chemical interaction network and level 1 networks are molecule networks

[168]. With respect to application domain, while we aim to predict protein function,

these other studies aim to identify disease causing genes [127], answer sociologically

motivated questions like whether similarities between friends mean they have similar

ways of thinking [129], or predict new chemical-chemical interactions [168]. With

respect to network science task, while we aim to predict entities’ labels, these other

studies aim to identify important entities (level 1 nodes) [127], predict links between

entities (level 2 nodes) [168], or embed multiple networks at the same level into a

common low dimensional space, using an NoN as an intermediate step [42]. While

it might be possible to extend some of these existing studies to ours or vice versa,

doing so could require considerable effort, as it would mean developing new methods,

and code is not publicly available for all of the existing methods. All of this makes

any potential extensions hard. As such, we cannot compare against these existing

NoN-like methods.

1.3.3 Research questions and our contributions

Given our definition of an NoN, we can characterize the task of entity label pre-

diction in the context of this dissertation. Specifically, since the entities of interest

16

are represented by level 2 nodes and, correspondingly, modeled as level 1 networks,

entity label prediction can refer to (i) using only the level 2 network (Fig. 1.5(a))

to predict level 2 nodes’ labels, corresponding to the task of node label prediction in

the level 2 network, (ii) using only level 1 networks (Fig. 1.5(b)) to predict level 1

networks’ labels, corresponding to the task of graph label prediction using the level

1 networks, and (iii) using the entire NoN to predict entities’ labels.

Research question. Thus, the primary question we aim to answer is whether (iii)

is more accurate than (i) and (ii), i.e., if NoN-based entity label prediction is more

accurate than each of single-level node label prediction and graph label prediction

alone.

Our contributions. In tackling this question, we make the following novel contri-

butions: we construct and provide two new sources of NoN data, we develop novel

approaches for NoN label prediction, and, most importantly, we are the first to test

whether using NoN data in label prediction is more accurate than using only single

level data.

Since to our knowledge, labeled NoNs are limited, we provide two new sources

of such data. First, we develop an NoN generator that can create a variety of syn-

thetic NoNs (Chapter 5.2.3.1). Intuitively, given any set of single-level random graph

generators, such as geometric [133] or scale-free [10], our NoN generator combines

random graphs created from these single-level generators at each level. In this way,

we can label each entity (level 2 node and its level 1 network) based on which combi-

nation of single-level random graph generators it is involved in at the two levels. Our

generator can control a variety of network structural parameters, thus allowing for

the mimicking of a variety of real-world systems. Second, we construct a biological

NoN, consisting of a PPI network from BioGRID [156] at the second level and PSNs

for proteins from Protein Data Bank (PDB) [19] at the first level. Proteins are la-

beled based on their functions via Gene Ontology (GO) annotation data [8] (Chapter

17

5.2.3.2). For each of the GO terms considered, the goal is to predict whether or not

each protein is annotated by that GO term. While computational protein functional

prediction is relatively well-studied, the problem is still very relevant, as the accuracy

of existing methods for this purpose is typically low. The continued importance of

computational annotation of protein function [60] is a major motivator of our disser-

tation. We expect the NoN data resulting from our work to become a useful resource

for future research in both network science and computational biology, including for

the problem of protein function prediction.

We also develop novel approaches for NoN label prediction. In general, label

prediction approaches extract features of the entities and then perform supervised

classification, i.e., prediction of the entities’ labels based on their features. So, for our

dissertation, there are three types of approaches to consider: (i) those that extract

node-level features (i.e., level 2 only), (ii) those that extract network-level features

(i.e., level 1 only), or (iii) those that extract NoN features (i.e., integrated level 1 and

level 2). To our knowledge, approaches of type (iii) do not exist yet, so we create

NoN features in two ways: by combining existing node- and network-level features

and by applying the novel graph neural network (GNN) approach that we propose

for analyzing NoNs.

Then, we aim to evaluate whether approaches of type (iii) outperform those of

types (i) and (ii). If so, this would provide evidence that NoN-based data integration

is useful for label prediction. To determine which approach types are the best, we

evaluate them in terms of accuracy for synthetic NoNs, as class sizes are balanced,

and in terms of the area under the precision recall curve (AUPR), precision, recall,

and F-score for the biological NoN, as class sizes are unbalanced.

For synthetic NoNs, we find that our NoN approaches outperform single-level node

and network ones for those NoNs where the majority of nodes are not densely inter-

connected (i.e., where nodes do not tend to group into densely connected modules).

18

For NoNs where there are groups of densely interconnected nodes (i.e., where there

is clustering structure), an existing single-level approach performs as well as NoN

approaches. For the biological NoN, we find that our NoN approaches outperform

the single-level ones in a little under half of the GO terms considered. Furthermore,

for 30% of the GO terms considered, only our NoN approaches make meaningful pre-

dictions, while node- and network-level ones achieve random accuracy. Also, while

our GNN approach does not perform the best overall, it seems to be useful for oth-

erwise difficult-to-predict protein functions. As such, NoN-based data integration is

an important and exciting direction for future research.

1.4 Organization of the dissertation

In general, this dissertation focuses on novel computational approaches using

multiple networks across different systems and scales in order to improve protein

functional prediction.

Chapter 2 describes an evaluation framework for a fair comparison of pairwise

and multiple NA and shows that pairwise NA is often better.

Chapter 3 describes how homogeneous NA can be generalized to heterogeneous

NA, leading to higher quality alignments.

Chapter 4 describes a completely new paradigm for NA, data-driven NA, and

shows how learning the relationship between nodes’ topological relatedness and their

functional relatedness leads to higher quality alignments and thus more accurate

protein functional prediction than traditional topological similarity-based NA.

Chapter 5 describes a novel, integrative model for multiscale network data analy-

sis, thoroughly evaluating the effects of considering each scale alone vs. together and

showing that integration leads to the discovery of knowledge that cannot be found

from a single scale on its own.

Chapter 6 concludes the dissertation.

19

CHAPTER 2

PAIRWISE VERSUS MULTIPLE NETWORK ALIGNMENT

The work in this chapter is discussed in the following paper:

• Vipin Vijayan, Shawn Gu, Eric Krebs, Lei Meng, and Tijana Milenković
(2020), Pairwise versus multiple network alignment, IEEE Access, 8: 41961-
41974. [166]

2.1 Introduction

2.1.1 Background and motivation

Recall that pairwise NA (PNA) aligns exactly two networks, while multiple NA

(MNA) aligns more than two networks. Since MNA can capture conserved network

regions between multiple networks at once, it is hypothesized that MNA may lead to

deeper biological insights (i.e., higher-quality alignments) compared to PNA. How-

ever, this hypothesis has not been tested yet (for reasons described in the following

paragraphs). Because of this, and because both PNA and MNA have the same

ultimate goal, which is to transfer knowledge from well- to poorly-studied species,

we argue that they need to be compared in order to determine which category of

methods produce higher-quality alignments. Furthermore, MNA is computationally

harder than PNA, because the complexity of the NA problem can increase exponen-

tially with the number of considered networks [62]. So, a comparison of PNA and

MNA in terms of their alignment quality can also answer whether the additional

computational complexity of MNA is worth it.

20

Since typical PNA and MNA methods produce alignments of different types (Fig.

1.2), it has been difficult to compare them. Namely, when aligning two networks,

PNA typically produces a one-to-one node mapping between the two networks, which

results in aligned node pairs (Fig. 1.2(a)). When aligning more than two networks,

MNA produces a node mapping across the multiple networks, which results in aligned

node clusters. If an aligned cluster contains more than one node from a single network,

then it is a many-to-many alignment (Fig. 1.2(d)). If each of the aligned clusters

contains at most one node per network, then it is a one-to-one alignment (Fig. 1.2(b)).

Typical MNA methods produce many-to-many alignments (Fig. 1.2(d)), and they

are called many-to-many MNA methods. MNA methods that produce one-to-one

alignments (Fig. 1.2(b)) are called one-to-one MNA methods. MNA methods can

also be trivially used to align pairs of networks, which results in aligned node clusters

for many-to-many MNA methods (Fig. 1.2(c)) and in aligned node pairs for one-to-

one MNA methods (Fig. 1.2(a)).

There is sometimes confusion in the literature that one-to-one alignments are

automatically global (i.e., outputted by global NA methods), and that many-to-many

alignments are automatically local (outputted by local NA methods). However, this

is not necessarily the case. First, one-to-one alignments can result in only small

regions aligned to each other (clearly without any nodes overlapping), meaning that

they are local one-to-one alignments. Second, many-to-many alignments can result in

aligned node clusters covering nodes from all analyzed networks, meaning that they

are global, many-to-many alignments. In other words, in our opinion, “local” and

“global” describe how much of the networks’ nodes are covered by (i.e., are a part of)

the given alignment, and not on whether the nodes are aligned in one-to-one or many-

to-many fashion. It is important to note that most of the recent one-to-one methods

will not actually produce local alignments, because they require all nodes of the

smaller networks to be mapped to nodes of the larger networks, automatically leading

21

to global (one-to-one, or even more formally, injective) alignments. However, this is

an algorithmic design choice of many existing methods rather than a requirement of

any and every one-to-one method. As discussed in Chapter 1.2, we focus on global

NA, considering both one-to-one and many-to-many methods.

Again, because PNA and MNA generally produce alignments of different types

(aligned node pairs versus aligned node clusters, respectively), alignment quality

measures designed for alignments of one type do not necessarily work for alignments

of the other type. Also, alignment quality measures designed for alignments of two

networks do not necessarily work for alignments of more than two networks. Due to

this difficulty, when a new PNA or MNA method is proposed, it is only compared

against other NA methods from the same category. However, since both PNA and

MNA have the same goal of across-species knowledge transfer, we argue that there is

a need to compare them. This is especially true because early evidence suggests that

aligning each pair of considered networks via PNA and then combining the pairwise

alignments into a multiple alignment spanning all of the networks can be superior to

directly aligning all networks via MNA [39].

2.1.2 Our contributions

Thus, we propose an evaluation framework for a fair comparison of PNA and

MNA (Fig. 2.1).

We evaluate PNA and MNA on synthetic networks with known true node mapping

(we know the underlying alignment that a perfect method should output) and real-

world PPI networks of different species with unknown node mapping (we do not know

which protein in one species corresponds to which protein in the other species). The

network data are discussed in Section 2.2.1.

We evaluate prominent PNA and MNA methods that were published by the be-

ginning of this study, were publicly available, and had user-friendly implementations.

22

Data
(Section II-A)

Network sets

Known mapping
Yeast+%LC
(6 networks)

Unknown mapping
PHY1 (4 networks)
PHY2 (2 networks)
Y2H1 (4 networks)
Y2H2 (2 networks)

NA methods
(Section II-B)

Pairwise NA
(PNA) methods

GHOST
MAGNA++
WAVE
L-GRAAL

Multiple NA
(MNA) methods

IsoRankN
ConvexAlign
BEAMS
multiMAGNA++

Evaluation
(Section II-D)

Pairwise evaluation (PE)
framework

Alignment of one pair of net-
works in the set at a time
(Section II-D1)

Multiple evaluation (ME)
framework

Alignment of all networks in
the set at once
(Section II-D2)

Alignment quality measures
(Section II-C)

Topological quality (TQ) measures
NCV-MNC (applicable to PE and ME)
NCV-CIQ (applicable to ME only)
NCV-GS3 (applicable to PE only)
LCCS (applicable to PE and ME)
(Section II-C1)

Functional quality (FQ) measures
MNE (applicable to PE and ME)
GO correctness (applicable to PE and ME)
Protein function prediction precision, re-
call, F-score (applicable to PE and ME)
(Section II-C2)

Results
(Section III)

PNA vs. MNA in terms of
overall TQ and FQ accuracy
as well as running time

PNA vs. MNA in terms of
the ultimate goal of protein
function prediction accuracy

Figure 2.1: Overview of our PNA versus MNA evaluation framework.

This includes four PNA methods (GHOST [130], MAGNA++ [164], WAVE [158],

and L-GRAAL [102]), and four MNA methods (IsoRankN [99], BEAMS [4], multi-

MAGNA++ [163], and ConvexAlign [74]), which are discussed in Section 2.2.2. Most

of these methods are recent and were thus already shown to be superior to many

past methods, e.g., IsoRank [153], MI-GRAAL [95], GEDEVO [83], and NETAL

[126] PNA methods, plus GEDEVO-M [84], FUSE [62], and SMETANA [142] MNA

methods. Note that newer NA methods have appeared since, such as SANA [103],

ModuleAlign [75], SUMONA [160], and PrimAlign [87], which is why they were not

included here. Importantly, we believe that their inclusion is not required. This is

because our goal is not to determine the best existing (PNA or MNA) method. In-

stead, it is to properly evaluate the whole category of prominent recent PNA methods

against the whole category of equally prominent recent and thus fairly comparable

MNA methods. While the best existing NA method would likely change with intro-

duction of each new method (or possibly even a new measure for evaluating alignment

quality), the best category of NA approaches is less likely to change, unless there is

a drastic shift in how the NA problem is approached and solved (or possibly even

just how alignment quality is evaluated). And one of the purposes of this study is to

determine if such a shift is needed.

23

We evaluate the PNA and MNA methods in terms of their alignment quality (i.e.,

accuracy) as well as running time. We evaluate alignment quality using topological

and functional alignment quality measures. An alignment is of good topological

quality if it reconstructs well the underlying true node mapping (when known) and if

it has many conserved edges (i.e., if it conserves a large common subgraph between the

networks). An alignment is of good functional quality if its aligned node pairs/clusters

contain nodes with similar biological functions. The alignment quality measures are

described in Section 2.2.3.

We evaluate the PNA and MNA methods in both a pairwise (native to PNA) and

multiple (native to MNA) manner, as described in Section 2.2.4.

Section 2.2 describes the data, alignment quality measures, and evaluation frame-

work. Section 2.3 describes our findings.

Since typical PNA and MNA methods produce alignments of different types (Fig.

2.2), it has been difficult to compare them. Namely, when aligning two networks, PNA

typically produces a one-to-one alignment between the two networks, which results in

aligned node pairs (Fig. 2.2(a)). Recently, more PNA methods have appeared that

produce many-to-many alignments, resulting in aligned node clusters (Fig. 2.2(c)).

When aligning more than two networks, MNA produces a node mapping which results

in aligned node clusters. If each of the aligned node clusters contains at most one node

per network, then it is a one-to-one alignment (Fig. 2.2(b)). If an aligned cluster

contains more than one node from a single alignment, then it is a many-to-many

alignment (Fig 2.2(d)). Typical MNA methods produce many-to-many alignments

(Fig. 2.2(d)). MNA methods that produce one-to-one alignments (Fig. 2.2(b)) are

called one-to-one MNA methods. MNA methods can also be trivially used to align

pairs of networks, which results in aligned node clusters for many-to-many MNA

methods (Fig. 2.2(c)) and in aligned node pairs for one-to-one MNA methods (Fig

2.2(a)).

24

One-to-one
2 networks

(a)

One-to-one
>2 networks

(b)

Many-to-many
2 networks

(c)

Many-to-many
>2 networks

(d)

Figure 2.2. Illustration of different alignment types.

Because PNA and MNA generally produce alignments of different types (aligned

node pairs versus aligned node clusters, respectively), alignment quality measures

designed for alignments of one type do not necessarily work for alignments of the other

type. Also, alignment quality measures designed for alignments of two networks do

not necessarily work for alignments of more than two networks. Due to this difficulty,

when a new PNA or MNA method is proposed, it is only compared against other NA

methods from the same category. However, since both PNA and MNA have the same

goal of across-species knowledge transfer, we argue that there is a need to compare

them. This is especially true because early evidence suggests that aligning each pair

of considered networks via PNA and then combining the pairwise alignments into a

multiple alignment spanning all of the networks can be superior to directly aligning

all networks via MNA [39].

2.2 Methods

2.2.1 Data

We use five network sets: one synthetic network set with known true node map-

ping, and four real-world network sets with unknown true node mapping. For each

network, we use only its largest connected component.

Network set with known true node mapping. This synthetic network set,

named Yeast+%LC, contains a high-confidence S. cerevisiae (yeast) PPI network

25

with 1, 004 proteins and 8, 323 interactions [32], along with five lower-confidence yeast

PPI networks constructed by adding 5%, 10%, 15%, 20%, or 25% of lower-confidence

interactions to the high-confidence PPI network (Supplementary Table A.1). This

network set has been used in many existing studies [96, 114, 95, 130, 143, 110, 163].

Since all networks have the same node set, we know the true node mapping. Hence,

for this set, we can evaluate node correctness, i.e., how well the given NA method

reconstructs the true node mapping (Section 2.2.3.1).

Network sets with unknown true node mapping. The four real-world network

sets with unknown node mapping are named PHY1, PHY2, Y2H1, and Y2H2. Each

contains PPI networks of four species, S. cerevisiae (yeast), D. melanogaster (fly),

C. elegans (worm), and H. sapiens (human). The PPI network data, obtained from

BioGRID [21], have been used in recent studies [110, 163]. For each species, four PPI

networks are created that contain the following protein interaction types and confi-

dence levels: all physical interactions supported by at least one publication (PHY1)

or at least two publications (PHY2), as well as only yeast two-hybrid physical in-

teractions supported by at least one publication (Y2H1) or at least two publications

(Y2H2) (Supplementary Table A.1). Just as was done in the existing studies, we also

remove the fly and worm networks from the PHY2 and Y2H2 network sets, because

these networks are too small and sparse (53-331 nodes and 33-260 edges), resulting

in the PHY2 and Y2H2 network sets containing only two networks each. The four

network sets have unknown true node mapping, and thus we cannot evaluate node

correctness. However, we use alternative measures of alignment quality that are based

on Gene Ontology annotations (Section 2.2.3.2).

Gene Ontology (GO) annotations. For alignment quality measures (Section

2.2.3) that rely on GO annotations of proteins [159], we use experimentally obtained

GO annotations from the GO database from January 2016.

26

Protein sequences. When NA methods use protein sequence information to pro-

duce an alignment (Section 2.2.2), we use BLAST protein sequence similarities as

captured by E-values [175]. The sequence data were acquired from the NCBI website

(https://www.ncbi.nlm.nih.gov/).

2.2.2 Network alignment methods that we evaluate

We study GHOST, MAGNA++, WAVE, and L-GRAAL PNA methods, and Iso-

RankN, BEAMS, multiMAGNA++, and ConvexAlign MNA methods.

PNA methods. Most NA methods are two-stage aligners: first, they calculate the

similarities (based on network topology and, optionally, protein sequences) between

nodes of the compared networks, and second, they use an alignment strategy to

find high scoring alignments with respect to the total similarity over all aligned

nodes. GHOST is a two-stage PNA method (Supplementary Section A.1.1). An

issue with two-stage methods is that while they find high scoring alignments with

respect to total node similarity (a.k.a. node conservation), they do not account

for the amount of conserved edges during the alignment construction process. But

the quality of an alignment is often measured in terms of edge conservation. To

address this, MAGNA++ directly optimizes both edge and node conservation while

the alignment is constructed (Supplementary Section A.1.1). MAGNA++ is a search-

based (rather than a two-stage) PNA method. Search-based aligners can directly

optimize edge conservation or any other alignment quality measure. WAVE and

L-GRAAL were proposed as two-stage (rather than search-based) PNA methods

that, just as MAGNA++, optimize both node and (weighted) edge conservation

(Supplementary Section A.1.1).

MNA methods. IsoRankN, BEAMS, and ConvexAlign are two-stage MNA meth-

ods. IsoRankN optimizes node conservation. BEAMS and ConvexAlign optimize

both node and edge conservation (Supplementary Section A.1.1). On the other hand,

27

https://www.ncbi.nlm.nih.gov/

like MAGNA++, multiMAGNA++ is a search-based method that optimizes both

edge and node conservation. IsoRankN and BEAMS produce many-to-many align-

ments. ConvexAlign and multiMAGNA++ produce one-to-one alignments.

Aligning using network topology only versus using both topology and pro-

tein sequences. In our analysis, for each method, we study the effect on output

quality when (i) using only network topology while constructing alignments (T align-

ments) versus (ii) using both network topology and protein sequence information

while constructing alignments (T+S alignments). For T alignments, we set method

parameters to ignore any sequence information. All methods except BEAMS can

produce T alignments and all methods can produce T+S alignments. For T+S align-

ments, we set method parameters to include sequence information. Supplementary

Table A.2 shows the specific parameters that we use, and Supplementary Section

A.1.1 justifies our parameter choices.

2.2.3 Alignment quality measures

Typical PNA methods produce alignments comprising node pairs and typical

MNA methods produce alignments comprising node clusters. We introduce the term

aligned node group to describe either an aligned node pair or an aligned node cluster.

With this, we can represent a pairwise or multiple alignment as a set of aligned node

groups. For formal definitions, see Supplementary Section A.1.2.

2.2.3.1 Topological quality measures

A good NA method should produce aligned node groups that have internal con-

sistency with respect to protein labels. If we know the true node mapping between

the networks, we can let the labels be node names. We consider measures that rely

on node names to be capturing topological quality (TQ) of an alignment. If we do

not know the true node mapping, we let the labels be nodes’ (i.e., proteins’) GO

28

terms. We consider measures that rely on GO terms to be capturing functional qual-

ity (FQ) of an alignment; we discuss such measures in Section 2.2.3.2. We measure

internal consistency of aligned protein groups in a pairwise alignment via precision,

recall, and F-score of node correctness (P-NC, R-NC, and F-NC, respectively); these

measures, introduced by [110], work for both one-to-one and many-to-many pairwise

alignments (Supplementary Section A.1.2.1). We do this in a multiple alignment via

adjusted multiple node correctness (NCV-MNC); this measure, introduced by [163],

works for both one-to-one and many-to-many multiple alignments (Supplementary

Section A.1.2.1).

Also, a good NA method should find a large amount of common network structure,

i.e., produce high edge conservation. We measure edge conservation in a pairwise

alignment via adjusted generalized S3 (NCV-GS3); this measure, introduced by [110],

works for both one-to-one and many-to-many pairwise alignments (Supplementary

Section A.1.2.1). We do this in a multiple alignment via adjusted cluster interaction

quality (NCV-CIQ); this measure, introduced by [163], works for both one-to-one

and many-to-many multiple alignments (Supplementary Section A.1.2.1).

Finally, for a good NA method, conserved edges should form large and dense (as

opposed to small or isolated) conserved regions. We capture the notion of large and

connected conserved network regions (for both pairwise and multiple alignments) via

largest common connected subgraph (LCCS). This measure, recently extended from

PNA [143] to MNA [163], works for both one-to-one and many-to-many alignments,

and for both pairwise and multiple alignments (Supplementary Section A.1.2.1).

2.2.3.2 Functional quality measures

Per Section 2.2.3.1, a good alignment should have internally consistent aligned

node groups. Instead of protein names as in Section 2.2.3.1, in this section we use GO

terms as protein labels to measure internal consistency. Having aligned node groups

29

that are internally consistent with respect to GO terms is important for protein

function prediction.

We measure internal node group consistency with respect to GO terms in two

ways. First, we do so via mean normalized entropy (MNE); this measure, introduced

by [99] (also, see [163] for formal definition), works for both one-to-one and many-

to-many alignments, and for both pairwise and multiple alignments (Supplementary

Section A.1.2.2). Second, we do so via an alternative popular measure, GO correct-

ness (GC); this measure, recently extended from PNA [96] to MNA [163], works for

both one-to-one and many-to-many alignments, and for both pairwise and multiple

alignments (Supplementary Section A.1.2.2).

In addition to measuring internal node group consistency, we directly measure

the accuracy of protein function prediction. That is, we first use a protein function

prediction approach (Section 2.2.3.3) to predict protein-GO term associations, and

then we compare the predicted associations to known protein-GO term associations

to see how accurate the predicted associations are. We do so via precision, recall,

and F-score measures (P-PF, R-PF, and F-PF, respectively); these measures work for

both one-to-one and many-to-many alignments, and for both pairwise and multiple

alignments (Supplementary Section A.1.2.2).

2.2.3.3 Protein function prediction approaches

Here, we discuss how we predict protein-GO term associations from the given

alignment. We use a different protein function prediction approach for each alignment

type. Therefore, below, first, we discuss an existing approach that we use to predict

protein GO-term associations from pairwise alignments (approach 1). Second, we

discuss an existing approach that we use to predict these associations from multiple

alignments (approach 2). Third, since the existing approach for multiple alignments

(approach 2) is very different from the existing approach for pairwise alignments

30

(approach 1), to make comparison between pairwise and multiple alignments (i.e.,

between PNA and MNA) more fair, we extend approach 1 for pairwise alignments

into a new approach for multiple alignments (approach 3). As we show in Section

2.3.5.1, our new approach 3 in general improves upon the existing approach 2. So,

we propose approach 3 as a new superior strategy for predicting protein-GO term

associations from multiple alignments, which is another contribution of this study.

Approach 1. Existing protein function prediction for pairwise alignments.

Here, we predict protein GO-terms associations using a multi-step process proposed

by [110]. For each protein v in the alignment that has at least one annotated GO term,

and for each GO term g, first, we hide v’s true GO term(s). Second, we determine

if the alignment is statistically significant with respect to g, i.e., if the number of

aligned node pairs in which the aligned proteins share GO term g is significantly

high (p-value below 0.05 according to the hypergeometric test; see [110] for details).

Repeating this process for all nodes and GO terms results in set X of predicted

protein-GO term associations.

Approach 2. Existing protein function prediction for multiple alignments.

Here, we predict protein GO-term associations using the approach of [54], as follows.

For each protein v in the alignment that has at least one annotated GO term, and

for each GO term g, first, we hide the protein’s true GO term(s). Second, given that

v belongs to aligned node group C, we measure the enrichment of C in g using the

hypergeometric test. If C is significantly enriched in g (p-value below 0.05; see [163]

for details), then we predict v to be associated with g. Repeating this process for all

nodes and GO terms results in set X of predicted protein-GO term associations.

Approach 3. New protein function prediction for multiple alignments.

Here, we introduce a new approach to predict protein GO-term associations from a

multiple alignment. First, for each node group Ci in the alignment, Ci is converted

into a set of all possible
`|Ci|

2

˘

node pairs in the group. The union of all resulting node

31

pairs over all groups Ci forms the set F of all aligned node pairs. Second, for each

protein v in the alignment that has at least one annotated GO term, and for each

GO term g, we hide v’s true GO term(s). Third, we determine if the alignment is

statistically significant with respect to g, i.e., if the number of aligned node pairs F in

which the aligned proteins share GO term g is significantly high (p-value below 0.05

according to the hypergeometric test; see Supplementary Section A.1.2.3 for details).

Repeating this process for all nodes and GO terms results in a set of predicted protein-

GO term associations. Our proposed approach 3 is identical to approach 1 except for

its first step of converting a multiple alignment into a set of aligned node pairs.

2.2.3.4 Statistical significance of alignment quality scores

Since PNA and MNA methods result in different output types (as they produce

alignments that differ in the number and sizes of aligned node groups for the same

networks), to allow for as fair as possible comparison of the different NA methods,

we do the following. For each NA method, each pair/set of aligned networks, and

each alignment quality measure, we compute the statistical significance (i.e., p-value)

of the given alignment quality score. Then, we take the significance of each align-

ment quality score into consideration when comparing the NA methods (as explained

in Section 2.2.4.3). We compute the p-value of a quality score of an alignment as

described in Supplementary Section A.1.2.4.

2.2.4 Evaluation framework

Given a network set, to fairly compare PNA and MNA, we compare the NA

methods when aligning all possible pairs of networks in the set (pairwise evaluation,

or PE, framework, Section 2.2.4.1), as well as when aligning all networks in the set at

once (multiple evaluation, or ME, framework, Section 2.2.4.2). PNA is expected to

perform better under the pairwise evaluation framework (which is native to PNA),

32

and MNA is expected to perform better under the multiple evaluation framework

(which it is native to MNA).

2.2.4.1 Pairwise evaluation framework

In the PE framework, given a network set, we compare NA methods using pairwise

alignments of all possible pairs of networks in the set. Due to the various ways that a

pairwise alignment of two networks can be created using PNA or MNA methods, we

categorize the pairwise alignments into the following three categories. Specifically:

• We apply PNA to all possible network pairs, denoting the resulting alignments
as the PE-P-P alignment category. Here, since all PNA methods are one-to-one,
their pairwise alignments will be one-to-one.

• We apply MNA to all possible network pairs, denoting the resulting alignments
as the PE-M-P alignment category. Here, if an MNA method is many-to-many,
then its pairwise alignments will also be many-to-many. Otherwise, they will
be one-to-one.

• We apply MNA to the whole network set and break the resulting multiple
alignment into all possible pairwise alignments, as illustrated in Fig. 2.3(a).
Specifically, given a multiple alignment spanning all of the networks (in our
Fig. 2.3(a) illustration, three), we create a pairwise alignment for every pair of
networks (i.e., three pairs) as follows: for the two networks in a given pair, we
remove every node from the multiple alignment that is not a part of the two
networks, which results in a pairwise alignment of the two networks. We denote
the resulting pairwise alignments as the PE-M-M alignment category. Again,
for a one-to-one or many-to-many MNA method, its pairwise alignments will
also be one-to-one or many-to-many, respectively.

In the PE framework, we align all pairs of networks within each of the five ana-

lyzed network sets (Yeast+%LC, PHY1, PHY2, Y2H1, and Y2H2; Section 2.2.1). We

evaluate using all alignment quality measures for pairwise alignments, namely F-NC,

NCV-GS3, and LCCS TQ measures as well as MNE, GC, and F-PF FQ measures

(Section 2.2.3).

33

2.2.4.2 Multiple evaluation framework

In the ME framework, given a network set, we compare NA methods using the

resulting multiple alignments of the set. Due to the various ways that a multiple

alignment of a network set can be created, we categorize the multiple alignments in

the following three categories. Specifically:

• We apply PNA to all possible network pairs and combine the resulting pairwise
alignments into a multiple alignment that spans all networks in the set using
a variation of a method introduced by [39], as illustrated in Figs. 2.3(b)-(c)
and Supplementary Section A.1.3. In more detail, given pairwise alignments
of all networks pairs in the set (in our Fig. 2.3(b)-(c) illustrations, three pairs
of networks, (G1,G2), (G2,G3), and (G1,G3)), produced by PNA, we combine
the pairwise alignments into a multiple alignment as follows. First, we select
a “scaffold” network (in our illustration, G2). Second, we create a set of node
groups consisting of the pairwise alignments between the scaffold network and
the other networks (in our illustration, (G1,G2) and (G2,G3)). Third, we merge
node groups that have at least one node in common. This procedure yields a
multiple alignment of all networks in the set. We denote the resulting alignment
as the ME-P-P alignment category. Here, even though all PNA methods are
one-to-one, their pairwise-combined-to-multiple alignments will be many-to-
many.

• We apply MNA to all possible network pairs and combine the resulting pairwise
alignments into a multiple alignment that spans all networks in the set using
the same variation of the method introduced by [39] as above (Fig. 2.3(b)-
(c) and Supplementary Section A.1.3), denoting the resulting alignment as the
ME-M-P alignment category. Here, independent of whether an MNA method is
one-to-one or many-to-many, its pairwise-combined-to-multiple alignments will
be many-to-many.

• We apply MNA to the whole network set to align all networks at once, denoting
the resulting alignment as the ME-M-M category. Here, if an MNA method is
one-to-one, its direct multiple alignments will also be one-to-one. Otherwise,
they will be many-to-many.

In the ME framework, we align each of the analyzed network sets that has more than

two networks (Yeast%+LC, PHY1, and Y2H1; Section 2.2.1). We evaluate using all

alignment quality measures for multiple alignments, namely NCV-MNC, NCV-CIQ,

and LCCS TQ measures as well as MNE, GC, and F-PF FQ measures (Section 2.2.3).

34

(a)

G1 G2 G3

G1 G2 G3 G1 G2 G3 G1 G2G3

(b)

G1 G2 G2 G3 G1 G3 G1 G2 G3

G1 G2 G3

(c)

G1 G2 G2 G3 G1 G3 G1 G2 G3

G1 G2 G3

Figure 2.3. Illustration on a set of three networks (G1, G2, and G3) of how
we convert: (a) a multiple alignment to pairwise alignments, (b) one-to-one
pairwise alignments to a multiple alignment, and (c) many-to-many pairwise
alignments to a multiple alignment.

35

2.2.4.3 Comparing the performance of network alignment methods

We compare two NA methods in terms of their alignment quality (i.e., accuracy)

and running time.

In terms of alignment quality, given a network pair/set and an alignment quality

measure (i.e., in a given evaluation test), we compare two NA methods as follows.

Let x and y be the methods’ respective alignment quality scores. If both x and y are

significant (p-values below 0.001; Section 2.2.3.4) and are within 1% of each other

(|x´y|
px`yq{2

ă 0.01), then the two methods are tied. They are also tied if both x and y

are non-significant. If both x and y are significant and not tied, then the method

with the best score is superior. If x is significant and y is not, then the method with

score x is superior, and vice versa.

Given k network pairs/sets and l alignment quality measures, i.e., given k ˆ l

evaluation tests, for each evaluation test, we rank all methods from the best one to

the worst one, as follows. Given the methods’ alignment quality scores, for methods

with non-significant scores, we rank the methods last. For methods with significant

scores, we perform the following procedure. If a given method has the best alignment

quality score, then we give it rank 1 (as the 1st best method). We give the next

best performing method rank 2, and so on. If a given method is tied with the

next best performing method, then we rank both methods with the superior (i.e.,

lower) rank. The subsequent methods are ranked as if the previous methods were

not tied. For example, if methods a and b are tied, they are both given rank 1, and

if method c is not tied with method a or method b, then method c is given rank 3).

We call this resulting rank for a given evaluation test an evaluation test rank. We

calculate the overall ranking of an NA method by taking the mean of its ranks over

all kˆl evaluation tests. To evaluate whether the overall rankings of two methods are

significantly different from each other, we apply the one-tailed Wilcoxon signed-rank

test on the k ˆ l evaluation test ranks of the two methods.

36

We also compare the NA methods with respect to their running times. Specifically,

for each network pair/set, for each alignment category in the PE and ME frameworks,

we give the fastest method rank 1, the second fastest method rank 2, and so on. Each

method is restricted to use a maximum of 64 cores.

2.3 Results and discussion

In Section 2.3.1, we compare the quality of T alignments and T+S alignments.

In Sections 2.3.3 and 2.3.4, we compare PNA against MNA in the PE and ME

framework, respectively, in terms of TQ and FQ accuracy as well as running time. In

Section 2.3.5, we compare PNA against MNA exclusively in terms protein function

prediction accuracy, as the main goal of biological NA is to predict protein functions

in one species from protein functions in another species, based on the species’ network

alignment.

2.3.1 Topology versus topology+sequence alignments

Network topology alone can be used to find good alignments of PPI networks [96].

But protein sequence information can be used to complement network topology in

order to produce superior alignments [109]. Due to the complementarity of network

topology and protein sequence information, we expect T+S alignments to have higher

alignment quality than T alignments. In fact, we verify this. Namely, for each NA

method, we compare the given method’s T alignments to their corresponding T+S

alignments, in terms of TQ and FQ measures, under the PE and ME frameworks

(Fig. 2.4). We find the following.

For networks with known true node mapping, T+S alignments are superior to

the corresponding T alignments in almost all cases. Note that as already recognized

by [163], for these networks, i.e., for the Yeast+%LC network set, the superiority

of T+S alignments over T alignments is not a surprising result. This is because

37

Known Unknown

TQ FQ TQ FQ
0

100
200
300
400

N
o.

of
te
st
s

PE framework

Known Unknown

TQ FQ TQ FQ
0

20

40

60

N
o.

of
te
st
s

ME framework T+S superior
T and T+S tied
T superior

Figure 2.4. Comparison of the quality of T alignments versus the corre-
sponding T+S alignments, under each of the PE and ME frameworks. Each
bar shows the number of cases (here, a case refers to a combination of NA
method, a network pair/set, and an alignment quality measure) in which the
T alignment is superior, the T+S alignment is superior, or the two align-
ments are tied (i.e., within 1% of each other’s accuracy). The cases are
separated into network pairs/sets with known true node mapping and net-
work pairs/sets with unknown true node mapping.

this dataset contains networks that all have the same set of nodes. Consequently,

it contains many inter-network pairs of nodes that are the same proteins. Sequence

similarities of such matching node pairs are higher than those of other non-matching

node pairs. These matching inter-network node pairs can likely form aligned node

groups that have very high intra-group sequence similarity due to the node pairs

containing identical proteins. This could explain the superiority of T+S alignments

over T alignments for the set of networks with known node mapping.

Even for the sets of networks with unknown node mapping (PHY1, PHY2, Y2H1,

Y2H2), whose networks contain different node sets, we still see that T+S alignments

are overall superior to T alignments. Namely, only in terms of TQ, T alignments are

somewhat superior to T+S alignments, but T+S alignments are still superior to or

tied with the corresponding T alignments in just under a half of all cases. In terms

of FQ, T+S alignments are superior to or tied with the T alignments in almost all

evaluation tests.

So, we conclude that T+S alignments are overall superior to T alignments. Be-

cause of this, because T+S alignments are more relevant in the computational biology

38

domain, and because of space constraints, henceforth, we mainly analyze T+S align-

ments. Importantly, our findings for T+S alignments also hold for T alignments

(Supplementary Fig. A.6).

Due to space constraints, for additional results on the similarity (overlap) of the

alignments produced the different NA methods, which demonstrate that using protein

sequence information overall yields alignment consistency between the different NA

methods, see Supplementary Section A.1.4 and Supplementary Figs. A.1–A.3.

2.3.2 Method comparison: evaluation details

In Fig. 2.5, we compare PNA and MNA over all evaluation tests (where a test

is a combination of a network pair/set and an alignment quality measure) for T+S

alignments; analogous comparison for T alignments is shown in Supplementary Fig.

A.6. In this section, we discuss how we evaluate and compare PNA and MNA. We

show the results of the comparison in Section 2.3.3 for the PE evaluation framework

and in Section 2.3.4 for the ME evaluation framework.

In all of Sections 2.3.2, 2.3.3, and 2.3.4, when we refer to an “NA method”, we

mean the combination of a PNA or MNA method and an alignment category (Section

2.2.4). Namely, there are 12 NA methods in the PE framework (four PNA methods

associated with the PE-P-P category and four MNA methods associated with each

of the PE-M-M and PE-M-P categories) and 12 NA methods in the ME framework

(four PNA methods associated with the ME-P-P category and four MNA methods

associated with each of the ME-M-M and ME-M-P categories). We analyze the NA

methods via three views, described below and visualized in Fig. 2.5:

39

Figure 2.5: Alignment category comparison results for each of the PE and ME
frameworks over all evaluation tests for T+S alignments. The alignment categories
(i.e., PE-P-P, etc.) are color-coded. View I. Overall ranking of the NA methods.
The “Overall rank” column shows the rank of each method averaged over all evalua-
tion tests, along with the corresponding standard deviation (in brackets). View II.
Alternative view of ranking of the NA methods. Each pie chart shows the fraction of
evaluation test ranks that fall into the 1–4, 5–8, and 9–12 rank bins out of all evalua-
tion test ranks in the given alignment category. The pie charts are color-coded with
respect to alignments of network pairs/sets with known and unknown node mapping,
and TQ and FQ measures. View III. Overall ranking of an NA method versus its
running time for the Y2H1 network set. The size of each point visualizes the overall
ranking of the corresponding method over all evaluation tests, corresponding to the
“Overall rank” column in View I; the larger the point size, the better the method.

40

NA method Overall rank p1-value p2-value Non-sig (fail)

MAGNA++ (PE-P-P) 4.22 (2.98) NA NA 0.06 (0.00)
multiMAGNA++ (PE-M-P) 4.33 (3.87) 5.51e-01 NA 0.11 (0.00)

WAVE (PE-P-P) 4.84 (4.27) 9.38e-02 5.41e-02 0.14 (0.00)
LGRAAL (PE-P-P) 5.81 (3.50) 9.48e-05 3.44e-04 0.19 (0.05)
GHOST (PE-P-P) 6.07 (4.39) 1.12e-05 1.11e-04 0.27 (0.15)

ConvexAlign (PE-M-P) 6.38 (4.24) 1.53e-03 7.01e-03 0.04 (0.00)
multiMAGNA++ (PE-M-M) 6.49 (3.55) 8.27e-09 1.72e-09 0.20 (0.00)

ConvexAlign (PE-M-M) 6.99 (4.04) 2.83e-06 1.52e-04 0.12 (0.00)
IsoRankN (PE-M-M) 8.42 (3.17) 4.88e-13 2.27e-11 0.30 (0.00)
BEAMS (PE-M-P) 8.51 (3.48) 1.15e-11 1.01e-09 0.23 (0.00)

IsoRankN (PE-M-P) 8.57 (3.39) 1.95e-13 3.94e-11 0.32 (0.00)
BEAMS (PE-M-M) 8.95 (3.41) 6.19e-13 2.70e-10 0.31 (0.00)

NA method Overall rank p1-value p2-value Non-sig (fail)

MAGNA++ (ME-P-P) 3.69 (2.60) NA NA 0.00 (0.00)
multiMAGNA++ (ME-M-P) 4.06 (3.70) 4.82e-01 NA 0.06 (0.00)

WAVE (ME-P-P) 4.88 (4.21) 1.26e-01 4.44e-02 0.06 (0.00)
GHOST (ME-P-P) 5.00 (4.34) 1.86e-01 1.52e-01 0.12 (0.00)

LGRAAL (ME-P-P) 5.44 (3.86) 1.10e-01 1.11e-01 0.19 (0.00)
multiMAGNA++ (ME-M-M) 5.88 (3.72) 1.74e-02 6.67e-03 0.06 (0.00)

ConvexAlign (ME-M-M) 6.69 (3.66) 3.89e-02 9.26e-02 0.00 (0.00)
IsoRankN (ME-M-M) 6.69 (3.11) 1.32e-02 2.67e-02 0.12 (0.00)

ConvexAlign (ME-M-P) 8.06 (4.96) 1.64e-02 1.59e-02 0.25 (0.00)
BEAMS (ME-M-M) 8.25 (3.86) 3.42e-03 5.85e-03 0.31 (0.00)
IsoRankN (ME-M-P) 9.50 (3.22) 6.31e-04 1.12e-03 0.50 (0.00)
BEAMS (ME-M-P) 9.75 (3.53) 6.42e-04 1.50e-03 0.56 (0.00)

PE-P-P PE-M-P PE-M-M

9-
12

5-
8

1-
4

R
an

k

ME-P-P ME-M-P ME-M-M

9-
12

5-
8

1-
4

R
an

k

Network type, measure type
Known mapping, TQ measures
Known mapping, FQ measures
Unknown mapping, TQ measures
Unknown mapping, FQ measures

PE-P-P PE-M-P PE-M-M

yeast
fl
y

yeast
w
orm

yeast
h
u
m
an

fl
y

w
orm

fl
y

h
u
m
an

w
orm

h
u
m
a
n

G
H
O
S
T

W
A
V
E

M
A
G
N
A
+
+

L
G
R
A
A
L

A
ve
ra
ge

Is
oR

an
k
N

B
E
A
M
S

m
u
lt
iM

A
G
N
A
+
+

C
on

ve
x
A
li
g
n

A
ve
ra
ge

Is
oR

an
k
N

B
E
A
M
S

m
u
lt
iM

A
G
N
A
+
+

C
on

ve
x
A
li
g
n

A
ve
ra
ge

0.25

4.00

64.00

0.25

4.00

64.00

0.25

4.00

64.00

0.25

4.00

64.00

0.25

4.00

64.00

0.25

4.00

64.00

NA method

R
u
n
n
in
g
ti
m
e
(h
ou

rs
,
lo
g
sc
al
e)

Overall rank
3
6
9
12

ME-P-P ME-M-P ME-M-M

w
orm

,
yeast,

fl
y,

h
u
m
an

G
H
O
S
T

W
A
V
E

M
A
G
N
A
+
+

L
G
R
A
A
L

A
ve
ra
g
e

Is
o
R
an

k
N

B
E
A
M
S

m
u
lt
iM

A
G
N
A
+
+

C
on

ve
x
A
li
g
n

A
ve
ra
g
e

Is
o
R
an

k
N

B
E
A
M
S

m
u
lt
iM

A
G
N
A
+
+

C
on

ve
x
A
li
g
n

A
ve
ra
g
e

1

4

16

64

NA method

R
u
n
n
in
g
ti
m
e
(h
ou

rs
,
lo
g
sc
al
e)

P-P M-P M-M

PE framework ME framework

V
ie

w
I

V
ie

w
II

V
ie

w
II

I

41

• View I: Overall ranking of the NA methods, as described in Section 2.2.4.3.
Since there are 12 methods in a given (PE or ME) framework, the possible ranks
range from 1 to 12. The lower the rank, the better the given method. The “p1-
value” column shows the statistical significance of the difference between the
ranking of the 1st best ranked method and each other method. The “p2-value”
column shows the statistical significance of the difference between the ranking
of the 2nd best ranked method and each other method. The “Non. sig. (fail)”
column shows the fraction of all evaluation tests in which the alignment quality
score is not statistically significant, and, in brackets, the fraction of evaluation
tests in which the given NA method failed to produce an alignment.

• View II: Pie charts showing the fraction of evaluation test ranks that fall
into the 1–4, 5–8, and 9–12 rank bins out of all evaluation test ranks in the
given alignment category. For example, for the PE framework, in the PE-P-P
alignment category, 56%, 26%, and 18% of the evaluation test ranks fall into
ranks 1–4, 5–8, and 9–12, respectively, totaling to 100% of the evaluation test
ranks in the PE-P-P alignment category. The pie charts allow us to compare the
three alignment categories rather than individual NA methods in each category.
The larger the pie chart for the better (lower) ranks, and the smaller the pie
chart for the worse (higher) ranks, the better the alignment category. For
example, in the PE framework, PE-P-P has the most evaluation tests ranked
1–4 and the fewest evaluation tests ranked 9–12, followed by PE-M-P, followed
by PE-M-M. This implies that PE-P-P is superior to PE-M-P and PE-M-M.

• View III: Overall ranking of an NA method versus its running time, as de-
scribed in Section 2.2.4.3. In order to allow for easier comparison between the
different alignment categories, “Average” shows the average running times and
average rankings of the methods in each alignment category.

2.3.3 Method comparison: results in the pairwise evaluation framework

We expect that under the PE framework, PNA will perform better than MNA.

This is exactly what we observe. So, the most interesting and shocking results of this

study do not originate from this section. Instead, they originate from Section 2.3.4

below, when comparing PNA and MNA in the ME framework.

Namely, in the PE framework, the overall ranking of the PNA methods (T+S

alignments from the PE-P-P category) is generally better (lower) than the overall

ranking of the MNA methods (T+S alignments from the PE-M-P and PE-M-M

categories) (View I of Fig. 2.5). An exception is multiMAGNA++’s alignments from

42

the PE-M-P category (multiMAGNA++ directly applied to network pairs), whose

overall ranking is also very good (low). This could be due to multiMAGNA++

being a one-to-one MNA method, which might have caused it to behave similarly as

PNA methods (all of which are also one-to-one) when it is used to align only two

networks. This is further supported by the fact that the only other considered one-to-

one MNA method, ConvexAlign, and specifically its PE-M-P version, is also ranked

better (lower) than the remaining two many-to-many MNA methods, IsoRankN and

BEAMS. Nonetheless, ConvexAlign still has worse (higher) ranking than any PNA

method (View I of Fig. 2.5).

Next, we break down the results into those for networks with known versus un-

known node mapping, and also, into those for TQ versus FQ measures (View II of

Fig. 2.5); additional, even more detailed results for the PE framework are shown

in Supplementary File A.1. For networks with known mapping, we find that PNA

performs better than MNA in terms of both TQ and FQ. For networks with unknown

mapping, PNA performs better than MNA in terms of TQ, while in terms of FQ, the

situation is not as clear.

Namely, for networks with unknown mapping and FQ, as can be seen in View

II of Fig. 2.5, MNA falls into the best (lowest) ranks 1-4 in more of the evaluation

tests than PNA. This implies that MNA is better than PNA. However, at the same

time, MNA also falls into the worst (highest) ranks 9-12 in more of the evaluation

tests than PNA. This implies that MNA is worse than PNA. Because we are inter-

ested in comparing the whole category of the considered PNA approaches against

the whole category of the considered MNA approaches (per our discussion in Section

2.1.2), the above two results combined could be interpreted as MNA and PNA being

comparable for networks with unknown mapping and FQ. On the other hand, for

the same networks (with unknown mapping) and TQ, as well as for networks with

known mapping and both TQ and FQ, PNA falls into the best ranks 1-4 in more of

43

the evaluation tests than MNA, and at the same time, PNA falls into the worst ranks

9-12 in fewer of the evaluation tests than MNA, which means that PNA is superior

to MNA.

Another observation is as follows (Supplementary Tables A.4–A.7). For evalu-

ation tests in which PNA is clearly superior in terms of method rankings to MNA

(again, with the exception of multiMAGNA++’s PE-M-P version), which are tests

excluding networks with unknown mapping and FQ, the best-ranked PNA method

(MAGNA++ or WAVE) is significantly superior to the best-ranked MNA method

(multiMAGNA++’s PE-M-M version, followed by all other MNA methods that are all

similarly ranked), with p-values below 1.8ˆ10´6. On the other hand, for tests where it

is unclear which of PNA and MNA is better, which are tests involving networks with

unknown mapping or FQ, the best-ranked MNA method (ConvexAlign’s PE-M-P

version) is only marginally better than the best-ranked PNA method (MAGNA++),

with p-values between 0.048 and 0.332. This justifies referring to PNA and MNA

as comparable for networks with unknown mapping and FQ, and to PNA as being

superior in all other cases.

Next, we want to comment on the two MNA methods that perform well in at

least some evaluation tests in the PE (pairwise) framework: multiMAGNA++ and

ConvexAlign. Both of these methods produce one-to-one mappings, unlike the other

two MNA methods, BEAMS and IsoRankN, which produce many-to-many map-

pings. Given that all PNA (pairwise) methods are also one-to-one, it might not be

surprising that the two one-to-one MNA methods also perform well in the PE frame-

work. This could be because the existing measures for pairwise alignment accuracy

favor one-to-one mappings. However, we believe that it is not just the one-to-one

aspect of multiMAGNA++ and ConvexAlign that is relevant. First, while multi-

MAGNA++ performs reasonably well in all tests (networks with both known and

unknown node mappings, and both TQ and FQ), ConvexAlign performs poorly for

44

networks with known mapping or TQ but exceptionally well (marginally better than

multiMAGNA++) for networks with unknown mapping and FQ. So, even though

both methods are one-to-one, each has its unique (dis)advantages. Second, in Sec-

tion 2.3.4, which evaluates the methods in the ME (multiple) framework, of the four

MNA methods, it is again multiMAGNA++ and ConvexAlign that perform the best.

This is despite the fact that the existing measures for multiple alignment accuracy do

not necessarily favor one-to-one mappings, and some (especially FQ) actually favor

many-to-many mappings.

A likely reason why ConvexAlign performs well only for networks with unknown

node mapping and FQ is because its parameter values that were recommended and

pre-set by its authors and that we use (Supplementary Section A.1.1) were determined

via cross-validation, by optimizing FQ (GO term similarity of mapped nodes) in

alignments of networks with unknown node mapping (PPI networks of mouse and

human) [74]. Hence, ConvexAlign is semi-supervised, i.e., pre-trained to achieve high

FQ scores, which makes it biased compared to the other considered NA methods, all

of which are unsupervised.

Accuracy versus running time. The PNA methods are not only more accurate in

general (as demonstrated above), but on average they are also at least somewhat if not

much faster (View III of Fig. 2.5). In fact, no MNA method has both better running

time and better ranking than any PNA method, while many PNA methods have both

better running time and better ranking than every MNA method. Additional results

where each method is restricted to use a single core are shown in Supplementary Fig.

A.4.

2.3.4 Method comparison: results in the multiple evaluation framework

We expect that under the ME framework, MNA will perform better than PNA.

Shockingly, we do not find this. Instead, our results reveal the opposite trends, which

45

match those observed under the PE framework. So, the most interesting results of

this study originate from this section.

Namely, in the ME framework, the overall ranking of the PNA methods (T+S

alignments from the ME-P-P category) is generally better (lower) than the overall

ranking of the MNA methods’ T+S alignments from the ME-M-M category, which

in turn is generally better than the overall ranking of the MNA methods’ T+S align-

ments from the ME-M-P category (View I of Fig. 2.5). Again, multiMAGNA++

is an exception: its alignments from the ME-M-P category (multiMAGNA++ first

being applied to network pairs and then its pairwise alignments being combined into

a multiple alignment) are ranked very good (low).

When we inspect the ranking of the methods in more detail (View II of Fig. 2.5),

again, we find similar trends as in the PE framework. Namely, for networks with

known mapping, we find that PNA performs better than MNA in terms of both TQ

and FQ. For networks with unknown mapping, PNA performs better than MNA in

terms of TQ. In terms of FQ, just as under the PE framework, MNA falls into the

best (lowest) ranks in more of the evaluation tests than PNA, but at the same time,

MNA also falls into the worst (highest) ranks in more of the evaluation tests than

PNA. Additional, even more detailed results for the ME framework are shown in

Supplementary File A.2.

Another result also applies to the ME framework: of the MNA methods, multi-

MAGNA++ and ConvexAlign perform better than BEAMS and IsoRankN, where

multiMAGNA++ performs consistently well across all tests, and ConvexAlign per-

forms extremely well only for networks with unknown node mapping and FQ (Sup-

plementary Tables A.8–A.11).

Notice that under the ME framework, the best (PNA or MNA) methods are all

one-to-one. Because all considered PNA methods are one-to-one, one might suspect

that PNA may be overall better than MNA in the ME framework not because of

46

the “pairwise” part but simply because of the “one-to-one” part, possibly because

one might suspect our evaluation measures in the ME framework to favor one-to-one

methods. However, we argue that this is not the case, as follows.

First, if we could show that any existing one-to-one method performed worse than

any existing many-to-many method in our ME framework, this would suffice to show

that our ME framework does not favor one-to-one-methods. While for our considered

methods it is the case that one-to-one (PNA or MNA) methods are superior to many-

to-many (MNA) methods, this could be simply because the considered one-to-one

methods are more recent and thus more powerful than the considered many-to-many

methods. Indeed, when we add to our ME evaluation an older (and thus inferior)

one-to-one MNA method, GEDEVO-M [84], we find that this one-to-one method

is outperformed by the considered many-to-many MNA methods (Supplementary

Tables A.14–A.18). If one-to-one methods had some advantage over many-to-many

methods in our ME framework, this would not have happened. So, a method’s

performance in our ME framework does not seem to be directly related to it being

one-to-one or many-to-many.

Second, by design, our evaluation measures do not favor one-to-one methods.

Namely, recall that many of our evaluation measures were proposed by studies that

introduced or analyzed many-to-many NA methods (Section 2.2.3). An example is

one of our considered FQ measures, mean normalized entropy (MNE), which origi-

nates from the IsoRankN study [99], where IsoRankN is one of the considered many-

to-many MNA methods. So, MNE is unlikely to favor one-to-one methods, as it

was proposed in the many-to-many context. Actually, when we mirror the exact

same MNE evaluation as in the IsoRankN study (see [99] for details) on the methods

we consider here (rather than combine MNE with our other FQ measures as done

so far in the paper), the considered one-to-one methods still perform well (i.e., the

best of all considered one-to-one methods is still better than the best of all con-

47

sidered many-to-many methods) (Supplementary Tables A.12–A.13). That is, even

a measure designed explicitly for many-to-many alignments still ranks one-to-one-

alignments better than many-to-many alignments. This additionally confirms that

the overall superiority of the considered one-to-one (PNA or MNA) methods over the

considered many-to-many (MNA) methods in the ME framework is likely because

the one-to-one methods actually yield higher-quality alignments.

In summary, with these two findings in mind, it is more likely that the considered

one-to-one methods perform better than the considered many-to-many methods in

the ME framework because recent studies have focused on one-to-one alignments.

Consequently, increased research in this area has likely led to better methodological

advancements of one-to-one methods compared to many-to-many methods, explain-

ing the one-to-one methods’ superior performance.

Accuracy versus running time. When we compare the overall rankings of the

NA methods to their running times (View III of Fig. 2.5), again, we find similar

trends as in the PE framework: the PNA methods are not only more accurate (as

demonstrated above), but on average they are also faster.

Since the PNA methods must align every pair of networks in order to produce

a multiple alignment, and since this results in a quadratically increasing running

time with respect to the number of networks k, we ask whether there is some value

of k at which PNA might become less efficient (i.e., slower) than MNA. Due to

space constraints, we present this discussion in Supplementary Section A.1.5 and

Supplementary Table A.3. Additional results where each method is restricted to use

a single core are shown in Supplementary Fig. A.5.

48

2.3.5 Method comparison: focusing on accuracy of protein function prediction

2.3.5.1 New function prediction approach under the multiple evaluation framework

Here, we focus on addressing a potential issue with the existing approach for pro-

tein function prediction for multiple alignments, which we have used up to this point.

As discussed in Section 2.2.3.3, since the existing approach for multiple alignments

(approach 2) is very different than the existing approach for pairwise alignments

(approach 1), to make comparison between pairwise and multiple alignments (i.e.,

between PNA and MNA) more fair, we extend approach 1 for pairwise alignments

into a new approach for multiple alignments (approach 3).

Then, we compare the new approach 3 against the existing approach 2, in hope

that approach 3 will outperform approach 2. If so, in our subsequent analyses, we

will use approach 3 for protein function prediction for multiple alignments. This

way, comparing results of approaches 1 and 3 will be much more fair than comparing

results of approaches 1 and 2. Consequently, we will be able to more fairly compare

PNA against MNA.

Indeed, we find that our new approach 3 overall outperforms the existing ap-

proach 2 (Fig. 2.6 and Supplementary Fig. A.7). Specifically, approach 3 is overall

comparable to approach 2 for networks with known node mapping (marginally infe-

rior in terms of precision, marginally superior in terms of recall) and it is superior

to approach 2 for networks with unknown node mapping (in terms of both precision

and recall).

For networks with known node mapping, the number of predictions made by

approach 3 is just 0.5%-5.8% larger than that made by approach 2, depending on the

NA method, as shown in Supplementary Fig. A.7 (with the exception of ConvexAlign,

which produces up to 54% more predictions under approach 3 than under approach

2). The slightly more predictions by approach 3 could explain its slightly lower

49

0.0
2.5
5.0
7.5

10.0
12.5

P R

N
o.

o
f
te
st
s

Known mapping

Approach

Existing

Precision

New

Recall

0.83 (0.31)

of predictions

0.83 (0.29)

0.83 (0.27)

0.88 (0.19)

41325.50 (14946.47)

48671.00 (30931.18)

0.0
2.5
5.0
7.5

10.0
12.5

P R

N
o
.
o
f
te
st
s

Unknown mapping

Approach

Existing

Precision

New

Recall

0.02 (0.01)

of predictions

0.11 (0.09)

0.04 (0.04)

0.12 (0.07)

330863.92 (214242.46)

251333.58 (282522.05)

New superior New and existing tied Existing superior

Figure 2.6. Comparison of protein function prediction accuracy between
the new (approach 3) versus existing (approach 2) prediction approach for
multiple alignments. Each bar on the left of the figure shows the number of
cases (i.e., alignments) in which the new approach is superior, the existing
approach is superior, or the two approaches are tied. Each table shows
the precision, recall, and number of predictions averaged over all tests. In
parentheses, we show standard deviations. The results are separated into
network sets with known and unknown node mapping.

precision and slightly higher recall. But the differences in the number of predictions

as well as accuracy of these two approaches on networks with known mapping are so

minor (within 2%-5%) that we consider them as comparable.

For networks with unknown node mapping, the number of predictions made by

approach 3 is 2%-72% smaller than the number of predictions made by approach 2,

depending on the NA method (with exception of ConvexAlign and BEAMS, which

in one instance produce 6% and 158% more predictions, respectively, under approach

3). While the fewer predictions under approach 3 could explain higher precision of

approach 3 compared to approach 2, interestingly, approach 3 also results in higher

recall than approach 2, despite the latter making more predictions (Fig. 6).

50

2.3.5.2 Protein function prediction under pairwise versus multiple evaluation frame-

works

Next, we compare protein function prediction accuracy between the PE and ME

frameworks, relying on approach 1 for pairwise alignments and on the fairly compa-

rable approach 3 for multiple alignments. For analogous results where we use the

existing approach 2 for the ME framework, see Supplementary Fig. A.10.

For both the network sets with known and unknown node mapping, the predic-

tions under the PE framework have higher precision while the predictions under the

ME framework have higher recall (Fig. 2.7 and Supplementary Fig. A.8. Note that

here, higher precision and lower recall for the PE framework compared to the ME

framework could be due to somewhat fewer predictions under the PE framework than

under the ME framework. Also, note that for networks with known node mapping,

both sets of predictions have impressively high precision and recall scores, so any

difference in their scores (1%-6%) can be considered marginal. This is not the case

for networks with unknown node mapping, where the scores are lower. In this case,

the superiority of the PE framework’s precision over the ME framework’s precision

(17%) is more pronounced than the superiority of the ME framework’s recall over

the PE framework’s recall (8%). Additionally, achieving higher precision might be

more preferred than achieving higher recall in the task of protein function prediction

by experimental scientists who would potentially validate the predictions. Thus, we

can argue that overall the PE framework (i.e., pairwise alignments) results in more

accurate predictions than the ME framework (i.e., multiple alignments).

2.4 Conclusion

We introduce an evaluation framework for a fair comparison of PNA against MNA,

in order to test the hypothesis that MNA can capture deeper biological insights, i.e.,

51

0.0
2.5
5.0
7.5

10.0
12.5

P R

N
o
.
o
f
te
st
s

Known mapping

Framework

PE

Precision

ME

Recall

0.85 (0.28)

of predictions

0.83 (0.29)

0.76 (0.21)

0.88 (0.19)

36420.08 (8790.43)

48671.00 (30931.18)

0.0
2.5
5.0
7.5

10.0
12.5

P R

N
o.

of
te
st
s

Unknown mapping

Framework

PE

Precision

ME

Recall

0.14 (0.07)

of predictions

0.11 (0.09)

0.11 (0.06)

0.12 (0.07)

130969.17 (99846.44)

251333.58 (282522.05)

PE superior PE and ME tied ME superior

Figure 2.7. Comparison of protein function prediction accuracy under the
the PE and ME frameworks. The figure can be interpreted the same way as
Fig. 2.6. Here, we use new approach 3 for the ME framework.

produce higher-quality alignments, compared to PNA. We find that (i) the consid-

ered PNA methods produce pairwise alignments that are of higher quality than the

corresponding pairwise alignments produced by the considered MNA methods, and

(ii) the PNA methods produce multiple alignments that are of higher quality than

the corresponding multiple alignments produced by the MNA methods. Also, using

the pairwise alignments leads to higher protein function prediction accuracy than

using the multiple alignments. Importantly, in addition to PNA being overall more

accurate, it is also overall faster than MNA. This holds both both of T+S alignments

and T alignments.

In our evaluation, i.e., thus far in the paper, we have aimed to compare the

two categories of approaches, PNA and MNA, rather than to identify which specific

NA method (whether of the PNA or MNA type) is the best, for reasons discussed

in Section 2.1.2. Only here, we briefly comment on the performance of the best

approach(es) in each category.

In the PNA category, most of the considered approaches, and especially MAGNA

++, perform well consistently across the different scenarios (in both PE and ME

framework, for both networks with known and unknown node mapping, and for both

52

TQ and FQ), with some exceptions (Supplementary Tables A.4–A.11). In the MNA

category, only multiMAGNA++ works well consistently across all scenarios. Addi-

tionally, ConvexAlign works well for FQ and networks with unknown node mapping.

However, no method is always the best (i.e., has an overall rank of 1 over all

evaluation tests). Namely, while in both PE and ME frameworks several PNA meth-

ods and the multiMAGNA++ MNA method achieve very good (low) overall ranks

in the 1-2 range for networks with known node mapping or TQ, for networks with

unknown node mapping and FQ, overall ranks start at about 4 (Supplementary Ta-

bles A.4–A.11). That is, for networks with unknown mapping and FQ, even the

best methods (ConvexAlign and multiMAGNA++) work well for some but not all

networks or alignment quality measures. So, there seems to be a lot more room for

improvement on how to better perform PNA or MNA to improve FQ (the quality

of functional predictions) from networks with unknown mapping (PPI networks of

different species). Fig. 2.7 further signals this, given low prediction accuracy under

both the PE and ME frameworks.

Importantly, the best approaches in this study in terms of FQ are of the one-

to-one type, which we hypothesize is because of heavier recent focus on and thus

methodological advancements of such methods compared to those of the many-to-

many type, per our discussion in Section 2.3.4. But one-to-one alignments cannot

capture gene duplication events that exist in biological networks [33], which require

existence of paralogs, i.e., a gene in one network being mapped to multiple genes in

the same or another network. While many-to-many alignments can in theory capture

these events, the considered many-to-many methods do not perform well in terms of

FQ. So, developing better many-to-many methods might be a crucial future step in

NA research.

Since we demonstrate in the ME framework that PNA can (by integrating pairwise

alignments) produce multiple alignments that are superior to multiple alignments

53

produced by MNA, we believe that any new MNA methods should be compared

not just to existing MNA methods but also to existing PNA methods using our

evaluation framework, to properly judge the quality of alignments that they produce.

Our suggestion is similar to that of [110], who evaluated local versus global NA

(rather than PNA versus MNA) and concluded that any new NA method should be

compared against existing local as well as global NA methods.

Moreover, in the ME framework, PNA can produce multiple alignments that are

superior to multiple alignments produced by MNA even with the simple variation of

the pairwise alignment integration strategy (i.e., scaffolding procedure) introduced

by [39]. Any more sophisticated scaffolding procedure that might be developed in the

future will yield even more superior PNA-based multiple alignments and consequently

even further emphasize the superiority of PNA over MNA. In other words, for MNA

to gain advantage over PNA, a drastic redesign of the current MNA algorithmic

principles might be needed.

In summary, our current results suggest that perhaps it might be sufficient to focus

on the faster PNA and integration of pairwise alignments into multiple ones rather

than on the slower MNA. Of course, with development of newer approaches, the

conclusions from this study might change. It is crucial that we (the NA community)

gain in-depth understanding of practical implications of one-to-one versus many-to-

many, pairwise versus multiple, local versus global, and other types of NA. This

understanding is even more crucial given recent shift from traditional NA of static

and homogeneous (single node type and single edge type) networks towards dynamic

[165, 162, 7] or heterogeneous [123, 70] NA, as well as from data-uninformed (i.e.,

unsupervised) to data-driven (i.e., supervised) NA [68].

54

CHAPTER 3

HETEROGENEOUS NETWORK ALIGNMENT

The work in this chapter is discussed in the following paper:

• Shawn Gu, John Johnson, Fazle E. Faisal, and Tijana Milenković (2018),
From homogeneous to heterogeneous network alignment via colored graphlets,
Scientific Reports, 8, Article number: 12524. [70]

3.1 Introduction

3.1.1 Background and motivation

Recall that regardless of NA category, i.e., pairwise or multiple, existing methods

fail to align functionally related proteins. One reason this may happen is that they

treat all networks as homogeneous, i.e., containing nodes of one type and edges of one

type; we refer to the alignment of homogeneous networks as HomNA. However, a net-

work can have nodes or edges of more than one type (or color). For example, different

biological entities, such as proteins, phenotypes, or drugs, can be modeled as nodes,

and different types of interactions, such as protein-protein, phenotype-phenotype,

drug-drug, protein-phenotype, protein-drug, or phenotype-drug associations can be

modeled as edges. Analyzing such heterogeneous multi-node- or multi-edge-type

network data can lead to deeper insights into cellular functioning compared to ho-

mogeneous network analyses [61]. So, there is a need for being able to perform

heterogeneous NA (HetNA).

While an existing method called AlignPI [171] was claimed to align heterogeneous

networks, it actually did not perform HetNA as we define it in this study. Namely,

55

AlignPI was simply used to align two networks of different types to one other (specif-

ically, the human PPI network to the disease-disease association network). However,

each of the two considered networks is homogeneous, and thus the networks were

aligned in the homogeneous fashion. Another relevant existing method is Fuse [62],

which works via data integration. As such, it might appear that Fuse deals with data

of different types, i.e., heterogeneous networks. However, it does not. Namely, Fuse

aligns homogeneous PPI networks of different species, where the data integration

step refers to using information from all of the homogeneous networks to calculate

similarities between their nodes. Then, an alignment is still produced in the ho-

mogeneous fashion. The remaining relevant existing method is multimodal network

alignment [123], which does deal with a special case of the HetNA problem. Namely,

it aligns multimodal networks, which are a special case of heterogeneous networks

as we define them. A multimodal (also called multiplex) network contains edges of

different types (or modes) between the same set of nodes. That is, it contains only

a single node type (Fig. 1.3). However, in this study, we define a heterogeneous

network as a network that can contain different node types or different edge types

(or both), and thus, our definition of HetNA is more broad than that of multimodal

network alignment. Importantly, since the multimodal network alignment approach

was not published as of completion of our evaluation (i.e., it was available only on

arXiv), the code implementing it was not available at the time. So, we were unable

to consider this approach in this study.

3.1.2 Our contributions

As already noted, current HomNA methods aim to find alignments with high ho-

mogeneous node conservation (HomNC) and homogeneous edge conservation (HomEC).

So, to generalize HomNA to HetNA, we generalize HomNC to heterogeneous node

56

conservation (HetNC) and HomEC to heterogeneous edge conservation (HetEC). We

describe these modifications intuitively below and formally in Section 3.3.

From homogeneous to heterogeneous NC. First, we introduce relevant concepts

in the homogeneous context. Intuitively, two nodes from different homogeneous net-

works are topologically similar if their extended neighborhoods are similar. This

idea can be quantified with homogeneous graphlets (small – typically up to 5-node –

connected subgraphs), which have been been extensively studied in homogeneous net-

work analysis [112, 174, 158, 82, 155, 51, 169, 152]. For each node, for each graphlet,

one counts how many times the given node touches each node symmetry group, or

node orbit, in the given graphlet (e.g., in a 3-node path, the nodes at the end of

the path are symmetric to each other and are thus in the same orbit, but they are

distinct from the node in the middle, which is thus in a separate orbit). These counts

over all graphlets summarize the extended network neighborhood of the node into its

graphlet degree vector (GDV). Then, to compute topological similarity between two

nodes, their GDVs are compared.

Second, when we have a heterogeneous (node- or edge-colored) network, we mod-

ify the above notion of topological similarity between nodes; now, two nodes from

different networks are topologically similar if they are of the same color and if their

extended neighborhoods are of similar color and network structure. To quantify this,

we extend homogeneous graphlets into heterogeneous (or colored) graphlets, as fol-

lows. Given a heterogeneous network containing n nodes and c different node (or

edge) colors, an exhaustive extension would track both which combinations of node

(or edge) colors exist in a given graphlet as well as at which node (or edge) posi-

tions in the graphlet the colors occur. With such an approach, the computational

complexity of the problem, namely both the enumeration of all possible heteroge-

neous graphlet types on up to n nodes (the space complexity) and counting of the

heterogeneous graphlets in a network (the time complexity), would increase exponen-

57

tially with the number of colors [161]. Instead, we propose a more computationally

efficient node-colored (or edge-colored) graphlet approach: we only track which com-

binations of node (or edge) colors exist in a given graphlet but not at which node

(or edge) positions in the graphlet the colors occur (Fig. 3.1). Consequently, with

our approach: 1) the number of possible colored graphlets and thus the computa-

tional space complexity is lower compared to the exhaustive approach, and 2) most

importantly, the computational time complexity of counting colored graphlets in a

heterogeneous network is the same as that of counting original graphlets in a homo-

geneous network, unlike with the exhaustive approach (Fig. 3.1). Given node- or

edge-colored graphlets, analogous to the GDV of a node in a homogeneous network,

we summarize the extended neighborhood of a node in a heterogeneous network with

its node-colored GDV (NCGDV) or edge-colored GDV (ECGDV). Then, we compute

topological similarity between two nodes from heterogeneous networks by compar-

ing the nodes’ NCGDVs, ECGDVs, or both. Formal definitions of node-colored and

edge-colored graphlets, as well as NCGDVs and ECGDVs, can be found in Section

3.3.

Note that in our evaluation, we consider networks that contain only different

node types. As such, our considered data contain different edge types only implicitly,

because edges between nodes of different types will by definition be of different types

themselves. So, in our evaluation, we need to consider only node-colored graphlets

and NCGDVs, but not edge-colored graphlets or ECGDVs. Yet, we propose, define,

and provide software implementation for edge-colored graphlets and ECGDVs as well,

because these can be used alone for alignment of multimodal networks or combined

with node-colored graphlets and NCGDVs for alignment of heterogeneous networks

such as those in Fig. 1.3.

58

(a) (b)

Figure 3.1. Illustration of (a) node-colored and (b) edge-colored graphlets.
(a) With the exhaustive approach for enumerating all possible heterogeneous
graphlets corresponding to homogeneous graphlet G1, i.e., a 3-node path,
given two colors, there would be six heterogeneous graphlets, each account-
ing for both which colors are present in the graphlet and which node position
has which color. On the other hand, with our approach, there are three possi-
ble colored graphlets, denoted by tcn1u, tcn2u, and tcn1 , cn2u, each accounting
only for which colors are present in the graphlet, ignoring the node-specific
color information. Consequently, with our approach, the last four graphlets
on the right of the arrow, which all have the same two colors present in them,
are treated as the same heterogeneous graphlet. We design our approach in
this way primarily to reduce the time complexity of counting heterogeneous
graphlets in a network (but consequently, we also reduce the space complex-
ity compared to the exhaustive approach). Namely, with our approach, the
computational time complexity of searching for a given colored graphlet in
a heterogeneous network remains the same as that of searching for its ho-
mogeneous equivalent. This is because the former involves: 1) counting in
the heterogeneous network all graphlets, independent of their colors (which
is the same as counting homogeneous graphlets in the network), and 2) for
each of the homogeneous graphlets found in the network, simply determin-
ing which node colors appear in it and thus which node-colored graphlet the
non-colored graphlet corresponds to. Step 1 is the time consuming part of
the node-colored graphlet counting process, unlike step 2, which is trivial
(can be done in constant time). (b) We develop a similar approach for edge-
colored graphlets.

59

The software implementing node-colored and edge-colored graphlet counting is

available upon request. We also provide an intuitive graphical user interface (GUI)

for easy use by domain scientists.

From homogeneous to heterogeneous EC. In HomNA, S3 (Fig. 3.2) is a state-

of-the-art EC measure [164, 103]. To explain S3, first, we need to define a conserved

edge. Intuitively, given two nodes in one network, and given their aligned counterparts

in another network, the alignment is said to conserve an edge (i.e., form a conserved

edge) if the two nodes are connected in the first network and the aligned counterparts

are connected in the other network. Otherwise, if only the two nodes in the first

network are connected or only their aligned counterparts in the other network are

connected, but not both, the alignment is said to not conserve an edge (i.e., form a

non-conserved edge). Formal definitions of conserved and non-conserved edges can be

found in Section 3.3. Then, S3 is defined the ratio of the number of conserved edges

to the number of both conserved and non-conserved edges. Intuitively, S3 rewards an

alignment whenever it aligns an edge in one network to an edge in the other network

and penalizes it whenever it aligns an edge in one network to a non-edge in the other

network (or vice versa).

We extend S3 into a new measure of heterogeneous EC. In particular, we redefine

what a conserved edge means, by accounting for colors of its aligned end nodes.

Specifically, given a conserved edge consisting of nodes u and v in one network, and

the corresponding aligned nodes u1 and v1, respectively, in the other network, if both

u and u1 have the same color and v and v1 have the same color, then the edge is fully

conserved. Instead, if either u and u1 have the same color or v and v1 have the same

color, but not both, then the edge is partially conserved, i.e., its contribution to the

heterogeneous S3 score is penalized. If neither u and u1 have the same color nor v and

v1 have the same color, then the edge is even less conserved than in the previous case,

i.e., its contribution to the heterogeneous S3 score is penalized even more. Finally, if

60

Figure 3.2. Illustration of HomEC and HetEC for an alignment between
networks G and H. Arrows represent one possible alignment (mapping)
between the networks, i.e., their nodes. Note that this node mapping is
not the best alignment possible with respect to HomEC, but we use it to
illustrate the concepts involved. In the homogeneous case (i.e., if all nodes
were of the same color), there exist four conserved edges: the one formed by
pa, aq and pa1, a1q – because a is aligned to a1, b is aligned to b1, and an edge
exists both between a and b as well as between a1 and b1; the one formed by
pa, cq and pa1, c1q; the one formed by pc, dq and pc1, d1q; and the one formed by
pb, dq and pb1, d1q. On the other hand, pa, dq and pa1, d1q form a non-conserved
edge, because while a is aligned to a1 and d is aligned to d1, there is an
edge between a and d but not between a1 and d1. For a similar reason,
pb, cq and pb1, c1q form another non-conserved edge. So, given the existence
of four conserved edges and two non-conserved edges, homogeneous S3 is

conserved edges
p# conserved edges`# non-conserved edgesq

“ 4{p4 ` 2q “ 0.67. In the heterogeneous
case, for an edge to be conserved, the homogeneous condition is still required.
However, we also account for colors of the aligned end nodes of a conserved
edge and penalize for color mismatches. Specifically, pa, bq and pa1, b1q are
counted as a fully conserved edge (with conservation weight of 1), because
in addition to the fact that this edge is conserved in the homogeneous case,
a has the same color as a1, and b has the same color as b1. pa, cq and pa1, c1q

are counted as a less conserved edge (with conservation weight of 2
3
), because

while a and a1 have the same color, c and c1 do not. Similarly, pb, dq and pb1, d1q

form a partly conserved edge with conservation weight of 2
3
. pc, dq and pc1, d1q

are counted as an even less conserved edge (with conservation weight of 1
3
)

because neither c and c1 nor d and d1 have the same color. Finally, pa, dq and
pa1, d1q form a non-conserved edge, just as in the homogeneous case. Given
the total edge conservation of 1` 2

3
` 2

3
` 1

3
“ 8

3
and two non-conserved edges

(the same ones as in the homogeneous case), heterogeneous S3 uses the same
formula as S3 and is 8

3
{p8

3
` 2q “ 0.57.

61

the edge is non-conserved, we treat it the same as in the homogeneous case. In this

way, our new heterogeneous S3 measure favors both conserving edges and conserving

edges whose aligned end nodes match in color.

From homogeneous to heterogeneous NA. We modify existing HomNA methods

WAVE, MAGNA++, and SANA to perform HetNA by optimizing our new HetNC

and HetEC measures (instead of their original HomNC and HomEC measures) with

these methods’ ASs. We choose WAVE and MAGNA++ because they rose to the top

in the study by Meng et al., 2016 [110], which is a recent comprehensive evaluation of

10 HomNA methods. Since then, SANA appeared and was promising. So, we include

SANA into this study as well. We modify all three methods and evaluate their new

heterogeneous versions as described below. Detailed descriptions of these methods

and their heterogeneous modifications can be found in Section 3.3.

3.2 Results and discussion

First, we describe our evaluation framework, specifically data that we use, net-

works that we align, and parameters of the three considered NA methods. Second,

we compare HomNA and HetNA. That is, we compare each of homogeneous WAVE,

MAGNA++, and SANA to its heterogeneous counterpart. Recall that there cur-

rently exist no HetNA methods, and thus, we cannot compare heterogeneous WAVE,

MAGNA++, or SANA to any other hetNA method except to each other. In more

detail, we evaluate: 1) the effect of HetNC, i.e., whether using more node colors

increases alignment quality (and especially whether using two or more colors, i.e.,

HetNA, is superior to using a single color, i.e., HomNA), 2) the effect of HetEC,

i.e., whether using heterogeneous S3 over homogeneous S3 increases alignment qual-

ity, and 3) the effect of the alignment method, i.e., which of our three new HetNA

methods performs the best with respect to accuracy and running time.

62

3.2.1 Evaluation

We perform three evaluation tests corresponding to three sets of networks: 1)

synthetic networks with up to four artificially imposed node colors, 2) homogeneous

human PPI networks that have up to four node colors imposed according to proteins’

involvement in a combination of aging, cancer, and Alzheimer disease (AD), and 3)

heterogeneous human protein-GO networks, where the two node colors correspond

to proteins and their Gene Ontology (GO) terms, and edges exist between proteins,

between proteins and GO terms, and between GO terms. Note that while we evaluate

WAVE and SANA in all three tests, due to MAGNA++’s computational complexity,

we evaluate MAGNA++ only in the first test on the smaller synthetic networks but

not in the remaining two tests on the larger PPI or protein-GO networks. We align

each of the above networks to its noisy versions. Details are as follows.

Synthetic networks. We form synthetic networks using two random graph gener-

ators, namely: 1) geometric random graphs [133] (GEO) and 2) scale-free networks

[10] (SF). The two models have distinct network topologies [113], which enables us to

test the robustness of our results to the choice of random graph model. We form five

random network instances per model and average results over them to account for

the stochastic nature of the models. We set all model network instances to the same

size of 1,000 nodes and 6,000 edges. Since the existing random graph generators are

not designed to produce heterogeneous networks, we simply randomly assign each

node a color out of k possible colors, where there are approximately 1000{k nodes of

each color. We vary k from one to four. That is, for each synthetic network, we form

heterogeneous versions with one, two, three, and four colors.

Human PPI networks. We obtain the human PPI network data from BioGRID

[21]. We consider two types of PPIs: only affinity capture coupled to mass spectrom-

etry (APMS) and only two-hybrid (Y2H). Sizes of the resulting networks are shown

in Table 3.1.

63

TABLE 3.1

NUMBER OF NODES AND EDGES IN THE TWO CONSIDERED PPI

NETWORKS

Network # of nodes # of edges

APMS 11,450 92,257

Y2H 10,317 41,925

We impose node colors onto each PPI network based on the proteins’ involvement

in a combination of aging, cancer, and Alzheimer’s disease (AD). We obtain a list of

sequence-based (Seq) human aging-related genes from GenAge [38] and a list of gene

expression-based (Expr) human aging-related genes from the study by Berchtold et

al., 2008 [14]. We obtain a list of genes related in cancer from COSMIC [9]. We

obtain a list of human genes related to AD from Simpson et al., 2011 [151].

We use these data to impose colors onto nodes in each of the two PPI networks (as

well as their noisy counterparts; see below). For a given network, we use sequence-

based aging- and cancer-related data to form four different colored versions of the

network, as follows:

• In the 1-colored network, we treat all the nodes the same, meaning they have
the same color.

• In the 2-colored network, we use the aging-related data to color nodes as “aging-
related". Otherwise, they are “non-aging-related". This gives us 270 “aging-
related" and 10,047 “non-aging-related" nodes.

• In the 3-colored network, we use aging- and cancer-related data. If a node is
present in the aging-related data, we color it “aging-related". If a node is absent
there but present in the cancer-related data, we color it as “cancer only". If a
node is absent from both, we color it as “non-aging-related and non-cancer".
In this way, we have 270 “aging-related", 405 “cancer only", and 9,642 "non-
aging-related and non-cancer" nodes.

• In the 4-colored network, we use the same scheme as the 3-colored network,
except if a node is present in both data sets, we color it as “both aging-related

64

and cancer". This gives us 203 “aging-related", 405 “cancer only", 67 “both
aging-related and cancer", and 9,642 “non-aging-related and non-cancer" nodes.

To test the robustness of the choice of node color data above, we vary the un-

derlying data. Now, for each of the two PPI network types, we use expression-based

aging- and AD-related data to form four colored versions of the given network, as

follows:

• In the 1-colored network, we treat all the nodes the same, meaning they have
the same color.

• In the 2-colored network, we use the aging-related data to color nodes as “aging-
related". Otherwise, they are “non-aging-related". This gives us 2,889 “aging-
related" and 7,428 “non-aging-related" nodes.

• In the 3-colored network, we use aging- and AD-related data. If a node is present
in the aging-related data, we color it “aging-related". If a node is absent there
but present in the AD-related data, we color it as “AD only". If a node is
absent from both, we color it as “non-aging-related and non-AD". In this way,
we have 2,889 “aging-related", 356 “AD only", and 7,072 “non-aging-related and
non-AD" nodes.

• In the 4-colored network, we use the same scheme as the 3-colored network,
except if a node is present in both data sets, we color it as “both aging-related
and AD". This gives us 2,232 “aging-related", 356 “AD only", 657 “both aging-
related and AD", and 7,072 “non-aging-related and non-AD" nodes.

Human protein-GO networks. A heterogeneous protein-GO network has two

types of nodes: protein and GO term [8], and three types of edges: 1) PPI, 2)

protein-GO association, and 3) GO-GO semantic similarity. The PPI data are the

same two types of PPI networks as before (APMS and Y2H), protein-GO associations

are obtained from the Gene Ontology Consortium [8] based on experimental evidence

codes, and GO-GO semantic similarities are computed as follows. We compute se-

mantic similarity between all GOs that annotate at least one protein in the given

considered PPI network. We use Lin method [106] to compute the semantic similar-

ity. We form edges between GOs using semantic similarity threshold of 0.7, because

the density of the resulting GO-GO network approximately matches the density of

the corresponding PPI network. Considering APMS PPIs only and Y2H PPIs only,

65

we form two heterogeneous protein-GO networks for human, whose sizes are shown

in Tables 3.2 and 3.3.

TABLE 3.2

NUMBER OF NODES IN THE TWO CONSIDERED

HETEROGENEOUS PROTEIN-GO NETWORKS

Network Node type

of proteins # of GO terms # of all nodes combined

APMS 11,450 5,558 17,008

Y2H 10,317 5,554 15,871

Creating noisy counterparts of a synthetic, PPI, or protein-GO network.

Given an original network G, we construct its noisy counterparts as follows. Consid-

ering a noise level of x%, we randomly choose x% of the edges and remove them from

the original network, and then we randomly choose the same number of node pairs

that are disconnected in the original network and add edges between them. That is,

we randomly rewire x% of the edges in the original network. Each noisy network has

the same number of nodes and edges as the original network. For each considered

original network, we use the following noise levels: 0%, 10%, 25%, 50%, 75%, and

100%. We construct multiple instances of noisy networks at each level to account

for the randomness in edge rewiring; then, we average results (i.e., alignment qual-

ity) over the multiple runs. For WAVE and SANA, we use at least three instances.

66

TABLE 3.3

NUMBER OF EDGES IN THE TWO CONSIDERED

HETEROGENEOUS PROTEIN-GO NETWORKS

Network Edge type

of PPIs # of protein-GO
associations

of GO-GO
semantic similarities

of all edges
combined

APMS 92,257 24,854 48,731 165,842

Y2H 41,925 24,473 48,873 115,271

For MAGNA++, we only use one instance due to MAGNA++’s high computation

complexity.

Measuring alignment quality. Since we align an original network to its noisy coun-

terpart, we know the true node mapping between the aligned networks (of course,

this mapping is hidden from each NA method when it is asked to produce an align-

ment). Therefore, we evaluate the quality of the given network by measuring its node

correctness, which quantifies how well the alignment matches the true node mapping.

Formally, node correctness is the percentage of node pairs from the given alignment

that are present in the true node mapping.

3.2.2 Comparison of homogeneous and heterogeneous network alignment

We need to define our considered evaluation scenarios. HomNA uses HomNC and

HomEC, and we call this scenario HomNC-HomEC. For HetNA, if HetNC is used

with HomEC, we call this scenario HetNC-HomEC; if HomNC is used with HetEC,

we call this scenario HomNC-HetEC; and if HetNC is used with HetEC, we call this

scenario HetNC-HetEC. Note that while MAGNA++ and SANA can optimize both

NC and EC because they are search algorithms, WAVE only optimizes NC and it

67

cannot directly optimize EC, because it is a seed-and-extend algorithm. Hence, while

we can evaluate MAGNA++ and SANA in all four of the above scenarios, i.e., while

for these two methods we can study the effect on alignment quality of both HomNC

versus HetNC and HomEC versus HetEC, for WAVE, we can only study the effect

of HomNC versus HetNC.

First, we compare HomNC-HomEC to HetNC-HomEC, to study the effect of

HetNC alone on alignment quality, while still considering HomEC in both cases.

Then, we compare HetNC-HomEC to HetNC-HetEC to study the effect of HetEC

on alignment quality after we have already accounted for HetNC. We perform all of

these comparisons comprehensively, using all considered methods on all considered

data sets, as described in Section 3.3. We also compare HomNC-HomEC to HomNC-

HetEC to additionally study the effect of HetEC on alignment quality without first

accounting for HetNC. Here, we perform only several case study comparisons out of

all possible comparisons, due to the already comprehensive comparison experiments

mentioned above.

The effect of HetNC. In terms of accuracy, we expect that for a given noise level,

HetNA (i.e., HetNC-HomEC or HetNC-HetEC – two or more node colors) should

improve alignment quality over HomNA (i.e., HomNC-HomEC – one node color).

Also, we expect that the more colors are used, the better the alignment quality

should be, since more information is used in the process of producing the alignment.

In addition, we predict that using more colors will make the given method more

robust to noise, meaning that we should see a slower decrease in alignment quality as

noise increases, compared to using fewer colors. However, alignment quality should

be low at the highest noise levels regardless of how many colors we use, since we are

essentially aligning two networks with almost random topologies compared to each

other. Indeed, we observe these exact trends (Figs. 3.3, 3.4, 3.5, 3.6). Note that the

few observed ties occur typically at the lower (0% and 10%) noise levels, which makes

68

sense because in such cases network similarity can be captured reliably, meaning that

all methods perform well.

In terms of time complexity, due to the way we count homogeneous as well as

heterogeneous graphlets, time does not increase with more colors. Because of this, and

because using more colors results in higher accuracy, we recommend using as many

colors as needed. Note, however, that space complexity increases with the increase in

the number of considered colors, because there are more possible graphlets; yet, the

space complexity is practically feasible for a reasonable number of colors, such as four

considered colors in this study (Section 3.3.2 – From homogeneous to heterogeneous

NC).

The effect of HetEC. In terms of accuracy, we expect improvement of HetNC-

HetEC over HetNC-HomEC, because while both HomEC and HetEC favor aligning

nodes that conserve edges, unlike HomEC, HetEC also favors aligning nodes whose

colors match. Indeed, this is generally what we observe (Fig. 3.7).

However, we see some ties between HetNC-HomEC and HetNC-HetEC. Also,

while for MAGNA++ HetNC-HetEC noticeably improves alignment quality over

HetNC-HomEC, for SANA, improvements of HetNC-HetEC over HetNC-HomEC

are usually small (Figs. 3.4, 3.5, 3.6). (WAVE does not explicitly optimize EC, so

we are unable to compare HomEC versus HetEC for WAVE). This could be due to

SANA’s algorithm: it explores millions of alignments a second, and thus, it seems to

already find high-scoring ones with just HetNC, without the need for HetEC.

For these reasons, we consider the HomNC-HetEC scenario, to properly gauge

the true potential of HetEC in the task of HetNA, without any “bias" of also already

using HetNC. Here, we analyze only two cases as a proof-of-concept of the effect of

HetEC while still considering HomNC. Specifically, the two cases are MAGNA++ on

geometric networks and SANA on APMS-Expr networks.

69

(a) (b) (c)

Figure 3.3. Summarized results regarding the effect of the number of con-
sidered node colors on alignment quality for (a) synthetic networks, (b)
PPI networks, and (c) protein-GO networks. In panels (a) and (b), there
are up to four considered node colors, while in panel (c), there are up to two
considered node colors (see Section 3.2.1 for details). For each case (see be-
low), we compare the different color levels (i.e., numbers of considered colors
shown on x -axes) and rank them from the best (rank 1) to the worst (rank
4 in panels 1 and b, and rank 2 in panel c). Then, we compute the per-
centage or frequency of all cases (see below) in which the given color level is
ranked as the first (rank 1), second (rank 2), third (rank 3), or fourth (rank
4) best among all considered color levels. In panel (a), there are 3 meth-
ods (WAVE, MAGNA++, SANA) ˆ 2 networks (geometric, scale-free) ˆ 5
noise levels (0%, 10%, 25%, 50%, 75%) = 30 cases. In panel (b), there are
2 methods (WAVE, SANA) ˆ 4 networks (APMS-Expr, APMS-Seq, Y2H-
Expr, Y2H-Seq) ˆ 5 noise levels (0%, 10%, 25%, 50%, 75%) = 40 cases. In
panel (c), there are 2 methods (WAVE, SANA) ˆ 2 networks (protein-GO-
APMS, protein-GO-Y2H) ˆ 5 noise levels (0%, 10%, 25%, 50%, 75%) = 20
cases. Note that we analyzed an additional noise level (100%), but we leave
the corresponding results from this summary figure, because at this level all
cases are expected to result in the same (random) alignments (Section 3.2.1
– Creating noisy counterparts of a synthetic, PPI, or protein-GO network).
Instead, we show the results for the noise level of 100% in the detailed figures
(Figs. 3.4, 3.5, 3.6). Also, note that in this figure, for each case, we choose
the best between HetNC-HomEC and HetNC-HetEC.

70

(a) (b) (c)

Figure 3.4. Detailed alignment quality results regarding the effect of the
number of node colors on alignment quality as a function of noise level
for synthetic, specifically geometric, networks, using (a) WAVE, (b)
MAGNA++, and (c) SANA. Gray squares, light blue circles, dark blue tri-
angles, and black stars indicate the aligned networks containing one, two,
three, and four node colors, respectively. For two or more node colors,
solid lines represent using HetNC-HomEC, and dashed lines represent using
HetNC-HetEC. Equivalent results for the remaining synthetic, specifically
scale-free, networks are shown in Supplementary Fig. B.2.

(a) (b)

Figure 3.5. Detailed alignment quality results regarding the effect of the
number of node colors on alignment quality as a function of noise level for
PPI, specifically APMS-Expr, networks using (a) WAVE and (b) SANA.
The figure can be interpreted in the same way as Fig. 3.4. Recall that for
these larger networks, we have not run MAGNA++ due to its high compu-
tational complexity. Equivalent results for the remaining PPI, specifically
APMS-Seq, Y2H-Expr, and Y2H-Seq, networks are shown in Supplementary
Figs. B.4, B.5, and B.6.

71

(a) (b)

Figure 3.6. Detailed alignment quality results regarding the effect of the
number of node colors on alignment quality as a function of noise level
for protein-GO, specifically protein-GO-APMS, networks using (a)
WAVE and (b) SANA. The figure can be interpreted in the same way as
Fig. 3.4. Recall that for these larger networks, we have not run MAGNA++
due to its high computational complexity. Equivalent results for the re-
maining protein-GO, specifically protein-GO-Y2H, networks are shown in
Supplementary Fig. B.8.

For these two cases, we evaluate all of HomNC-HomEC, HetNC-HomEC, HomNC-

HetEC, and HetNC-HetEC scenarios (Fig. 3.8). First, for a given scenario, for a

given noise level, we ask whether using more colors yields higher alignment quality,

as expected. Indeed, this is what we observe. Second, for both MAGNA++ and

SANA, HomNC-HetEC improves over HomNC-HomEC (i.e., over HomNA), though

for SANA improvements are again small. However, using HetNC alone (HetNC-

HomEC) improves alignment quality more than using HetEC alone (HomNC-HetEC).

This might not be surprising, because HetNC favors aligning nodes of the same color

that also have similar extended neighborhoods, while HetEC does not account for

this extended neighborhood. As expected, HetNC-HetEC yields the best alignment

quality of all four cases for all colors and all noise levels, except the highest (75%

and 100%), as expected. For MAGNA++ on geometric networks, the improvements

of HetNC-HetEC over the next best scenario (HetNC-HomEC) are large, while for

72

(a) (b) (c)

Figure 3.7. Summarized results regarding the effect of using HetEC over
HomEC (both with HetNC) on alignment quality for (a) synthetic networks,
(b) PPI networks, and (c) protein-GO networks. In all panels, there are
two evaluation scenarios (HetNC-HomEC and HetNC-HetEC). For each case
(see below), we compare the two considered evaluation scenarios and rank
them from the best (rank 1) to the worst (rank 2). Then, we compute the
percentage or frequency of all cases (see below) in which the given scenario is
ranked as the first (rank 1) and second (rank 2) best among the considered
scenarios. In panel (a), there are 2 methods (MAGNA++, SANA) ˆ 2
networks (geometric, scale-free) ˆ 5 noise levels (0, 10, 25, 50, 75) ˆ 3 colors
(1 color does not have a HetEC counterpart) = 60 cases. In panel (b), there
is 1 method (SANA) ˆ 4 networks (APMS-Expr, APMS-Seq, Y2H-Expr,
Y2H-Seq) ˆ 5 noise levels (as before) ˆ 3 colors (as before) = 60 cases.
In panel (c), there is 1 method (SANA) ˆ 2 networks (protein-GO-APMS,
protein-GO-Y2H) ˆ 5 noise levels (as before) ˆ 1 color (maximum 2 colors,
but 1 color does not have a HetEC counterpart) = 10 cases. Note that we
analyzed an additional noise level (100%), but we leave the corresponding
results from this summary figure, because at this level all cases are expected
to result in the same (random) alignments (Section 3.2.1 – Creating noise
counterparts of a synthetic, PPI, or protein-GO network). Instead, we show
the results for the noise level of 100% in the detailed figures (Figs. 3.4, 3.5,
3.6).

73

(a) (b)

Figure 3.8. Detailed alignment quality results regarding the effect of
HomNC-HetEC compared to HomNC-HomEC, HetNC-HomEC, and
HetNC-HetEC on alignment quality for the two considered case study evalu-
ation tests: (a) geometric networks using MAGNA++ and (b) APMS-Expr
networks using SANA. The figure can be interpreted in the same way as Fig.
3.4, except that now solid lines represent HetNC-HomEC, short-long dotted
lines represent HomNC-HetEC, and finely dotted lines represent HetNC-
HetEC.

SANA on APMS-Expr networks, the improvements over the next best scenario (also

HetNC-HomEC) are marginal.

In terms of time complexity, calculating heterogeneous S3 (i.e., HetEC) has the

same complexity as calculating homogeneous S3 (i.e., HomEC), since counting the

number of conserved and non-conserved edges in a heterogeneous network takes the

same amount of time as in a homogeneous network. Specifically, checking if node

colors match (Section 3.1.2 – From homogeneous to heterogeneous EC) to determine

how much conserved an edge is takes constant time. Because of this, and because

using both HetNC and HetEC results in the highest accuracy, we recommend using

both HetNC and HetEC (i.e., HetNC-HetEC scenario).

The effect of alignment method. In terms of accuracy, regardless of noise level,

WAVE and SANA generally outperform MAGNA++ (Fig. 3.9). WAVE and SANA

have somewhat comparable performance (Fig. 3.9), in the following sense. For syn-

thetic networks, the two are tied in 70% of all evaluation tests, WAVE is superior

74

to SANA in 10% of the tests, and SANA is superior to WAVE in 20% of the tests.

For PPI networks, the two are tied in 50% of all evaluation tests, WAVE is superior

to SANA in 15% of the tests, and SANA is superior to WAVE in 35% of the tests.

For protein-GO networks, the two are tied in 0% of all evaluation tests, WAVE is

superior to SANA in 50% of the tests, and SANA is superior to WAVE in 50% of

the tests. Whenever WAVE is superior to SANA, it is typically for lower noise levels

(up to 25%) (Fig. 3.10). Whenever SANA is superior to WAVE, it is typically for

higher noise levels (above 25%) (Fig. 3.10). These trends for lower versus higher

noise levels could be due WAVE’s algorithm. At lower noise levels, the networks

being aligned are still very similar to each other, so if two nodes are topologically

similar, then it is likely that they should be aligned to each other. In this situation,

WAVE would start with a good seed and thus be likely to produce a good alignment.

At higher noise levels, the networks being aligned are dissimilar. So, two nodes may

be topologically similar only because of the random rewiring of edges, but still be

(erroneously) mapped to each other. In this situation, WAVE would start with a

poor seed and likely lead to a poor alignment. Since SANA is not a seed-and-extend

method, it avoids this issue and performs well even at higher noise levels.

In terms of time complexity, MAGNA++ is the slowest of the three methods

(Fig. 3.10(a)), which is expected since it uses a genetic algorithm. Of WAVE and

SANA, for synthetic networks, which happen to be the smallest of our considered

networks, WAVE is faster than SANA (Fig. 3.10(a)). However, keep in mind that

the execution time is a parameter in SANA. In that sense, it is possible to run SANA

so that it is faster than any other method. However, in this case, SANA might not

reach desired alignment quality. It might be possible to run SANA for as long as

needed to always beat or at least tie WAVE in terms of alignment quality, but the

amount of time would have to be determined empirically for every network pair being

75

(a) (b) (c)

Figure 3.9. Summarized results regarding the effect of the alignment
method on alignment quality for (a) synthetic networks, (b) PPI net-
works, and (c) protein-GO networks. In panel (a), there are three con-
sidered alignment methods (WAVE, MAGNA++, and SANA). In panels (b)
and (c), there are two considered alignment methods (WAVE and SANA;
MAGNA++ was not tested because of its high computational complexity).
For each case (see below), we compare the alignment methods and rank the
different methods from best (rank 1) to worst (rank 3 in panel (a), and rank
2 in panels (b) and (c)). Then, we compute the percentage of all cases in
which the given method is ranked as the first (rank 1), second (rank 2), or
third (rank 3) best among all considered methods. In panel (a), there are
2 networks (geometric, scale-free) ˆ 5 noise levels (0, 10, 25, 50, 75) = 10
cases. In panel (b), there are 4 networks (APMS-Expr, APMS-Seq, Y2H-
Expr, Y2H-Seq) ˆ 5 noise levels (as above) = 20 cases. In panel (c), there
are 2 networks (protein-GO-APMS, protein-GO-Y2H) ˆ 5 noise levels (as
above) = 10 cases. Note that we analyzed an additional noise level (100%),
but we leave the corresponding results from this summary figure, because at
this level all cases are expected to result in the same (random) alignments
(Section 3.2.1 – Creating noise counterparts of a synthetic, PPI, or protein-
GO network). Instead, we show the results for the noise level of 100% in the
detailed figures (Figs. 3.4, 3.5, 3.6). Also, note that in this figure, we give
each method the best case advantage. That is, we show results for the best
of HetNC-HomEC and HetNC-HetEC, and also only for the maximum node
color level (four colors in panels (a) and (b), and two colors in panel (c)).
We do the latter because of all color levels, it is the maximum color level at
which the given method performs the best, for each method. Nonetheless,
the results remain qualitatively the same if we account for all considered
colored levels.

76

(a) (b) (c)

Figure 3.10. Summarized results comparing the running times verus ac-
curacy of different methods for 25% and 50% noise on (a) synthetic, specifi-
cally geometric and scale-free, (b) PPI, specifically APMS-Expr and APMS-
Seq, and (c) protein-GO, specifically APMS and Y2H, networks. The x -axis
is the running time of the given method on the given network data at the
given noise level, and the y-axis is the alignment quality score. Here we
use different shapes to represent the different methods, different colors to
represent the different noise levels, and solid or broken lines to represent the
different network data. Lines are drawn between the different methods for
the same noise level and network data, for easier comparison of the different
methods. Detailed running time results for all other noise levels and network
data are shown in Supplementary Figs. B.9–B.16.

77

aligned. For PPI and protein-GO networks, which happen to be the largest of our

considered networks, SANA is faster than WAVE (Fig. 3.10(b)-(c)).

3.3 Methods

3.3.1 Calculating node similarities, i.e., node conservation

Given the GDV for each node in a network, we form a matrix of GDVs over all

nodes for each of the two networks being aligned. Then, we combine the two matrices

row-wise and perform PCA on the large matrix of the networks’ GDVs. We choose

the first r principal components, where r is at least two and as small as possible such

that the r components account for at least 90% of the variation in the data. Then,

for every pair of nodes between the two networks, we calculate their cosine similarity

based on the nodes’ principal components and scale so the values are between 0 and

1.

Method parameters. WAVE does not have any parameters. We set MAGNA++’s

parameters as follows: we use initial population size of 15,000 and 2,000 genera-

tions, which are the suggested values in the MAGNA++ documentation; we run

MAGNA++ on 16 threads on all networks. We give equal weight to MAGNA++’s

NC and EC measures, i.e., we set its a parameter to 0.5; using this value has been

suggested by several studies [164, 110]. We set SANA’s parameters as follows: we give

equal weight to its NC and EC measures for fair comparability with MAGNA++,

i.e., we set the following parameters: s3 (corresponding to EC) to 1, esim (corre-

sponding to NC) to 1, simFile to the name of the NC-based node similarity file,

and simFormat to 1 (this tells SANA to read the similarity file such that each line

has 3 columns: node1, node2, and the similarity between them). SANA also has

a parameter for how long it should search for alignments. For synthetic networks,

we run SANA for the default 5 minutes (t 5). For PPI and protein-GO networks,

78

we increase the t parameter to 60 minutes (t 60), since these networks are larger

and thus SANA needs more time to find a good alignment (which we have verified

empirically in our evaluation).

3.3.2 From homogeneous to heterogeneous node conservation

Here we formalize the notion of heterogeneous (colored) graphlets. For ease of

explanation, first, we define node-colored graphlets. Given k possible node colors

from the set Cn “ tcn1 , cn2 , ..., cnk
u, S “ 2Cn is the set of all possible combinations

of colors from Cn. S contains
`

k
0

˘

elements with no color (i.e. the empty set),
`

k
1

˘

elements with any one color, and in general
`

k
i

˘

elements with any i colors. Therefore,

S contains 2k elements. So SzH is the set of all possible color combinations from Cn

that excludes the empty set, which contains 2k ´ 1 elements. Let bn P SzH. Given

a homogeneous graphlet Gi, a set of colors Cn, and some bn, define a node-colored

graphlet NCGi,bn to be the set of all distinct graphs that are isomorphic to Gi, such

that for each graph, each node is colored with one of the colors from bn, and also,

each color from bn has to be present in each such graph. Thus, given k node colors,

there are 2k ´ 1 possible node-colored graphlets.

As an illustration, let us assume that a heterogeneous network has nodes with

two possible colors: cn1 and cn2 . These two node colors have 3 possible combinations:

tcn1u, tcn2u, and tcn1 , cn2u. As a result, for each homogeneous graphlet Gi, there are

three possible node colored graphlets (Fig. 3.1).

This definition of node-colored graphlets is more space efficient than the exhaus-

tive approach is: given a heterogeneous network containing n nodes and k different

colors, with the exhaustive approach, both the number of possible colored graphlets

(the space complexity) and the the time needed to count such graphlets in the net-

work (the time complexity) increase exponentially with the number of colors. With

our approach, however, 1) the number of possible colored graphlets is much smaller

79

(though still exponential in terms of the number of colors) compared to the exhaustive

approach, and 2) the time complexity of counting colored graphlets in a heteroge-

neous network is the same as that of counting original graphlets in a homogeneous

network, unlike with the exhaustive approach.

Regarding the space complexity of our colored graphlet approach, as an illustra-

tion, for two colors, with the exhaustive definition, there would be six node-colored

graphlets for homogeneous graphlet G1, a 3-node path, while with our approach there

are only three of them. For three colors, with the exhaustive definition, there would

be 18 node-colored graphlets for G1, while with our approach there are only seven

of them. Although even with our approach, the number of node-colored graphlets

increases drastically with the increase of k, but this is not a major concern because

in practice we may expect a relatively small value of k. For example, one can study a

heterogeneous network whose nodes are proteins, functions, diseases, and drugs with

k value of only four.

Just as an orbit (i.e., topological symmetry group) of a homogeneous graphlet

[112], we define an orbit of a node-colored graphlet NCGi,bn as the set of nodes that

are “symmetric" to each other in NCGi,bn ; the symmetry ignores node colors (Fig.

3.1). For a homogeneous graphlet with x orbits, each of its colored graphlets also has

x orbits. That is, given k node colors, there are 73ˆp2k ´1q orbits for 2-5-node node-

colored graphlets (there are 73 orbits for homogeneous 2-5 node graphlets). Then,

we define heterogeneous node-colored GDV (NCGDV) by counting the number of

node-colored graphlets that the given node “touches" at each of the node-colored

orbits. Analogous to the homogeneous case, to compare two nodes in heterogeneous

networks, we compare their NCGDVs.

Second, analogous to the definitions for node-colored graphlets, without going

again through all the formalisms, we define edge-colored graphlets (Fig. 3.1), orbits

in edge-colored graphlets, and edge-colored GDV (ECGDV). In practice, we may

80

expect a relatively small number of edge colors (e.g., we can study a network whose

nodes are genes/proteins and whose edges are PPIs, genetic interactions, gene co-

expressions, and signaling interactions with only four edge colors).

Third, the above ideas can be combined to define truly heterogeneous graphlets

that have different node and edge colors. For each node-colored graphlet, one can

vary its edge colors. Alternatively, it is possible and computationally much simpler

to concatenate NCGDVs and ECGDVs, which does not add any additional compu-

tational complexity compared to computing only NCGDVs or only ECGDVs.

3.3.3 From homogeneous to heterogeneous edge conservation

Let u, v be two nodes in a network G, and u1, v1 be two nodes in a network H. Let

f be a mapping (i.e., alignment) from the nodes of G to the nodes of H such that

fpuq “ u1 and fpvq “ v1 (another way to say this is that source node u has image

u1, and source node v has image v1). That is, u is aligned to u1, and v is aligned to

v1. Then, a conserved edge is formed by two edges from different networks such that

each end node of one edge is aligned under f to a unique end node of the other edge.

On the other hand, a non-conserved edge is formed by an edge from one network

and a pair of nodes from the other network that do not form an edge, such that each

end node of the edge is aligned under f to a unique node of the non-edge. Then,

homogeneous S3 of an alignment is defined as the ratio of conserved edges to the sum

of conserved and non-conserved edges (Fig. 3.2) [143]. We define a new measure of

heterogeneous EC by modifying S3 to account for colors of aligned end nodes of a

conserved edge, as described and illustrated in Section “3.1.2 – From homogeneous

to heterogeneous EC”. Note that our chosen heterogeneous edge conservation weights

of 1 for a fully conserved edge in which each of the two pairs of aligned nodes match

in color, 2
3

for a partly conserved edge in which only one of the two pairs of aligned

nodes match in color, and 1
3

for even less conserved edge in which none of the two

81

pairs of aligned nodes match in color, are just one of possible choices, which we use

for simplicity, as a proof-of-concept of our new heterogeneous S3 measure. Other

choices of weights are possible.

3.3.4 From homogeneous to heterogeneous network alignment

We modify three recent NA methods, WAVE, MAGNA++, and SANA, to account

for heterogeneous networks. We describe these algorithms and their modifications

below.

WAVE. WAVE takes as input two networks and an NC-based matrix that captures

pairwise similarities between the nodes across the compared networks, and then uses

a seed-and-extend algorithm to align the networks. First, two highly similar nodes

are aligned, i.e., seeded. Then, the seed’s neighbors that are similar are aligned, and

then the seed’s neighbor’s neighbors that are similar are aligned, and so on, until

there is a one-to-one mapping between the networks. By aligning similar nodes, NC

is optimized, and by looking at neighbors of already aligned nodes, EC is optimized,

though only implicitly.

To account for heterogeneous networks, we simply plug into WAVE’s alignment

strategy a new matrix of node similarities that is based on our new hetNC measure

generated by our proposed heterogeneous graphlet approach. Based on the fact that

the algorithm looks at the neighbors of the seed, WAVE optimizes HetEC implicitly,

and there is no ability to incorporate heterogeneous S3 as an optimization parameter.

MAGNA++. MAGNA++ takes as input two networks and an NC-based matrix

of node similarities, like WAVE. However, unlike WAVE, MAGNA++ uses a genetic

search algorithm as its alignment strategy. MAGNA++ first starts with an initial

population of randomly created alignments, the first generation. Then, high-scoring

alignments (with respect to some objective function, see below) are given as input to a

“crossover" function, which combines two alignments to create a new child alignment.

82

Many alignments from the initial population are crossed over to form new children

alignments, which become the new population for the next generation. This process

continues for a user-specified number of generations, and the alignment that scores

the highest with respect to the objective function is given as output.

MAGNA++’s objective function can be only NC, only EC, or some combination

of both. In the homogeneous case, optimizing a combination of NC (based on ho-

mogeneous graphlets) and EC (S3) as objective function was shown to produce the

best alignments (where the objective function is α ˆ NC ` p1 ´ αq ˆ EC, for some

0 ă α ă 1; the best α value was determined to be 0.5) [164]. Thus, to generalize

MAGNA++ to its heterogeneous counterpart, we use MAGNA++’s alignment strat-

egy to optimize the equally weighted combination of colored graphlet-based HetNC

and heterogeneous S3-based HetEC measures. To account for colored graphlet-based

HetNC, we give MAGNA++ as input the colored-graphlet based node similarity ma-

trix. To account for heterogeneous S3, we modify the calculation of S3 to account

for node colors; source code for these changes can be found on the project website

(see Abstract).

SANA. SANA takes as input two networks and an NC-based matrix of node sim-

ilarities, like WAVE and MAGNA++, and is a search algorithm, like MAGNA++.

However, it uses simulated annealing instead of a genetic algorithm as its alignment

strategy. SANA starts with a single random alignment rather than a population of

random alignments, and in each step it explores “neighboring" alignments (described

below). If a neighboring alignment scores higher with respect to the objective func-

tion, then it is chosen as the new alignment for the next iteration. Exploring neigh-

boring alignments allows SANA to incrementally calculate the objective function; in

particular for S3, each move in the exploration process is only a small change in the

alignment, and so only the changes in conserved and non-conserved edges resulting

directly from the swap or change affect the S3 value. Note that there is also a small

83

chance a worse-scoring neighbor is chosen; this chance is described by the “tempera-

ture schedule". Intuitively, the longer SANA has been running, the lower the chance

of choosing a worse alignment. This continues for a set amount of time, which is a

parameter of SANA. After the algorithm finishes, the alignment of the last iteration

is given as output.

SANA’s objective function can be only NC, only EC, or some combination of both,

as is the case with MAGNA++. Thus, to generalize SANA to its heterogeneous

counterpart, we use SANA’s alignment strategy to optimize the equally weighted

combination of colored graphlet-based HetNC and heterogeneous S3-based HetEC

measures. To account for colored graphlet-based HetNC, we give SANA as input the

colored-graphlet based node similarity matrix. To account for heterogeneous S3, we

modify the incremental calculation of S3 to account for node colors; pseudocode for

these changes can be found on the project website (see Abstract). Note that for our

heterogeneous modification of SANA we provide pseudocode rather than modified

source code because SANA is not our group’s method (MAGNA++ and WAVE

are), and thus, there could be intellectual property restrictions regarding us sharing

SANA’s source code. Instead, the user can get the homogeneous SANA’s code from

the original authors and then modify it according to our pseudocode to allow for

heterogeneous NA.

Here, we explain what a neighboring alignment means according to SANA. Let

G and H be two networks being aligned, with G having fewer nodes than H, and let

a, b, c, d be nodes in G, and a1, b1, c1, d1 be nodes in H such that a is aligned to a1, b

to b1, c to c1, and d to d1. There are two kinds of neighboring alignments: swap and

change. Swap neighbors differ from the original alignment in exactly two places, i.e.,

two source nodes in question remain the same but their images are exchanged. For

example, given the existing alignment in Fig. 3.2, one of its possible swap neighbors

is the alignment where a is aligned to b1 and b is aligned to b1, while all other aspects

84

of the alignment remain the same. Change neighbors differ in only one place, i.e., a

source node in question remains the same but its image is changed. In the example

of Fig. 3.2, a possible change neighbor of the given alignment is one where a is

aligned to some e1 that initially was not part of the alignment, while all other aspects

of the alignment remain the same. Consequently, if the two networks being aligned

are of the same size, only swap neighbors are possible. With just these two types of

neighbors, all possible alignments can potentially be reached; however, SANA focuses

on those alignments that improve with respect to the objective function.

3.4 Conclusion

We modify WAVE, MAGNA++, and SANA to align heterogeneous networks by

extending the existing notions of NC and EC to their heterogeneous counterparts.

Specifically, we extend homogeneous graphlets to their heterogeneous counterparts,

and homogeneous S3 to heterogeneous S3. We evaluate our methods by aligning

synthetic, PPI, and protein-GO networks to their noisy counterparts. We show that

using more colors leads to better alignments, and that using both heterogeneous NC

and heterogeneous EC is the preferred option where available. Also, we find that

WAVE and SANA perform equally well at lower noise levels, though SANA does

better at higher noise levels.

There are many new directions in which this work could be taken. Faster het-

erogeneous graphlet counting methods could be developed by using combinatorial

relationships between heterogeneous graphlets, akin to existing efficient methods for

homogeneous graphlet counting [79, 104, 137, 2]. Or, faster, more scalable methods

for capturing the topology of a node in a heterogeneous network could be developed

as an alternative to graphlets, such as those based on random walks [66, 41]. Also,

our considered networks have up to four colors; aligning networks with more colors,

as well as adding explicit (rather than just implicit, as in this study) edge colors,

85

could show further improvements. Another direction is improving the AS of NA

methods. For example, in WAVE, the choice of the first aligned (seed) node pair

likely impacts the rest of the alignment. If there are many possibilities for this pair,

can an algorithm discover the best one, independent of the noise level in the data?

Furthermore, while NA has been extended from dealing with static networks to deal-

ing with dynamic networks [165, 162], the existing dynamic NA work currently only

deals with homogeneous dynamic networks. Developing methods to align hetero-

geneous dynamic networks may yield improvements. In a similar vein, our current

heterogeneous work deals with PNA, and so extending it into heterogeneous MNA

may be of future interest.

86

CHAPTER 4

DATA-DRIVEN NETWORK ALIGNMENT

The work in this chapter is discussed in the following papers:

• Shawn Gu and Tijana Milenković (2018), Graphlets versus node2vec and
struc2vec in the task of network alignment, in Proceedings of the 14th Interna-
tional Workshop on Mining and Learning with Graphs (MLG) at the 24th ACM
SIGKDD 2018 Conference on Knowledge Discovery & Data Mining (KDD),
London, UK, August 19-23, 2018. [67]

• Shawn Gu and Tijana Milenković (2020), Data-driven network alignment,
PLOS ONE, 15(7): e0234978. [68]

• Shawn Gu and Tijana Milenković (2021), Data-driven biological network
alignment that uses topological, sequence, and functional information, BMC
Bioinformatics, 22: 34. [69]

4.1 TARA: Data-driven network alignment

4.1.1 Introduction

4.1.1.1 Background and motivation

While HetNA did improve alignment quality over HomNA, we believe that HetNA

does not address an underlying issue of traditional NA, regardless of homogeneity

or heterogeneity. Namely, both the NC and EC measures of traditional NA aim

to optimize the topological similarity between networks (in an effort to achieve an

isomorphic-like matching), with the assumption that this topological similarity leads

to functional relatedness. However, we argue that this assumption does not hold.

Recall that there may be several reasons for this.

87

First, current PPI network data are highly noisy, with many missing and spurious

PPIs (and even proteins) [93]. This alone can cause mismatches between proteins’

topological similarity and their functional relatedness. For example, if a set of three

proteins that are all linked to each other via PPIs (i.e., a triangle) is in reality fully

evolutionary conserved (i.e., functionally related) between two species, then the two

triangles in the two species are topologically similar. But say that one of the three

PPIs that actually exists in reality is missing in exactly one of the two species’ current

PPI networks due to data noise. Then, it is a 3-node path in that species that should

be aligned to a triangle in another species in order to identify the functional match.

That is, the functionally related regions are now topologically dissimilar due to the

data noise.

Second, even when PPI network data become complete, the traditional assump-

tion of topological similarity is unlikely to hold due to biological variation between

species. Namely, molecular evolutionary events such as gene duplication, deletion,

or mutation may cause PPI network topology to differ across species’ evolutionary

conserved (i.e., functionally related) network regions. Even for protein sequence align-

ments, pairwise sequence identity as low as 30% is sufficient to indicate evolutionary

conservation (i.e., homology) for 90% of all protein pairs [140]. So, one can perhaps

expect evolutionary conserved PPI networks of different species to be as topologically

dissimilar.

Third, there could be additional factors that have yet to be discovered.

Regardless of the causes, this study is the first to provide actual evidence that

the traditional topological similarity assumption does not hold. Briefly, we investi-

gate whether functionally related nodes are indeed topologically similar in two tests:

on synthetic networks and on real-world PPI networks of different species. In the

process, we consider multiple prominent measures of topological similarity. As dis-

cussed in Section “4.1.3 – Topological similarity versus functional relatedness”, we

88

find that functionally related nodes are only marginally more similar (for all consid-

ered measures of topological similarity) to each other than at random. This means

that aligning topologically similar nodes, as existing NA methods do, has only a

marginally higher chance of aligning functionally related nodes than functionally un-

related nodes.

4.1.1.2 Our contributions

Because the assumption of existing NA methods that topologically (and sequence)

similar nodes should be aligned (i.e., are functionally related) does not hold, we pro-

pose a new paradigm for NA. Namely, we aim to redefine NA as a data-driven frame-

work, which attempts to learn from the data what kind of topological relatedness

corresponds to functional relatedness, without assuming that topological relatedness

means topological similarity. So, regardless of whether the traditional topological

similarity assumption fails due to noisy data, biological variation, or something else,

we hypothesize that topological relatedness can better capture functional relatedness

than topologically similarity can. As topological relatedness and topological similar-

ity are important concepts for understanding our paper, recall their difference from

Fig. 1.4.

With our new notion of topological relatedness, we make no assumptions about

what nodes should be aligned, distinguishing us from existing NA methods. Specifi-

cally, as a proof-of-concept methodological solution to test our new paradigm, we train

a supervised classifier that, given a topological feature vector (i.e., low-dimensional

embedding) of a node pair, learns from the (training) data when nodes are function-

ally related and when they are not. Note that because state-of-the-art topological

features in the field of NA rely on graphlets [53, 72], we use graphlet-based feature

vectors in our new framework. Importantly, we do not use any anchor links between

nodes of different networks in order to calculate the feature vector of a node pair,

89

unlike many existing methods. Then, we use pairs (from the testing data) whose

nodes are predicted to be functionally related to build an alignment. In other words,

we consider two nodes to be topologically related if they are predicted to be function-

ally related, and our framework aligns such nodes, unlike existing methods that align

topologically similar nodes. Of course, we make predictions only for node pairs that

are not in the training data, which avoids any circular argument. So, we convert the

NA problem into the problem of across-network supervised protein functional classi-

fication. While established supervised versions of many problems do exist, supervised

NA has barely been studied before. We refer to the entire framework described above

as TARA (data-driven network alignment).

TARA is a global, pairwise, and many-to-many method that does not use sequence

similarity-based anchor links. We evaluate TARA against three state-of-the-art NA

methods that are as similar as possible to TARA in terms of their algorithmic design

or output, namely against WAVE [158], SANA [103], and PrimAlign [87]. Specifically,

just like TARA, WAVE and SANA are global and pairwise, do not use anchor links,

and furthermore are also graphlet-based. The only difference is that WAVE and

SANA are one-to-one, unlike TARA. So, we also analyze PrimAlign, which is many-

to-many and also global and pairwise, like TARA. Unlike TARA, PrimAlign does

use anchor links in the form sequence similarities between networks. We evaluate

each method on both synthetic (geometric and scale-free) and real-world (yeast and

human PPI) networks.

Overall, we find that TARA is able to accurately learn what kind of topological

relatedness corresponds to functional relatedness, and that TARA is able to predict

the functions of proteins more accurately or in a complementary fashion compared

to the existing NA methods, even those that use both topological and sequence

information, mostly at lower running times. Thus, there is a need for introducing

our new data-driven approach.

90

4.1.1.3 Related work

Traditional biological NA methods typically consist of two algorithmic compo-

nents. First, the similarity between pairs of nodes is computed with respect to topol-

ogy, sequence, or both. Second, an alignment strategy identifies alignments that

maximize the similarity between aligned node pairs and the amount of conserved

edges (intuitively, alignments should preserve interactions). There are two common

types of alignment strategies, as follows.

One is seed-and-extend, where first two highly similar nodes are aligned, i.e.,

seeded. Then, the most similar of the seed’s neighboring nodes (or simply neighbors),

the neighbors of the seed’s neighbors, etc. are aligned. This continues until all nodes

of the smaller of the two networks are aligned (until a one-to-one node mapping

between the two networks is produced). WAVE [158] is a state-of-the-art seed-and-

extend alignment strategy that works the best under a graphlet-based topological

similarity measure.

The other type of alignment strategy is a search algorithm. Here, instead of

aligning node by node like a seed-and-extend method, the solution space of possible

alignments is explored, and the one that scores the highest with respect to some

objective function is returned. This objective function typically tries to maximize the

overall node similarity and the number of conserved edges. SANA [103] is a state-of-

the-art search algorithm-based method. Specifically, it uses simulated annealing to

search through possible one-to-one alignments, and works the best under an objective

function that maximizes the overall graphlet-based topological similarity as well as

the number of conserved edges.

On the other hand, PrimAlign [87] is a method with an alignment strategy that

does not strictly belong to one of the above two categories. PrimAlign models the

network alignment problem as a Markov chain where every node from one network

is linked to some or all nodes in the other network with some scores; for PPI net-

91

works, these scores can be sequence similarities. In other words, PrimAlign makes

use of anchor links between networks. The chain is then repeatedly transitioned until

convergence, redistributing the across-network link scores using a PageRank-inspired

algorithm. Those links that are above a certain threshold are taken as the alignment.

As a result, PrimAlign outputs a many-to-many alignment, where a protein from one

network may be aligned to many proteins in the other.

A method called MUNK has appeared recently [57]. Like PrimAlign, MUNK also

relies on sequence-based anchor links (specifically, homologs) between two networks,

but unlike PrimAlign, MUNK uses a matrix factorization approach to embed the

nodes into a low dimensional space. Then, it uses these embeddings to calculate

similarities between pairs of nodes, and employs the Hungarian algorithm on these

similarities to generate an alignment. In preliminary analyses of MUNK on our data,

we found that the similarity scores were not able to distinguish between functionally

related and functionally unrelated nodes. This, combined with the fact that MUNK

appeared after this study has been completed, is why we do not pursue it further.

The above methods do not use any functional (i.e., Gene Ontology (GO) [8]) infor-

mation in the alignment process, unlike TARA. However, one method, DualAligner

[144], does use such information, albeit in a different way than TARA. Given two PPI

networks where some of the proteins are annotated with GO terms, DualAligner first

forms “function-constrained subgraphs” (connected subgraphs sharing a GO term) in

each network. Then, it tries to align subgraphs of the same function across networks.

Next, it aligns proteins within these subgraphs that are topologically and sequence

similar. Finally, it uses a seed-and-extend strategy around these aligned pairs to

match unannotated proteins. However, more recent, state-of-the-art methods have

appeared since DualAligner, including WAVE, SANA, and PrimAlign, which is why

we do not consider DualAligner in this study.

92

All of the above methods are unsupervised. That is, they assume that topolog-

ically similar nodes are functionally related. Of course, many other such methods

exist [72]. However, in the WAVE, SANA, and PrimAlign studies, the three methods

were shown to outperform a number of the previous NA methods including Align-

MCL [116], AlignNemo [29], CUFID [85], HubAlign [73], IsoRankN [99], L-GRAAL

[102], MAGNA [143], MAGNA++ [164], MI-GRAAL [95], NETAL [126], NetCoffee

[80], NetworkBLAST [86], PINALOG [135], and SMETANA [142]. In turn, these

methods were shown to outperform GHOST [130], IsoRank [153], NATALIE [44],

PISwap [27], and SPINAL [3]. So, the fact that WAVE, SANA, and PrimAlign are

state-of-the-art, coupled with the fact that they are the most directly comparable to

TARA (in terms of algorithmic design or output), is why we focus on them.

In addition, two supervised methods do exist, IMAP and MEgo2Vec, as follows.

IMAP [23] is an NA method that incorporates supervised learning, but in a dif-

ferent way than what we propose. First, IMAP requires an (unsupervised) alignment

between two networks as input. Then, it obtains a topological feature vector for each

node pair. Node pairs that are aligned form the positive class, and node pairs that

are not aligned are sampled to form the negative class. Then, IMAP uses this data

to train a linear regression classifier. After training, the data is passed through the

classifier again in order to assign a score to every node pair. These scores are used in

a matching algorithm (e.g., Hungarian or stable marriage) to form a new alignment,

which is then given back as input into the method. This process is repeated for a set

number of iterations – in general, it is shown that these iterations improve alignment

quality. However, IMAP still makes the assumption that topologically similar nodes

should be mapped to each other, meaning it still suffers from the issues of other NA

methods. TARA on the other hand learns from the data what kind of topologically

related nodes should be mapped to each other. We did attempt to test IMAP in this

study, but the code was not available, and when we tried to implement it ourselves,

93

we could not get the method to work (i.e., we were not able to reproduce results from

the IMAP study).

MEgo2Vec [180] proposes a framework to try to match user profiles across different

social media platforms. Using graph neural networks and natural language processing

techniques to obtain features of pairs of profiles from different platforms, MEgo2Vec

then trains a classifier to predict whether two profiles correspond to the same person.

However, because MEgo2Vec uses text processing techniques to match users’ names,

affiliations, or research interests (in addition to network topological information), it is

not directly suitable for matching proteins across PPI networks. Unlike MEgo2Vec,

TARA relies solely on topological information (although it can also use external, e.g.,

sequence, information, this is out of the scope of this study).

There also exists a variety of methods that aim to predict the function of proteins

within a single PPI network using techniques such as guilt-by-association, clustering,

or classification [149, 120]. While this is a valuable research area, we are interested

in a different problem – that of across-network protein function prediction. As such,

we do not consider single-network methods in this study.

Lastly, there exist methods that aim to predict protein function without using any

PPI network information. A variety of approaches entered in the Critical Assessment

of Functional Annotation (CAFA) challenge [183] fall under this category. For exam-

ple, the most recent top performing method, GOLabeler [177], uses a combination

of protein sequence, amino acid, structural, and biophysical information, in order

to predict GO term annotations of proteins. However, these kinds of non-network

approaches are out of the scope of this network-focused study.

94

4.1.2 Methods

4.1.2.1 Data

Like many NA methods do, we evaluate TARA on network sets with known

node mapping (networks generated from different graph models and their randomly

perturbed counterparts) and a network set with unknown node mapping (yeast and

human PPI networks).

Network sets with known node mapping. We use two network sets with known

node mapping, generated from two network (i.e., random graph) models: 1) geometric

random graphs [133] and 2) scale-free networks [10]. Because these two models have

distinct network topologies [113], we can test the robustness of our results to the

choice of model. For a given model, we create a network with 1,000 nodes and 6,000

edges, and then generate five instances of x% random perturbation (i.e., we randomly

delete x% of the edges and then randomly add the same number of edges back),

varying x to be 0, 10, 25, 50, 75, and 100. Because only edges differ between the

original network and a randomly perturbed counterpart, we know the correct node

mapping, and pairs in this mapping can be considered to be “functionally” related.

Network set with unknown node mapping. We use the PPI networks of yeast

(5,926 nodes and 88,779 edges) and human (15,848 nodes and 269,120 edges) ana-

lyzed by the PrimAlign study [87], obtained from BioGRID [24]. Because we do not

know the true node mapping between these networks, we rely on GO annotations to

measure the functional relatedness between proteins (discussed below). We accessed

the GO data in November 2018.

4.1.2.2 TARA: Data-driven network alignment

Recall that TARA trains, on a portion of the data, a supervised classifier using

topological relatedness-based feature vectors of node pairs and their labels (whether

95

the nodes in a given pair are functionally related or not). Then, it aims to predict, on

the remainder of the data, if a node pair is functionally related, creating an alignment

out of all pairs predicted as such. Finally, this alignment can be used in a protein

function prediction framework. Below, we describe how a topological relatedness-

based feature vector of a node pair is extracted (subsection “Topological relatedness

of a node pair.”), how the classifier is trained and evaluated on each of the network

sets (subsections “TARA for a network set with known/unknown node mapping.”),

and how the protein function prediction framework works (subsection “TARA as an

NA framework for protein function prediction.”).

Topological relatedness of a node pair. We quantify topological relatedness

using the notion of graphlets. Graphlets are Lego-like building blocks of complex

networks, i.e., small subgraphs of a network (a path, triangle, square, etc.). In

this study, we consider up to 5-node graphlets. They can be used to summarize

the extended neighborhood of a node as follows. For each node in the network,

for each topological node symmetry group (formally, automorphism orbit), one can

count how many times a given node touches each graphlet at each of its orbits.

The resulting counts for all graphlets/orbits are the node’s graphlet degree vector

(GDV) [112], which has a length of 73 for up to 5-node graphlets. Then, to obtain

the feature of a node pair, we simply take the absolute difference of the nodes’

GDVs (GDVdiff). Note that in addition to GDVdiff, we also tested appending the

nodes’ GDVs together (GDVappend), and a weighted difference of the nodes’ GDVs

based on the GDV similarity [112] calculation (GDVsim). However, the GDVdiff

outperformed GDVappend, and while it obtained similar results to GDVsim, GDVdiff

is mathematically simpler. As such, we only focus on GDVdiff, as calculated in

Algorithm 1.

TARA for network sets with known node mapping. First, in order to see

whether functional relatedness can even be predicted from topological relatedness,

96

TABLE 4.1

TABLE OF NOTATIONS AND THEIR MEANINGS

Notation Meaning

Gi Network i

Vi Node set of network i

Ei Edge set of network i

|S| Size of a set S

vij jth node of network i, i.e., vij P Vi

fp_, Giq f : pvij , Giq Ñ R73, a function that returns
the GDV of node vij P Vi

gp_, Gi, Gj, dq Defined in Algorithm 1

balpGi, Gj, R,R1, dq Defined in Algorithm 2

abspxq Element-wise absolute value of a vector x

random.sample(S, n, d) From set S, randomly sample n elements
without replacement, based on random seed
state d

U ˆ V Cartesian product of sets U and V

getAlnpGi, Gj, R,R1, d, yq Defined in Algorithm 3

we evaluate our classifier using 10-fold cross-validation; if not, further study would

be pointless. To do so, we start by creating a dataset that is balanced between the

positive class (node pairs that are known functionally related) and the negative class

(node pairs that are not currently known to be functionally related). But, because

there are many more node pairs in the negative class, we undersample them to match

the positive class in size, a common technique when dealing with class imbalance [157].

The process for creating one balanced dataset is outlined in Algorithm 2. Then, given

this balanced dataset, we split the data into training and testing sets. We sample

97

Algorithm 1 Extracting the “GDVdiff” feature vector of a node pair. Given two net-
works G1 and G2, and a node pair sij “ pv1i , v2jq, define a function g : psij, G1, G2q Ñ

R73, computed as follows. For notations and their meanings, see Table 4.1.
1: let a1i

“ fpv1i , G1q

2: let a2j
“ fpv2j , G2q

3: return abspa1i
´ a2j

q

90% of the data to become the training set (ensuring balanced class sizes), and so

the remaining 10% becomes the testing set. For 10-fold cross-validation, we take 10

stratified samples so that each data instance appears in exactly one of the ten testing

sets, resulting in 10 “folds”. Given a fold, we then train a logistic regression classifier

using the GDVdiff feature for a node pair to predict whether the given two nodes are

functionally related, and evaluate this classifier using the accuracy and area under

receiver operating characteristic curve (AUROC). For each score, we average over

the 10 folds. We also repeat the undersampling 10 times to ensure any outcome is

unlikely due to how we sample the negative class. So, we obtain 10 balanced datasets,

and thus 10 accuracy and 10 AUROC scores, and for each measure we average the 10

scores. We repeat this process for every random perturbation amount. Note that we

also tested Naive Bayes, decision tree, and simple neural network classifiers; trends

were qualitatively similar, but logistic regression gave the best results. As such, we

focus on logistic regression.

Second, we analyze the amount of data needed to train a good classifier, since

only a small amount of data may be available in many real-world applications. For

each network model, for each random perturbation amount, we obtain 10 balanced

datasets using the same process as above. Then, for a given balanced dataset, we

split the data such that y% goes into the training set and the remaining p100 ´ yq%

goes into the testing set, still keeping the class balance in both the training and

testing sets, varying y from 10 to 90 in increments of 10. For a given value of y,

i.e., for what we call a y percent training test, we randomly create 10 instances of

98

Algorithm 2 Creating a balanced dataset. Given two networks G1 and G2, the
set of conditions R that a node pair needs to satisfy to be considered functionally
related, the set of conditions R1 that a node pair needs to satisfy to be considered not
functionally related, and random seed state d, define a function bal : pG1, G2, R, dq Ñ

pS1, S
1

2q such that S1 Ă V1ˆV2 is a set of node pairs satisfying R (functionally related)
and S

1

2 Ă V1 ˆ V2 is an equally sized set satisfying R1 (not functionally related). For
notations and their meanings, see Table 4.1.
1: let S1 be the set of node pairs between G1 and G2 satisfying R, i.e., the set of

functionally related node pairs.
2: let S2 be the set of node pairs between G1 and G2 satisfying R1, i.e., the set of

functionally unrelated node pairs.
3: S

1

2 “ random.sample(S2, |S1|, d)
4: return (S1, S

1

2)

this training and testing split, resulting in 10 accuracy and 10 AUROC scores, and

for each measure we average results to ensure the outcomes are not due to the how

we select the instances. Note that if y “ 90 and we were to take stratified samples

instead of fully random samples, we would be performing 10-fold cross-validation as

above. Finally, we average over all 10 balanced datasets to ensure the outcomes are

unlikely due to how we sample the negative class.

TARA for a network set with unknown node mapping. Since we do not

know the node mapping between yeast and human PPI networks, we must define

functional relatedness in a different way compared to for network sets with known

node mapping. We use GO annotations to do this. Specifically, if a yeast-human

protein pair shares at least k biological process (BP) GO terms in which the protein-

GO term annotations were experimentally inferred (i.e., if a given annotation has one

of the following evidence codes: EXP, IDA, IPI, IMP, IGI, IEP), then we say the pair

is functionally related. We vary k from 1 to 3. This gives us three sets of ground

truth data, which we refer to as atleast1-EXP, atleast2-EXP, and atleast3-EXP. Also,

no matter what k is, we define a functionally unrelated pair as a pair sharing no GO

terms.

99

Then, for a given k, functionally related pairs form the positive class, and func-

tionally unrelated pairs form the negative class. Once again because there are many

more negative pairs, we take 10 samples that match the size of the positive pairs to

create 10 balanced datasets and average over them. Again we use GDVdiff as the

feature under logistic regression.

We again perform each of (i) 10-fold cross-validation and (ii) y percent training

tests on the 10 balanced datasets, just like before, except that in the percent training

tests, we now only perform the y% training/testing split once instead of 10 times for

simplicity, since we find the training/testing split does not significantly change the

results.

TARA as an NA framework for protein function prediction. In addition to

10-fold cross-validation and y percent training tests (on each of networks with known

and unknown node mapping), we evaluate TARA in a third test – that of protein

function prediction. This is an important downstream task of NA. We evaluate

TARA in this context as follows. For a given set of ground truth data atleastk-EXP,

we keep only GO terms that annotate at least two yeast proteins and at least two

human proteins; without this constraint, it is impossible for the framework (described

below) to make predictions for the GO term. Then, for a given percent training test

y, we train TARA and make predictions on the remaining testing data. Every pair

that is predicted to be in the positive class is added to an alignment. We outline the

process in Algorithm 3. This alignment, as well as alignments of existing methods that

we evaluate against, is then put through the protein function prediction framework

proposed by [110], which we summarize as follows. For each protein u in the alignment

(that is annotated by at least k GO term(s)), we hide u’s true GO term(s). Then,

for each GO term g, we determine if the alignment is statistically significant with

respect to g. This is done by calculating if the number of aligned node pairs in which

the aligned proteins share g is significantly high (p-value less than 0.05 according to

100

the hypergeometric test [110]). After repeating for all applicable proteins and GO

terms, we obtain a list of predicted protein-GO term associations. From this list we

can calculate the precision and recall of the predictions.

Algorithm 3 Generating an alignment. Given two networks G1 and G2, the set of
conditions R that a node pair needs to satisfy to be considered functionally related,
the set of conditions R1 that a node pair needs to satisfy to be considered not func-
tionally related, random seed state d, and a y percent training amount, return an
alignment of G1 and G2. For notations and their meanings, see Table 4.1.
1: Initialize set A to be empty.
2: let (Sp, Sn) = balpG1, G2, R,R1, dq, as computed by Algorithm 2.
3: let Trp = random.sample(Sp, ty|Sp|{100u, d).
4: let Tep = SpzTrp
5: let Trn = random.sample(Sn, ty|Sn|{100u, d).
6: let Ten = SnzTrn.
7: let Tr “ Trp Y Trn be the training data.
8: let Te = Tep Y Ten be the testing data.
9: Train a predictive function, LogReg : R73 Ñ t0, 1u, with logistic regression, on

Tr, where the feature vector of node pair sij P Tr is given by gpsij, G1, G2q, and
the label of sij is t1 if sij P Sp, 0 if sij P Snu.

10: for each sij P Te do
11: let xij “ gpsij, G1, G2q

12: if LogReg(xij) = 1 then
13: A.add(sij)
14: end if
15: end for
16: return A
For example, if G1 is the yeast PPI network, G2 is the human PPI network, R is
the set of conditions for the atleast3-EXP ground truth dataset, R1 is the set of
conditions for a protein pair to be considered not functionally related (i.e., shared
no GO terms of any kind), d is 0, and y is 90%, then getAlnpG1, G2, R,R1, d, yq

returns the alignment between yeast and human generated by a classifier trained on
functionally related protein pairs defined by R, functionally unrelated pairs defined
by R’, using a random seed state of 0 for sampling, and 90% of the data for training.

While in traditional NA evaluations every GO term available is considered, some

GO terms may be redundant or too general. Recent work has suggested that taking

101

the frequency of GO terms (how many proteins a GO term annotates out of all pro-

teins analyzed) into account can deal with these issues [76]; intuitively, less frequent

means more informative. However, because there is no hard definition for what makes

a GO term rare enough, we consider three thresholds:

• All GO terms (i.e., ALL); this corresponds to traditional NA evaluation.

• GO terms that appear 50 times or fewer (i.e., threshold of 50).

• GO terms that appear 25 times or fewer (i.e., threshold of 25).

For a given GO term rarity threshold, we filter out all GO terms that do not satisfy

the threshold. Then, for each atleastk-EXP ground truth dataset (see above), we

only consider proteins that share at least k GO terms from the filtered list to be

functionally related (keep in mind that for proteins to be considered functionally

unrelated, they still must share no GO terms, regardless of rarity). For example,

atleast1-EXP at the 50 GO term rarity threshold considers proteins that share at

least one experimentally inferred biological process GO term, such that each GO term

annotates 50 or fewer proteins (out of all proteins from the yeast and human PPI

networks we analyze), to be functionally related. In total, we now have nine “ground

truth-rarity” datasets, resulting from combinations of the three atleastk-EXP ground

truth datasets and the three GO term rarity thresholds. Then, for each of these

nine datasets, we train and test TARA on protein pairs satisfying the conditions

(i.e., being in the atleastk-EXP ground truth dataset at the given GO term rarity

threshold), and evaluate the resulting alignment using the protein function prediction

framework described above. Also, in order to fairly compare TARA to all existing

NA methods, we evaluate the existing methods’ alignments with respect to these

nine ground truth-rarity datasets. In this way, we can test the effect of both k in the

atleastk-EXP ground truth datasets and GO term rarity on prediction accuracy.

102

4.1.3 Results and discussion

4.1.3.1 Topological similarity versus functional relatedness

Here, we provide evidence that the traditional assumption of NA methods, namely

that topological similarity corresponds to functional relatedness, does not hold.

First, as a baseline, consider a network aligned to itself, i.e., to its 0% randomly

perturbed counterpart. We know the correct node mapping, and pairs in this mapping

can be considered functionally related. If we look at the topological similarity between

pairs of nodes that should be aligned versus those that should not, we expect the

former to be topologically identical, and the latter not to be. Also, we expect the

distribution of topological similarities of the matching node pairs to be different than

the distribution of topological similarities of non-matching pairs. Indeed, that is what

we observe (Fig. 4.1(a) and Supplementary Fig. C.2(a)).

Now, consider a network aligned to its 25% randomly perturbed counterpart. Be-

cause only (a portion of) edges change, we still know the correct node mapping, i.e.,

which nodes are functionally related. At just 25% random perturbation (where net-

works are still 75% identical), we observe that the topological similarity distribution

of node pairs that should be matched is now close to the topological similarity dis-

tribution of those that should not (Fig. 4.1(b) and Supplementary Figs. C.2(b) and

C.3(b)). In other words, the functionally matching nodes are only marginally more

similar to each other than at random. So, even if the two networks being aligned are

just a little different (and it is expected that PPI networks of different species are

much more different than that), topological similarity is no longer correlated with

functional relatedness. This fact holds for multiple prominent topological similar-

ity measures, including GRAAL’s [96] and MAGNA’s [143] GDV similarity measure

(Fig. 4.1), GHOST’s [130] spectral signature-based similarity measure (Supplemen-

tary Fig. C.2), and IsoRank’s [153] PageRank-based similarity measure (Supplemen-

103

tary Fig. C.3). Note that while the three measures quantify topologically similarity

in mathematically different ways, they all follow the general notion that a high score

corresponds to neighborhood regions that are close to isomorphic (as discussed in

Section “4.1.1 – Background and motivation”). Because all measures show qualita-

tively similar trends, and because GDV similarity was shown to outperform both

GHOST’s and IsoRank’s similarities [36, 52], we focus on GDV similarity for the

following analysis.

Figure 4.1. Distribution of topological similarity (GDV similarity) between
node pairs of a geometric random graph (i.e., a synthetic network) and its
(a) 0% and (b) 25% randomly perturbed counterparts. We show three
lines representing the distribution of topological similarity for matching (i.e.,
functionally related) node pairs (blue), for non-matching, i.e., functionally
unrelated, node pairs (red), and for 10 random samples of the same size as
the set of matching pairs, averaged (purple). Results are qualitatively similar
for 50% random perturbation, scale-free random graphs (a different type
of synthetic networks), and GHOST’s and IsoRank’s similarity measures.
(Supplementary Figs. C.1-C.3).

104

Second, we observe this trend, namely that the distributions of topological sim-

ilarity for functionally related and functionally unrelated protein pairs are close to

each other, for real world PPI networks as well (see below). Furthermore, we find

that the distributions of sequence similarity are also close to each other for the two

sets of protein pairs, and that distributions of the combination of topological and

sequence similarities are close to each other as well. Specifically, we analyze the yeast

and human PPI networks described in Section “4.1.2 – Data”. Here, we consider pro-

teins that share at least one experimentally inferred biological process GO term to

be functionally related, proteins that do not share any GO terms to be functionally

unrelated, proteins with GDV similarity of 0.85 or greater to be topologically similar

[108], and proteins with E-value of 10´10 or lower to be sequence similar [105]. Our

findings are as follows:

• Out of all functionally related protein pairs, only „28% are topologically sim-
ilar (Fig. 4.2(a), above the horizontal line), while even out of all functionally
unrelated protein pairs, „14% are still topologically similar (Fig. 4.2(b), above
the horizontal line).

• Out of all functionally related protein pairs, „63% are sequence similar (Fig.
4.2(a), to the right of the vertical line), while even out of all functionally unre-
lated protein pairs, „53% are still sequence similar (Fig. 4.2(b), to the right of
the vertical line).

• Out of all functionally related protein pairs, only „18% are both topologically
and sequence similar (Fig. 4.2(a), top right quadrant), while even out of all
functionally unrelated protein pairs, only „8% are both topologically and se-
quence similar (Fig. 4.2(b), top right quadrant).

In other words, functionally related nodes are only marginally more similar (for all

types of similarity we consider) to each other than at random. Therefore, the existing

NA assumption that is based on topological similarity fails, and instead our NA

approach that is based on topological relatedness, TARA, is needed.

105

Figure 4.2. Distribution of topological similarity (GDV similarity) ver-
sus sequence similarity (E-value) between yeast and human PPI networks of
those yeast-human protein pairs that are (a) functionally related (i.e., share
at least one biological process GO term such that the protein-GO term an-
notation was experimentally inferred) and (b) functionally unrelated (i.e.,
share zero GO terms). The color of a pixel represents how many node pairs
have a given topological similarity and given sequence similarity. The red
horizontal and vertical lines indicate the thresholds for topologically similar
(y ě 0.85) or sequence similar (x ď 10´10) pairs, and the percentages indi-
cate the fraction of pairs that are in a given quadrant.

4.1.3.2 TARA for network sets with known node mapping

10-fold cross-validation. Here we evaluate TARA using 10-fold cross-validation.

Specifically, for each network model (geometric and scale free), for each random per-

turbation level (0, 10, 25, 50, 75, 100), we obtain the average accuracy and average

AUROC of the 10 folds. We expect that as the amount of random perturbation in-

creases, prediction accuracy and AUROC decrease since the networks become more

and more dissimilar. Indeed, this is what we observe (Fig. 4.3(a) and Supplementary

Fig. C.4). Also, we expect a random classifier to give around 50% accuracy since

the class sizes are balanced; it will also have 50% AUROC by definition. This is

empirically verified by the results at 100% random perturbation, where we are at-

tempting to classify nodes between two completely different networks (Fig. 4.3(a)

and Supplementary Fig. C.4).

106

Percent training tests. Again, we expect that as the amount of random pertur-

bation increases, accuracy and AUROC decreases since networks are becoming more

dissimilar. Also, we expect that as we increase the amount of training data, the

accuracy and AUROC increases as well since more information is being used in the

classifier. Overall, these are the trends we observe (Fig. 4.3(b) and Supplementary

Fig. C.5). We also see that using 90% of the data as training does not lead to

drastic improvements; in fact, it is not always even the best. For some (geometric)

networks, as low as 40% still gives comparable results. This is promising, as we do

not necessarily have to rely on using a majority of the data for training.

Figure 4.3. Average prediction accuracy of (a) 10-fold cross-validation
and (b) percent training tests for a geometric network and its randomly
perturbed counterparts. In panel (b), different colored lines represent how
much data is used for training; these colors do not apply to panel (a). A
dotted black line indicates the accuracy expected if the classifier makes ran-
dom predictions. Qualitatively similar results for AUROC and for scale-free
networks are shown in Supplementary Figs. C.4–C.5.

107

These tests serve as a proof of concept that there is some learnable pattern between

topological and functional relatedness, and so it makes sense to continue this study

for real-world networks.

4.1.3.3 TARA for network sets with unknown node mapping

10-fold cross-validation. Again, we evaluate TARA using 10-fold cross-validation.

We expect that as k increases, accuracy and AUROC do as well since the conditions

for a pair of proteins to be functionally related becomes more stringent. Indeed, this

is what we observe (Fig. 4.4(a) and Supplementary Fig. C.6).

Percent training tests. We see similar results for percent training as we do for

10-fold cross-validation (Fig. 4.4(b)) and Supplementary Fig. C.7). Note that unlike

percent training for synthetic networks, the amount of training data has very little

effect on accuracy except for atleast3-EXP. This may be because atleast1-EXP and

atleast2-EXP contain a lot more data, meaning even a small percentage is enough to

train a good classifier.

Overall, we are able to detect a pattern between topological relatedness and func-

tional relatedness. So, it makes sense to generate an alignment and evaluate TARA

in the protein function prediction task.

4.1.3.4 TARA for protein function prediction

Here, we evaluate TARA and existing NA methods in the task of protein function

prediction. Specifically, we take the alignments generated from each method and put

them through the protein function prediction framework as described above. We first

compare TARA’s percent training tests to each other, and then we compare TARA

to existing NA methods.

Comparing TARA’s percent training tests to each other. For simplicity,

we only compare a subset of TARA’s percent training tests. Specifically, because

108

Figure 4.4. Average prediction accuracy of (a) 10-fold cross-validation and
(b) percent training tests for real-world networks. In panel (b), different
colored lines represent how much data is used for training; these colors do
not apply to panel (a). A dotted black line indicates the accuracy expected
if the classifier makes random predictions. Qualitatively similar results for
AUROC are shown in Supplementary Figs. C.6–C.7.

classification accuracy does not vary significantly between different percent training

tests, we focus on the extremes (10 and 90) and the middle (50). So, we have 27 total

evaluation tests for TARA, resulting from combinations of the three percent training

tests and the nine ground truth-rarity datasets discussed above.

We expect that as we increase the amount of training data (10 to 50 to 90),

precision will increase and recall will decrease. This is because more training data

means the classifier will likely be better (increasing precision), but will result in less

testing data and thus smaller alignments and fewer predictions (decreasing recall).

Similarly, we expect that as we increase k in our atleastk-EXP ground truth datasets,

precision will increase and recall will decrease. This is because at higher k, we

will be training on higher quality data (increasing precision), but there will be less

data overall, resulting in smaller alignments and fewer predictions (decreasing recall).

Finally, we expect that as we consider rarer GO terms, precision will increase and

109

recall will decrease. Intuition from existing studies suggests that rarer GO terms are

more meaningful [76], so the data will be higher quality (increasing precision), but

again there will be less data overall (decreasing recall). Indeed, we observe these

trends (Fig. 4.5 and Supplementary Fig. C.8) for all but atleast3-EXP at the 50

and 25 rarity thresholds; there is not enough data for TARA to generate alignments

or make predictions for those parameters. Inability to learn on small datasets is one

drawback of machine learning methods in general, not just TARA.

Figure 4.5. Comparison of different TARA evaluation tests in the task of
protein function prediction, for the ALL GO term rarity threshold. Different
percent training tests, specifically 10, 50, and 90, are compared within each
panel, and different ground truth datasets, specifically (a) atleast1-EXP,
(b) atleast2-EXP, and (c) atleast3-EXP, are compared across panels. The
alignment size (i.e., the number of aligned yeast-protein pairs) and number
of functional predictions (i.e., predicted protein-GO term associations) made
by each method, averaged over the 10 instances we perform for each test,
are shown on the top. For example, the alignment for TARA-90 for the
atleast2-EXP dataset contains 1,327 aligned yeast-human protein pairs, and
predicts 5,657 protein-GO term associations. Raw precision, recall, and F-
score values are color-coded inside each panel. Complete results for the other
rarity thresholds are shown in Supplementary Fig. C.8.

110

In order to simplify comparisons between TARA and existing NA methods, we

choose a representative percent training test (i.e., either TARA-10, TARA-50, or

TARA-90) for each of the nine ground truth-rarity datasets discussed previously. In

other words, we go from 27 TARA evaluation tests to nine (though we actually have

seven since TARA does not make predictions for atleast3-EXP at the 50 and 25

rarity thresholds, per the above discussion). Generally, we try to choose the percent

training test that has both high precision (meaning predictions are accurate) and a

large number of predictions (meaning we uncover as much biological knowledge as

possible), as these represent TARA’s best results. The choices are given in Table 4.2.

TABLE 4.2

REPRESENTATIVE CHOICES OF TARA’S PERCENT TRAINING

TESTS FOR EACH OF THE 9 GROUND TRUTH DATASETS

ALL 50 25

atleast1-EXP TARA-90 TARA-90 TARA-90

atleast2-EXP TARA-90 TARA-10 TARA-10

atleast3-EXP TARA-90 N/A N/A

Comparing TARA against existing NA methods. We compare against three

existing methods, WAVE, SANA, and PrimAlign. We compare against these three

methods for the following reasons (also, see Section 4.1.1). WAVE and SANA are

state-of-the-art methods that use graphlets, just like TARA, allowing us to fairly

analyze how much TARA’s supervised process helps. Also, they operate under the

111

assumption that topologically similar nodes are functionally related, which is what

TARA challenges. However, recall that WAVE and SANA are one-to-one methods,

while TARA is a many-to-many method. So, we analyze PrimAlign, because it is a

state-of-the-art many-to-many method. In addition, PrimAlign operates under the

assumption that we challenge, namely that topologically similar nodes are function-

ally related. Recall from Section “4.1.1 – Related work” that WAVE, SANA, and

PrimAlign were already shown to outperform a number of previous NA methods,

and hence, we believe that comparing to these three methods is sufficient. Also, keep

in mind that a theoretical precision of one is not possible with TARA, unlike WAVE,

SANA, and PrimAlign. This is because TARA uses part of the ground truth data for

training, meaning it impossible to make predictions for that portion. In other words,

TARA is inherently disadvantaged compared to existing methods.

In more detail, WAVE and SANA use graphlet-based topological information like

TARA (however, keep in mind that sequence information or any other data could

also be used in TARA, which is subject of our future work). Specifically, WAVE and

SANA both use GDV similarity to score the similarities of node pairs, and SANA

also uses an equal weighing of node conservation and edge conservation (i.e., we set

both s3 and esim to 1). Unlike WAVE and SANA, PrimAlign uses both topological

(PageRank-based) information and sequence similarity (negative log of E-value) infor-

mation by default. Specifically, regarding the latter PrimAlign study, which analyzes

the same yeast and human PPI networks as we do, considers all sequence similar pro-

teins between the networks with an E-value ď 10´7, which results in 55,594 sequence

similarity-based anchor links. We run this default version, called PrimAlign-TS. We

also analyze a topological version of PrimAlign (PrimAlign-T) for fair comparison

with TARA, which in this study uses topological but not sequence information. To

create an as fairly comparable as possible topological version of PrimAlign, we in-

stead use the 55,594 most topologically (GDV) similar yeast-human protein pairs as

112

anchor links. Lastly, we are also interested in using sequence information only (Se-

quence, or S), in order to better understand the effect of T or S alone. We do so by

taking those 55,594 sequence similar pairs from PrimAlign-TS and treating them as

the alignment, disregarding any topological information from the PPI networks.

Summarizing the different NA methods, TARA, WAVE, SANA, and PrimAlign-T

use topological information, Sequence uses sequence information, and PrimAlign-TS

uses both topological and sequence information. Furthermore, recall that the different

methods have different levels of comparability to TARA in terms of information used

(T versus S versus TS) and alignment type (one-to-one versus many-to-many) (Table

4.3). To show that our assumption holds, namely that topologically related, rather

than topologically similar, nodes should be aligned, it would be sufficient to show

that TARA, a T method, outperforms the other T methods. If TARA, a T method,

also outperforms Sequence or PrimAlign-TS, then this would further underscore the

need of a data-driven approach like ours.

We discuss our results below (Fig. 4.6 and Supplementary Fig. C.9). Note that

we primarily focus on precision because in terms of potential wet lab validation of

some predictions, we believe it is more important to have fewer but mostly correct

predictions (e.g., 90 correct out of 100 made) than a greater number of mostly in-

correct predictions (e.g., 300 correct out of 1000 made). While in the latter example

more predictions are correct (300 versus 90), leading to a higher (almost triple) recall,

many more are also incorrect, leading to lower precision (0.3 versus 0.9). However, we

do not completely discount recall and F-score, as they may still be valuable measures

for other considerations. Also, keep in mind that the expected precision and recall for

a random alignment is near 0. A random alignment is not expected to match func-

tionally related proteins, meaning essentially random protein-GO term associations

will be predicted.

113

TABLE 4.3

COMPARABILITY OF THE EXISTING METHODS CONSIDERED IN

THIS STUDY TO TARA IN TERMS OF TYPE OF INFORMATION

USED (T VERSUS S VERSUS TS) AND ALIGNMENT TYPE

(ONE-TO-ONE VERSUS MANY-TO-MANY)

Fair to TARA in terms of:

Existing NA method Information used Alignment type

WAVE Yes No

SANA Yes No

Sequence No Yes

PrimAlign-T Yes Yes

PrimAlign-TS No Yes

• Compared to other T methods, TARA is superior to WAVE and SANA in 6/7
tests with respect to precision, and in all seven tests with respect to recall (the
seven tests are summarized in Table 4.2). Importantly TARA is always superior
to PrimAlign-T, the most fairly comparable method to TARA, in terms of both
precision and recall. These trends support our claim that topologically related,
not topologically similar, nodes are the ones that are functionally related.

• Compared to PrimAlign-TS, TARA is superior in 3/7 tests (atleast2-EXP for
the 50 and 25 rarity thresholds, and atleast3-EXP for ALL GO terms) with
respect to precision. Of the remaining four tests, TARA is superior in two and
comparable in two with respect to F-score.

• Compared to Sequence, TARA is superior in all seven tests in terms of precision,
and superior in 3/7 in terms of recall. Of those remaining four tests, it is still
superior in two of them with respect to F-score.

An interesting note is that the precision of PrimAlign-TS is much greater than

simply the sum of precision from Sequence and PrimAlign-T, suggesting that combin-

ing topological and sequence information in a meaningful way can have compounded

114

effects. This is promising for incorporating sequence information into TARA, which

is our future work.

Figure 4.6. Comparison of the six considered NA methods for rarity thresh-
olds (a, d) ALL, (b, e) 50, and (c, f) 25 using ground truth datasets (a,
b, c) atleast1-EXP and (d, e, f) atleast2-EXP in the task of protein func-
tion prediction. The alignment size (i.e., the number of aligned yeast-protein
pairs) and number of functional predictions (i.e., predicted protein-GO term
associations) made by each method. For example, the alignment for TARA
in panel (a) contains 27,155 aligned yeast-human protein pairs, and predicts
91,618 protein-GO term associations. Raw precision, recall, and F-score val-
ues are color-coded inside each panel. Results for atleast3-EXP are shown
in Supplementary Fig. C.9.

115

While precision, recall, and F-score are important overall measures, it is also nec-

essary to zoom into the actual predictions that the methods make. We focus on

TARA and PrimAlign-TS, as these two methods perform the best, with the param-

eters from Fig. 4.6.

We see that for atleast1-EXP, no matter the rarity threshold, TARA makes many

more predictions than PrimAlign-TS, and yet still has comparable precision for the

50 and 25 GO term rarity thresholds (Fig. 4.6). In other words, TARA is potentially

uncovering more biological knowledge than PrimAlign-TS but with similar accuracy.

For atleast2-EXP, for the ALL GO term rarity threshold, TARA and PrimAlign-TS

make a similar number of predictions with similar precision, and for the 50 and 25

rarity thresholds, TARA outperforms PrimAlign-TS, though at the cost of fewer pre-

dictions (Fig. 4.6). For atleast3-EXP, for the ALL GO term rarity threshold, TARA

outperforms PrimAlign-TS, also at the cost of fewer predictions (Supplementary Fig.

C.9).

Importantly, we see that the number of predictions in the overlap of TARA and

PrimAlign-TS is generally small (Fig. 4.7 and Supplementary Fig. C.10), suggesting

that most of the two methods’ predictions are complementary. Therefore, we can

say that TARA has some advantage in every case (whether it be precision, recall,

or number of predictions), and at worst complements PrimAlign, which even uses

sequence information that TARA does not. This, in addition to TARA outperforming

WAVE and SANA, justifies the need for introducing our new data-driven approach.

We also look at the time it takes to obtain an alignment for TARA, WAVE,

SANA, PrimAlign-T, and PrimAlign-TS for the ALL GO term rarity threshold, as

the given threshold has the most data and thus will be the worst case time-wise out of

all thresholds. We do not consider Sequence as we did not compute any alignment in

this case; instead, the alignment was included from the PrimAlign study. We expect

as that k (in the atleastk-EXP ground truth dataset) increases, the time for TARA

116

Figure 4.7. Overlap of the functional predictions made by TARA and
PrimAlign for atleast2-EXP at the 50 rarity threshold. Percentages are out
of the total number of unique predictions made by both methods combined.
Complete results for all methods and parameters are shown in Supplementary
Fig. C.10 and Supplementary File C.1.

to produce an alignment decreases since there is less (but higher quality) data overall,

and thus less data to train on. This is what we observe (Table 4.4). Regarding the

existing NA methods, WAVE uses a seed-and-extend alignment strategy, which is

expected to take some time. The running time of SANA is a parameter, which we

choose to be 60 minutes since SANA requires such time to find a good alignment for

networks of the sizes we analyze. We find that WAVE and SANA are both slower

than TARA for atleast2-EXP and atleast3-EXP, and SANA is comparable to TARA

for atleast1-EXP, meaning that TARA is overall both faster and more accurate at

predicting protein function than the two one-to-one NA methods. Lastly, we find

that PrimAlign and its variants are fast, which is expected because the method is

linear in the number of edges.

4.1.3.5 A closer look at TARA

We also explore why TARA is able to outperform the traditional NA methods.

Recall the distributions of topological similarity scores (which traditional NA methods

117

TABLE 4.4

RUNNING TIME (ROUNDED TO THE NEAREST SECOND)

COMPARISON OF TARA, WAVE, SANA, PRIMALIGN-T, AND

PRIMALIGN-TS FOR ALL GO TERMS

Running time (s) atleast1-EXP atleast2-EXP atleast3-EXP

TARA 3,642 210 168

WAVE 1,686 1,686 1,686

SANA 3,600 3,600 3,600

Sequence N/A N/A N/A

PrimAlign-T 3 3 3

PrimAlign-TS 16 16 16

use) from Section “4.1.3 – Topological similarity versus functional relatedness”. When

the two networks are just a bit different from each other, nodes that should be

matched (i.e., are functionally related) are only marginally more topologically similar

to each other than at random, leading to suboptimal alignments. If we analyze

TARA’s topological relatedness scores (described below) in the same way, we find

that TARA can better distinguish matching node pairs from non-matching node

pairs. This could explain why TARA outperforms the traditional NA methods.

To extract topological relatedness scores from TARA’s framework, we do the

following. Consider the 90% training test (while this applies to any percent training

test, we focus on 90 because TARA-90 generally performs the best), where we first

train a classifier on 90% of a balanced dataset. Then, instead of evaluating on the

remaining 10% of the data as above, we input the feature vector of each node pair

across networks into the trained classifier. Rather than directly outputting whether

118

a pair is functionally related or not, we obtain the probability that the two nodes

are functionally related instead. We can interpret this probability as a redefined

“relatedness” measure, where now nodes are topologically related if they are likely to

be functionally related.

Then, mirroring our initial analyses (Fig. 4.1), we examine the distributions of

these topological relatedness scores on the same networks and random perturbation

levels. For a geometric network and its 0% randomly perturbed counterpart, we

again see a distinct difference between the distributions of matching pairs and all

pairs (Fig. 4.8(a)). But, even for 25% random perturbation, the distributions are

now different from each other (Fig. 4.8(b)), and this difference is greater than the

difference in distributions of the equivalent topological (GDV) similarity scores (Fig.

4.1(b)). In other words, TARA’s topological relatedness scores are better able to

distinguish matching node pairs from non-matching node pairs compared to tradi-

tional topological similarity scores, which could explain the superior results of TARA

over traditional NA methods. Improving these learned topological relatedness scores

(e.g., so that the difference in distributions at 25% random perturbation looks like

the difference at 0% random perturbation), and using them to produce alignments

that are more fairly comparable to some traditional NA methods (e.g., to produce

one-to-one alignments) are subjects of our future work.

4.1.3.6 Generalizability of TARA

Just like with any supervised classification approach, the key goal of TARA is to

first train the approach on the training portion of the compared networks, and then

to test it on the testing portion of the same networks that was hidden during the

training process, in order to validate that the approach is accurate on the known but

hidden knowledge from the testing data. Then, the goal is to retrain TARA on all

119

Figure 4.8. Distribution of TARA’s redefined topological relatedness be-
tween node pairs of a geometric random graph (i.e., a synthetic network) and
its (a) 0% and (b) 25% randomly perturbed counterparts. We show three
lines representing the distribution of topological relatedness for matching
(i.e., functionally related) node pairs (blue), for non-matching, i.e., function-
ally unrelated node pairs (red), and for 10 random samples of the same size
as the set of matching pairs, averaged (purple).

of the (training plus testing) data in order to predict novel knowledge from the same

data.

Just like any supervised classification approach in the context of any problem, for

highest accuracy in the context of the NA problem, TARA should ideally be trained

for each new pair of networks considered. That is, TARA when trained on one pair

of networks (using only the training portion of the data), is expected to be at least

as accurate when tested on the same pair of networks (using only the testing portion

of the data) than when tested on a different pair of networks.

Of course, training TARA on a new pair of networks of interest is possible only

if there exists data on whether a node pair is functionally related or not, for those

networks. If such data does not exist, i.e., if one cannot determine for the new

networks of interest whether a node pair is functionally related or not, then one must

120

apply a TARA instance pre-trained on a different pair of networks to the new pair

of networks.

So, here, we investigate how well TARA performs in this task, i.e., how generaliz-

able it is. Namely, we examine whether we can train TARA on one pair of networks

and apply the trained TARA instance to a new pair of networks to still accurately

predict functional knowledge. Specifically, we apply TARA, trained on the yeast

and human PPI networks as described in Section “4.1.2 – Data” (“2017 networks”),

to more recent yeast and human PPI networks from the same database (“2020 net-

works”). The new networks come from BioGRID version 3.5.181 accessed in February

2020; like for the 2017 networks, we again only include physical interactions.

Details of our experimental setup for this analysis are as follows.

• We repeat the exact same training process as before, i.e., on the 2017 networks.
Namely, on these networks, we create the same 10 balanced datasets, and, for
a given balanced dataset, for each ground truth-rarity dataset and y% training
amount, we split the data into y% training and p100 ´ yq% testing. Then, we
train a logistic regression classifier using the GDVdiff feature for a node pair
based on the 2017 networks. So, after these steps, we have trained TARA on
the same node pairs and features vectors as before.

• But then, we perform testing on the 2020 networks. That is, of the node pairs in
the 2017-network-based testing set from the previous bullet, we keep only those
pairs in which both nodes are present in both the 2017 and 2020 network data.
For the resulting node pairs, we compute their new node pair feature vectors
based on the 2020 (rather than 2017) networks. We feed the new 2020-network-
based feature vectors into the 2017-network-trained classifier, and add any node
pair predicted as functionally related to the 2020-network-based alignment. Fi-
nally, this alignment is used in the protein function prediction framework. In
this way, we can fairly compare results between the 2017-network-based align-
ments (computed in previous sections) and the corresponding 2020-network-
based alignments (computed as just described), since all training is done on the
same node pairs with the same 2017-network-based feature vectors, and the
testing only differs in which network set (2017 versus 2020) the feature vectors
were extracted from. Algorithm 4 outlines this process.

• Repeating for each balanced dataset, we obtain 10 precision, recall, and F-score
values, and we average over the 10 values for each measure.

121

Algorithm 4 Applying a pre-trained TARA instance to a new pair of networks.
Given two networks G1 and G2, the set of conditions R that a node pair needs to
satisfy to be in a given ground truth dataset, the set of conditions R1 that a node
pair needs to satisfy to be considered not functionally related, random seed state d,
a y percent training amount, and two networks G3 and G4, return an alignment of
G3 and G4. For notations and their meanings, see Table 4.1.
1: Initialize set A to be empty.
2: let Sp, Sn = balpG1, G2, R,R1, dq, as computed by Algorithm 2.
3: let Trp = random.sample(Sp, ty|Sp|{100u, d).
4: let Tep = SpzTrp
5: let Trn = random.sample(Sn, ty|Sn|{100u, d).
6: let Ten = SnzTrn.
7: let Tr “ Trp Y Trn.
8: let Te = Tep Y Ten.
9: Train a predictive function, LogReg : R73 Ñ t0, 1u, with logistic regression, on

Tr, where the feature vector of node pair sij P Tr is given by gpsij, G1, G2q, and
the label of sij is t1 if sij P Sp, 0 if sij P Snu.

10: Lines 1-9 are identical to those of Algorithm 3, representing the fact
that the training processes are identical (assuming that G1, G2, R, R1,
d, and y do not change between Algorithms 3 and 4).

11: for each sij P Te do
12: if sij P V3 ˆ V4 then
13: let xij “ gpsij, G3, G4q

14: if LogReg(xij) = 1 then
15: A.add(sij)
16: end if
17: end if
18: end for
19: return A
For example, if G1 is the 2017 yeast PPI network, G2 is the 2017 human PPI network,
R is the set of conditions for the atleast3-EXP ground truth dataset, R1 is the set
of conditions for a protein pair to be considered not functionally related (i.e., shared
no GO terms of any kind), d is 0, y is 90%, G3 is the 2020 yeast PPI network, and
G4 is the 2020 human PPI network, getAln˚pG1, G2, R,R1, d, y, G3, G4q returns the
alignment between the 2020 yeast and human PPI networks generated by a classifier
trained on functionally related protein pairs defined by R, functionally unrelated
pairs defined by R’, using a random seed state of 0 for sampling, and 90% of the
2017-network-based data for training.

122

Our findings are as follows. By looking at the number of protein function pre-

dictions, TARA applied to the 2020 networks generally results in somewhat fewer

predictions compared to TARA applied to the 2017 networks. Even if the two TARA

versions are equally accurate, the differing number of predictions alone could nat-

urally result in the former having somewhat higher precision and somewhat lower

recall. Indeed, this is exactly what we observe (Fig. 4.9). A key result is that the

two TARA versions are quite comparable, i.e., that TARA trained on the 2017 net-

works, when it is tested on the 2020 networks, results in pretty similar (somewhat

higher) precision and (somewhat lower) recall values as when it is tested on the 2017

networks. This is extremely encouraging, as it indicates that TARA is generalizable

in our considered test.

4.1.4 Conclusion

We present TARA as a method that challenges the assumption of current NA

methods that topologically similar nodes are functionally related. We have shown

that given the topological feature vector of a pair of nodes, TARA can accurately

predict whether the nodes are functionally related. In other words, we have designed a

method that can detect from training data a pattern between topological relatedness

and functional relatedness in both synthetic and real-world networks. Then, taking

pairs predicted as functionally related from the testing data as an alignment, we have

shown that TARA generally outperforms or complements existing approaches, even

those that use sequence similarity-based anchor links across network as input (unlike

TARA), in the task of protein function prediction, one of the ultimate goals of NA.

As such, TARA provides researchers with a valuable data-driven approach to NA

and protein function prediction.

To our knowledge, TARA is the first data-driven NA approach. As such, it is just

a proof-of-concept. There are many directions in which this work can be taken. For

123

Figure 4.9. Comparison of TARA on the 2017 versus 2020 networks for
rarity thresholds (a, d) ALL, (b, e) 50, and (c, f) 25 using ground truth
datasets (a, b, c) atleast1-EXP and (d, e, f) atleast2-EXP in the task of
protein function prediction. The alignment size (i.e., the number of aligned
yeast-protein pairs) and number of functional predictions (i.e., predicted
protein-GO term associations) made by each method. For example, the
alignment for TARA-2017 in panel (a) contains 27,155 aligned yeast-human
protein pairs, and predicts 91,618 protein-GO term associations. Raw pre-
cision, recall, and F-score values are color-coded inside each panel. Results
for atleast3-EXP are shown in Supplementary Fig. C.11.

one, we use a relatively simple GDV-based feature of a node pair. However, more

sophisticated combinations of GDVs could be explored. Other embedding methods

(i.e., ways to extract feature vectors of nodes) such as matrix factorization [77] or

124

graph convolution networks [180] could show improvement. Also, including sequence

similarity-based anchor links like PrimAlign does, is promising, especially given the

fact that combining topological and sequence information seems to have compound-

ing effects. Also, we train a simple classifier – logistic regression – but potential

improvement could be seen with more sophisticated models. Furthermore, in this

study we have focused on pairwise, homogeneous, and static NA. However, there has

been work in aligning multiple [74, 166, 163, 81], heterogeneous [70, 111], or dynamic

[165, 162, 6] networks. Our general framework could be adapted to each of these

types of NA.

4.2 TARA++: Data-driven network alignment that integrates topology and se-

quence to predict function

4.2.1 Introduction

While TARA relies only on network topological information to generate align-

ments, in this section we introduce TARA++, which combines both topological and

protein sequence information to generate alignments. An additional categorization of

NA methods will aid in understanding our extension of TARA to TARA++. Namely,

there are three NA method groups based on how input data are processed, within-

network-only, isolated-within-and-across-network, and integrated-within-and-across-

network, described in Table 4.5 and Section “4.2.2 – Description of existing NA

methods”.

Before describing our extensions of TARA to TARA++, we recount how each

of WAVA, SANA, and PrimAlign compares to TARA in terms of algorithmic steps,

in order to show where there is room for improvement (Table 4.6). Recall that by

learning topological relatedness patterns, TARA outperformed, in the task of across-

species protein functional prediction between yeast and human, three state-of-the-

125

TABLE 4.5

THREE NA METHOD GROUPS BASED ON HOW INPUT DATA ARE

PROCESSED

NA method group Description

Within-network-
only

Given two PPI networks, each node’s feature is calculated
using only the topological information within the given node’s
own network, hence the group name. The nodes’ topological
features, which summarize the nodes’ extended PPI network
neighborhoods, are then used in various alignment processes
(Section “4.2.2 – Description of existing NA methods”). For
state-of-the-art NA methods from this group, the topological
features are based on graphlets [112], which are subgraphs,
i.e., small building blocks of networks.

Isolated-within-
and-across-
network

Given two PPI networks and also sequence information for
nodes across networks, each node’s topological feature is cal-
culated in the same way as by within-network-only methods,
and only afterwards is the sequence information combined
with the topological features. The group name comes from
the fact that both within-network topological and across-
network sequence information are used, but the two are ini-
tially processed in isolation from each other and are combined
only after the fact. Then, the combined data are used in
various alignment processes (Section “4.2.2 – Description of
existing NA methods”). Note that within-network-only meth-
ods can easily be used as isolated-within-and-across-network
methods when sequence information is available; the latter
lead to better alignments than the former [110].

Integrated-within-
and-across-
network

Given two PPI networks and sequence information for nodes
across networks, the two networks are first “integrated” into
one by adding across-network “anchor” links (edges) between
the highly sequence-similar proteins and only then is any fea-
ture extraction or alignment done. So, the third group uses
both within-network topological and across-network sequence
information. But, they first integrate the two data types and
only then process them, hence the group name.

126

art NA methods, WAVE [158], SANA [103], and PrimAlign [87]. TARA, WAVE,

and SANA are all within-network-only methods. They also all use graphlet-based

topological node features. Their key difference is that TARA is supervised, ie., it

uses topological relatedness, while WAVE and SANA are unsupervised, i.e., they

use topological similarity. Thus, WAVE and SANA were the most fairly compara-

ble methods to TARA. So, we could fairly evaluate whether moving from WAVE’s

and SANA’s topological similarity to TARA’s supervision-based topological relat-

edness helped. TARA significantly outperformed WAVE and SANA, so we could

conclude that it did help. PrimAlign is one of very few existing integrated-within-

and-across-network methods. Because PrimAlign was already shown to outperform

many isolated-within-and-across-network methods [87] on the exact same data as in

TARA’s evaluation [68], there was no need to evaluate TARA against any meth-

ods of that type. Importantly, TARA still outperformed PrimAlign, despite the

former being a within-network-only method and hence not using any sequence in-

formation, unlike the latter. This already showed how powerful the supervised NA

paradigm is. In this study, we push the boundary further. TARA “only” showed that

going from unsupervised to supervised for within-network-only methods improved

alignment accuracy. But, we already know that going from within-network-only to

isolated-within-and-across-network in the unsupervised context improves accuracy

[110], and that going from isolated-within-and-across-network to integrated-within-

and-across-network in the unsupervised context further improves accuracy [87]. So, a

method that is both supervised and of the integrated-within-and-across-network type

should be the “best of both worlds”. Thus, here, we propose the first ever method of

this type.

127

TABLE 4.6

CATEGORIES THAT RELEVANT NA METHODS BELONG TO

NA method Method group Feature type (Un)supervised?

WAVE Within-network-only Topology (graphlets) Unsupervised

SANA Within-network-only Topology (graphlets) Unsupervised

PrimAlign Integrated-within-
and-across-network

Topology (PageRank-
like) and sequence

Unsupervised

TARA Within-network-only Topology (graphlets) Supervised

TARA-TS Integrated-within-
and-across-network

Topology (graphlets)
and sequence

Supervised

TARA++ N/A (TARA++ is the overlap of TARA’s and TARA-TS’s
predicted protein-GO term annotations)

4.2.1.1 Our contributions

We introduce TARA-TS (TARA within-network Topology and across-network

Sequence information) as a novel method implementing the above idea. Then, for

reasons discussed below, we integrate TARA and TARA-TS into our final method,

TARA++. Fig. 4.10 summarizes key ideas behind TARA-TS and our evaluation

framework.

Like TARA, TARA-TS is supervised. Unlike TARA and like PrimAlign, TARA-

TS extracts features from an integrated yeast-human network. As a solution to

feature extraction, we leverage the extensive research on graph representation learning

[22], which embeds nodes of a network into a low dimensional space such that network

structure is preserved; the low-dimensional node representations are then used as

node features. Network embedding has primarily been studied on the methodological

side in the domains of graph theory and data mining/machine learning, and on the

application side in the domain of social networks [37, 64, 22]. So, given recently

128

Figure 4.10. Summary of TARA-TS and our evaluation framework. (a)
TARA-TS aims to align two networks (in this study, yeast and human PPI
networks). Besides the networks, TARA-TS also uses sequence similar yeast-
human protein pairs as anchor links. See Section “4.2.2 – Data”. (b) From
the networks and anchor links, TARA-TS builds an integrated yeast-human
network and extracts integrated topology- and sequence-based features of
node (protein) pairs. See Section “4.2.2 – TARA-TS’s feature extraction
methodology”. (c) Given the features, TARA-TS trains a classifier on a
training set to learn what features distinguish between functionally related
and functionally unrelated node pairs, and then the classifier is evaluated
on a testing set. To perform this classification, yeast-human node pairs are
labeled. If the two nodes in a given pair are functionally related (intuitively,
share GO terms), they are labeled with the positive class; if they are func-
tionally unrelated, they are labeled with the negative class. See Section
“4.2.2 – Data”. Then, the set of labeled node pairs is split into training and
testing sets to perform the classification. Only if classification accuracy is
high, i.e., if TARA-TS accurately predicts functionally (un)related nodes to
be functionally (un)related, does it make sense to use TARA-TS to create an
alignment for protein functional prediction. (d) Node pairs from the test-
ing set that are predicted as functionally related are taken as TARA-TS’s
alignment. Note that relying on testing data only to create an alignment
avoids any circular argument. See Section “4.2.2 – TARA-TS’s classification
and alignment generation”. (e) Any alignment, of TARA-TS or an existing
NA method such as PrimAlign and TARA, can be given to a protein func-
tional prediction framework to predict protein-GO term annotations. Then,
the different methods’ alignments are evaluated in terms of their prediction
accuracy (we also evaluate their running times). See Section “4.2.2 – Using
an alignment for protein functional prediction”.

129

recognized promise of network embedding in the domain of computational biology

[124], we apply it to this domain. Namely, TARA-TS generalizes a prominent network

embedding method that was proposed for within-a-single-network machine learning

tasks such as node classification, clustering, and link prediction, to the across-network

task of biological NA. Given the node features extracted by network embedding,

TARA-TS works just as TARA to produce an alignment. Then, we use this alignment

for across-species protein functional prediction.

We compare prediction accuracy of TARA-TS (pairwise, global, many-to-many,

integrated-within-and-across-network, supervised) with accuracies of TARA and Pri-

mAlign, as they are state-of-the-art NA methods that were already shown to outper-

form many other existing NA methods on the exact same data as what we use here.

So, by transitivity, if TARA-TS is shown to be superior to TARA and PrimAlign,

this will mean that TARA-TS is superior to the other existing methods as well. Also,

of all existing methods, TARA and PrimAlign are the most similar and thus fairly

comparable to TARA-TS. Namely, TARA is pairwise, global, many-to-many, and

supervised, like TARA-TS. The difference is that TARA is a within-network-only

method while TARA-TS is an integrated-within-and-across-network method (Table

4.6). PrimAlign is a pairwise, global, many-to-many, and integrated-within-and-

across-network method, like TARA-TS. The difference is that PrimAlign is unsu-

pervised while TARA-TS is supervised (Table 4.6). So, we can fairly test the effect

of going from unsupervised to supervised for integrated-within-and-across-network

methods.

When we compare TARA-TS against TARA, we actually compare whether using

across-network sequence information on top of within-network topological informa-

tion leads to more accurate predictions, as we expect. Surprisingly, we find that

TARA-TS and TARA are almost equally as accurate. Closer examination reveals

that their quantitatively similar results are not because the two methods are predict-

130

ing the same information (which would make one of them redundant). Instead, their

predicted protein functional annotations are quite complementary. So, we then look

at those predictions (protein-GO term associations) that are made by both methods,

only those predictions made by TARA-TS but not TARA, and only those predictions

made by TARA but not TARA-TS. We find the former (the overlapping predictions)

to be more accurate than the predictions made by any one of TARA-TS or TARA

alone. Thus, we take this overlapping version of TARA-TS and TARA as our final

method, TARA++. In a sense, TARA++ is integrating state-of-the-art research

knowledge across computational biology and social network domains, by combining

TARA’s graphlet-based topology-only features with TARA-TS’s embedding-based

topology-and-sequence features, each of which boosts the other’s performance. Very

few studies have explored such a promising direction to date [124]. Importantly, we

find that TARA++ not only outperforms TARA but also PrimAlign.

4.2.2 Methods

4.2.2.1 Data

As typically done in NA studies, we analyze yeast and human PPI networks. We

consider the exact same PPI networks of yeast (5,926 nodes and 88,779 edges) and

human (15,848 nodes and 269,120 edges) that were analyzed and publicly provided by

the authors of the PrimAlign study [87]. These networks were also used in the TARA

study [68]. All of this allows us to fairly compare results across all of the methods.

The two networks contain only physical PPIs, without multi-edges or self-loops.

Similarly, as anchor links between proteins across the networks, we use the exact

same 55,594 yeast-human sequance-similar protein pairs that were analyzed and pub-

licly provided by the authors of the PrimAlign study [87]. These had been produced

as follows [80]. All-versus-all sequence comparison using BLASTP [5] was performed

on human, mouse, fruit fly, worm, and yeast. Only protein pairs with E-value se-

131

quence similarities ď 10´7 had been kept for further consideration, which yielded

55,594 yeast-human protein pairs with such E-values.

Our supervised NA framework requires knowledge about whether two proteins

are functionally related. We next outline the procedure for determining functional

relatedness, which mirrors the steps from our past TARA study [68]. As typically

done, we define functional relatedness using GO annotation data (from August 2019).

Considering biological process GO terms and experimentally inferred protein-GO

term annotations (evidence codes EXP, IDA, IPI, IMP, IGI, or IEP), if at least k

GO terms are shared between a yeast protein and a human protein, we define that

protein pair as functionally related. We vary k from 1 to 3. These are values of k that

are typically analyzed, because even in unsupervised and especially in supervised NA

studies, larger values of k result in insufficiently many pairs of functionally related

nodes [96, 68]. Regardless of the k value, we define a protein pair as functionally

unrelated if the two proteins share no GO terms of any kind. This gives the atleast1-

EXP, atleast2-EXP, and atleast3-EXP ground truth datasets.

Traditionally, NA studies have considered all GO terms available in a given ground

truth dataset. However, it is well known that not all GO terms are “created equally”,

meaning that a GO term that is more general and thus higher in the GO tree hierarchy

is more likely to annotate a given number of proteins compared to a more specific GO

term that is lower in the hierarchy. This is why it might be worth considering only

specific-enough GO terms. As a way to deal with this in the context of NA, recent

work proposed accounting for the frequency of GO terms (for a given GO term, the

number of proteins in the data under consideration that are annotated by that term)

[76]. Indeed, in our TARA study, we found that considering rarer (i.e., more specific)

GO terms led to higher protein functional prediction accuracy [68]. So, here, we

consider the same three GO term rarity thresholds as in the TARA study: (i) all GO

terms (i.e., ALL), which corresponds to traditional NA evaluation, (ii) more specific

132

GO terms that appear 50 times or fewer (i.e., threshold of 50), and (iii) even more

specific GO terms that appear 25 times or fewer (i.e., threshold of 25).

For a given GO term rarity threshold, all GO terms not satisfying the threshold

are filtered out. Then, for each atleastk-EXP ground truth dataset, only proteins

that share at least k GO terms from the remaining list are considered to be func-

tionally related, and still, proteins that share no GO terms, regardless of rarity, are

considered to be functionally unrelated. For example, proteins that share at least two

(experimentally inferred biological process) GO terms, such that each GO term an-

notates 25 or fewer proteins, are considered functionally related in the “atleast2-EXP

at the 25 GO term rarity threshold” dataset. There is a total of nine such “ground

truth-rarity” datasets, resulting from combinations of the three atleastk-EXP ground

truth datasets and the three GO term rarity thresholds.

4.2.2.2 TARA-TS’s feature extraction methodology

TARA-TS needs to extract features that capture both within-network topological

and across-network sequence information from the integrated network, which consists

of 21,774 nodes (5,926 yeast + 15,848 human proteins) and 413,493 edges (88,779

yeast PPIs + 269,120 human PPIs + 55,594 anchor links). We examine several

feature extraction approaches.

First, we use the same graphlet-based feature extraction method as TARA, sim-

ply applied to the integrated network rather than the two individual networks; for

technical details about the graphlet features that we use, see Supplementary Section

C.2.1.1. In this way, we can test whether going from TARA’s within-network-only ap-

proach to TARA-TS’s integrated-within-and-across-network approach improves NA

accuracy. We refer to this version of TARA-TS as “TARA-TS (graphlets)”.

Second, we apply a prominent network embedding method based on random walks

to the integrated network to extract features, namely node2vec [66]; for technical

133

details about node2vec and why we use node2vec over other network embedding

methods, see Supplementary Section C.2.1.1. We refer to this version of TARA-TS

as “TARA-TS (node2vec)”.

Third, node2vec does not capture heterogeneous information in the integrated

network, i.e., does not distinguish between different types of nodes (yeast and hu-

man) or edges (yeast PPIs, human PPIs, and yeast-human sequence-based anchor

links). So, we also test metapath2vec [41], which essentially is node2vec generalized

to heterogeneous networks. Intuitively, this approach uses “metapaths” to capture

the heterogeneous information, which define the types of nodes that should be vis-

ited by random walks; for technical details about metapath2vec, see Supplementary

Section C.2.1.1. We refer to this version as “TARA-TS (metapath2vec)”.

Henceforth, we refer to TARA-TS (graphlets), TARA-TS (node2vec), and TARA-

TS (metapath2vec) as different “TARA-TS versions”. If we just say “TARA-TS”, the

discussion applies to all three versions.

In theory, the heterogeneous information could be captured not just via metapaths

but also via heterogeneous graphlets [70] (versus homogeneous graphlets discussed

thus far). However, in practice, heterogeneous graphlet counting is infeasible for as

large networks as studied in this paper, due to its exponential computational com-

plexity. This is not an issue for homogeneous graphlet counting because methods

such as Orca [79] rely on combinatorics to infer the counts of some (larger) graphlets

from the counts of other (smaller) graphlets, significantly reducing the computational

complexity. However, no publicly available implementation of combinatorial relation-

ships for counting heterogeneous graphlets exists. Similar holds for a method that

directly extracts the feature vector of a node pair [82], versus extracting graphlet fea-

tures of individual nodes and then combining these, as TARA does: no combinatorial

approach for direct node pair graphlets exists. Instead, current heterogeneous and

134

node pair graphlet counting require exhaustive graphlet enumeration and are thus

infeasible.

Lastly, we discuss why we do not use feature vectors from PrimAlign, the next

most comparable method to TARA [68] that already integrates within-network topo-

logical and across-network sequence information. This is because PrimAlign’s algo-

rithmic design does not allow for feature vector extraction. As discussed in more

detail in Section “4.2.2 – Description of existing NA methods”, PrimAlign models the

integrated network as a Markov chain, which is then repeatedly transitioned until

convergence. This means that the weights between every node pair are updated at

the same time, based on the weights of every node pair from the previous state of

the chain. So, PrimAlign operates on every node pair at once with respect to their

weights, rather than on individual nodes or node pairs with respect to any kind of

feature vector, meaning that we cannot easily extract such information.

4.2.2.3 TARA-TS’s classification and alignment generation

We must first evaluate whether TARA-TS can correctly predict nodes as func-

tionally (un)related. If not, there would be no point to use it to form an alignment.

To evaluate this, we train and test a classifier as follows.

For a given ground truth-rarity dataset (Section “4.2.2 – Data”), the positive

class consists of functionally related node pairs, and the negative class consists of

functionally unrelated node pairs. Because the latter is much larger, we create a

balanced dataset by undersampling the negative class to match the size of the positive

class, as typically done [157]. Due to randomness in sampling, we create 10 balanced

datasets and repeat the classification process for each, averaging results over them.

For a given balanced dataset, we split it into two sets: y percent of the data

is randomly sampled and put into one set, and the remaining p100 ´ yq percent is

put into the other set. This sampling is done with the constraint that in each of

135

the two sets, 50% of the data instances have the positive class and 50% have the

negative class. Again, due to randomness in sampling, we repeat this 10 times to

create 10 data splits of y{p100 ´ yq percent and repeat the classification process for

each, averaging results over them.

For a given y{p100 ´ yq split, we train a logistic regression classifier on the set

containing y percent of the data (the training set). We use this trained classifier to

predict on the remaining p100 ´ yq percent of the data (the testing set), measuring

the accuracy and area under receiver operating characteristic curve (AUROC).

In summary, for a given y, for each balanced dataset, we have 10 accuracy and 10

AUROC scores, corresponding to the 10 data splits; for each measure, we compute

the average over the 10 splits, obtaining a single accuracy and single AUROC. Then,

for a given y, given the single accuracy and single AUROC for each balanced dataset,

i.e., given 10 accuracy and 10 AUROC scores for the 10 balanced datasets, for each

measure, we compute the average over the 10 balanced datasets to obtain a final

accuracy and a final AUROC score for that y. In our evaluation, we vary y from

10 to 90 in increments of 10; each variation is called a “y percent training test”.

This allows us to test how the amount of training data affects the results, which is

important because in many real-world applications, not much data may be available

for training.

Only if the average accuracy and AUROC are high, i.e., if TARA-TS accurately

predicts functionally (un)related nodes to be functionally (un)related, does it make

sense to use TARA-TS to create an alignment for protein functional prediction. If

this is the case, we create an alignment as follows. Given one y{p100´yq split and the

classifier trained on it, we take every node pair from the testing set that is predicted

as functionally related and add it to the alignment. Here, it is important to only

use the testing set for the alignment. This way, because there is no overlap between

node pairs in the testing set and node pairs in the training set, the alignment will

136

not contain any node pairs that were trained on. Consequently, this avoids a circular

argument when constructing TARA-TS’s alignment. For simplicity, we do not repeat

this process for all data splits, as we found that the split choice had no major effect

on the classification performance. We only use the “first” one, which in our imple-

mentation corresponds to a starting seed of 0 for Python’s random number generator

when performing sampling. We have a total of 270 alignments, corresponding to all

combinations of the 3 TARA-TS versions, the 9 percent training tests, and the 10

balanced datasets.

4.2.2.4 Using an alignment for protein functional prediction

An ultimate goal of biological NA is across-species protein functional prediction,

so each NA method must be evaluated in this context. We use a (TARA-TS’s or an

existing method’s) alignment in an established protein functional prediction frame-

work [110], as follows. Suppose that we are evaluating an alignment for the ground

truth-rarity dataset atleastk-EXP at the r GO term rarity threshold (e.g., atleast2-

EXP at the 25 GO term rarity threshold). Let us define “relevant GO terms” as all GO

terms in that ground truth-rarity dataset. Then, the framework makes predictions

for each protein u in the alignment that is annotated by at least k relevant GO terms

(i.e., for each protein for which a prediction can actually be made at that ground

truth-rarity dataset). To do so, first, the framework hides u’s true GO term(s).

Then, for each relevant GO term g, the framework determines if the alignment is

significantly “enriched” in g. The hypergeometric test is used for this, in order to

calculate if the number of aligned node pairs in which the aligned proteins share g is

significantly high (see below). If so, then node u is predicted to be annotated by GO

term g. Repeating for all applicable proteins and GO terms results in the final list

of predicted protein-GO term associations. From this prediction list, the framework

calculates the precision (percentage of the predictions that are in a given ground

137

truth-rarity dataset) and recall (percentage of the protein-GO term association from

a given ground truth-rarity dataset that are among the predictions).

The hypergeometric test works as follows. If Y is the set of all yeast proteins and

H is the set of all human proteins, then let M “ tpy, hq P Y ˆH | each of y and h is

annotated by at least k relevant GO termsu. Let N “ tpy, hq P M | each of y and h is

annotated by gu. Note that g refers to the same GO term as in the previous paragraph.

If A is the alignment of interest, let O “ tpy, hq P A | each of y and h is annotated by at

least k relevant GO termsu. Finally, let P “ tpy, hq P O | each of y and h is annotated

by gu. Then, the p-value resulting from the hypergeometric test is the probability of

seeing |P | or more successes (i.e., node pairs that share g) if we randomly choose |O|

elements from M given that M contains |N | successes (for example, in Python, this

would correspond to 1 - scipy.stats.hypergeom.cdf(|P | ´ 1, |M |, |O|, |N |))

We ensure that there is no circular argument when predicting an annotation

between a protein u and a GO term g from the alignment of interest, even if this

particular annotation might have been used to construct the training data. Namely,

to predict protein u as being annotated by GO term g, u must have been aligned

to some protein v that also has GO term g, in order for the functional knowledge

g to be transferred from v to u. For this to happen, node pair pu, vq must have

appeared in the testing data (and been predicted as functionally related, thus being

placed into the alignment). This means that pu, vq could not have appeared in the

training data, because the training and testing data do not overlap (Section “4.2.2 –

TARA-TS’s classification and alignment generation”). Even if some other node pair

pu,wq, where both u and w are annotated by g, appears in the training data, which

could happen only if u is annotated by g and w is annotated by g, the prediction from

the alignment of u having g could not have originated from the pair pu,wq that the

alignment was trained on. Instead, this prediction must have originated from node

138

pair pu, vq that is not in the training data. This avoids a circular argument when

predicting protein-GO term annotations.

4.2.2.5 Description of existing NA methods

Here, we describe existing NA methods to explain why we ultimately compare

against TARA and PrimAlign out of all existing methods.

We discuss within-network-only and isolated-within-and-across-network methods

first. They have two parts. Initially, similarities are computed for all pairs of nodes

across networks. For within-network-only methods, these are topological similarities

(computed by comparing the nodes’ topological features). For isolated-within-and-

across-network methods, these are a weighted sum of the nodes’ topological and

sequence similarities. Then, an alignment strategy aims to maximize the total simi-

larity over all aligned nodes while also conserving many edges. Two types of align-

ment strategies exist. One type is “seed-and-extend”, which progressively builds an

alignment by adding to it one node pair at a time. WAVE [158], when paired with

graphlet-based topological similarities, is a state-of-the-art method of this type. The

other type is a “search algorithm” that optimizes an objective function over the so-

lution space of possible alignments. We pioneered search algorithm-based NA with

MAGNA and MAGNA++ [143, 164]. The more recent SANA [103] is a state-of-the-

art approach of this type, whose objective function is generally graphlet-based.

Next, we discuss integrated-within-and-across-network NA methods. PrimAlign

[87] is a state-of-the-art method of this type. After linking networks being aligned via

anchors, PrimAlign creates a Markov chain out of the integrated network, converting

the edge weights to transition probabilities (in an unweighted network, the weights are

set to 1 before converting to transition probabilities). The chain is then transitioned

repeatedly until it converges, which redistributes the across-network node pair scores

139

using a PageRank-like algorithm. Node pairs across networks that are above some

threshold are outputted as the alignment.

MUNK also links the original networks via anchors, but it uses matrix factoriza-

tion to obtain an alignment [57]. In our preliminary analyses, MUNK’s similarity

scores could not distinguish between functionally related and functionally unrelated

proteins. Furthermore, Nelson et al. [124] found IsoRank [154] to outperform MUNK,

despite the former being an early method and the latter a recent method. IsoRank

was already outperformed by many NA methods that appeared after it, which in turn

were outperformed by WAVE and SANA, which were then outperformed by TARA

and PrimAlign (see below). Thus, because we compare against TARA and PrimAlign

in this study, there is no need to also compare against MUNK.

Unlike TARA++, the previously mentioned methods do not use functional (GO)

information to produce alignments but only to evaluate them. DualAligner [144]

does use such information, but not to determine classification labels (“functionally

related” and “functionally unrelated”) like TARA++ does. Instead, the method aligns

groups of nodes that are all annotated with a given GO term, and then seeds-and-

extends around these groups to match proteins that do not have any GO annotations,

resulting in the final alignment. We do not consider DualAligner in this study, as it

is quite old (from 2014). More recent, state-of-the-art methods have appeared since

[53, 72].

The above methods are unsupervised. Many other such methods exist [72].

TARA and PrimAlign, which we consider in this study, already outperformed the

other methods, including AlignMCL, AlignNemo, CUFID, HubAlign, IsoRankN, L-

GRAAL, MAGNA, MAGNA++, MI-GRAAL, NETAL, NetCoffee, NetworkBLAST,

PINALOG, SANA, SMETANA, and WAVE [158, 103, 87, 68]. In turn, these outper-

formed GHOST, IsoRank, NATALIE, PISwap, and SPINAL [103]. This, plus TARA

and PrimAlign being the most similar and thus fairly comparable to TARA++, is

140

why we focus on these two existing methods. Also, some supervised methods (besides

TARA, already discussed) exist, as follows.

IMAP [23] uses supervised learning differently than TARA++. As input, IMAP

requires a starting (unsupervised, topological similarity-based) alignment between

two networks; as such, it still suffers from the topological similarity assumption.

Then, it obtains graphlet features for node pairs. Node pairs from the starting

alignment form the positive class, while the other node pairs are sampled to form the

negative class. Then, IMAP trains a linear regression classifier on these two classes.

After, this data is “re-classified”, but instead of assigning a class, IMAP assigns a score

corresponding to the probability that the two nodes should be aligned. A matching

algorithm (e.g., Hungarian) is applied to these scores to form a new alignment, which

is then fed back to IMAP. This process iterates while alignment quality improves.

We did try to test IMAP. Its code was not available. Our attempts at implementing

IMAP ourselves led to significantly worse results than those reported in the IMAP

paper. So, we could not consider IMAP in our evaluation.

MEgo2Vec [180], also supervised, is a social NA method for matching user pro-

files across different online media platforms. Features of user profiles are obtained

using graph neural networks and natural language processing techniques, and these

are used to train a classifier to predict whether two profiles from different platforms

correspond to the same person. A big part of MEgo2Vec is the various natural lan-

guage processing techniques to match users’ names, affiliations, or research interests,

meaning that it cannot be easily applied to PPI networks.

4.2.3 Results and discussion

4.2.3.1 Comparison of TARA-TS versions

Classification. Here, we study classification performance of the three TARA-TS

versions (graphlets, node2vec, metapath2vec) and TARA, i.e., how correctly they

141

predict as functionally (un)related the protein pairs from testing data in a given

y percent training test. We would ideally do this on all nine ground truth-rarity

datasets. However, two of them, atleast3-EXP at the 50 and 25 thresholds, are too

small for TARA-TS and TARA to perform any classification on; data scarcity is a

general challenge that machine learning methods face though, and not specific to just

TARA-TS and TARA. Thus, we have seven viable ground truth-rarity datasets.

Due to space constraints, we discuss the effect of various parameters (k in atleastk-

EXP, GO term rarity threshold, and y percent training test) on the classification

performance of a given TARA-TS version, for each version, in Supplementary Section

C.2.2.1. Instead, here we focus on comparing the three TARA-TS versions and

TARA.

We expect all TARA-TS versions to have higher accuracy and AUROC than

TARA, as they extract topology plus sequence features from the integrated yeast-

human network, unlike TARA, which extracts topology features only within each

individual network. However, we find that this is not always the case (Fig. 4.11(a)

and Supplementary Figs. C.13–C.14): (i) The relative accuracy change of TARA-TS

(graphlets) over TARA ranges from -3% (decrease) to 5% (increase), depending on

the atleastk-EXP ground truth dataset, GO term rarity threshold, and y percent

training test, with an average change of 0%; and its relative AUROC change ranges

from -3% to 5%, with an average change of 1%. (ii) TARA-TS (node2vec) does always

improve over TARA though. Its relative accuracy change over TARA ranges from 6%

to 27%, with an average change of 14%; and its relative AUROC change ranges from

9% to 32% with an average change of 16%. (iii) As for TARA-TS (metapath2vec), we

also see improvement over TARA, though not as large as for TARA-TS (node2vec).

In particular, the relative accuracy change of TARA-TS (metapath2vec) over TARA

ranges from -1% to 14% with an average change of 6%; and its relative AUROC

change ranges from 2% to 15%, with an average change of 7%.

142

Figure 4.11. Comparison of the three TARA-TS versions and TARA.
Comparison of the three TARA-TS versions and TARA for GO term rarity
threshold 25 and ground truth dataset atleast1-EXP, in terms of: (a) clas-
sification accuracy, (b) protein functional prediction accuracy, (c) overlap
between aligned yeast-human protein pairs, and (d) overlap between pre-
dicted protein-GO term associations. In panel (b), the alignment for e.g.,
TARA contains 1,716 aligned protein pairs and predicts 3,474 protein-GO
term associations. In panels (c)-(d), the pairwise overlaps are measured via
the Jaccard index. Panel (a) encompasses all y percent training tests. Pan-
els (b)-(d) are for the 90% training test. Comparisons of different metapath
choices for metapath2vec can be found in Supplementary Fig. C.12. Re-
sults for the other ground-truth rarity datasets and percent training tests
are shown in Supplementary Figs. C.13–C.19.

Overall, we find that in terms of classification performance, TARA-TS (node2vec)

performs the best, followed by TARA-TS (metapath2vec), and followed by TARA-

TS (graphlets) and TARA that are tied; all four perform significantly better than at

random (Supplementary Figs. C.13–C.14).

Protein functional prediction. Here, we evaluate the protein functional prediction

accuracy of alignments of the three TARA-TS versions and TARA. Per discussion in

Supplementary Section C.2.2.1, for each of TARA-TS and TARA, different y percent

training tests have only marginal differences in classification accuracy. For this reason,

henceforth, for simplicity, we only consider the 10, 50, and 90 percent training tests;

10 and 90 allow us to test the extremes and 50 allows us to test the middle. Recall

143

that classification cannot be performed on two (small) ground truth-rarity datasets,

atleast3-EXP at thresholds 50 and 25, so no alignments exist for them, and thus

protein functional prediction is not possible. So, for each TARA-TS version and

TARA, we have 21 evaluation tests, resulting from combinations of the seven viable

ground truth-rarity datasets and the three selected y values.

First, we analyze each TARA-TS version. The following three trends are expected

in terms of each version’s performance. (i) Precision will likely increase and recall will

likely decrease as the amount of training data goes from 10 to 50 to 90. We expect

precision to increase because a classifier trained on a larger dataset will potentially be

more accurate. Consequently, the testing dataset will be smaller. So, the alignment

produced by a given method version will contain fewer node pairs. This in turn is

expected to yield fewer predictions and thus to decrease recall. (ii) Precision will likely

increase and recall will likely decrease as the requirement for functional relatedness

becomes more stringent, i.e., as the value of k in the atleastk-EXP ground truth

datasets goes up. Namely, increase in precision is expected because at a larger k

value, training is done on more reliable data. Decrease in recall is expected because

at a larger k value, there will be less data overall, and hence less testing data. So,

a similar argument as in point (i) above applies. (iii) Precision will likely increase

and recall will likely decrease as the GO term rarity threshold decreases, i.e., as rarer

GO terms are considered. This is based on the observation that rarer GO terms may

be more meaningful [76, 68], leading to smaller but higher quality data. As such,

higher precision and lower recall are expected for similar reasoning as in points (i)

and (ii) above. We find that all three expected trends hold for all TARA-TS versions

(Supplementary Figs. C.15–C.17).

Second, we compare the performance of the three TARA-TS versions and TARA.

Interestingly, even though TARA-TS (node2vec) has superior classification perfor-

mance (Fig. 4.11(a)), all four methods yield almost equal protein functional pre-

144

diction accuracy (Fig. 4.11(b) and Supplementary Figs. C.15–C.17). Further un-

expected is that TARA-TS has similar accuracy to TARA, despite the former using

sequence information that TARA does not. We take a closer look at the alignments

and predictions made by each method to see if the different methods are aligning the

same nodes, or predicting the same protein-GO term associations. So, we investigate

how much their alignments overlap (Fig. 4.11(c)), and how much their predictions

overlap (Fig. 4.11(d)). We find that the different methods are all aligning and

predicting at least somewhat different information from each other. Yet, their pre-

dictions are equally accurate. Furthermore, we find that TARA is more similar to

(i.e., overlaps the most with) TARA-TS (graphlets) than to TARA-TS (node2vec)

and TARA-TS (metapath2vec), which makes sense since the former uses graphlets

to extract feature vectors like TARA, and the latter two do not. Moreover, TARA-

TS (node2vec) and (metapath2vec) are more similar to each other than to the other

methods, which is also expected since they both use a similar random walk-based

feature extraction method.

It is surprising that TARA-TS (graphlets) does not improve upon TARA, i.e., that

the additional sequence information does not improve upon only topological infor-

mation. It is also surprising that TARA-TS (metapath2vec) does not improve upon

TARA-TS (node2vec) – both use a similar random walk-based embedding process,

but metapath2vec additionally accounts for the heterogeneous information in the in-

tegrated network. We discuss potential reasons for these two unexpected findings in

Section “4.2.3 – Discussion”.

Because TARA-TS (node2vec) not only yields the best classification performance,

predicting functional (un)relatedness the best out of all TARA-TS versions, but also

captures the most novel protein functional information compared to TARA (i.e., the

predictions it makes overlap the least to those made by TARA out of all TARA-TS

145

versions), we continue only with TARA-TS (node2vec) as the selected TARA-TS

version.

4.2.3.2 TARA-TS versus TARA in the task of protein functional prediction: toward

TARA++

Focusing on TARA-TS (node2vec) as the selected TARA-TS version (i.e., simply

as TARA-TS), we zoom into the comparison between it and TARA. The two methods

have different alignments and make different predictions (Fig. 4.12), so how can

they still have similar protein functional prediction accuracy? To answer this, we

look at the precision and recall of predictions made by both methods, only those

predictions made by TARA-TS but not TARA, and only those predictions made by

TARA but not TARA-TS (Fig. 4.12(b) and Supplementary Fig. C.21). From this,

we highlight two findings. First, graphlets, which use only topological information,

perform as well as network embedding features that use both topological and sequence

information. This is supported by the fact that predictions made only by TARA and

only by TARA-TS produce similar accuracy in almost all evaluation tests. Second,

predictions made by both methods are significantly more accurate than predictions

made by any one method alone. We discuss these findings further in Section “4.2.3 –

Discussion”.

Because the overlap of predictions of TARA-TS and TARA has such high ac-

curacy, we take it as our new TARA++ method, which we consider further. For

simplicity, for each of the seven viable ground truth-rarity datasets, we consider ei-

ther TARA++10, TARA++50, or TARA++90 as a representative percent training

test. That is, we pick seven “TARA++ versus existing methods” evaluation tests

from the 21 total. We choose the percent training tests that represent TARA++’s

best results. Namely, we look for the percent training test with high precision (pre-

dictions are accurate) as well as a large number of predictions (maximize the bio-

146

Figure 4.12. Comparison of TARA-TS and TARA in terms of their align-
ment and prediction overlaps. Comparison of the selected TARA-TS version
and TARA for GO term rarity threshold 50, ground truth dataset atleast1-
EXP, and the 90% training test, in terms of overlap between their: (a)
aligned yeast-human protein pairs and (b) predicted protein-GO term asso-
ciations. In panel (b), precision and recall are shown for each of the three
prediction sets captured by the Venn diagram; TARA++’s predictions are
those in the overlap. The overlaps are for one of the 10 balanced datasets;
so, the alignment size and prediction number of a method may differ from
those in Fig. 4.11(b), where the statistics are averaged over all balanced
datasets. Results for the other ground truth-rarity datasets are shown in
Supplementary Figs. C.20–C.21.

logical knowledge uncovered). So, we choose TARA++90 for all ground truth-rarity

datasets except atleast2-EXP at the 50 and 25 rarity thresholds, where we choose

TARA++10. Henceforth, we refer to all of the selected TARA++ versions simply as

TARA++.

4.2.3.3 TARA++ versus existing NA methods in the task of protein functional

prediction

Accuracy. We compare TARA++’s predictions against those of two most fairly

comparable state-of-the-art methods, TARA and PrimAlign. Also, we consider pre-

dictions resulting from using only sequence information, Sequence. Here, we treat

the 55,594 anchor links by themselves as the alignment; as no topological informa-

147

tion is used, this is not an NA method. With TARA and Sequence, we can sep-

arately analyze each aspect, i.e., within-network topological information only and

across-network sequence information only, and evaluate how each compares to our

integrative TARA++. (TARA++’s predictions are by definition a subset of TARA’s

predictions, and so we expect TARA++ to have higher precision but lower recall

than TARA.) With PrimAlign, we can evaluate how this integrative but unsuper-

vised method compares to our also integrative but supervised TARA++. Impor-

tantly, TARA and PrimAlign were already shown to outperform many previous NA

methods (Section “4.2.2 – Description of existing NA methods”). So, comparing to

these two methods is sufficient. Also, keep in mind that like with TARA, a theo-

retical recall of 1 is not necessarily possible with TARA++. This is because for a

given training/testing split, TARA++ uses a part (up to 90%) of the ground truth

functional data for training, and so for that split, it is impossible to make predictions

for the training data portion, i.e., to transfer functional knowledge from node u to

node v when the node pair pu, vq is in the training data.

Both precision and recall are important. However, in the biomedical domain, if

one has to choose between the two measures, we believe that precision is favored. As

an illustration, let us compare the following two scenarios: (i) making 30 predictions

of which 27 are correct, i.e., having a small number of mostly correct predictions, and

(ii) making 300 predictions of which 100 are correct, i.e., a large number of mostly

incorrect predictions. The former, having higher precision but lower recall than the

latter, is more viable for potential wet lab validation.

Our key results are as follows (Fig. 4.13 and Supplementary Fig. C.22). In terms

of precision, TARA++ is the best for 6 out of 7 ground truth-rarity datasets. It

is only slightly inferior to PrimAlign for 1 out of 7 datasets (atleast1-EXP for ALL

GO terms), but TARA++ has much higher recall than PrimAlign on this dataset.

Speaking of recall, TARA is expected to always outperform TARA++, and this is

148

what we observe. Of the remaining existing methods, TARA++ is the best for 2

out of 7 datasets – atleast1-EXP at the ALL and 50 rarity thresholds – even though

TARA++ makes much fewer predictions than the next best method, Sequence. For

the other datasets, TARA++’s recall is lower than that of PrimAlign and Sequence.

This is expected, since TARA++ makes fewer predictions than the other methods.

Importantly, the difference in recall between TARA++ and every other method is

relatively small, for example only 0.06 lower on average compared to TARA, while

TARA++ is much better in terms of precision than every other method, for example

0.2 greater on average compared to TARA. As discussed above, such a trade-off

between precision and recall is worth it for our task.

Figure 4.13. Comparison of TARA++ and three existing methods in the
task of protein functional prediction. Comparison of TARA++ and three ex-
isting methods in the task of protein functional prediction, for rarity thresh-
olds (a) 50 and (b, c) 25, and for ground truth datasets (a, b) atleast1-EXP
and (c) atleast2-EXP. The alignment size (the number of aligned yeast-
protein pairs) and number of functional predictions (predicted protein-GO
term associations) are shown for each method, except that TARA++ does
not have an alignment per se. i.e., TARA++ comes from the overlap of pre-
dictions made by TARA and TARA-TS; hence the “N/A”s. For TARA++
and TARA, results are averages over all balanced datasets; the standard
deviations are small and thus invisible. Results for the other ground truth-
rarity datasets are shown in Supplementary Fig. C.22.

149

We see that the precision of TARA++ is much greater than just the sum of

TARA’s and Sequence’s precisions, suggesting that integrating within-network topo-

logical and across-network sequence information has compounded effects. This fur-

ther highlights the need for such approaches.

In the above analyses, we account for the default number of predictions made

by each method for the given ground truth-rarity dataset. These numbers do not

necessarily match between the different methods. Consequently, TARA++ may have

high precision simply because it makes the fewest number of predictions. Nonetheless,

when we enforce that each method produces the same number of predictions, we

again find that TARA++ is the best of all considered NA methods in a majority of

all evaluation tests, in terms of both precision and recall (Fig. 4.14, Supplementary

Section C.2.2.2, and Supplementary Fig. C.23).

Figure 4.14. Comparison of TARA++ and three existing methods when all
make the same number of predictions. Representative results (for one ground
truth-rarity dataset) comparing TARA++ and three existing methods in the
same way as in Fig. 4.13(a) except that here all methods make the same
number of predictions. The remaining results (for the other ground truth-
rarity datasets) are shown in Supplementary Fig. C.23.

150

Combining TARA and TARA-TS into TARA++ results in such high accuracy.

So, we also investigate the overlap between TARA++ and PrimAlign (Fig. 4.15 and

Supplementary Fig. C.24). The number of overlapping predictions is small, suggest-

ing complementarity between TARA++ and PrimAlign. However, TARA++ still has

an advantage when it comes to predicting protein function, as the predictions made

only by TARA++ have higher precision for 6 out of 7 ground truth-rarity datasets

compared to those made only by PrimAlign. Importantly, the overlap between pre-

dictions of TARA++ and PrimAlign has much higher precision than either alone.

This is not totally unexpected for reasons discussed in Section “4.2.3 – Discussion”.

Figure 4.15. Comparison of TARA++ and PrimAlign in terms of their
prediction overlaps. Representative results (for GO term rarity threshold 50
and ground truth dataset atleast1-EXP) comparing TARA++ and PrimA-
lign in the same way as TARA and TARA-TS are compared in Fig. 4.12(b).
The remaining results (for the other ground truth-rarity datasets) are shown
in Supplementary Fig. C.24.

Running time. We analyze the time needed for TARA-TS, TARA, and PrimAlign

to compute an alignment when considering the ALL GO term rarity threshold; this

151

threshold is the worst case (slowest) out of all studied thresholds since it has the most

data. As TARA++ comes from the intersection of TARA-TS’s and TARA’s results,

its time is either the maximum or sum of TARA-TS’s and TARA’s, if the two are

run at the same time or one after the other, respectively. We find the following (also,

see Supplementary Table C.2).

As expected, we observe that TARA-TS’s running time decreases as k (in atleastk-

EXP) increases, since there is less data overall, and thus less data to train on. When

comparing TARA-TS and TARA, the former is faster, and this comes from the feature

computation time, as both use the same supervised framework. TARA-TS’s node2vec

computation is expectedly faster than TARA’s graphlet counting even when using

Orca for two reasons. First, the random walks produced by node2vec can be thought

of as sampling the network structure, which is much faster than capturing the full

network structure like graphlets do.

Second, node2vec is parallelized while Orca is not. Parallelization benefits node-

2vec a lot: the same number of random walks is performed for each node (parameter

-r:), so no single node takes much longer than any other. However, for graphlet

counting, nodes with e.g., high degrees are the limiting time factor, and so paral-

lelization would not help as much. Also note that TARA-TS’s (and PrimAlign’s)

running time is missing the step of computing sequence-based anchor links; these an-

chors were precomputed and provided by the PrimAlign study. So, TARA-TS (and

PrimAlign) has an unfair advantage over TARA. Despite this missing step, regardless

of how TARA-TS and TARA are combined to form TARA++, PrimAlign will still

be faster. However, it is about half as precise as TARA++. Even though TARA++

is slower, it is still practically feasible. Thus, the extra time is worth the almost

doubling of precision.

TARA++’s robustness to data noise. Lastly, we investigate TARA++’s ro-

bustness to noise (i.e., random perturbation) in the data, since one cannot expect

152

all real-world data (even the PPI networks we use!) to be perfect. When we in-

crementally introduce noise in the data, ranging from 0% (original data) to 100%

(completely random), we find that TARA++ is fairly robust up to 50% noise (Fig.

4.16 and Supplementary Section C.2.2.3). Beyond 50%, precision and recall drop and

eventually reach 0, as expected.

Figure 4.16. Robustness of TARA++ to data noise. Robustness of
TARA++ protein functional prediction accuracy as data noise increases
from 0% to 100%, for GO term rarity threshold 25 and ground truth dataset
atleast2-EXP.

4.2.3.4 Discussion

Recall the two unexpected findings from Section “4.2.3 – Comparison of TARA-

TS versions”. Namely, first, it is surprising that TARA-TS (graphlets) does not

improve upon TARA, i.e., that the additional sequence information does not im-

prove upon only topological information. A reason may be that the across-network

sequence information complements, rather than enhances, the within-network topol-

ogy information. Some of the predictions made by TARA-TS (graphlets), specifically

153

those that overlap with TARA’s, may be due to the within-network topology infor-

mation used by both methods, and the remaining predictions made by TARA-TS

(graphlets) may be due to the across-network sequence information, which is not

used by TARA. Second, it is surprising that TARA-TS (metapath2vec) does not im-

prove upon TARA-TS (node2vec). Both use a similar random walk-based embedding

process, but metapath2vec additionally accounts for the heterogeneous information

in the integrated network. The lack of improvement may be because the additional

information captured by the considered metapaths is not useful in this task, or be-

cause constraining random walks by node type leads to less neighborhood structure

being explored. For example, at some point in a random walk, a human node may

have many human neighbors, but the walk is forced to move to a yeast node due to

the metapath constraints. Then, the neighborhood of that human node will not be

well explored. However, because the number of possible metapaths to test in order

to find the best one(s) is exponential with respect to the length of the path, it is

not feasible to test every possibility, even for short lengths. Thus, an efficient way of

selecting appropriate metapaths for a given network would be necessary to continue

to pursue metapath-based embedding methods for this task. However, to our knowl-

edge no such selection process exists, which is why we do not pursue this problem

beyond the metapaths we have considered.

Also recall the two interesting findings from Section “4.2.3 – TARA-TS versus

TARA in the task of protein functional prediction: toward TARA++”. Namely,

first, graphlets, which use only topological information, perform as well as network

embedding features that use both topological and sequence information. This mo-

tivates the need to develop better graphlet-based methods for integrated networks

as future work. Second, predictions made by both TARA and TARA-TS are signifi-

cantly more accurate than predictions made by any method alone. In a sense, their

overlap is integrating state-of-the-art research across the computational biology and

154

social network domains, by combining TARA’s graphlet-based topology-only features

with TARA-TS’s embedding-based topology-and-sequence features. So, the overlap-

ping predictions combine the strengths of both domains, showing promise for future

domain-crossing endeavors.

Finally, recall from Section “4.2.3 – TARA++ versus existing NA methods in

the task of protein functional prediction” that the overlap between predictions of

TARA++ and PrimAlign has much higher precision than either alone. This is not

totally unexpected, as it suggests that predictions made by multiple methods (as

already seen when combining TARA and TARA-TS into TARA++) are the most

reliable; adding PrimAlign further strengthens this observation. Also, this echoes

the promise of ensemble methods in machine learning. As such, further exploration

of integrating different approaches beyond the simple overlapping of their predictions

may be fruitful.

4.2.4 Conclusion

TARA and TARA-TS are among the first biological NA methods that use super-

vised learning, despite the introduction of supervised social NA methods in recent

years. This could be because the study of biological NA began well before the cur-

rent era of “big data” [88, 89], making unsupervised approaches the traditional option.

However, as the amount of biological network data continues to increase, developing

data-driven approaches is an important direction. Especially fruitful for the task of

NA is integrating research knowledge across biological and social network domains,

as we have shown by combining TARA and TARA-TS into TARA++. Namely,

TARA++ outperforms state-of-the-art NA methods in the task of protein functional

prediction, an ultimate goal of NA. Though, it is still important to note that data-

driven approaches are limited when data is scarce. As such, more sophisticated

“ensembling” procedures for integrating protein functional prediction approaches to-

155

gether, beyond the simple overlapping of their predictions as we explored with TARA

and TARA-TS (into TARA++), and PrimAlign, could potentially mitigate these lim-

itations and open up new research directions.

As TARA++ is the first data-driven NA method to integrate topological and se-

quence information, it is just a proof-of-concept. This work can be taken further. We

found that graphlet-based features on the isolated networks (on topological informa-

tion alone) perform as well as embedding-based features on the integrated network

(on topological and sequence information combined), even though the latter (using

more data) was expected to be better. Thus, developing a graphlet feature that would

efficiently deal with an integrated network could yield further improvements. This

might include novel algorithms for speeding up counting of heterogeneous graphlets

in large data. Heterogeneous graphlets, or heterogeneous network embedding fea-

tures other than metapath2vec, could better distinguish between different node/edge

types in an integrated network and thus only improve over the features considered

in this study. Also, we focused on NA of static networks. However, research in NA

of dynamic (e.g., aging- or disease progression-related) networks is becoming popular

[165, 162]. So, our framework can be adapted to such novel NA categories.

156

CHAPTER 5

MODELING MULTI-SCALE DATA VIA A NETWORK OF NETWORKS

The work in this chapter is discussed in the following paper:

• Shawn Gu, Meng Jiang, Pietro H. Guzzi, and Tijana Milenković (2021),
Modeling multi-scale data via a network of networks, under review. Also,
arXiv:2105.12226 [q-bio.MN]. [71]

5.1 Introduction

Recall that biological NA in the context of protein functional prediction focuses

on the PPI network level. However, the finer-grained protein 3D structural level

is important as well, as such structures have important implications for proteins’

functions. Modeling these structures as PSNs, and taking them together with a PPI

network, a multilevel NoN (Figure 1.5) naturally arises. To answer whether this

data integration is actually worth it, we analyze whether NoN-based entity label

prediction is more accurate than each of single-level node label prediction and graph

label prediction alone.

Specifically, since the entities of interest are represented by level 2 nodes and,

correspondingly, modeled as level 1 networks, entity label prediction can refer to

(i) using only the level 2 network (Fig. 1.5(a)) to predict level 2 nodes’ labels,

corresponding to the task of node label prediction in the level 2 network, (ii) using

only level 1 networks (Fig. 1.5(b)) to predict level 1 networks’ labels, corresponding

to the task of graph label prediction using the level 1 networks, and (iii) using the

157

entire NoN to predict entities’ labels. Thus, the primary question we aim to answer

is whether (iii) is more accurate than (i) and (ii).

5.1.1 Our contributions

In tackling this question, we make the following novel contributions: we construct

and provide two new sources of NoN data, we develop novel approaches for NoN label

prediction, and, most importantly, we are the first to test whether using NoN data

in label prediction is more accurate than using only a single level. Next, we discuss

each of these contributions.

Since to our knowledge labeled NoNs are limited, we provide two new sources of

such data. First, we develop an NoN generator that can create a variety of synthetic

NoNs (Section 5.2.3.1). Intuitively, given any set of single-level random graph gener-

ators, such as geometric [133] or scale-free [10], our NoN generator combines random

graphs created from these single-level generators at each level. In this way, we can

label each entity (level 2 node and its level 1 network) based on which combination

of single-level random graph generators it is involved in at the two levels. Our gen-

erator can control a variety of network structural parameters (Section 5.2.3.1), thus

allowing for the mimicking of a variety of real-world systems. Second, we construct

a biological NoN, consisting of a PPI network from BioGRID [156] at the second

level and PSNs for proteins from Protein Data Bank (PDB) [19] at the first level.

Proteins are labeled based on their functions via Gene Ontology (GO) annotation

data [8] (Section 5.2.3.2). For each of the 131 GO terms considered, the goal is to

predict whether or not each protein is annotated by that GO term. While computa-

tional protein functional prediction is relatively well-studied, the problem is still very

relevant, as the accuracy of existing methods for this purpose is typically low. The

continued importance of computational annotation of protein function [60] is a major

motivator of this study. We expect the NoN data resulting from this study to be-

158

come a useful resource for future research in both network science and computational

biology, including for the problem of protein function prediction.

We also develop novel approaches for NoN label prediction. In general, label

prediction approaches extract features of the entities and then perform supervised

classification, i.e., prediction of the entities’ labels based on their features. So, for

this study, there are three types of approaches to consider: (i) those that extract

node-level features (i.e., level 2 only), (ii) those that extract network-level features

(i.e., level 1 only), or (iii) those that extract NoN features (i.e., integrated level 1 and

level 2). To our knowledge, approaches of type (iii) do not exist yet, so we create

NoN features in two ways: by combining existing node- and network-level features

and by applying the novel graph neural network (GNN) approach that we propose

for analyzing NoNs.

Then, we aim to evaluate whether approaches of type (iii) outperform those of

types (i) and (ii). If so, this would provide evidence that NoN-based data integration

is useful for label prediction. To determine which approach types are the best, we

evaluate them in terms of accuracy for synthetic NoNs, as class sizes are balanced,

and in terms of the area under the precision recall curve (AUPR), precision, recall,

and F-score for the biological NoN, as class sizes are unbalanced.

For synthetic NoNs, we find that our NoN approaches outperform single-level node

and network ones for those NoNs where the majority of nodes are not densely inter-

connected (i.e., where nodes do not tend to group into densely connected modules).

For NoNs where there are groups of densely interconnected nodes (i.e., where there

is clustering structure), an existing single-level approach performs as well as NoN ap-

proaches. For the biological NoN, we find that our NoN approaches outperform the

single-level ones in a little under half of the GO terms considered. Furthermore, for

30% of the GO terms considered, only our NoN approaches make meaningful predic-

tions, while node- and network-level ones achieve random accuracy. Also, while deep

159

learning does not perform the best overall, it seems to be useful for otherwise difficult-

to-predict protein functions. As such, NoN-based data integration is an important

and exciting direction for future research.

5.1.2 Related work

Finally, it is important to discuss a few related topics. Given that we study a

biological NoN, we must point out that existing studies have combined protein struc-

tural data with PPI data [132, 179] for various tasks. However, they generally do

so by incorporating more basic non-network structural properties, such as proteins’

domains and families, with PPI data. On the other hand, our approaches combine

PSN representations of detailed 3D protein structural properties with PPI network

data through the NoN representation. Importantly, PSN-based models of protein

structures have already been shown to outperform non-network-based (i.e., tradi-

tional sequence and “direct” 3D structural) models in tasks such as protein structural

comparison/classification [55, 125] and protein functional prediction [63, 15]. Thus,

we hypothesize that incorporating state-of-the-art, i.e., PSN-based (rather than tra-

ditional sequence or “direct” 3D structural), representations of protein structures with

PPI network data into an NoN will be effective. Regardless, the goal of this study

is to investigate network-based data integration by evaluating whether NoN label

prediction is actually more accurate than each of node- and network-level alone. A

comparison with other, non-network-based data integration schemes is outside the

scope of the current study and the subject of future work.

Some other network models of higher-order data exist as well. These include:

multiplex, multimodal, multilevel, and interdependent networks [141, 119, 25, 97,

40, 134], which are sometimes used interchangeably and sometimes also referred to

as “networks of networks”; hierarchical networks [31]; higher-order networks [172];

hypergraphs [18]; and simplicial complexes [121]. However, these all model different

160

types of data compared to NoNs as we define them, so we cannot consider these other

network types in this study.

There are also studies that do model data as NoNs. However, they differ from our

proposed work in terms of data analyzed, application domain, and/or network science

task. With respect to data, besides synthetic NoNs, we analyze a PPI network-PSN

biological NoN. However, these other studies analyze NoNs where the level 2 network

is a disease-disease similarity network and the level 1 networks are disease specific

PPI networks [127], where the level 2 network is a social network and the level 1

networks are individuals’ brain networks [56, 129, 12], or where the level 2 network is

a chemical-chemical interaction network and level 1 networks are molecule networks

[168]. With respect to application domain, while we aim to predict protein function,

these other studies aim to identify disease causing genes [127], answer sociologically

motivated questions like whether similarities between friends mean they have similar

ways of thinking [129], or predict new chemical-chemical interactions [168]. With

respect to network science task, while we aim to predict entities’ labels, these other

studies aim to identify important entities (level 1 nodes) [127], predict links between

entities (level 2 nodes) [168], or embed multiple networks at the same level into a

common low dimensional space, using an NoN as an intermediate step [42]. While

it might be possible to extend some of these existing studies to ours or vice versa,

doing so could require considerable effort, as it would mean developing new methods,

and code is not publicly available for all of the existing methods. All of this makes

any potential extensions hard. As such, we cannot compare against these existing

NoN-like methods.

161

5.2 Methods

5.2.1 Network of networks definition

We define an NoN with l levels as follows. Let Gplq “ pV plq, Eplqq be the level

l network with node set V plq and edge set Eplq Ď V plq ˆ V plq. Each “level l node”

v
plq
i P V plq itself corresponds to a “level l ´ 1 network” G

pl´1q

i “ pV
pl´1q

i , E
pl´1q

i q. In

other words, V plq and tG
pl´1q

1 , ..., G
pl´1q

|V plq|
u are different notations that represent the

same underlying concept – the set of entities that are represented by nodes in a level

l network and correspondingly modeled as level l ´ 1 networks. Note that we allow

each level l ´ 1 network to contain no nodes (and thus no edges). That is, Gpl´1q

i can

be an order-zero graph, signifying that vplq
i has no corresponding level l ´ 1 network.

We assume that nodes from different level l´1 networks do not overlap – for example,

amino acids (nodes) from different PSNs do not represent the same physical entities,

even if the types of the amino acids are the same. That is, V pl´1q

1 X ... X V
pl´1q

|V plq|
“ H.

Each level l ´ 1 node v
pl´1q

ij
P V

pl´1q

i in each level l ´ 1 network G
pl´1q

i P V plq itself

corresponds to a level l´2 network G
pl´2q

ij
“ pV

pl´2q

ij
, E

pl´2q

ij
q. This recursion continues

until level 1. We illustrate a two-level NoN in Fig. 1.5.

5.2.2 Problem statement

Given an NoN tGp2q “ pV p2q, Ep2qq and tG
p1q

1 , ..., G
p1q

|V p2q|
uu, its label set Y “

y1, ..., yc, and a function that maps entities (i.e., level 2 nodes and thus their cor-

responding level 1 networks) to their labels ftrue : V p2q Ñ Y , the goal is to learn a

predictive function fpred : V
p2q Ñ Y through supervised classification.

In this study, this predictive function can be learned in three ways: for each level

2 node v
p2q

i , using features based only on Gp2q, i.e., node-level features; for each level

2 node’s corresponding level 1 network G
p1q

i , using features based only on G
p1q

i , i.e.,

network-level features; and for each entity, using features based on both levels, i.e.,

162

NoN features. We aim to show that the predictive performance of fpred when trained

on NoN features is higher than those when using node-level and network-level features

alone, thereby indicating that NoN-based entity label prediction is more accurate

than each of node label prediction and graph label prediction alone. A more formal

description of the evaluation, including the training, validation, and testing split; the

loss function; and the performance measures, can be found in Section 5.2.5.

5.2.3 Data

5.2.3.1 Our synthetic NoN generator

We develop a generator that can create synthetic NoNs with a variety of param-

eters and multiple levels. In this study, we focus on two levels. While analyzing

NoNs of three or more levels would be interesting, doing so would be difficult in the

context of this study, especially since available real-world NoN data of so many levels

is scarce. Namely, our main goal is to test whether NoN-based integration is worth

it. With two levels, there exist very clearly defined and fairly comparable tasks: NoN

vs. node-level vs. graph-level label prediction. With more levels, this is no longer the

case. So, we leave such investigation of NoNs with more than two levels for future

work.

We want our generator to create a two-level NoN with labeled entities (i.e., level 2

nodes, and equivalently, level 1 networks) such that only an approach using informa-

tion from both levels should be able to attain high entity label prediction accuracy.

To accomplish this, it is first useful to understand single-level random graph models

and how they generate random graphs with various properties. In particular, we

consider the geometric (GEO) [133] and scale-free (SF) [10] models. An instance of

GEO (i.e., a random geometric network) is created by placing nodes randomly in

Euclidean space and adding an edge between those that are spatially close to each

other, resulting in a network with Poisson-like degree distribution and high clustering

163

coefficient. An instance of SF (i.e., a random scale-free network) is created using the

concept of preferential attachment to join nodes – as the network is grown, nodes

with high degree are more likely to gain edges (i.e., neighbors) compared to nodes

with low degree, resulting in a network with a power-law degree distribution and low

clustering coefficient. So, due to the different construction schemes, GEO and SF

networks are topologically distinct. As such, node label prediction approaches can

easily distinguish between nodes whose network neighborhoods are GEO-like and

nodes whose network neighborhoods are SF-like; we can label nodes of the former as

“GEO” and nodes of the latter as “SF”. Similarly, graph label prediction approaches

can easily distinguish between instances of GEO and instances of SF; we can label

networks of the former as “GEO” and networks of the latter as “SF”.

So, to generate an NoN, we combine GEO and SF at the two levels. In particular,

let pm1,m2q denote an NoN where the level 2 network is generated using random

graph model m2 and each level 2 node’s level 1 network is generated using random

graph model m1. Given such an NoN, we label its entities (level 2 nodes and cor-

responding level 1 networks) based on the pm1,m2q combination, just as we label

single-level nodes/networks based on which of GEO or SF they are generated with.

Now suppose we generate NoNs for each pm1,m2q P tpGEO,GEOq, pGEO,SF q,

pSF,GEOq, pSF, SF qu, i.e., all four possible combinations of GEO and SF at the two

levels. An entity label prediction approach would have to incorporate information

from both levels in order to accurately predict each of the four labels: if an approach

only used level 1 information, it would fail to distinguish between pGEO,GEOq and

pGEO,SF q since both are of type GEO at level 1, and it would fail to distinguish

between pSF,GEOq and pSF, SF q since both are of type SF at level 1; level 2 in-

formation would be needed. Similarly, if an approach only used level 2 information,

it would fail to distinguish between pGEO,GEOq and pSF,GEOq since both are

of type GEO at level 2, and it would fail to distinguish between pGEO,SF q and

164

pSF, SF q since both are of type SF at level 2; level 1 information would be needed.

These four combinations of GEO and SF are helpful initial constructions for ulti-

mately generating an NoN that requires information from both levels to accurately

make predictions for.

In this previous example, each of pGEO,GEOq, pGEO,SF q, pSF,GEOq, and

pSF, SF q is its own “isolated NoN”, disconnected from others. So, to more accurately

model a real-world system, our generator joins each isolated NoN at the second level

to form a connected NoN with multiple regions; this joining process is described

below. We refer to the set of level 2 nodes that originated from an isolated NoN as a

“level 2 node group”. We generate these isolated NoNs, each with a fixed number of

level 1 and level 2 nodes and edges, such that when combined into a single connected

NoN, the resulting NoN’s level 2 network has 15,000 nodes and 300,000 edges to

approximate the size of the human PPI network, and so that each level 1 network

has 200 nodes and 800 edges to approximate the average size of the PSNs. The

entities (level 2 nodes and corresponding level 1 networks) of the resulting NoN have

four labels, with an equal number of entities having each label, so balanced multiclass

classification is performed. We visualize a toy NoN in Fig. 5.1.

Our generator joins isolated NoNs by randomly removing edges within level 2

node groups and randomly adding the same number of edges across level 2 nodes

groups (across-edge amount). That is, we repeat the following process a%ˆ 300,000

times: (i) randomly select a level 2 node group, (ii) randomly select an edge in that

node group, (iii) delete that edge, (iv) randomly select two level 2 nodes from different

node groups, and (v) add an edge between the selected nodes. We start with a “ 5

to retain most of the level 2 node groups’ originally generated GEO- and SF-like

network topologies, and we systematically vary a to be 25, 50, 75, and 95 to test the

effect of breaking the network topologies down. This also means that at a “ 5 there

165

Figure 5.1. A toy synthetic NoN generated from two random graph mod-
els. Large dotted circles represent level 2 node groups (originating from
isolated NoNs) whose level 2 nodes are connected in a random geometric-
(GEO) or scale-free-like (SF) fashion. Small solid circles represent level
2 nodes whose level 1 networks are of the random graph type indicated.
Level 1 nodes and edges are not shown. Level 2 nodes are colored based on
their label, i.e., their combination of level 1 and level 2 network topology
(tpGEO,GEOq, pGEO,SF q, pSF,GEOq, and pSF, SF q}).

is significant clustering (each level 2 node group consists of densely interconnected

nodes), while at a “ 95 there is very little clustering.

We also introduce random rewiring to test each approach’s robustness to data

noise (rewire-noise amount). Specifically, for r% rewire-noise, for each level 1 network

and each level 2 node group, we randomly remove r% of the total edges and randomly

add the same number of edges back. We vary r to be 0 (no noise), 10, 25, 50, 75, and

100 (completely random). Combining the a and r parameters, we generate a total of

5 ˆ 6 “ 30 synthetic NoNs. For a formal description of the NoN generation process

and the parameters we vary, see Supplementary Section D.1.1.1.

In this study, we report results for two-model NoNs, i.e., for tGEO,SF u. Note

that we also analyzed three-model NoNs, adding the Erdős-Rényi (ER) model [49],

i.e., for tGEO,SF,ERu. Because results are qualitatively and quantitatively similar,

we do not discuss this analysis in the paper due to space constraints.

166

5.2.3.2 Biological NoN

We also investigate whether integration is useful in the applied task of protein

functional prediction. We construct a biological NoN using the human PPI network

and the proteins’ associated PSNs (see also Supplementary Section D.1.1.2). We

construct a PPI network using human PPI data from BioGrid [156] version 4.1.190;

this PPI network has 18,708 nodes and 434,527 edges. Then, we map each protein ID

to its corresponding PDB chain, resulting in 4,776 PDB chains. Finally, we construct

PSNs from these chains using an established process: nodes represent amino acids

and edges join two amino acids if the distance between any of their heavy atoms

(carbon, nitrogen, oxygen, or sulfur) is within 6 Å [55]. The obtained biological NoN

has 18,708 proteins at level 2, of which 4,776 have PSNs at level 1.

To obtain label information, we rely on protein-GO term annotation data (ac-

cessed in October 2020) [8]. Of all protein-GO term annotations, we focus on biolog-

ical process (BP) GO terms in which the annotations were experimentally inferred

(EXP, IDA, IPI, IMP, IGI, IEP). From those, we keep only GO terms annotating

the 4,776 proteins that have PSNs, which results in 131 unique GO terms, i.e., clas-

sification labels. For each label g, proteins annotated by g constitute positive data

instances. While we could consider negative data instances to be all proteins not

annotated by g, this could add bias for proteins that are not annotated by g but are

by GO terms related to g and would also create an extreme positive/negative imbal-

ance. Instead, we define negative data instances to be proteins that are not currently

annotated by any BP GO term, reducing the bias and resulting in more balanced

classes. Ultimately, each label has between 20 and 277 positive data instances and 61

negative data instances; as there are 131 labels total, we perform binary classification

131 times (Section 5.2.5). Note that not all proteins have labels. Regardless, when

extracting information from the level 2 network, we consider all 18,708 nodes and

167

434,527 edges. However, for each label, we only perform classification on the positive

and negative data instances.

5.2.4 Approaches for label prediction

We consider graph theoretic approaches that are based on graphlets [112], and

graph learning approaches, namely, SIGN [138] and DiffPool [176].

Graphlets are small subgraphs (a path, triangle, square, etc.) that can be consid-

ered the building blocks of networks, and they can be used to extract features of both

nodes and networks (Supplementary Section D.1.2). The graphlet-based feature of a

node in a general network is called its graphlet degree vector (GDV), and GDVs of all

nodes in a network can be collected into the network’s GDV matrix (GDVM) feature.

One drawback of GDVM is that its dimensions depend on the size of the network –

if performing graph classification of different sized networks using GDVM features,

issues can arise. Thus, we also consider a transformation of GDVM, the graphlet

correlation matrix (GCM) [173], which always has the same dimensions regardless of

network size.

Given these definitions of graphlet features for nodes in a general network or for

the entire general network itself, we now explain which features we use for nodes in

a level 2 network and which features we use for level 1 networks. For the former,

we extract each level 2 node’s GDV (L2 GDV). For the latter, we extract each level

1 network’s GDVM and GCM (L1 GDVM and L1 GCM). We use L1 GDVM when

analyzing synthetic NoNs since we found that it outperformed L1 GCM. For the

biological NoN, L1 GCM is the only viable feature since level 1 networks (PSNs)

have different numbers of nodes (amino acids).

Then, to obtain NoN graphlet features, we concatenate level 2 nodes’ L2 GDVs

with their networks’ L1 GDVMs or L1 GCMs. This results in five graphlet-based

features: those for level 1 networks (L1 GDVM and L1 GCM) that are used for

168

graph label prediction, those for nodes in a level 2 network (L2 GDV) that are used

for node label prediction, and those for the entire NoN (L1 GDVM + L2 GDV and

L1 GCM + L2 GDV) that are used for entity label prediction. As graphlet-based

feature extraction is an unsupervised task, in order to perform classification, for each

graphlet-based feature, we train a logistic regression classifier (Supplementary Section

D.1.4). So for example, when we say L2 GDV, we mean the L2 GDV feature under

logistic regression.

SIGN aims to perform node classification (Supplementary Section D.1.4). It first

computes adjacency matrix-based features and then uses them in a neural network

classifier. Mathematically, SIGN can be thought of as an ensemble of shallow graph

convolutional network (GCN) classifiers, which is why it is a graph learning approach.

In this study, when we say L2 SIGN, we mean its adjacency matrix-based features

paired with its own classifier for node classification using only a level 2 network.

DiffPool aims to perform graph classification (Supplementary Section D.1.2). For

each input network, DiffPool’s GNN summarizes nodes’ initial features into a hidden

feature for the entire network. Then, given hidden features corresponding to the

input networks, the GNN is trained on these hidden features to perform graph classi-

fication. When we say L1 DiffPool, we mean its GNN with the initial features chosen

(Supplementary Section D.1.4), for graph classification using only level 1 networks.

As SIGN and DiffPool are single-level graph learning approaches, we also combine

them into an NoN graph learning approach. Given each level 2 node’s SIGN feature,

we concatenate it with the level 2 node’s corresponding level 1 network’s hidden

feature computed by DiffPool’s GNN. The GNN is then trained on these concatenated

features to perform classification (any general purpose feature can be incorporated

into DiffPool like this). When we say L1 DiffPool + L2 SIGN, we mean entity

label prediction using the process described above, incorporating SIGN’s feature into

169

TABLE 5.1

EXISTING APPROACHES THAT WE CONSIDER AND THEIR

GENERALIZED NON COUNTERPARTS

Single-level approaches NoN approaches

Node-level Network-level

L2 GDV L1 GDVM L1 GDVM + L2 GDV

L1 GCM L1 GCM + L2 GDV

L2 SIGN L1 DiffPool L1 DiffPool + L2 SIGN

Combined all (L1 GDVM)

Combined all (L1 GCM)

“Combined all (L1 GDVM)” refers to L1 GDVM + L2 GDV + L1 DiffPool + L2 SIGN;
“Combined all (L1 GCM)” is similarly named.

DiffPool’s GNN. So, we use three graph learning-based approaches: L1 DiffPool, L2

SIGN, and L1 DiffPo ol + L2 SIGN.

We also combine L1 GDVM + L2 GDV or L1 GCM + L2 GDV with L1 DiffPool

+ L2 SIGN to test whether integrating information across the graph theoretic and

graph learning domains improves upon either alone. Graphlet-based features can be

incorporated into DiffPool using the process described previously.

In summary, thus far, we have described five single-level approaches and five NoN

approaches that we use (Table 5.1).

Next, we describe our integrative GCN-based approach. We focus on GCNs for

two reasons: (i) recent work has suggested that other GNN architectures do not offer

very much benefit over GCNs [148, 170, 138], making such methods more complex for

170

little gain and (ii) the extension of GCNs to NoNs is intuitive. Note that GCNs (and

thus our extension of GCNs to NoNs) are often considered to be performing semi-

supervised learning [90], as they make use of the entire network structure, including

unlabeled nodes, to infer network features of nodes. But because we make predictions

only for labeled nodes (rather than for both labeled and unlabeled nodes), and for

simplicity, we continue to refer to our considered task of entity label prediction as

supervised in this study.

The basic unit of a GCN is a graph convolutional layer. Graph convolution layers

allow each node to see information about its neighbors. So, we generalize graph

convolution layers to NoNs so that each node receives information not only from its

neighbors (in the same level), but also from its corresponding network at a lower level

or from the network it is a part of at a higher level. This would be in line with intuition

that, for example, the feature of a protein should contain information about how it

interacts with other proteins (i.e., its topology in the level 2 network) and structural

properties of the protein itself that allow for such interactions (topology of level 1

nodes in its level 1 network). Then, we can stack multiple NoN graph convolutional

layers (with intermediate layers in between) to form an NoN-GCN (Supplementary

Section D.1.3). We refer to an NoN-GCN approach using λ layers as “GCN-λ”.

5.2.5 Evaluation

For a given NoN tGp2q “ pV p2q, Ep2qq and tG
p1q

1 , ..., G
p1q

|V p2q|
uu, its label set Y “

y1, ..., yc, and a function that maps level 2 nodes (and thus their corresponding level

1 networks) to their labels ftrue : V p2q Ñ Y , the goal is to learn a predictive function

fpred : V p2q Ñ Y . We do this by first splitting the data into three disjoint sets:

training (V p2q

tr), validation (V p2q

val), and testing (V p2q

te). Then, we train a classifier on

the training set that aims to minimize the cross-entropy loss between ftruepV
p2q

tr q and

fpredpV
p2q

tr q. We use V p2q

val to optimize hyperparameters and finally report the classifier’s

171

performance on V
p2q

te , an independent set never seen in the training process and not

used for determining hyperparameters. As typically done, we form these disjoint

sets using stratified sampling, repeating multiple times and averaging the results to

reduce bias from the randomness of the sampling. For details on hyperparameter

optimization and sampling, see Supplementary Section D.1.4.

Regarding how we measure classification performance of an approach, for syn-

thetic NoNs, we report classification accuracy (Supplementary Section D.1.4) since

class sizes are balanced. For the real-world NoNs, we report area under precision-

recall (AUPR), precision@k, recall@k, and F-score@k (Supplementary Section D.1.4),

since class sizes are not balanced. As commonly done, we also perform statistical tests

to see whether each approach’s performance is significantly better than random, i.e.,

is “significant” (Supplementary Section D.1.4).

5.3 Results and discussion

5.3.1 Accuracy on synthetic networks of networks

We expect NoN approaches to outperform single-level ones. We find that at least

one NoN approach (L1 GDVM + L2 GDV, L1 DiffPool + L2 SIGN, L1 GDVM + L2

GDV + L1 DiffPool + L2 SIGN, GCN-2, or GCN-3) outperforms or ties (is within

1% of) all single-level approaches (L1 GDVM, L2 GDV, L1 DiffPool, and L2 SIGN)

for 30 out of the 30 synthetic NoNs (Fig. 5.2 and Supplementary Figs. D.2-D.6).

Specifically, at least one NoN approach outperforms all single-level approaches for 9

out of the 30 NoNs, and at least one NoN approach is tied with L2 SIGN for 21 out

of the 30 NoNs. L2 SIGN is the only single-level approach that ties NoN approaches.

However, before we discuss why L2 SIGN performs as well as NoN approaches, we

need to understand the effects of both across-edge amount and rewire-noise amount.

172

Recall that when we increase across-edge amount, level 2 node groups’ original

GEO- and SF-like network topologies are increasingly broken down and eventually

become entirely random. When across-edge amount is high, most edges will exist

across level 2 node groups, not within (and there will be very little, if any, clustering

structure in the level 2 network). Thus, approaches using only level 2 information

(L2 GDV and L2 SIGN) will be making predictions on random data, and approaches

that combine level 1 and level 2 information (all NoN approaches) will be making

predictions on partially random data (level 1 networks are unaffected by across-

edge amount). So, for the former approaches, we expect that as across-edge amount

increases, prediction accuracy will drop to 0.25 (since there are four labels and class

sizes are balanced, random performance is 1
4
). For the latter approaches, we expect

that prediction accuracy will drop to 0.5, for the following reason. The only signal

NoN approaches can pick up when across-edge amount is high is from level 1 networks,

essentially turning NoN approaches into a single-level approaches (level 1 only). And,

the maximum expected accuracy of any single level approach is # of models
of labels , or 0.5

(Supplementary Section D.2.1). Indeed, we observe these drops in accuracy for all

approaches (Fig. 5.2(c, d) and Supplementary Figs. D.2-D.6).

Recall that we increase rewire-noise amount to investigate approaches’ robustness

to increasing data noise. When rewire-noise amount is high, both the level 2 node

groups’ and level 1 networks’ original GEO- and SF-like network topologies will now

be random (note, however, that clustering structure will not be affected since rewire-

noise occurs within node groups, not across). So, all types of approaches will be

making predictions on random data. As such, we expect that as rewire-noise amount

increases, prediction accuracy will decrease. We observe these drops in accuracy for

all approaches except L2 SIGN (Fig. 5.2(b, d) and Supplementary Figs. D.2-D.6),

which we discuss below.

173

To summarize, high across-edge amount leads to a random level 2 network with

very little clustering structure, and high rewire-noise amount leads to a random level

2 network with clustering structure (in addition to random level 1 networks). Since

L2 SIGN performs poorly for the former (Fig. 5.2(c, d)) but well for the latter

(Fig. 5.2(b)), despite the level 2 networks having random network topology in both

situations, we hypothesize that L2 SIGN is able to capture the clustering structure

in the level 2 network, i.e., it is able to detect the existence of densely interconnected

level 2 node groups. So, L2 SIGN is able to perform as well as NoN approaches for

21 out of the 30 NoNs simply because there exists clustering structure in the level

2 networks of those 21 NoNs. L2 SIGN’s ability to capture clustering structure is

also likely why at low across-edge amounts, regardless of rewire-noise amount, NoN

approaches incorporating L2 SIGN perform as well as they do. This also suggests

that when one expects clustering structure in the data, incorporating SIGN could

help.

Above, we analyze single-level approaches versus NoN approaches as well as trends

regarding across-edge amount and rewire-noise amount. However, recall that the

approaches we consider come from either the graph theoretic or graph learning do-

main. So, we also compare the two domains. For simplicity, we focus on the NoN

approaches, i.e., L1 GDVM + L2 GDV from the graph theoretic domain and L1

DiffPool + L2 SIGN from the graph learning domain, as we already know that they

outperform or tie single-level approaches. We find that L1 DiffPool + L2 SIGN out-

performs L1 GDVM + L2 GDV for 20 out of the 30 NoNs, is tied for 9 out of the

30 NoNs, and is worse for 1 out of the 30 NoNs. However, as discussed above, for

NoNs where across-edge amount is low and rewire-noise amount is high, L1 DiffPool

+ L2 SIGN’s performance likely comes from L2 SIGN. We also investigate whether

combining research knowledge from the graph theoretic and graph learning domains

improves upon each domain individually. This does not appear to be the case on the

174

(a) (b)

(c) (d)

Figure 5.2: Comparison of the nine considered approaches in the task of label pre-
diction for synthetic NoNs with the following parameters: (a) 5% across-edge and
0% rewire-noise amount, (b) 5% across-edge and 75% rewire-noise amount, (c) 95%
across-edge and 0% rewire-noise amount, and (d) 95% across-edge and 75% rewire-
noise amount. “Combined all” refers to L1 GDVM + L2 GDV + L1 DiffPool + L2
SIGN. Accuracy is shown above the bars. Standard deviations are indicated at the
top of each bar; some have very small values and are thus not visible. We expect an
approach that only uses a single level and does not capture clustering information
to have around # of models

of labels , or 0.5, accuracy when both across-edge and rewire-noise
amount are low (Supplementary Section D.2.1). Results for other parameter combi-
nations are shown in Supplementary Figs. D.2-D.6.

175

synthetic data, as L1 DiffPool + L2 SIGN is as good as L1 GDVM + L2 GDV + L1

DiffPool + L2 SIGN for 29 out of the 30 NoNs and is worse for only one NoN (Fig.

5.2 and Supplementary Figs. D.2-D.6).

Finally, recall that our extensions of existing node/graph label prediction ap-

proaches to their NoN counterparts (L1 GDVM + L2 GDV, L1 DiffPool + L2 SIGN,

L1 GDVM + L2 GDV + L1 DiffPool + L2 SIGN) are concatenation-based, which

is why we developed integrative NoN-GCN approaches (GCN-2 and GCN-3) as well.

Regarding the NoN-GCN approaches themselves, we expect that GCN-3 will out-

perform GCN-2, as the former is a deeper model. However, this is not the case, as

GCN-3 only outperforms GCN-2 for 2 out of the 30 NoNs, ties for 21 out of the 30,

and is worse for 7 out of the 30 (Fig. 5.2 and Supplementary Figs. D.2-D.6). This,

combined with the fact that GCN-3 takes more time than GCN-2 (Section 5.3.3), is

why we did not consider GCN-3 for the biological NoN. Still, we expect that the inte-

grative NoN-GCN approaches will outperform the concatenation-based ones. We find

that while the NoN-GCN approaches do perform well for low across-edge amounts

and low rewire-noise amounts, they are not as robust to changes in those parameters

compared to the concatenation-based ones. Specifically, NoN-GCN approaches per-

form as well as concatenation-based ones for 7 out of the 30 NoNs and are worse for

23 out of the 30 NoNs (Fig. 5.2 and Supplementary Figs. D.2-D.6). These findings

suggest that deep learning might not offer an advantage on this kind of synthetic

data, or that more complex models are needed.

5.3.2 Accuracy on the biological network of networks

Again, we expect NoN approaches to improve upon single-level ones. Since we

consider 131 GO terms and parsing raw results for every single one would be difficult,

we instead present summarized results over the 131. Specifically, given the eight

considered approaches (L1 GCM, L2 GDV, L1 GCM + L2 GDV, L1 DiffPool, L2

176

SIGN, L1 DiffPool + L2 SIGN, L1 GCM + L2 GDV + L1 DiffPool + L2 SIGN, and

GCN-2), for each of AUPR, precision, recall, and F-score, for each GO term, we do

the following. We rank each of the eight approaches that is significant (Section 5.2.5)

from 1st best (rank 1) to 8th best (rank 8), considering any approaches within 1% of

each other to be tied. Then, for each approach, we count how many times (i.e., for

how many GO terms) it has rank 1, 2, etc. We find that NoN approaches have rank

1 for 49 out of the 131 GO terms with respect to AUPR, 37 out of 131 for precision,

35 out of 131 for recall, 33 out of 131 for F-score, and 69 out of 131 for at least one of

the four evaluation measures (Fig. 5.3 and Supplementary Fig. D.7). We examine in

more detail why NoN approaches work better than single-level approaches for some

but not all GO terms, as follows.

Figure 5.3. Summarized results of the eight considered approaches (as GCN-3
is not used for the biological NoN) in the task of protein functional prediction
in terms of AUPR. For each GO term (out of the 131 total), we rank the
eight approaches’ from best (rank 1) to worst (rank 8). Then, we calculate
the proportion of GO terms each approach achieves each rank. “Combined
all” refers to L1 GDVM + L2 GDV + L1 DiffPool + L2 SIGN. Results for
other evaluation measures are shown in Supplementary Fig. D.7

177

First, we investigate whether the GO terms for which NoN approaches have rank

1 are different than the GO terms for which L2 SIGN, the best approach overall, has

rank 1. If not, then NoN approaches would be redundant to L2 SIGN. To do so, for

each NoN approach, we measure the overlap between the set of GO terms for which

the given NoN approach has rank 1 and the set of GO terms for which L2 SIGN has

rank 1. We find that NoN approaches have rank 1 for mostly different GO terms

compared to L2 SIGN, with a maximum overlap of around 6% (Supplementary Fig.

D.8). This suggests that NoN approaches are not redundant to L2 SIGN.

So, it makes sense to continue analyzing NoN approaches in comparison to single-

level approaches. To better understand for which kinds of GO terms NoN approaches

have rank 1 versus for which kinds of GO terms single-level approaches have rank 1,

we do the following. For each evaluation measure, we split the 131 GO terms into six

groups based on how single-level approaches perform in relation to NoN approaches,

with “S” referring to single-level approaches and “C” referring to combined-level (i.e.,

NoN) approaches, as outlined in Table 5.2. As an example, for AUPR, “S < C”

indicates that the performance of single-level approaches (“S”) is worse than (“<”) the

performance of NoN approaches (“C”). In other words, the group “S < C” contains all

GO terms for which at least one NoN approach has rank 1 (multiple NoN approaches

can be tied with each other for rank 1), and all single-level approaches have rank 2

or worse, with respect to AUPR. Note that for a GO term in the above scenario,

if no single-level approaches are significant, that GO term would be in the “C only”

group instead, corresponding to those GO terms for which only NoN approaches are

significant.

Given these groups, we investigate whether there are any GO terms where NoN

approaches are necessary if one wants to make accurate predictions. We do so by

looking at the number of GO terms for which at least one NoN approach has rank

1 and all single-level approaches are strictly worse, i.e., not tied for rank 1. This

178

TABLE 5.2

DESCRIPTION OF THE SIX GO TERM GROUPS BASED ON HOW

SINGLE-LEVEL (S) AND COMBINED-LEVEL (C), I.E., NON,

APPROACHES PERFORM

S only At least one “S” approach is significant;
no “C” approaches are significant.

S ą C At least one “S” approach is significant and has rank 1;
at least one “C” approach is significant but none have
rank 1.

S = C At least one “S” approach is significant and has rank 1;
at least one “C” approach is significant and has rank 1.

S ă C At least one “S” approach is significant but none have
rank 1;
at least one “C” approach is significant and has rank 1.

C only No “S” approaches are significant;
at least one “C” approach is significant.

No sig. No approaches are significant.

“S < C” and “C only” are where NoN approaches are the best.

corresponds to the number of GO terms in the groups “S ă C” and “C only”. We

find that NoN approaches have rank 1 and are untied with any single-level approach

for around 20%-30% of all GO terms, depending on evaluation measure (Table 5.3).

Taking the union over all evaluation measures, we find that there are 33 (25% of)

GO terms in “S ă C” and 38 (29% of) in “C only”, i.e., a total of 60 (46% of) GO

term across the two groups. That is to say, there are 33 GO terms where NoN

approaches outperform single-level approaches (but single-level approaches are still

significant) for at least one evaluation measure and, importantly, 38 GO terms where

179

TABLE 5.3

NUMBER OF GO TERMS IN EACH OF THE SIX GROUPS FOR

AUPR, PRECISION, RECALL, AND F-SCORE

Number of GO terms in each group for
AUPR Precision Recall F-score Union

S only 12 9% 20 15% 33 25% 31 24% 46
S ą C 63 48% 45 35% 22 17% 30 23% 75
S = C 8 6% 8 6% 6 5% 4 3% 18
S ă C 27 21% 8 6% 8 6% 9 7% 33
C only 14 11% 21 16% 21 16% 20 15% 38
No sig. 7 5% 29 22% 41 31% 37 28% 43

For example, for AUPR, there are 14 GO terms in the group “C only”. We also report
the union of GO terms in a given group over all measures (Union). For example, there are
38 GO terms in the union of “C only” over all evaluation measures. “S < C” and “C only”
are where NoN approaches are the best. The IDs and names of GO terms in each group for
each measure can be found in Supplementary Files D.1-D.4.

only NoN approaches are able to perform significantly better than random for at

least one evaluation measure. In other words, for those 38 GO terms, only NoN

approaches make meaningful protein functional predictions, while single-level ones

achieve random accuracy. Taking the groups together, we find that there are 60

GO terms where NoN approaches have rank 1 and single-level approaches are strictly

worse for at least one evaluation measure. These results suggest that NoN approaches

are necessary, especially if one wants to make predictions for certain GO terms.

Since we now know that NoN approaches are important, we investigate which

of them are the best. Here, we comment on results for AUPR (Supplementary Fig.

D.9(a)), only noting that results are qualitatively similar for other measures (Sup-

plementary Fig. D.9-D.13). For “S ă C”, L1 GCM + L2 GDV + L1 DiffPool +

180

L2 SIGN, i.e., the combination of graph theoretic and graph learning approaches, is

the best overall NoN approach. It has rank 1 for 19 GO terms, while all other NoN

approaches have rank 1 for fewer than 19 GO terms (Supplementary Fig. D.9(a)).

This suggests that integrating knowledge across domains is somewhat useful. For “C

only”, GCN-2 has rank 1 for 9 GO terms, while all other NoN approaches have rank

1 for fewer than 9 GO terms (Supplementary Fig. D.9(b)). In fact, for 7 out of the 9

GO terms, GCN-2 is the only approach that is significant (Supplementary Fig. D.10).

This suggests that deep learning could be useful for otherwise difficult-to-predict GO

terms.

Finally, note that we did analyze the properties of GO terms in each of the six

GO term groups, in order to see whether different GO term groups contain different

kinds of GO terms. Specifically, for each group, we computed the distribution of the

depths of the GO terms in the GO tree and the distribution of class sizes (number of

proteins annotated by each GO term, which ranges from 20 to 277), and compared

groups’ distributions to each other. We found that “S < C” and “C only” contain GO

terms whose classes sizes are among the smallest, suggesting that NoN approaches

may have some potential to make predictions for GO terms with limited training

data. And while one might expect that GO terms with small class sizes correspond

to those that are deep in the GO tree, we find that there is no significant difference

between the six GO term groups with respect to GO term tree depth.

5.3.3 Running time analysis

Lastly, we analyze approaches’ running times for the synthetic NoN with 5%

across-edge and 0% rewire-noise amount as a representative; we choose a single NoN

for two reasons. The first is that GCN-3 was only run on synthetic NoNs (Section

5.3.1), so they are the only NoNs where we can analyze the trade-off between perfor-

mance (Fig. 5.2) and running time. The second is simplicity: trends are qualitatively

181

similar across all synthetic NoNs. For each approach, we record the time to extract

all necessary features and the time for one epoch of training the associated classifier.

For hardware details, see Supplementary Section D.2.3.

First, GCN-3, which we found does not have a clear advantage over GCN-2 in

terms of accuracy (Section 5.3.1), takes 4.25x longer to train. This poor tradeoff be-

tween accuracy and running time is why we did not consider GCN-3 for the biological

NoN.

Second, recall that L1 DiffPool + L2 SIGN and L1 GDVM + L2 GDV + L1

DiffPool + L2 SIGN, the best approaches overall, are as good as each other in terms

of accuracy, with the former being worse in only 1 out of the 30 NoNs. Thus, because

L1 GDVM + L2 GDV + L1 DiffPool + L2 SIGN has longer feature extraction and

training time than L1 DiffPool + L2 SIGN (Supplementary Table D.1), L1 DiffPool

+ L2 SIGN would likely be the better approach to use for a general NoN when

considering the trade-off between accuracy and running time. Also recall that L2

SIGN performs as well as L1 DiffPool + L2 SIGN and L1 GDVM + L2 GDV +

L1 DiffPool + L2 SIGN for 21 out of the 30 NoNs, in those NoNs where there is

significant clustering structure in the level 2 network. Thus, if one expects significant

clustering structure in the level 2 network of a general NoN, L2 SIGN should be

considered, as its feature extraction time is around 77x faster and its training time is

around 1.5x faster than those of L1 DiffPool + L2 SIGN (Supplementary Table D.1).

5.4 Conclusion

We present a comprehensive framework to test whether integrating network infor-

mation into an NoN leads to more accurate label predictions than using information

from a single level alone. We also develop the first synthetic NoN generator that can

create NoNs with a variety of parameters for study, construct a biological NoN from

PPI network and PSN data, and propose a novel GCN-based model for label predic-

182

tion on NoNs. We have shown that on synthetic data, NoN approaches are among

the best, and that on a real-world biological NoN, NoN approaches are necessary to

make predictions about certain protein functions. As such, research into NoN-based

data integration is promising, and likely could be applied to a variety of other tasks,

especially as such NoN data becomes readily available.

To our knowledge, this study is the first to investigate data integration for label

prediction using NoNs. As such, it is “just” a proof of concept. Many opportunities

exist for further advancement of our work. As an example, recall that studies have

combined protein sequence and protein structural data with PPI data [181, 132, 179].

So, an important future direction is the comparison between different data integration

schemes for various tasks.

As another example, an NoN as we define it might have a limitation when trying

to model certain systems. Namely, an interaction between two entities at the higher

level may actually be due to a number of interactions occurring at the lower level.

For example, an interaction between two proteins occurs due to interactions between

subsets of their amino acids. Unfortunately, with current biotechologies, large-scale

data on interactions between proteins is captured at the protein level rather than

at amino acid level. So, these fine-grained, amino acid-level interactions cannot be

captured by our current NoN model. Advancements to account for them will be nec-

essary once such detailed data become available. This is especially important since

even our current, simpler NoN model already leads to improvements compared to

current methods. Therefore, a more advanced version should only improve further

(for applicable systems). However, our current NoN model does have advantages.

Namely, not all systems that can be modeled as complex networks of networks ben-

efit from the more detailed representation. For example, as discussed in Section 5.1,

[129] study an NoN where an interaction between two level 2 nodes (individuals in

a social network) is based on the individuals’ friendships. This could not be repre-

183

sented by interactions between subsets of level 1 nodes (neurons of the individuals’

brain networks). As our current NoN model would be favorable for such systems,

further development of the coarse-grained, and the fine-grained, NoN models are both

important directions.

As another example, while our integrative NoN-GCN approach is not significantly

better than just combining features from the two levels overall, there are some protein

functions for which it is the only approach to make non-random predictions. This

indicates that the strength of our NoN model is not just from the availability of

more features for prediction (i.e., two levels instead of one), but rather also from

the actual integration of the two levels that the model provides. Importantly, this

also means that research into more sophisticated, scalable, and integrative deep

learning models for NoNs, perhaps taking inspiration from SIGN’s precomputable

neighborhood aggregators, is worth pursuing.

As a final example, we only analyze a two-level NoN in this study, so expanding

in scale is an important future direction.

184

CHAPTER 6

CONCLUDING REMARKS

In this dissertation, we investigate how to properly compare NA methods belong-

ing to different categories; why NA methods do not align functionally related nodes,

resulting in their poor protein functional prediction performance; and whether more

complex multilevel data integration has advantages over simpler single-level represen-

tations. We design novel computational methods to improve alignment quality and

analyze multilevel data, leading to improvements in protein functional prediction.

First, we introduce an evaluation framework for a fair comparison of PNA against

MNA, and we find that PNA often outperforms MNA. In particular, in the ME

framework, PNA can (by integrating pairwise alignments) produce multiple align-

ments that are superior to multiple alignments produced by MNA. Thus, we believe

that any new MNA methods should be compared not just to existing MNA meth-

ods but also to existing PNA methods using our evaluation framework, to properly

judge the quality of alignments that they produce. Moreover, the current process of

integrating pairwise alignments (i.e., scaffolding procedure) is relatively simple. Any

more sophisticated scaffolding procedure that might be developed in the future will

yield even more superior PNA-based multiple alignments and consequently even fur-

ther emphasize the superiority of PNA over MNA. In other words, for MNA to gain

advantage over PNA, a drastic redesign of the current MNA algorithmic principles

might be needed. In summary, the results of this work suggest that perhaps it might

be sufficient to focus on the faster PNA and integration of pairwise alignments into

multiple ones rather than on the slower MNA.

185

Second, we modify WAVE, MAGNA++, and SANA to align heterogeneous net-

works by extending homogeneous graphlets to their heterogeneous counterparts. We

show that using more colors (i.e., more types of information) leads to better align-

ments, so using as much heterogeneous information as possible is the preferred option

where available. The bottleneck to using more types of heterogeneous data is scala-

bility of heterogeneous graphlets in terms of both time and space complexity. More

efficient heterogeneous graphlet counting methods that make use of combinatorial

relationships between heterogeneous graphlets, akin to existing efficient methods for

homogeneous graphlet counting [79, 104, 137, 2], have been developed [139] and could

help with the scalability issues. However, the code does not appear to be publicly

available. So, further study is needed on this front. Or, more scalable methods for

capturing the topology of a node in a heterogeneous network could be developed as

an alternative to graphlets, such as those based on random walks [66, 41].

Third, we present TARA as a method that challenges the assumption of current

NA methods that topologically similar nodes are functionally related. TARA can

detect, from training data, a relationship between topologies of functionally simi-

lar nodes. TARA generally outperforms or complements existing approaches, even

those that use sequence similarity-based anchor links across network as input (un-

like TARA), in the task of protein function prediction, one of the ultimate goals of

NA. Thus, we extend TARA into TARA++ to use both topological and sequence

information, and find that it outperforms existing methods. As such, future NA

methods should perhaps be developed in the data-driven paradigm rather than in

the traditional topological similarity paradigm.

To our knowledge, TARA and TARA++ are the first data-driven approaches for

biological NA. As such, they are just proof-of-concepts. There are many directions

in which this work can be taken. TARA uses a relative simply combination of two

nodes’ GDVs to obtain the GDV of a node pair. More sophisticated combinations of

186

GDVs could be explored. TARA++ explores social network embedding to extract the

feature of a node pair using node2vec, but the integrated network could be treated

as a heterogeneous network, so heterogeneous feature extraction methods like those

discussed above could be explored. Also, in both TARA and TARA++, we train a

simple classifier, logistic regression – potential improvement could be seen with more

sophisticated models.

There is still another category of NA methods that is not discussed in the dis-

sertation. Namely, most of existing NA methods deal with static networks. That

is, they do not account for any temporal (dynamic) information that exists. For ex-

ample, cellular functioning differs across different ages or stages of cancer, meaning

that dynamic or temporal PPI networks could be used to model the aging process

or cancer progression. Without considering this temporal data, a lot of informa-

tion is lost. Only recently, several approaches have been proposed for dynamic NA

[165, 162, 7, 45]. These ideas for dynamic NA could be combined with those for each of

pairwise, multiple, heterogeneous, and data-driven NA discussed in this dissertation,

enabling the analysis of even more complex network data that better model cellular

functioning. Importantly though, it is crucial that we (the NA community) gain

in-depth understanding of practical implications of local versus global, one-to-one

versus many-to-many, pairwise versus multiple, homogeneous versus heterogeneous,

non-data-driven versus data-driven, static versus dynamic, and other types of NA,

in order to learn from each NA type when developing new methods. Similarly, the

subfields of social NA and biological NA are often disjoint – methods from one sub-

field are often not considered by researchers in the other, despite the problems posed

sharing many similar aspects. A better unification of the two could help reduce

“redundacies” and accelerate advancements.

Fourth, we present a comprehensive framework to test whether integrating net-

work information into an NoN leads to more accurate label predictions than using

187

information from a single level alone. We also develop the first synthetic NoN genera-

tor that can create NoNs with a variety of parameters for study, construct a biological

NoN from PPI network and PSN data, and propose a novel GCN-based model for

label prediction on NoNs. We have shown that on synthetic data, NoN approaches

are among the best, and that on a real-world biological NoN, NoN approaches are

necessary to make predictions about certain protein functions. As such, research into

NoN-based data integration is promising, and likely could be applied to a variety of

other tasks, especially as such NoN data becomes readily available.

A struggle one might face not just when working with NoNs (especially beyond

just two levels), but also with regard to the general trend of increasing network data,

is that of scalability. Graph compressibility [100] is an interesting direction to ad-

dress this issue. Currently, there exist generative graph models, such as vertex/edge

replacement grammars [1, 150, 78] that could help. Given an input network, such

models can learn to generate networks with similar properties as the input one – in

other words, these models contain information about the properties of the input net-

work inside them. In applications where some compression loss would be acceptable,

such models could potentially be used to generate portions of relevant networks on

demand to save on computational resources.

Network analysis has been rapidly trending toward deep learning, partially owing

to the successes of image and natural language processing in that context. However, I

do not think this means that traditional graph theoretic algorithms will be left behind.

Besides many existing tasks where such algorithms are optimal, I see the potential

for a fusion between graph theoretic algorithms and graph deep learning. With the

renewed interest in differentiable programming [13], deep learning frameworks have

integrated fundamental data structures such as stacks and “taken derivatives” of

stack operations [43, 101], and incorporated natural “laws” via ordinary differential

equations [26], to great success. So perhaps, traditional graph algorithms can be fitted

188

into deep learning frameworks as well, providing a stronger backbone for data-driven

graph analyses to take off.

Something I greatly appreciate from my PhD journey is the emphasis on “elevator

pitch”-type communication of research. After all, most people one interacts with will

have expertise in different disciplines, so distilling one’s work into understandable

concepts is important for any kind of exchange. This is in contrast to the impression

I had in my undergraduate environment, where we always felt “cool” to show off

all our technical jargon, and in my opinion, this feeling partially contributes to the

disconnect between traditionally technical fields and the general population. This

way of thinking, where if someone else is confused by your explanation, it is because

you haven’t explained it well enough, puts focus on yourself to improve and helps

establish common ground for effective communication – something we all could use

more of these days.

189

APPENDIX A

PAIRWISE VERSUS MULTIPLE NETWORK ALIGNMENT

A.1 Methods

A.1.1 NA methods that we evaluate

The PNA methods that we evaluate are GHOST, MAGNA++, WAVE, and

L-GRAAL. The MNA methods that we evaluate are IsoRankN, BEAMS, multi-

MAGNA++, and ConvexAlign.

PNA methods. Most NA methods are two-stage aligners: in the first stage, they

calculate the similarities (based on network topology and, optionally, protein sequence

information) between nodes in the compared networks, and in the second stage, they

use an alignment strategy to find high scoring alignments with respect to the total

similarity over all aligned nodes. GHOST is an example of two-stage PNA methods.

GHOST calculates the similarity of “spectral signatures” of nodes between the com-

pared networks in its first stage. Then, GHOST uses an alignment strategy consisting

of a seed-and-extend global alignment step followed by a local search procedure that

aims to improve, with respect to node similarity, upon the seed-and-extend step. An

issue with two-stage methods is that while they find high scoring alignments with

respect to total node similarity (a.k.a. node conservation), they do not take into

account the amount of conserved edges during the alignment construction process.

But the quality of a network alignment is often measured in terms of the amount

of conserved edges. To address this issue, MAGNA++ directly optimizes both edge

and node conservation while the alignment is constructed; its node conservation mea-

190

sure typically uses graphlet-based node similarities [112]. MAGNA is a search-based

(rather than a two-stage) PNA method. Search-based aligners can directly optimize

edge conservation or any other alignment quality measure. WAVE was proposed as

a two-stage (rather than search-based) PNA method that optimizes both a graphlet-

based node conservation measure as well as (weighted) edge conservation by using

a seed-and-extend alignment strategy based on the principle of voting. Similarly,

L-GRAAL optimizes a graphlet-based node conservation measure and a (weighted)

edge conservation measure, but it uses a seed-and-extend strategy based on integer

programming.

MNA methods. IsoRankN is a two-stage MNA method. It calculates node similari-

ties between all pairs of compared networks using a PageRank-based spectral method.

IsoRankN then creates a graph of the node similarities and partitions the graph us-

ing spectral clustering in order to produce a many-to-many alignment. BEAMS is

a two-stage method that optimizes both a (protein sequence-based) node conserva-

tion measure and an edge conservation measure. BEAMS uses a maximally weighted

clique finding algorithm on a graph of node similarities to produce a one-to-one

alignment, where node similarity is based only on protein sequence information, with-

out considering any topological node similarity information. BEAMS then creates

a many-to-many alignment from the one-to-one alignment using an iterative greedy

algorithm that maximizes both node and edge conservation. ConvexAlign is also a

two-stage method. It optimizes an objective function that combines topological node

similarity, optional sequence-based node similarity, and edge conservation. That is, it

optimizes both node and edge conservation. ConvexAlign optimizes its objective func-

tion with an optimization strategy that is formulated as an integer program, which

is relaxed into a convex optimization problem. This problem is then solved using

the alternating direction method of multipliers (ADMM). This allows ConvexAlign

to align multiple networks simultaneously. Like MAGNA++, multiMAGNA++ is a

191

search-based method that directly optimizes both edge and node conservation while

the alignment is constructed. Of the MNA methods, IsoRankN and BEAMS pro-

duce many-to-many alignments, while ConvexAlign and multiMAGNA++ produce

one-to-one alignments.

Aligning using network topology only versus using both topology and

protein sequences. In our analysis, for each method, we study the effect on out-

put quality when (i) using only network topology while constructing alignments (T

alignments) versus (ii) using both network topology and protein sequence informa-

tion while constructing alignments (T+S alignments). For T alignments, we set

method parameters to ignore any sequence information. All methods except BEAMS

can produce T alignments and all methods can produce T+S alignments. For T+S

alignments, we set method parameters to include sequence information. Supplemen-

tary Table A.2 shows the specific parameters that we use. Specifically, the meth-

ods combine topological information with sequence information in order to optimize

θST ` p1´θqSP , where ST is the (node or edge) cost function based on topological in-

formation, SP is the node cost function based on protein sequence information, and θ

weighs between topological information and sequence information. When θ “ 1, only

network topology is used in the alignment process, and when θ “ 0, only sequence

information is used. We set θ “ 0.5 in our study due to the following reasons (except

for ConvexAlign, see below). First, Meng et al. [110], who used the same datasets that

we use in our study, showed that as long as some amount of topological information

and some amount of protein sequence information are used in the alignment process

(i.e., as long as θ does not equal 0 or 1), the quality of the resulting alignments is

not drastically affected. They showed this for ten PNA methods, including GHOST,

MAGNA++, WAVE, and L-GRAAL, which are the PNA methods that we use in this

study. Second, it was shown by the original studies which introduced two of the MNA

methods used in this study that varying θ between 0.3 and 0.7 has no large effect

192

on the quality of alignments produced by BEAMS and IsoRank [4], and that varying

θ between 0.2 and 0.8 has no large effect on the quality of alignments produced by

FUSE [62]. Third, the original MAGNA++ paper, which multiMAGNA++ is based

on, showed that varying θ between 0.1 and 0.9 has no large effect on the quality of

alignments produced by MAGNA++. So, in the original multiMAGNA++ paper,

the θ parameter was set to 0.5. We believe that all of this justifies our choice of

using θ of 0.5 for all methods considered in our study (except for ConvexAlign, see

below). Also, using the same θ value for all methods (except for ConvexAlign, see

below) ensures that any potential differences in results of the different methods are

not caused by using different amounts of network topology versus protein sequence

information. While in an ideal scenario we would have wanted to use θ “ 0.5 for

ConvexAlign’s T+S alignments as well (just like we do for all other considered meth-

ods), the authors of ConvexAlign pre-set this value in ConvexAlign’s implementation

to a recommended value of 0.343 (see below), thus weighing topological information

by 0.343 and sequence information by 0.657. We respect this recommendation and

consequently use θ “ 0.343 for ConvexAlign.

Next, we clarify how the given method’s parameter values from Supplementary

Table A.2 match the desired θ value.

Recall that the methods combine topological information with sequence informa-

tion in order to optimize θST ` p1 ´ θqSP , where ST is the (node or edge) cost func-

tion based on topological information, SP is the node cost function based on protein

sequence information, and θ weighs between topological information and sequence

information.

For T alignments, we set parameters such that only topological information is

used (i.e., such that θ “ 1.0). Namely, setting θ “ 1.0 is equivalent to setting the

following parameter value(s) for each of the methods, where ET , NT , and NS are the

topological edge conservation function, topological node cost function, and sequence-

193

based node cost function, respectively. (That is, ET and/or NT form ST from the

above θ-related formula, and NS is SP from the above θ-related formula.)

• For GHOST, which optimizes αNT ` p1´αqNS, setting θ “ 1.0 corresponds to
setting α “ 1.0, i.e., alpha=1.0 in the GHOST implementation.

• For L-GRAAL, which optimizes p1´αqET `αNS (where ET is edge conservation
weighted by topological node similarity), setting θ “ 1.0 corresponds to setting
α “ 0.0, i.e., a=0.0 in the L-GRAAL implementation.

• For MAGNA++, which optimizes αET ` p1 ´ αqpβNT ` p1 ´ βqNSq, setting
θ “ 1.0 corresponds to setting α “ 0.5 and β “ 1.0, i.e., setting a=0.5 and in-
putting only topological node similarity into the MAGNA++ implementation,
respectively. Note that we use a=0.5 to give equal weight to edge conservation
and node conservation.

• For WAVE, which optimizes αNT ` p1 ´ αqNS, setting θ “ 1.0 corresponds to
setting α “ 1.0, i.e., inputting only topological node similarity to the WAVE
implementation. Note that WAVE also optimizes edge conservation, but it does
so implicitly, as a part of its alignment strategy. That is, edge conservation is
not an input parameter of WAVE or its implementation.

• For IsoRankN, which optimizes αNT ` p1 ´ αqNS, setting θ “ 1.0 corresponds
to setting α “ 1.0, i.e., alpha=1.0 in the IsoRankN implementation.

• For ConvexAlign, which optimizes λ2ET ` p1´λ2qpλ1NT ` p1´λ1qNSq, setting
θ “ 1.0 corresponds to setting λ1 “ 1.0, i.e., inputting no node similarity into
the ConvexAlign implementation. Note that we use λ2 of 0.02, as recommended
and pre-set by the authors of the ConvexAlign paper. ConvexAlign authors
have recommended all of its parameter values after testing them using cross-
validation. So, we did not need to set any parameter values ourselves.

• For multiMAGNA++, which optimizes αET ` p1 ´ αqpβNT ` p1 ´ βqNSq, set-
ting θ “ 1.0 corresponds to setting α “ 0.5 and β “ 1.0, i.e., setting a=0.5
and inputting only topological node similarity into the multiMAGNA++ im-
plementation, respectively. Note that we use a=0.5 to give equal weight to edge
conservation and node conservation.

For T+S alignments, we set parameters such that both topological and sequence

information is used (i.e., such that θ “ 0.5, unless recommended otherwise by the

authors of the given method). Namely, setting θ “ 0.5 is equivalent to setting the

following parameter value(s) for each of the methods.

194

• For GHOST, which optimizes αNT ` p1´αqNS, setting θ “ 0.5 corresponds to
setting α “ 0.5, i.e., alpha=0.5 in the GHOST implementation.

• For L-GRAAL, which optimizes p1´αqET `αNS (where ET is edge conservation
weighted by topological node similarity), setting θ “ 0.5 corresponds to setting
α “ 0.5, i.e., a=0.5 in the L-GRAAL implementation.

• For MAGNA++, which optimizes αET ` p1 ´ αqpβNT ` p1 ´ βqNSq, setting
θ “ 0.5 corresponds to setting α “ 0.25 and β “ 0.33, i.e., setting a=0.25 and
inputting the combined node similarity information into the MAGNA++ im-
plementation. With these parameter values, topological and sequence-based
cost functions are equally weighted. Namely, the optimization formula for
MAGNA++ becomes 0.25ET ` 0.75p0.33NT ` 0.67NSq “ 0.25ET ` 0.25NT `

0.5NS “ 0.5ST ` 0.5SP , i.e., θ “ 0.5, as desired.

• For WAVE, which optimizes αNT ` p1 ´ αqNS, setting θ “ 0.5 corresponds
to setting α “ 0.5, i.e., inputting both topological and sequence-based node
similarities to the WAVE implementation. Note that WAVE also optimizes edge
conservation, but it does so implicitly, as a part of its alignment strategy. That
is, edge conservation is not an input parameter of WAVE or its implementation.

• For IsoRankN, which optimizes αNT ` p1 ´ αqNS, setting θ “ 0.5 corresponds
to setting α “ 0.5, i.e., alpha=0.5 in the IsoRankN implementation.

• For ConvexAlign, which optimizes λ2ET ` p1´λ2qpλ1NT ` p1´λ1qNSq, we use
λ1 “ 0.33 and λ2 “ 0.02, as recommended and pre-set by the authors of the
ConvexAlign paper. ConvexAlign authors have recommended all of its param-
eter values after testing them using cross-validation. So, we did not need to
set any parameter values ourselves. With these two parameter values, the opti-
mization formula for ConvexAlign becomes 0.02ET ` 0.98p0.33NT ` 0.67NSq “

0.02ET `0.323NT `0.657NS “ 0.343ST `0.657SP , i.e., θ “ 0.343. Clearly, Con-
vexAlign weighs sequence information higher than the other methods (65.7% of
the whole objective function for ConvexAlign, as opposed to 50% of the while
objective function for the other methods). Again, this is because the authors
of ConvexAlign suggested doing 65.7% for their method, while our justification
for 50% for the other methods is discussed above.

• For multiMAGNA++, which optimizes αET `p1´αqpβNT `p1´βqNSq, setting
θ “ 0.5 corresponds to setting α “ 0.25 and β “ 0.33 as recommended by the
multiMAGNA++ paper, i.e., setting a=0.25 and inputting the combined node
similarity information into the multiMAGNA++ implementation. With these
parameter values, topological and sequence-based cost functions are equally
weighted. Namely, the optimization formula for multiMAGNA++ becomes
0.25ET ` 0.75p0.33NT ` 0.67NSq “ 0.25ET ` 0.25NT ` 0.5NS “ 0.5ST ` 0.5SP ,
i.e., θ “ 0.5.

195

A.1.2 Alignment quality measures

Here, we describe the alignment quality measures that we use to evaluate the

NA methods. To do so, we first need to formally define an alignment. Typical

PNA methods produce alignments comprising node pairs and typical MNA methods

produce alignments comprising node clusters. We introduce the term aligned node

group to describe either an aligned node pair or an aligned node cluster. With this,

we can represent a pairwise or multiple alignment as a set of aligned node groups.

Let G1pV1, E1q, . . ., GkpVk, Ekq be k networks with node and edge sets Vl and El,

respectively, for l “ 1, 2, . . . , k. An alignment of the k networks is a set of disjoint

node groups, where each group is represented as a tuple pa1, . . . , akq with the following

properties: (i) al is the set of nodes in the node group from network Gl, i.e., al Ď Vl,

for l “ 1, 2, . . . , k, (ii) no two node groups have any common nodes, i.e., given two

different groups pa1, a2, . . . , akq and pb1, b2, . . . , bkq, al X bl “ ∅ for l “ 1, 2, . . . , k, and

(iii) there must be at least two nodes in each node group, i.e., |Yl“1,...,kal| ě 2. If for

each node group in the given alignment there is at most one node from each network,

i.e., if for each node group |al| ď 1 for l “ 1, . . . , k, then the alignment is a one-to-one

alignment. Otherwise, it is a many-to-many alignment.

A.1.2.1 Topological quality (TQ) measures

A good NA method should produce aligned node groups that have internal con-

sistency with respect to protein labels. If we know the true node mapping between

the networks, then we can let the labels be protein names. When the labels are based

on the true node mapping, i.e., on protein names, we consider measures that rely on

node labels to be capturing topological alignment quality (TQ). If we do not know

the true node mapping, we let the labels be GO terms. In this case, since GO terms

capture protein functions, we consider measures that rely on GO terms to be captur-

196

ing functional alignment quality (FQ). We discuss such measures in Supplementary

Section A.1.2.2.

Also, a good NA method should find a large amount of common network structure

across the compared networks, i.e., produce high edge conservation.

Finally, for a good NA method, conserved edges should form large, dense, con-

nected regions (as opposed to small or isolated conserved regions).

Below, first, we discuss how we measure internal consistency of aligned protein

groups in a pairwise alignment. Second, we comment on how we do this in a multiple

alignment. Third, we discuss how we measure edge conservation in a pairwise align-

ment. Fourth, we comment on how we do this in a multiple alignment. Fifth, we

discuss how we capture the notion of large, dense, and connected conserved network

regions (for both pairwise and multiple alignments).

Measuring internal node group consistency of a pairwise alignment via

precision, recall, and F-score of node correctness (P-NC, R-NC, and F-NC,

respectively). These measures [110] are a generalization of node correctness (NC)

from one-to-one to many-to-many pairwise alignments. NC for one-to-one pairwise

alignments is the fraction of node pairs from the alignment that are present in the

true node mapping. As such, NC evaluates the precision of the alignment. NC is

extended to many-to-many pairwise alignments as follows. For each aligned node

group Ci in the alignment, Ci is converted into a set of all possible
`|Ci|

2

˘

node pairs

in the group. The union of all resulting node pairs over all groups Ci forms the set

X of all aligned Then, given node pairs. the set Y of all node pairs from the true

node mapping, P-NC = |XXY |
|X| , R-NC = |XXY |

|Y | , and F-NC is the harmonic mean of

P-NC and R-NC. These three measures work for both one-to-one and many-to-many

pairwise alignments.

Measuring internal node group consistency of a multiple alignment via

adjusted multiple node correctness (NCV-MNC). Multiple node correctness

197

(MNC) [163] is a generalization of the NC measure to multiple alignments. MNC

uses the notion of normalized entropy (NE), which measures, for a given aligned

node group, how likely it is to observe the same or higher level of internal node group

consistency by chance, i.e., if the group of the same size was formed by randomly

assigning to it proteins from the compared networks. The lower the NE, the more

consistent the node group. Then, MNC is one minus the mean of NEs across all

node groups. We refer to Vijayan and Milenković [163] for the formal definition of

MNC. Since a good NA method should align (or cover) many of the nodes in the

compared networks, as was done by Vijayan and Milenković [163], we adjust the

MNC measure to account for node coverage (NCV), which is the fraction of nodes

that are in the alignment out of all nodes in the compared networks. Then, MNC-

NCV“
a

pNCVqpMNCq. When either NCV or MNC is low, the geometric mean

of the two is penalized. The NCV-MNC measure works for both one-to-one and

many-to-many multiple alignments.

Measuring edge conservation of a pairwise alignment via adjusted gener-

alized S3 (NCV-GS3). Given two compared networks, generalized S3 (GS3) [110]

measures the fraction of conserved edges out of both conserved and non-conserved

edges, where an edge is conserved if it maps to an edge in the other network and

an edge is not conserved if it maps to a non-adjacent node pair (i.e., a non-edge) in

the other network. We refer to Meng et al. [110] for formal definition of GS3. As

was done by Meng et al. [110], we penalize alignments with low node coverage by

combining NCV with GS3 into the adjusted GS3 measure, NCV-GS3, which equals
a

pNCVqpGS3
q. The NCV-GS3 measure works for both one-to-one and many-to-

many pairwise alignments.

Measuring edge conservation of a multiple alignment via adjusted cluster

interaction quality (NCV-CIQ). CIQ [4] is a weighted sum of edge conservation

between all pairs of aligned node groups. We refer to Vijayan and Milenković [163]

198

for the formal definition of CIQ. As was done by Vijayan and Milenković [163], we

penalize alignments with low node coverage by combining NCV with CIQ into the

adjusted CIQ, NCV-CIQ, which equals
a

pNCVqpCIQq. The NCV-CIQ measure

works for both one-to-one and many-to-many multiple alignments.

Measuring the size of the largest connected region using largest common

connected subgraph (LCCS). The LCCS measure, which was recently extended

from PNA [143] to MNA [163], simultaneously captures the size (i.e., the number of

nodes) and the density (i.e., the number of edges) of the largest common connected

subgraph formed by the conserved edges, penalizing smaller or sparser subgraphs.

We refer to Vijayan and Milenković [163] for the formal definition of LCCS. The

LCCS measure works for both one-to-one and many-to-many alignments, and for

both pairwise and multiple alignments.

A.1.2.2 Functional quality (FQ) measures

Per Supplementary Section A.1.2.1, a good alignment should have internally con-

sistent aligned node groups. Instead of protein names as in Supplementary Section

A.1.2.1, in this section we use GO terms as protein labels to measure internal consis-

tency.

Having aligned node groups that are internally consistent with respect to protein

labels is important for protein function prediction. In addition to measuring internal

node group consistency, we directly measure the accuracy of protein function predic-

tion. That is, we first use a protein function prediction approach (Chapter 2.2.3.3

of the main document) to predict protein-GO term associations, and then we com-

pare the predicted associations to known protein-GO term associations to see how

accurate the predicted associations are.

Below, first, we discuss how we measure internal node group consistency with

respect to GO terms. Second, we discuss an alternative popular measure for doing the

199

same. Third, we discuss how we measure the accuracy of protein function prediction,

i.e., of predicted protein-GO term associations (note that we describe a strategy that

we use to make the predictions in Chapter 2.2.3.3 of the main document).

Measuring internal node group consistency using mean normalized en-

tropy (MNE). MNE [99] first uses normalized entropy (NE) to measure GO term-

based consistency of an individual aligned node group. The lower the NE, the more

consistent the given node group. Then, MNE is the mean of the NEs across all node

groups. We refer to Vijayan and Milenković [163] for the formal definition of MNE.

The MNE measure works for both one-to-one and many-to-many alignments, and for

both pairwise and multiple alignments.

Measuring internal node group consistency using GO correctness (GC).

GO correctness, which was recently extended from PNA [96] to MNA [163], measures

the internal consistency of aligned node groups with respect to GO terms as follows.

For each node group Ci in the alignment, Ci is converted into a set of all possible
`|Ci|

2

˘

node pairs in the group. The union of all resulting node pairs over all groups Ci

forms the set X of all aligned node pairs. A subset of X that consists of all node pairs

in which each of the two nodes is annotated with at least one GO term is denoted as

Y . Then, GO correctness is the fraction of node pairs in Y in which the two nodes

are both annotated with the same GO term. In other words, GO correctness is the

fraction of all pairs of aligned nodes in which the aligned nodes share a GO term. The

GO correctness measure works for both one-to-one and many-to-many alignments,

and for both pairwise and multiple alignments.

Precision, recall, and F-score of protein function prediction (P-PF, R-

PF, and F-PF, respectively). We describe how we predict protein-GO term

associations in Chapter 2.2.3.3 of the main document. Here, we describe how we

evaluate accuracy of such predictions. Given predicted protein-GO term associations,

we calculate accuracy of the predictions via precision, recall, and F-score measures.

200

Formally, given the set X of predicted protein-GO term associations, and the set

Y of known protein-GO term associations, P-PF “
|XXY |
|X| , R-PF “

|XXY |
|Y | , and F-

PF is the harmonic mean of precision and recall. These three measures work for

both one-to-one and many-to-many alignments, and for both pairwise and multiple

alignments.

A.1.2.3 Protein function prediction approaches

Approach 3. New protein function prediction for multiple alignments. We

follow our discussion from Chapter 2.2.3.3 of the main document regarding approach

3, our new protein function prediction approach for multiple alignments. Formally,

given an alignment of k networks, G1pV1, E1q, G2pV2, E2q, . . ., GkpVk, Ekq, and given

node v in the alignment that has at least one annotated GO term, and given GO term

g, we hide the protein’s true GO term(s) and find the significance of the alignment

with respect to GO term g using the hypergeometric test, as follows. For each node

group Ci in the alignment, we convert Ci into a set of node pairs Fi by taking all node

pairs in the node group, after which we concatenate the sets of node pairs into a single

set F . Then, let V ˚
i Ă Vi be such that each node in V ˚

i is annotated with at least one

GO term. Let S1 be the set of all possible pairs of proteins in F such that one protein

is in V ˚
i and the other is in V ˚

j , where i ‰ j. Let Ai Ă V ˚
i be such that each node

in Ai is annotated with g. Let S2 be the set of all possible pairs of proteins between

Ai and Aj, where i ‰ j. Let K be the set of pairs of proteins that are in F and in

S1. Let X be the set of pairs of proteins that are in F and in S2. Then, we use the

hypergeometric test to calculate the probability of observing by chance |X| or more

pairs of proteins in F with each node annotated with g is p “ 1´
ř|X|´1

i“0

p|K|
i qp

|S1|´|K|
|S2|´i q

p
|S1|
|S2|

q
.

We consider the alignment to be significant with respect to g if the p-value is less

than 0.05. We predict v to be associated with g if the alignment is significant with

respect to g, resulting in predicted protein-GO term associations. If the alignment

201

is significant with respect to g, we predict v to be associated with g. Repeating this

process for all nodes and GO terms results in predicted protein-GO term associations

X.

A.1.2.4 Statistical significance of alignment quality scores

We continue our discussion from Chapter 2.2.3.4 of the main document on how

to compute the p-value of a quality score of an actual alignment. This is done as

follows. We construct a set of 1,000 corresponding random alignments (1,000 is what

was practically reasonable given our computational resources), under a null model

that conserves the following properties of the actual alignment: the number of node

groups, the number of nodes in each group, and the network from which each node

in each node group originates from. Then, the p-value of the alignment quality score

is the fraction of the 1,000 random alignments with equal or better score than the

actual alignment. We consider an alignment quality score to be significant if its p-

value is less than 0.001. Note that if a given method fails to produce an alignment

of a network pair/set, we set the p-values of all quality scores associated with the

method and network pair/set to 1 and hence consider all of the associated quality

scores to be non-significant.

A.1.3 Evaluation framework

A.1.3.1 Multiple evaluation (ME) framework

We continue our discussion from Chapter 2.2.4.2 of the main document on how

we combine the pairwise alignments over every network pair in the given set into a

multiple alignment, i.e., how we produce alignments from the ME-P-P and ME-M-P

categories. This procedure was inspired by Dohrmann et al. [39]. Given pairwise

alignments of k networks G1pV1, E1q, . . . , GkpVk, Ekq, Dohrmann et al. [39] produce

a multiple alignment of the k networks as follows. First, they select a “scaffold”

202

network Gr among the k networks, namely the network whose sum of “topological

similarities” to the remaining k ´ 1 networks is maximized; one of the suggested

“topological similarity” measures is Graphlet Degree Distribution (GDD) agreement

[136]. Second, they align Gr to each of the remaining k ´ 1 networks. Third, they

take the union of all aligned node groups from the resulting k ´ 1 alignments. Let

us denote this union as set A. Since the node groups in set A are not necessarily

disjoint, Dohrmann et al. [39] use set A to create a new set A1 of aligned node groups

that are disjoint. This is done as follows. Let A1 be an empty set. First, randomly

pick an aligned node group C that is currently in A (initially, all node groups are in

A) and remove it from A. Then, remove from A all node groups that have at least

one node in common with C, and merge the node groups into C. Repeat this process

until there are no more node groups in A that have at least one node in common

with C. Then, add C to A1. Repeat this process until A is empty. This results in

a new multiple alignment A1. We illustrate this procedure in Fig. 2.3(b,c) of the

main document. In our work, instead of choosing one of the k analyzed networks as

a scaffold network using BLAST protein similarity information as Dohrmann et al.

[39] does, because the choice of scaffold network affects the quality of the resulting

multiple alignment (which we actually validate in Supplementary Fig. A.9), we vary

each of the k networks as the scaffold network Gr, and we choose the scaffold based

on the quality of the resulting multiple alignments. That is, we rank (as explained

below) each of the k multiple alignments, in order to select the best (in terms of

the rank) of them. We rank the alignments as follows. For each alignment quality

measure, we rank the alignments from the best one to the worst one. (In case of

ties, we let the ranks of the tied alignments be the tied alignments’ average rank.)

Then, we compute the total rank of each alignment by taking the average of the given

alignment’s ranks over all of the alignment quality measures. Finally, we select the

best (in terms of the total rank) of all alignments. Note that here, we consider all

203

measures that can deal with multiple alignments, except NCV-MNC, which we leave

out because not all network pairs/sets have the true node mapping (and NCV-MNC

requires knowing this mapping), and except MNE, which we leave out so that the

number of TQ and FQ measures matches (which is required in order to prevent the

ranks to be dominated by topological or functional alignment quality). That is, we

consider NCV-CIQ and LCCS TQ measures and GC and F-PF FQ measures.

A.1.4 T versus T+S alignments

Here, we continue our discussion from Chapter 2.3.1 of the main document re-

garding the similarity (overlap) of the alignments produced the different NA methods,

each with its T and T+S versions (Supplementary Figs. A.1–A.3). Surprisingly, over

all considered network datasets, in each of the PE and ME frameworks, the T+S

versions of the different methods are overall more similar than the T+S and T ver-

sions of the same method are (with the exception of IsoRankN in the PE framework

and also GHOST in the ME framework). That is, the T+S versions of the different

methods cluster together in Supplementary Fig. A.1 and are clearly separated from

the T versions. In contrast, the T versions do not cluster together. This shows that

using protein sequence information overall yields alignment consistency independent

of which NA method is used. Similar holds when we break down this analysis for

networks with known versus unknown node mapping (Supplementary Figs. A.2–

A.3), with the exception of networks with unknown node mapping under the ME

framework, where the T and T+S versions of the same approach are often clustered

together.

A.1.5 Method comparison in the ME framework: accuracy versus running time

The running time discussion in Chapter 2.3.4 of the main document deals with

empirical running times of the considered PNA and MNA methods, when the methods

204

are run on our considered network sets, the largest one of which contains six networks.

Since the PNA methods must align every pair of networks in a network set in order

to produce a multiple alignment, and since this results in a quadratically increasing

running time with respect to the number of networks k, we next ask whether there

is some (larger than six) value of k at which PNA might become less efficient (i.e.,

slower) than MNA. To answer this, because of the limited sizes (in terms of k) of

our considered network sets, we need to analyze the methods’ theoretic running time

complexities with respect to k (Supplementary Table A.3). All of the PNA methods’s

running times grow quadratically with k due to the required pairwise alignments, per

the above discussion. Of the MNA methods, IsoRankN’s running time also grows

quadratically, ConvexAlign’s running time grows cubically, BEAMS’ running time

grows exponentially, and multiMAGNA++’s time grows linearly with k. So, when

comparing the PNA and MNA methods, only multiMAGNA++ grows slower (i.e., is

expected to be faster) with k than the PNA methods, IsoRankN grows at the same

rate as the PNA methods, and ConvexAlign and BEAMS grow faster than the PNA

methods. Hence, we do not expect that the MNA methods will have advantage over

the PNA methods as k increases, with the exception of multiMAGNA++. However,

note that the analysis of the methods’ theoretic running times is different than the

analysis of their empirical running times, and also, note that their theoretic as well as

empirical running times depend not just on k but also on the sizes of the considered

networks in terms of the numbers of their nodes and edges, and also potentially on

some method-specific parameters. For example, while multiMAGNA++ theoretically

grows the slowest with k of all considered PNA and MNA methods, as we can see

from its empirical running time analysis (Fig. 2.5, View III, in the main document),

multiMAGNA++ is significantly slower than BEAMS on our considered network

sets with up to six networks. So, it is hard to estimate the exact value of k at which

205

multiMAGNA++ would empirically perform faster than the other methods, as this

would also depend on e.g., the size of each network in the considered network set.

A.2 Results

206

TABLE A.1

DETAILS ON THE PINS THAT WE USE IN OUR STUDY

Set Species No. of proteins No. of interactions

Yeast+%LC

Yeast+0%LC 1,004 8,323

Yeast+5%LC 1,004 8,739

Yeast+10%LC 1,004 9,155

Yeast+15%LC 1,004 9,571

Yeast+20%LC 1,004 9,987

Yeast+25%LC 1,004 10,403

PHY1

Fly 7,887 36,285

Worm 3,006 5,506

Yeast 6,168 82,368

Human 16,061 157,650

PHY2

Yeast 768 13,654

Human 8,283 19,697

Y2H1

Fly 7,097 23,370

Worm 2,874 5,199

Yeast 3,427 11,348

Human 9,996 39,984

Y2H2

Yeast 744 966

Human 1,191 1,567

The true node mapping is known for the Yeast+%LC network set, unlike for the other
network sets. Since the largest connected components of the fly and worm networks in
PHY2 and Y2H2 are too small, we do not use those networks in our analysis.

207

TABLE A.2

METHOD PARAMETERS FOR PNA THAT WE USE IN OUR STUDY

Algorithms Parameters

PNA methods, T alignments

GHOST beta=1e10 alpha=1.0

L-GRAAL a=0.0 node similarity = graphlet degree vector (GDV) simi-
larity

MAGNA++ m=S3 p=15000 n=10000 a=0.5 node similarity = GDV simi-
larity

WAVE node similarity = GDV similarity

PNA methods, T+S alignments

GHOST beta=1e10 alpha=0.5

L-GRAAL a=0.5 node similarity = GDV and BLAST protein similarity

MAGNA++ m=S3 p=15000 n=10000 a=0.25 node similarity = GDV and
BLAST protein similarity

WAVE node similarity = GDV and BLAST protein similarity

MNA methods, T alignments

IsoRankN K=30 thresh=1e-4 maxveclen=5000000 alpha=1.0

ConvexAlign lambda_edge=3 numOuterIterations=4 flag_fast=1 mu=150
min_val=0.5
lambda_mul=0.5 node similarity = none

multiMAGNA++ m=CIQ p=15000 n=100000 e=0.5 a=0.5 node similarity =
GDV similarity

208

TABLE A.2 (CONTINUED)

Algorithms Parameters

MNA methods, T+S alignments

IsoRankN K=30 thresh=1e-4 maxveclen=5000000 alpha=0.5 node simi-
larity = BLAST protein similarity

ConvexAlign lambda_edge=3 numOuterIterations=4 flag_fast=1 mu=150
min_val=0.5
lambda_mul=0.5 node similarity = BLAST protein similarity

BEAMS beta=0.4 alpha=0.5 node similarity = BLAST protein simi-
larity

multiMAGNA++ m=CIQ p=15000 n=100000 e=0.5 a=0.25
node similarity = GDV and BLAST protein similarity

We use parameters recommended in the methods’ original publications. The parame-
ter “node similarity” indicates the node similarity information that is inputted to the NA
method. Note that graphlet degree vector (GDV) similarity uses only network topological
information, while BLAST protein similarity uses only protein sequence information. Note
that sometimes different methods use the same name (e.g., α) for different parameters, or
they use different names (e.g., α versus a) for the same parameter. For T alignments, we set
parameters such that only topological information is used (i.e., such that θ “ 1.0; see Sup-
plementary Section A.1.1). For T+S alignments, we set parameters such that topological
and sequence information are equally weighted (i.e., such that θ “ 0.5; see Supplementary
Section A.1.1), as recommended by Meng et al. [110]. The only exception is ConvexAlign,
for which we use a lower θ value, as recommended and pre-set in its implementation by its
authors. See Supplementary Section A.1.1 for details.

209

TABLE A.3

THEORETIC TIME COMPLEXITY

Algorithms Time complexity

PNA methods

GHOST Opnpm
n

q4q “ Opm4

n3 q

L-GRAAL Opn3 ` n2m
n
3
q “ Opn3 ` m3

n
q

MAGNA++ Opn ` mq

WAVE Opn3q

MNA methods

IsoRankN Op
`

k
2

˘

m2q “ Opk2m2q

ConvexAlign Opk3n3q

BEAMS Opk2n2pm
n

qk`1q

multiMAGNA++ Opkpn ` mqq

Theoretic time complexity of the considered PNA methods when they align two networks
and of the considered MNA methods when they align k networks, with respect to network
size and the number of networks. Regarding network size, n and m is the number of nodes
and edges, respectively, averaged over all networks under consideration.

210

TABLE A.4

OVERALL RANKING OF THE NA METHODS FOR THE PE

FRAMEWORK

NA method Overall rank p1-value p2-value Non-sig (fail)

WAVE (PE-P-P) 1.70 (1.23) NA NA 0.00 (0.00)

multiMAGNA++ (PE-M-P) 1.93 (1.32) 2.28e-01 NA 0.00 (0.00)

MAGNA++ (PE-P-P) 3.21 (1.85) 1.39e-04 2.64e-06 0.00 (0.00)

GHOST (PE-P-P) 4.09 (3.66) 1.06e-04 7.27e-04 0.14 (0.14)

LGRAAL (PE-P-P) 4.21 (2.18) 5.13e-08 2.00e-06 0.05 (0.05)

multiMAGNA++ (PE-M-M) 5.09 (1.56) 2.36e-07 6.92e-08 0.00 (0.00)

BEAMS (PE-M-P) 8.74 (1.99) 5.06e-09 6.81e-09 0.02 (0.00)

ConvexAlign (PE-M-M) 9.07 (1.56) 5.23e-09 5.19e-09 0.00 (0.00)

ConvexAlign (PE-M-P) 9.09 (2.27) 5.07e-09 5.02e-09 0.00 (0.00)

BEAMS (PE-M-M) 9.16 (1.90) 5.08e-09 6.59e-09 0.09 (0.00)

IsoRankN (PE-M-P) 9.56 (1.75) 4.80e-09 4.45e-09 0.23 (0.00)

IsoRankN (PE-M-M) 9.63 (2.21) 4.89e-09 4.65e-09 0.33 (0.00)

211

TABLE A.4 (CONTINUED)

Overall ranking of the NA methods for the PE framework over all evaluation tests
(where a test is a combination of an NA method, a network pair, and an alignment quality
measure) that use TQ measures, for T+S alignments, for networks with both known and
unknown node mapping. By NA method, here, we mean the combination of a PNA or
MNA method and the alignment category (Chapter 2.2.4 of the main document). Namely,
there are 12 NA methods in the PE framework (four PNA methods associated with the
PE-P-P categories and four MNA methods associated with each of the PE-M-M and PE-
M-P categories). The “Overall rank” column shows the rank of each method averaged over
all evaluation tests, along with the corresponding standard deviation (in brackets). Since
there are 12 methods in a given framework, the possible ranks range from 1 to 12. The
lower the rank, the better the given method. The “p1-value” column shows the statistical
significance of the difference between the ranking of each method and the 1st best ranked
method. The “p2-value” column shows the statistical significance of the difference between
the ranking of each method and the 2nd best ranked method. The “Frac. non. sig. (failed)”
column shows the fraction of evaluation tests in which the alignment quality score is not
statistically significant, and, in brackets, the fraction of evaluation tests in which the given
NA method failed to produce an alignment.

212

TABLE A.5

OVERALL RANKING OF THE NA METHODS FOR THE PE

FRAMEWORK

NA method Overall rank p1-value p2-value Non-sig (fail)

ConvexAlign (PE-M-P) 4.33 (4.25) NA NA 0.07 (0.00)

MAGNA++ (PE-P-P) 4.98 (3.43) 3.32e-01 NA 0.11 (0.00)

ConvexAlign (PE-M-M) 5.42 (4.60) 4.29e-02 2.60e-01 0.21 (0.00)

multiMAGNA++ (PE-M-P) 6.14 (4.17) 7.71e-02 4.62e-05 0.19 (0.00)

LGRAAL (PE-P-P) 7.02 (3.82) 2.40e-03 1.10e-03 0.30 (0.05)

WAVE (PE-P-P) 7.21 (4.21) 7.42e-03 6.25e-07 0.25 (0.00)

IsoRankN (PE-M-M) 7.51 (3.48) 2.34e-05 5.87e-04 0.28 (0.00)

multiMAGNA++ (PE-M-M) 7.54 (4.22) 1.55e-03 3.80e-05 0.35 (0.00)

GHOST (PE-P-P) 7.56 (4.33) 2.56e-03 3.61e-06 0.37 (0.16)

IsoRankN (PE-M-P) 7.82 (4.08) 4.04e-05 6.55e-05 0.39 (0.00)

BEAMS (PE-M-P) 8.33 (4.28) 1.50e-05 1.77e-05 0.39 (0.00)

BEAMS (PE-M-M) 8.79 (4.22) 8.96e-06 2.30e-06 0.47 (0.00)

Overall ranking of the NA methods for the PE framework over all evaluation tests
(where a test is a combination of an NA method, a network pair, and an alignment quality
measure) that use FQ measures, for T+S alignments, for networks with both known and
unknown node mapping. By NA method, here, we mean the combination of a PNA or
MNA method and the alignment category (Chapter 2.2.4 of the main document). Namely,
there are 12 NA methods in the PE framework (four PNA methods associated with the PE-
P-P categories and four MNA methods associated with each of the PE-M-M and PE-M-P
categories). The table can be interpreted the same way as Supplementary Table A.4.

213

TABLE A.6

OVERALL RANKING OF THE NA METHODS FOR THE PE

FRAMEWORK

NA method Overall rank p1-value p2-value Non-sig (fail)

multiMAGNA++ (PE-M-P) 1.03 (0.18) NA NA 0.00 (0.00)

MAGNA++ (PE-P-P) 1.27 (0.91) 1.86e-01 NA 0.00 (0.00)

GHOST (PE-P-P) 1.60 (1.16) 1.31e-02 2.32e-01 0.00 (0.00)

WAVE (PE-P-P) 1.60 (1.45) 2.61e-02 9.42e-02 0.00 (0.00)

LGRAAL (PE-P-P) 3.70 (2.00) 3.77e-05 3.69e-05 0.00 (0.00)

multiMAGNA++ (PE-M-M) 4.97 (1.87) 1.80e-06 2.84e-06 0.00 (0.00)

IsoRankN (PE-M-M) 7.13 (1.85) 9.23e-07 9.36e-07 0.00 (0.00)

IsoRankN (PE-M-P) 7.83 (2.44) 1.47e-06 1.49e-06 0.00 (0.00)

ConvexAlign (PE-M-M) 8.37 (2.97) 1.71e-06 2.03e-06 0.00 (0.00)

BEAMS (PE-M-M) 8.53 (3.50) 5.01e-06 5.24e-06 0.00 (0.00)

BEAMS (PE-M-P) 8.60 (3.56) 5.24e-06 5.36e-06 0.00 (0.00)

ConvexAlign (PE-M-P) 10.60 (1.81) 5.04e-07 5.22e-07 0.00 (0.00)

Overall ranking of the NA methods for the PE framework over all evaluation tests
(where a test is a combination of an NA method, a network pair, and an alignment quality
measure) that use network pairs with known node mapping, for T+S alignments, for
both TQ and FQ measures. By NA method, here, we mean the combination of a PNA or
MNA method and the alignment category (Chapter 2.2.4 of the main document). Namely,
there are 12 NA methods in the PE framework (four PNA methods associated with the PE-
P-P categories and four MNA methods associated with each of the PE-M-M and PE-M-P
categories). The table can be interpreted the same way as Supplementary Table A.4.

214

TABLE A.7

OVERALL RANKING OF THE NA METHODS FOR THE PE

FRAMEWORK

NA method Overall rank p1-value p2-value Non-sig (fail)

ConvexAlign (PE-M-P) 4.57 (3.66) NA NA 0.06 (0.00)

MAGNA++ (PE-P-P) 5.49 (2.64) 4.81e-02 NA 0.09 (0.00)

multiMAGNA++ (PE-M-P) 5.74 (3.84) 3.70e-02 4.12e-01 0.16 (0.00)

WAVE (PE-P-P) 6.23 (4.32) 1.15e-02 1.52e-01 0.20 (0.00)

ConvexAlign (PE-M-M) 6.40 (4.31) 9.33e-08 8.63e-02 0.17 (0.00)

LGRAAL (PE-P-P) 6.71 (3.62) 2.85e-03 1.66e-01 0.27 (0.07)

multiMAGNA++ (PE-M-M) 7.14 (3.89) 3.71e-03 1.36e-04 0.29 (0.00)

GHOST (PE-P-P) 7.99 (3.83) 1.08e-05 1.83e-05 0.39 (0.21)

BEAMS (PE-M-P) 8.47 (3.47) 3.04e-08 2.33e-06 0.33 (0.00)

IsoRankN (PE-M-P) 8.89 (3.69) 1.43e-10 1.02e-07 0.46 (0.00)

IsoRankN (PE-M-M) 8.97 (3.46) 4.28e-11 3.50e-07 0.43 (0.00)

BEAMS (PE-M-M) 9.13 (3.38) 1.58e-09 7.46e-08 0.44 (0.00)

Overall ranking of the NA methods for the PE framework over all evaluation tests
(where a test is a combination of an NA method, a network pair, and an alignment quality
measure) that use network pairs with unknown node mapping, for T+S alignments, for
both TQ and FQ measures. By NA method, here, we mean the combination of a PNA
or MNA method and the alignment category (Chapter 2.2.4 of the main paper). Namely,
there are 12 NA methods in the PE framework (four PNA methods associated with the PE-
P-P categories and four MNA methods associated with each of the PE-M-M and PE-M-P
categories). The table can be interpreted the same way as Supplementary Table A.4.

215

TABLE A.8

OVERALL RANKING OF THE NA METHODS FOR THE ME

FRAMEWORK

NA method Overall rank p1-value p2-value Non-sig (fail)

multiMAGNA++ (ME-M-P) 1.71 (1.25) NA NA 0.00 (0.00)

WAVE (ME-P-P) 2.14 (1.46) 3.56e-01 NA 0.00 (0.00)

MAGNA++ (ME-P-P) 3.00 (2.31) 1.01e-01 2.05e-01 0.00 (0.00)

GHOST (ME-P-P) 3.86 (4.02) 9.87e-02 1.40e-01 0.14 (0.00)

multiMAGNA++ (ME-M-M) 4.00 (2.00) 4.46e-02 7.47e-02 0.00 (0.00)

LGRAAL (ME-P-P) 5.00 (3.70) 3.66e-02 2.90e-02 0.14 (0.00)

IsoRankN (ME-M-M) 7.57 (1.13) 1.08e-02 1.11e-02 0.00 (0.00)

ConvexAlign (ME-M-M) 8.71 (2.36) 1.08e-02 1.07e-02 0.00 (0.00)

BEAMS (ME-M-M) 9.14 (2.54) 1.10e-02 1.10e-02 0.29 (0.00)

IsoRankN (ME-M-P) 10.43 (1.99) 1.09e-02 1.10e-02 0.57 (0.00)

BEAMS (ME-M-P) 10.71 (1.89) 1.07e-02 1.09e-02 0.57 (0.00)

ConvexAlign (ME-M-P) 11.43 (0.98) 9.95e-03 1.05e-02 0.43 (0.00)

Overall ranking of the NA methods for the ME framework over all evaluation tests
(where a test is a combination of an NA method, a network set, and an alignment quality
measure) that use TQ measures, for T+S alignments, for networks with both known and
unknown node mapping. By NA method, here, we mean the combination of a PNA or MNA
method and the alignment category (Chapter 2.2.4 of the main document). Namely, there
are 12 NA methods in the ME framework (four PNA methods associated with the ME-P-
P categories and four MNA methods associated with each of the ME-M-M and ME-M-P
categories). The table can be interpreted the same way as Supplementary Table A.4.

216

TABLE A.9

OVERALL RANKING OF THE NA METHODS FOR THE ME

FRAMEWORK

NA method Overall rank p1-value p2-value Non-sig (fail)

MAGNA++ (ME-P-P) 4.22 (2.82) NA NA 0.00 (0.00)

ConvexAlign (ME-M-M) 5.11 (3.82) 3.83e-01 NA 0.00 (0.00)

ConvexAlign (ME-M-P) 5.44 (5.27) 3.83e-01 6.12e-01 0.11 (0.00)

LGRAAL (ME-P-P) 5.78 (4.18) 3.67e-01 3.63e-01 0.22 (0.00)

GHOST (ME-P-P) 5.89 (4.59) 1.75e-01 4.06e-01 0.11 (0.00)

multiMAGNA++ (ME-M-P) 5.89 (3.98) 7.13e-02 4.06e-01 0.11 (0.00)

IsoRankN (ME-M-M) 6.00 (4.00) 2.20e-01 2.19e-01 0.22 (0.00)

WAVE (ME-P-P) 7.00 (4.47) 1.07e-02 2.36e-01 0.11 (0.00)

multiMAGNA++ (ME-M-M) 7.33 (4.18) 2.36e-02 2.38e-01 0.11 (0.00)

BEAMS (ME-M-M) 7.56 (4.67) 5.32e-02 9.04e-02 0.33 (0.00)

IsoRankN (ME-M-P) 8.78 (3.90) 2.09e-02 5.98e-02 0.44 (0.00)

BEAMS (ME-M-P) 9.00 (4.39) 2.10e-02 4.13e-02 0.56 (0.00)

Overall ranking of the NA methods for the ME framework over all evaluation tests
(where a test is a combination of an NA method, a network set, and an alignment quality
measure) that use FQ measures, for T+S alignments, for networks with both known and
unknown node mapping. By NA method, here, we mean the combination of a PNA or MNA
method and the alignment category (Chapter 2.2.4 of the main document). Namely, there
are 12 NA methods in the ME framework (four PNA methods associated with the ME-P-
P categories and four MNA methods associated with each of the ME-M-M and ME-M-P
categories). The table can be interpreted the same way as Supplementary Table A.4.

217

TABLE A.10

OVERALL RANKING OF THE NA METHODS FOR THE ME

FRAMEWORK

NA method Overall rank p1-value p2-value Non-sig (fail)

GHOST (ME-P-P) 1.17 (0.41) NA NA 0.00 (0.00)

multiMAGNA++ (ME-M-P) 1.33 (0.82) 5.00e-01 NA 0.00 (0.00)

MAGNA++ (ME-P-P) 1.50 (1.22) 5.00e-01 5.00e-01 0.00 (0.00)

WAVE (ME-P-P) 2.17 (1.83) 1.73e-01 1.86e-01 0.00 (0.00)

LGRAAL (ME-P-P) 3.17 (2.40) 7.45e-02 8.68e-02 0.00 (0.00)

multiMAGNA++ (ME-M-M) 4.17 (2.48) 4.96e-02 4.96e-02 0.00 (0.00)

IsoRankN (ME-M-M) 6.33 (2.66) 2.39e-02 2.72e-02 0.00 (0.00)

IsoRankN (ME-M-P) 7.33 (3.20) 2.67e-02 2.39e-02 0.00 (0.00)

BEAMS (ME-M-M) 8.17 (3.60) 2.67e-02 2.39e-02 0.00 (0.00)

BEAMS (ME-M-P) 8.50 (4.04) 2.84e-02 2.72e-02 0.17 (0.00)

ConvexAlign (ME-M-M) 10.33 (1.03) 1.55e-02 1.55e-02 0.00 (0.00)

ConvexAlign (ME-M-P) 11.17 (2.04) 1.31e-02 1.31e-02 0.17 (0.00)

Overall ranking of the NA methods for the ME framework over all evaluation tests
(where a test is a combination of an NA method, a network set, and an alignment quality
measure) that use network pairs with known node mapping, for T+S alignments, for
both TQ and FQ measures. By NA method, here, we mean the combination of a PNA or
MNA method and the alignment category (Chapter 2.2.4 of the main document). Namely,
there are 12 NA methods in the ME framework (four PNA methods associated with the
ME-P-P categories and four MNA methods associated with each of the ME-M-M and ME-
M-P categories). The table can be interpreted the same way as Supplementary Table A.4.

218

TABLE A.11

OVERALL RANKING OF THE NA METHODS FOR THE ME

FRAMEWORK

NA method Overall rank p1-value p2-value Non-sig (fail)

ConvexAlign (ME-M-M) 4.50 (2.76) NA NA 0.00 (0.00)

MAGNA++ (ME-P-P) 5.00 (2.31) 3.60e-01 NA 0.00 (0.00)

multiMAGNA++ (ME-M-P) 5.70 (3.80) 2.21e-01 4.39e-01 0.10 (0.00)

ConvexAlign (ME-M-P) 6.20 (5.33) 1.42e-01 3.04e-01 0.30 (0.00)

WAVE (ME-P-P) 6.50 (4.45) 1.92e-01 2.06e-01 0.10 (0.00)

LGRAAL (ME-P-P) 6.80 (4.02) 1.06e-01 3.41e-01 0.30 (0.00)

IsoRankN (ME-M-M) 6.90 (3.48) 3.96e-03 1.92e-01 0.20 (0.00)

multiMAGNA++ (ME-M-M) 6.90 (4.07) 1.10e-01 1.00e-01 0.10 (0.00)

GHOST (ME-P-P) 7.30 (3.95) 6.28e-02 1.20e-01 0.20 (0.00)

BEAMS (ME-M-M) 8.30 (4.19) 2.05e-02 6.30e-02 0.50 (0.00)

BEAMS (ME-M-P) 10.50 (3.17) 2.86e-03 7.06e-03 0.80 (0.00)

IsoRankN (ME-M-P) 10.80 (2.57) 2.82e-03 7.06e-03 0.80 (0.00)

Overall ranking of the NA methods for the ME framework over all evaluation tests
(where a test is a combination of an NA method, a network set, and an alignment quality
measure) that use network pairs with unknown node mapping, for T+S alignments, for
both TQ and FQ measures. By NA method, here, we mean the combination of a PNA or
MNA method and the alignment category (Chapter 2.2.4 of the main document). Namely,
there are 12 NA methods in the ME framework (four PNA methods associated with the
ME-P-P categories and four MNA methods associated with each of the ME-M-M and ME-
M-P categories). The table can be interpreted the same way as Supplementary Table A.4.

219

TABLE A.12

OVERALL RANKING OF THE NA METHODS FOR THE ME

FRAMEWORK

NA method Overall rank

multiMAGNA++ (ME-M-M) 2.25 (1.50)

MAGNA++ (ME-P-P) 3.25 (3.20)

ConvexAlign (ME-M-P) 4.25 (1.71)

GHOST (ME-P-P) 4.25 (2.36)

LGRAAL (ME-P-P) 4.25 (1.50)

WAVE (ME-P-P) 5.00 (2.45)

multiMAGNA++ (ME-M-P) 6.25 (1.50)

IsoRankN (ME-M-M) 7.75 (3.30)

ConvexAlign (ME-M-M) 8.25 (0.96)

IsoRankN (ME-M-P) 9.50 (0.58)

Overall ranking of the NA methods for the ME framework over all evaluation tests
(where a test is a combination of an NA method and a network set) that use the mean
normalized entropy measure, for T alignments. By NA method, here, we mean the
combination of a PNA or MNA method and the alignment category (Chapter 2.2.4 of the
main document). Namely, there are 12 NA methods in the ME framework (four PNA
methods associated with the ME-P-P categories and four MNA methods associated with
each of the ME-M-M and ME-M-P categories). The alignment categories are color coded.
The “Overall rank” column shows the rank of each method averaged over all evaluation tests,
along with the corresponding standard deviation (in brackets). Since there are 12 methods
in a given framework, the possible ranks range from 1 to 12. The lower the rank, the better
the given method.

220

TABLE A.13

OVERALL RANKING OF THE NA METHODS FOR THE ME

FRAMEWORK

NA method Overall rank

LGRAAL (ME-P-P) 3.5 (1.00)

IsoRankN (ME-M-M) 4.25 (4.72)

multiMAGNA++ (ME-M-P) 5.25 (4.35)

MAGNA++ (ME-P-P) 5.50 (4.43)

ConvexAlign (ME-M-M) 6.75 (2.22)

multiMAGNA++ (ME-M-M) 7.00 (4.05)

WAVE (ME-P-P) 7.00 (2.94)

BEAMS (ME-M-P) 7.25 (4.11)

IsoRankN (ME-M-P) 7.5 (4.20)

GHOST (ME-P-P) 7.5 (4.79)

BEAMS (ME-M-M) 8.25 (1.50)

ConvexAlign (ME-M-P) 8.25 (2.06)

Overall ranking of the NA methods for the ME framework over all evaluation tests
(where a test is a combination of an NA method and a network set) that use the mean
normalized entropy measure, for T+S alignments. By NA method, here, we mean
the combination of a PNA or MNA method and the alignment category (Chapter 2.2.4 of
the main document). Namely, there are 12 NA methods in the ME framework (four PNA
methods associated with the ME-P-P categories and four MNA methods associated with
each of the ME-M-M and ME-M-P categories). The table can be interpreted the same way
as Supplementary Table A.12.

221

TABLE A.14

OVERALL RANKING OF THE NA METHODS FOR THE ME

FRAMEWORK

NA method Overall rank p1-value p2-value Non-sig (fail)

multiMAGNA++ (ME-M-P) 1.71 (1.25) NA NA 0.00 (0.00)

WAVE (ME-P-P) 2.29 (1.60) 2.85e-01 NA 0.00 (0.00)

MAGNA++ (ME-P-P) 3.29 (2.75) 9.87e-02 2.05e-01 0.00 (0.00)

GHOST (ME-P-P) 4.00 (4.08) 1.01e-01 1.40e-01 0.14 (0.00)

multiMAGNA++ (ME-M-M) 4.14 (1.86) 3.67e-02 7.47e-02 0.00 (0.00)

LGRAAL (ME-P-P) 5.14 (3.63) 2.92e-02 2.90e-02 0.14 (0.00)

IsoRankN (ME-M-M) 7.86 (1.35) 1.07e-02 1.12e-02 0.00 (0.00)

GEDEVO-M (ME-M-M) 8.80 (4.66) 2.95e-02 5.28e-02 0.00 (0.00)

ConvexAlign (ME-M-M) 9.14 (2.41) 1.10e-02 1.11e-02 0.00 (0.00)

BEAMS (ME-M-M) 9.43 (2.64) 1.09e-02 1.10e-02 0.29 (0.00)

IsoRankN (ME-M-P) 10.71 (2.29) 1.10e-02 1.11e-02 0.57 (0.00)

BEAMS (ME-M-P) 11.00 (2.16) 1.01e-02 1.10e-02 0.57 (0.00)

ConvexAlign (ME-M-P) 12.00 (1.15) 1.07e-02 1.08e-02 0.43 (0.00)

Overall ranking of the NA methods for the ME framework over all evaluation tests
(where a test is a combination of an NA method, a network set, and an alignment quality
measure) that use TQ measures, for T+S alignments, for networks with both known and
unknown node mapping. The table mimics the analyses from Supplementary Table A.8 with
the inclusion of an additional method, GEDEVO-M associated with the ME-M-M category.

222

TABLE A.15

OVERALL RANKING OF THE NA METHODS FOR THE ME

FRAMEWORK

NA method Overall rank p1-value p2-value Non-sig (fail)

MAGNA++ (ME-P-P) 4.22 (2.82) NA NA 0.00 (0.00)

ConvexAlign (ME-M-M) 5.11 (3.82) 3.83e-01 NA 0.00 (0.00)

ConvexAlign (ME-M-P) 5.56 (5.43) 3.83e-01 6.12e-01 0.11 (0.00)

LGRAAL (ME-P-P) 5.89 (4.37) 3.67e-01 3.37e-01 0.22 (0.00)

GHOST (ME-P-P) 6.00 (4.77) 1.75e-01 3.83e-01 0.11 (0.00)

multiMAGNA++ (ME-M-P) 6.00 (4.18) 7.13e-02 3.83e-01 0.11 (0.00)

IsoRankN (ME-M-M) 6.11 (4.20) 2.20e-01 2.02e-01 0.22 (0.00)

WAVE (ME-P-P) 7.11 (4.62) 1.07e-02 2.20e-01 0.11 (0.00)

multiMAGNA++ (ME-M-M) 7.44 (4.33) 2.36e-02 2.20e-01 0.11 (0.00)

BEAMS (ME-M-M) 7.67 (4.80) 5.32e-02 8.02e-02 0.33 (0.00)

IsoRankN (ME-M-P) 9.00 (4.12) 2.07e-02 4.80e-02 0.44 (0.00)

BEAMS (ME-M-P) 9.33 (4.66) 2.10e-02 3.28e-02 0.56 (0.00)

GEDEVO-M (ME-M-M) 12.50 (0.84) 1.68e-02 1.78e-02 0.33 (0.00)

Overall ranking of the NA methods for the ME framework over all evaluation tests
(where a test is a combination of an NA method, a network set, and an alignment quality
measure) that use FQ measures, for T+S alignments, for networks with both known and
unknown node mapping. The table mimics the analyses from Supplementary Table A.9 with
the inclusion of an additional method, GEDEVO-M associated with the ME-M-M category.

223

TABLE A.16

OVERALL RANKING OF THE NA METHODS FOR THE ME

FRAMEWORK

NA method Overall rank p1-value p2-value Non-sig (fail)

GHOST (ME-P-P) 1.17 (0.41) NA NA 0.00 (0.00)

multiMAGNA++ (ME-M-P) 1.33 (0.82) 5.00e-01 NA 0.00 (0.00)

MAGNA++ (ME-P-P) 1.50 (1.22) 5.00e-01 5.00e-01 0.00 (0.00)

WAVE (ME-P-P) 2.17 (1.83) 1.73e-01 1.86e-01 0.00 (0.00)

LGRAAL (ME-P-P) 3.17 (2.40) 7.45e-02 8.68e-02 0.00 (0.00)

multiMAGNA++ (ME-M-M) 4.17 (2.48) 4.96e-02 4.96e-02 0.00 (0.00)

IsoRankN (ME-M-M) 6.33 (2.66) 2.39e-02 2.72e-02 0.00 (0.00)

IsoRankN (ME-M-P) 7.33 (3.20) 2.67e-02 2.39e-02 0.00 (0.00)

BEAMS (ME-M-M) 8.17 (3.60) 2.67e-02 2.39e-02 0.00 (0.00)

BEAMS (ME-M-P) 8.67 (4.23) 2.90e-02 2.84e-02 0.17 (0.00)

ConvexAlign (ME-M-M) 10.50 (1.22) 1.70e-02 1.70e-02 0.00 (0.00)

ConvexAlign (ME-M-P) 11.50 (2.26) 1.68e-02 1.68e-02 0.17 (0.00)

GEDEVO-M (ME-M-M) 12.33 (0.82) 1.68e-02 1.70e-02 0.00 (0.00)

Overall ranking of the NA methods for the ME framework over all evaluation tests
(where a test is a combination of an NA method, a network set, and an alignment quality
measure) that use network pairs with known node mapping, for T+S alignments, for
both TQ and FQ measures. The table mimics the analyses from Supplementary Table A.10
with the inclusion of an additional method, GEDEVO-M associated with the ME-M-M
category.

224

TABLE A.17

OVERALL RANKING OF THE NA METHODS FOR THE ME

FRAMEWORK

NA method Overall rank p1-value p2-value Non-sig (fail)

ConvexAlign (ME-M-M) 4.70 (3.02) NA NA 0.00 (0.00)

MAGNA++ (ME-P-P) 5.20 (2.44) 3.60e-01 NA 0.00 (0.00)

multiMAGNA++ (ME-M-P) 5.80 (3.99) 2.86e-01 4.80e-01 0.10 (0.00)

ConvexAlign (ME-M-P) 6.50 (5.66) 1.42e-01 3.04e-01 0.30 (0.00)

WAVE (ME-P-P) 6.70 (4.52) 2.07e-01 2.06e-01 0.10 (0.00)

LGRAAL (ME-P-P) 7.00 (4.08) 1.17e-01 3.41e-01 0.30 (0.00)

multiMAGNA++ (ME-M-M) 7.10 (4.09) 1.10e-01 1.10e-01 0.10 (0.00)

IsoRankN (ME-M-M) 7.20 (3.74) 3.96e-03 1.92e-01 0.20 (0.00)

GHOST (ME-P-P) 7.50 (4.03) 7.61e-02 1.30e-01 0.20 (0.00)

BEAMS (ME-M-M) 8.60 (4.38) 2.06e-02 6.30e-02 0.50 (0.00)

GEDEVO-M (ME-M-M) 9.00 (4.85) 1.39e-01 2.05e-01 0.40 (0.00)

BEAMS (ME-M-P) 10.90 (3.41) 2.91e-03 7.12e-03 0.80 (0.00)

IsoRankN (ME-M-P) 11.20 (2.82) 2.86e-03 7.12e-03 0.80 (0.00)

Overall ranking of the NA methods for the ME framework over all evaluation tests
(where a test is a combination of an NA method, a network set, and an alignment quality
measure) that use networks pairs with unknown node mapping, for T+S alignments,
for both TQ and FQ measures. The table mimics the analyses from Supplementary Table
A.11 with the inclusion of an additional method, GEDEVO-M associated with the ME-M-M
category.

225

TABLE A.18

OVERALL RANKING OF THE NA METHODS FOR THE ME

FRAMEWORK

NA method Overall rank p1-value p2-value Non-sig (fail)

MAGNA++ (ME-P-P) 3.81 (2.74) NA NA 0.00 (0.00)

multiMAGNA++ (ME-M-P) 4.12 (3.84) 5.18e-01 NA 0.06 (0.00)

WAVE (ME-P-P) 5.00 (4.31) 1.26e-01 3.91e-02 0.06 (0.00)

GHOST (ME-P-P) 5.12 (4.46) 1.98e-01 1.52e-01 0.12 (0.00)

LGRAAL (ME-P-P) 5.56 (3.95) 1.24e-01 8.38e-02 0.19 (0.00)

multiMAGNA++ (ME-M-M) 6.00 (3.78) 1.87e-02 5.39e-03 0.06 (0.00)

ConvexAlign (ME-M-M) 6.88 (3.79) 3.91e-02 8.88e-02 0.00 (0.00)

IsoRankN (ME-M-M) 6.88 (3.30) 1.32e-02 1.97e-02 0.12 (0.00)

ConvexAlign (ME-M-P) 8.38 (5.21) 1.68e-02 1.42e-02 0.25 (0.00)

BEAMS (ME-M-M) 8.44 (3.98) 3.42e-03 5.35e-03 0.31 (0.00)

IsoRankN (ME-M-P) 9.75 (3.45) 6.25e-04 1.01e-03 0.50 (0.00)

BEAMS (ME-M-P) 10.06 (3.77) 6.50e-04 1.21e-03 0.56 (0.00)

GEDEVO-M (ME-M-M) 10.82 (3.57) 5.36e-03 2.90e-03 0.18 (0.00)

Overall ranking of the NA methods for the ME framework over all evaluation tests
(where a test is a combination of an NA method, a network set, and an alignment quality
measure) for T+S alignments, for both TQ and FQ measures, for networks with both known
and unknown node mapping. The table mimics the analyses from View I of Figure 5 from
the main document, with the inclusion of an additional method, GEDEVO-M associated
with the ME-M-M category.

226

C
o
n
ve
x
A
li
gn

(T
)

Is
o
R
a
n
k
N

(T
+
S
)

G
H
O
S
T

(T
)

M
A
G
N
A
+
+

(T
)

L
G
R
A
A
L
(T

)

W
A
V
E

(T
)

M
A
G
N
A
+
+

(T
+
S
)

W
A
V
E

(T
+
S
)

L
G
R
A
A
L
(T

+
S
)

C
o
n
ve
x
A
li
g
n
(T

+
S
)

B
E
A
M
S
(T

+
S
)

m
u
lt
iM

A
G
N
A
+
+

(T
+
S
)

G
H
O
S
T

(T
+
S
)

m
u
lt
iM

A
G
N
A
+
+

(T
)

Is
oR

a
n
k
N

(T
)

x

PE framework

C
o
n
ve
x
A
li
gn

(T
)

G
H
O
S
T

(T
)

m
u
lt
iM

A
G
N
A
+
+

(T
)

M
A
G
N
A
+
+

(T
)

W
A
V
E

(T
)

L
G
R
A
A
L
(T

+
S
)

m
u
lt
iM

A
G
N
A
+
+

(T
+
S
)

M
A
G
N
A
+
+

(T
+
S
)

W
A
V
E

(T
+
S
)

B
E
A
M
S
(T

+
S
)

C
o
n
ve
x
A
li
gn

(T
+
S
)

L
G
R
A
A
L
(T

)

G
H
O
S
T

(T
+
S
)

Is
o
R
an

k
N

(T
+
S
)

Is
oR

a
n
k
N

(T
)

x

ME framework

Figure A.1. Clustering of NA methods, each with its T and T+S versions,
using each of the PE and ME frameworks. Clustering is based on pairwise
method similarities, which we compute as follows. The similarity between
two NA methods is the mean of the Adjusted Rand Index (ARI; explained
below) of each pair of corresponding alignments produced by the two NA
methods, over all network pairs/sets. Each alignment of a network pair/set
is a set of node groups, i.e., a partition of the nodes in all of the networks in
the network pair/set, and we measure similarity between two alignments by
comparing their partitions using ARI. ARI [167] is a widely used measure
to calculate the similarity between two partitions. Given the similarities
between all pairs of the NA methods, we cluster using complete linkage
hierachical clustering [50] and visualize the clustering using a dendrogram.
The results shown in this figure rely on all alignments over all network sets
(Yeast+%LC, PHY1, PHY2, Y2H1, and Y2H2). Equivalent results broken
down into results for networks with known node mapping and results for
networks with unknown node mapping are shown in Supplementary Figs.
A.2 and A.3, respectively.

227

(a)

C
o
n
ve

x
A

lig
n
 (

T
)

G
H

O
S

T
 (

T
)

m
u
lt
iM

A
G

N
A

+
+

 (
T

)

W
A

V
E

 (
T

)

M
A

G
N

A
+

+
 (

T
)

G
H

O
S

T
 (

T
+

S
)

L
G

R
A

A
L
 (

T
)

m
u
lt
iM

A
G

N
A

+
+

 (
T

+
S

)

L
G

R
A

A
L
 (

T
+

S
)

M
A

G
N

A
+

+
 (

T
+

S
)

W
A

V
E

 (
T

+
S

)

B
E

A
M

S
 (

T
+

S
)

C
o
n
ve

x
A

lig
n
 (

T
+

S
)

Is
o
R

a
n
k
N

 (
T

+
S

)

Is
o
R

a
n
k
N

 (
T

)

(b)

C
o
n
ve

x
A

lig
n
 (

T
)

G
H

O
S

T
 (

T
)

m
u
lt
iM

A
G

N
A

+
+

 (
T

)

M
A

G
N

A
+

+
 (

T
)

W
A

V
E

 (
T

)

L
G

R
A

A
L
 (

T
)

Is
o
R

a
n
k
N

 (
T

)

M
A

G
N

A
+

+
 (

T
+

S
)

Is
o
R

a
n
k
N

 (
T

+
S

)

L
G

R
A

A
L
 (

T
+

S
)

C
o
n
ve

x
A

lig
n
 (

T
+

S
)

B
E

A
M

S
 (

T
+

S
)

m
u
lt
iM

A
G

N
A

+
+

 (
T

+
S

)

W
A

V
E

 (
T

+
S

)

G
H

O
S

T
 (

T
+

S
)

Figure A.2. Clustering of NA methods, each with its T and T+S versions,
using all network sets with (a) known node mapping and (b) unknown
node mapping in the PE framework. The figure can be interpreted the
same way as Supplementary Fig. A.1.

(a)

C
o
n
ve

x
A

lig
n
 (

T
)

G
H

O
S

T
 (

T
)

m
u
lt
iM

A
G

N
A

+
+

 (
T

)

M
A

G
N

A
+

+
 (

T
)

G
H

O
S

T
 (

T
+

S
)

W
A

V
E

 (
T

)

m
u
lt
iM

A
G

N
A

+
+

 (
T

+
S

)

L
G

R
A

A
L
 (

T
+

S
)

M
A

G
N

A
+

+
 (

T
+

S
)

W
A

V
E

 (
T

+
S

)

B
E

A
M

S
 (

T
+

S
)

C
o
n
ve

x
A

lig
n
 (

T
+

S
)

L
G

R
A

A
L
 (

T
)

Is
o
R

a
n
k
N

 (
T

+
S

)

Is
o
R

a
n
k
N

 (
T

)

(b)

C
o
n
ve

x
A

lig
n
 (

T
)

M
A

G
N

A
+

+
 (

T
)

M
A

G
N

A
+

+
 (

T
+

S
)

m
u
lt
iM

A
G

N
A

+
+

 (
T

+
S

)

m
u
lt
iM

A
G

N
A

+
+

 (
T

)

L
G

R
A

A
L
 (

T
+

S
)

G
H

O
S

T
 (

T
)

G
H

O
S

T
 (

T
+

S
)

W
A

V
E

 (
T

)

W
A

V
E

 (
T

+
S

)

L
G

R
A

A
L
 (

T
)

Is
o
R

a
n
k
N

 (
T

)

Is
o
R

a
n
k
N

 (
T

+
S

)

C
o
n
ve

x
A

lig
n
 (

T
+

S
)

B
E

A
M

S
 (

T
+

S
)

Figure A.3. Clustering of NA methods, each with its T and T+S versions,
using all network sets with (a) known node mapping and (b) unknown
node mapping in the ME framework. The figure can be interpreted the
same way as Supplementary Fig. A.1.

228

PE-P-P PE-M-P PE-M-M

yeast
fl
y

yeast
w
orm

yeast
h
u
m
an

fl
y

w
orm

fl
y

h
u
m
an

w
orm

h
u
m
an

G
H
O
S
T

W
A
V
E

M
A
G
N
A
+
+

L
G
R
A
A
L

A
ve
ra
ge

Is
oR

an
k
N

B
E
A
M
S

m
u
lt
iM

A
G
N
A
+
+

C
on

ve
x
A
li
gn

A
ve
ra
ge

Is
oR

an
k
N

B
E
A
M
S

m
u
lt
iM

A
G
N
A
+
+

C
on

ve
x
A
li
gn

A
ve
ra
ge

0.25

4.00

64.00

0.25

4.00

64.00

0.25

4.00

64.00

0.25

4.00

64.00

0.25

4.00

64.00

0.25

4.00

64.00

NA method

R
u
n
n
in
g
ti
m
e
(h
ou

rs
,
lo
g
sc
al
e)

Overall rank
3
6
9
12

Figure A.4. Overall ranking of an NA method versus its running time for the
PE framework over all evaluation tests (where a test is a combination of
an NA method, a network pair, and an alignment quality measure). By NA
method, here, we mean the combination of a PNA or MNA method and the
alignment category (Chapter 2.2.4 of the main document). Namely, there are
12 NA methods in the PE framework (four PNA methods associated with the
PE-P-P categories and four MNA methods associated with each of the PE-
M-M and PE-M-P categories). The running time results are when aligning
all network pairs in the Y2H1 network set, where each method is restricted to
use a single core. The size of each point visualizes the overall ranking of the
corresponding method over all evaluation tests over all network pairs/sets,
corresponding to the “Overall rank” column in View I of Fig. 2.5 in the main
document; the larger the point size, the better the method. In order to allow
for easier comparison between the different alignment categories, “Average”
shows the average running times and average rankings of the methods in
each alignment category.

229

ME-P-P ME-M-P ME-M-M

w
orm

,
yeast,

fl
y,

h
u
m
a
n

G
H
O
S
T

W
A
V
E

M
A
G
N
A
+
+

L
G
R
A
A
L

A
ve
ra
ge

Is
oR

an
k
N

B
E
A
M
S

m
u
lt
iM

A
G
N
A
+
+

C
on

ve
x
A
li
gn

A
ve
ra
ge

Is
oR

an
k
N

B
E
A
M
S

m
u
lt
iM

A
G
N
A
+
+

C
o
n
ve
x
A
li
gn

A
ve
ra
g
e

1

4

16

64

NA method

R
u
n
n
in
g
ti
m
e
(h
o
u
rs
,
lo
g
sc
a
le
)

Figure A.5. Overall ranking of an NA method versus its running time for the
ME framework over all evaluation tests (where a test is a combination of
an NA method, a network pair, and an alignment quality measure). By NA
method, here, we mean the combination of a PNA or MNA method and the
alignment category (Chapter 2.2.4 of the main document). Namely, there
are 12 NA methods in the ME framework (four PNA methods associated
with the ME-P-P categories and four MNA methods associated with each of
the ME-M-M and ME-M-P categories). The running time results are when
aligning the Y2H1 network set, where each method is restricted to use a
single core. The size of each point visualizes the overall ranking of the
corresponding method over all evaluation tests over all network pairs/sets,
corresponding to the “Overall rank” column in View I of Fig. 2.5 in the main
document; the larger the point size, the better the method. In order to allow
for easier comparison between the different alignment categories, “Average”
shows the average running times and average rankings of the methods in
each alignment category.

230

Figure A.6. Method comparison results for each of the PE and ME frame-
works over all evaluation tests (where a test is a combination of an NA
method, a network pair/set, and an alignment quality measure), for T align-
ments. By NA method, here, we mean the combination of a PNA or MNA
method and the alignment category (Chapter 2.2.4 of the main document).
Namely, there are 12 NA methods in the PE framework (four PNA methods
associated with the PE-P-P categories and four MNA methods associated
with each of the PE-M-M and PE-M-P categories) and 12 NA methods in
the ME framework (four PNA methods associated with the ME-P-P cat-
egories and four MNA methods associated with each of the ME-M-M and
ME-M-P categories). The alignment categories are color coded. View I.
Overall ranking of the NA methods. The “Overall rank” column shows the
rank of each method averaged over all evaluation tests, along with the corre-
sponding standard deviation (in brackets). Since there are 12 methods in a
given framework, the possible ranks range from 1 to 12. The lower the rank,
the better the given method. The “p1-value” column shows the statistical
significance of the difference between the ranking of each method and the 1st
best ranked method. The “p2-value” column shows the statistical significance
of the difference between the ranking of each method and the 2nd best ranked
method. The “Non. sig. (fail)” column shows the fraction of evaluation tests
in which the alignment quality score is not statistically significant, and, in
brackets, the fraction of evaluation tests in which the given NA method failed
to produce an alignment. Equivalent results over all evaluation tests broken
down into functional and topological alignment quality measures, as well as
over all evaluation tests broken down into network pairs/sets with known
and unknown node mapping, are shown in Supplementary Tables A.4–A.11.
View II. Alternative view of ranking of the NA methods. Each pie chart
shows the fraction of evaluation test ranks that fall into the 1–4, 5–8, and 9–
12 rank bins out of all evaluation test ranks in the given alignment category.
For example, for the PE framework, in the PE-P-P alignment category, 56%,
26%, and 18% of the evaluation test ranks fall into ranks 1–4, 5–8, and 9–12,
respectively, totaling to 100% of the evaluation test ranks in the PE-P-P
alignment category. The pie charts allow us to compare the three alignment
categories rather than individual NA methods in each category. The larger
the pie chart for the better (lower) ranks, and the smaller the pie chart for
the worse (higher) ranks, the better the alignment category. For example, in
the PE framework, PE-P-P has the most evaluation tests ranked 1–4 and the
fewest evaluation tests ranked 9–12, followed by PE-M-P, followed by PE-
M-M. This implies that PE-P-P is superior to PE-M-P and PE-M-M. The
pie charts are color coded with respect to alignments of network pairs/sets
with known and unknown node mapping, and FQ and TQ measures.

231

View III. Overall ranking of an NA method versus its running time. The
latter are running time results when aligning all network pairs in the Y2H1

network set under the PE framework, and when aligning the Y2H1 net-
work set under the ME framework, where each method is restricted to use
a maximum of 64 cores. The size of each point visualizes the overall rank-
ing of the corresponding method over all evaluation tests over all network
pairs/sets, corresponding to the “Overall rank” column in View I; the larger
the point size, the better the method. In order to allow for easier compari-
son between the different alignment categories, “Average” shows the average
running times and average rankings of the methods in each alignment cat-
egory.

232

NA method Overall rank p1-value p2-value Non-sig (fail)

WAVE (PE-P-P) 4.32 (3.44) NA NA 0.24 (0.00)
multiMAGNA++ (PE-M-P) 4.72 (3.65) 1.98e-01 NA 0.30 (0.00)

MAGNA++ (PE-P-P) 4.82 (3.57) 7.53e-02 1.75e-01 0.29 (0.00)
LGRAAL (PE-P-P) 5.02 (3.58) 1.00e-02 1.81e-01 0.31 (0.05)

multiMAGNA++ (PE-M-M) 6.29 (2.73) 1.30e-08 1.56e-08 0.31 (0.00)
GHOST (PE-P-P) 6.79 (3.12) 2.05e-10 5.93e-07 0.40 (0.15)

IsoRankN (PE-M-M) 8.15 (2.83) 6.80e-09 5.56e-08 0.56 (0.00)
ConvexAlign (PE-M-P) 8.24 (2.05) 3.01e-12 2.08e-11 0.44 (0.00)

IsoRankN (PE-M-P) 8.74 (2.61) 2.45e-10 5.90e-10 0.68 (0.00)
ConvexAlign (PE-M-M) 8.92 (1.48) 2.60e-14 1.67e-12 0.54 (0.00)

NA method Overall rank p1-value p2-value Non-sig (fail)

MAGNA++ (ME-P-P) 3.75 (3.32) NA NA 0.19 (0.00)
multiMAGNA++ (ME-M-P) 4.06 (3.70) 4.10e-01 NA 0.25 (0.00)
multiMAGNA++ (ME-M-M) 4.81 (2.43) 2.46e-02 9.15e-02 0.12 (0.00)

WAVE (ME-P-P) 4.81 (3.25) 1.86e-02 5.60e-02 0.25 (0.00)
LGRAAL (ME-P-P) 6.06 (3.43) 7.78e-03 1.80e-02 0.38 (0.00)

IsoRankN (ME-M-M) 6.56 (3.74) 6.20e-02 1.56e-01 0.25 (0.00)
GHOST (ME-P-P) 7.06 (2.52) 8.31e-03 1.22e-02 0.31 (0.00)

ConvexAlign (ME-M-M) 7.44 (2.34) 8.32e-03 1.25e-02 0.25 (0.00)
IsoRankN (ME-M-P) 7.81 (3.43) 1.17e-02 3.35e-02 0.56 (0.00)

ConvexAlign (ME-M-P) 9.12 (2.28) 1.10e-03 1.43e-03 0.62 (0.00)

PE-P-P PE-M-P PE-M-M

9-
12

5-
8

1-
4

R
an

k

ME-P-P ME-M-P ME-M-M

9-
12

5-
8

1-
4

R
an

k

Network type, measure type
Known mapping, TQ measures
Known mapping, FQ measures
Unknown mapping, TQ measures
Unknown mapping, FQ measures

PE-P-P PE-M-P PE-M-M

yeast
fl
y

yea
st

w
orm

yeast
h
u
m
an

fl
y

w
orm

fl
y

h
u
m
an

w
orm

h
u
m
an

G
H
O
S
T

L
G
R
A
A
L

W
A
V
E

M
A
G
N
A
+
+

A
ve
ra
ge

Is
o
R
an

k
N

m
u
lt
iM

A
G
N
A
+
+

C
o
n
ve
x
A
li
gn

A
ve
ra
ge

Is
o
R
an

k
N

m
u
lt
iM

A
G
N
A
+
+

C
o
n
ve
x
A
li
gn

A
ve
ra
ge

0.25

4.00

64.00

0.25

4.00

64.00

0.25

4.00

64.00

0.25

4.00

64.00

0.25

4.00

64.00

0.25

4.00

64.00

NA method

R
u
n
n
in
g
ti
m
e
(h
ou

rs
,
lo
g
sc
al
e)

Overall rank
3
6
9
12

ME-P-P ME-M-P ME-M-M

w
orm

,
yeast,

fl
y,

h
u
m
an

G
H
O
S
T

L
G
R
A
A
L

W
A
V
E

M
A
G
N
A
+
+

A
ve
ra
ge

Is
oR

an
k
N

m
u
lt
iM

A
G
N
A
+
+

C
o
n
ve
x
A
li
gn

A
ve
ra
ge

Is
oR

an
k
N

m
u
lt
iM

A
G
N
A
+
+

C
o
n
ve
x
A
li
gn

A
ve
ra
ge

1

4

16

64

NA method

R
u
n
n
in
g
ti
m
e
(h
ou

rs
,
lo
g
sc
al
e)

P-P M-P M-M

PE framework ME framework

V
ie

w
I

V
ie

w
II

V
ie

w
II

I

233

3
9
0
2
0

3
7
9
1
7

3
8
9
0
7

3
9
2
4
5

1
9
0
1
7
9

2
0
0
8
3
7

2
5
5
6
3
8

3
0
5
9
9
4

2
8
9
5
4

3
5
3
6
7

3
8
8
4
1

8
8
9
3

2
9
8
6
2
2

5
8
4
2
1
8

2
5
9
8
0
7

9
7
0
1
8

3
3
1
6
2

3
8
1
3
5

4
0
1
7
0

3
4
8
7
1

9
1
7
9
7
4

2
3
7
6
9
8

3
2
9
0
1
8

1
5
2
4
0
1

3
9
2
7
9

3
8
4
6
9

3
9
2
0
9

3
9
9
3
4

6
2
2
8
8

9
3
1
2
5

1
0
5
3
3
1

8
6
6
7
9

2
9
2
6
6

3
6
2
7
5

3
9
0
6
7

1
3
6
9
2

7
7
0
5
5
2

5
7
2
5
4
6

8
3
8
3
2

1
0
2
5
6
0

3
3
3
6
6

3
9
3
9
0

4
2
4
9
0

4
3
6
6
0

7
8
9
8
5
4

1
4
4
5
2
5

9
6
8
4
2

1
3
2
7
7
6

ME−P−P Existing ME−M−P Existing ME−M−M Existing ME−P−P New ME−M−P New ME−M−M New

K
n
o
w

n
 m

a
p
p
in

g
U

n
k
n
o
w

n
 m

a
p
p
in

g

G
H

O
S

T
 (

T
+

S
)

W
A

V
E

 (
T

+
S

)

M
A

G
N

A
+

+
 (

T
+

S
)

L
G

R
A

A
L
 (

T
+

S
)

Is
o
R

a
n
k
N

 (
T

+
S

)

B
E

A
M

S
 (

T
+

S
)

m
u
lt
iM

A
G

N
A

+
+

 (
T

+
S

)

C
o
n
ve

x
A

lig
n
 (

T
+

S
)

Is
o
R

a
n
k
N

 (
T

+
S

)

B
E

A
M

S
 (

T
+

S
)

m
u
lt
iM

A
G

N
A

+
+

 (
T

+
S

)

C
o
n
ve

x
A

lig
n
 (

T
+

S
)

G
H

O
S

T
 (

T
+

S
)

W
A

V
E

 (
T

+
S

)

M
A

G
N

A
+

+
 (

T
+

S
)

L
G

R
A

A
L
 (

T
+

S
)

Is
o
R

a
n
k
N

 (
T

+
S

)

B
E

A
M

S
 (

T
+

S
)

m
u
lt
iM

A
G

N
A

+
+

 (
T

+
S

)

C
o
n
ve

x
A

lig
n
 (

T
+

S
)

Is
o
R

a
n
k
N

 (
T

+
S

)

B
E

A
M

S
 (

T
+

S
)

m
u
lt
iM

A
G

N
A

+
+

 (
T

+
S

)

C
o
n
ve

x
A

lig
n
 (

T
+

S
)

0.0

0.4

0.8

0.0

0.1

0.2

0.3

0.4

A
lig

n
m

e
n
t
q
u
a
lit

y

Precision

Recall

Figure A.7. Comparison of protein function prediction accuracy between
the new (approach 3) versus the existing prediction approach for multiple
alignments (approach 2), for all alignments from the ME framework (i.e.,
ME-P-P, ME-M-P, and ME-M-M categories). We calculate the prediction
accuracy as described in Fig. 2.6 in the main document. Each column shows
the precision and recall achieved by the new or existing prediction approach
for each NA method, as well as the number of predictions made by the
approach. The alignments are separated into networks sets with known and
unknown mapping.

234

3
9
2
7
9

3
8
4
6
9

3
9
2
0
9

3
9
9
3
4

6
2
2
8
8

9
3
1
2
5

1
0
5
3
3
1

8
6
6
7
9

2
9
2
6
6

3
6
2
7
5

3
9
0
6
7

1
3
6
9
2

7
7
0
5
5
2

5
7
2
5
4
6

8
3
8
3
2

1
0
2
5
6
0

3
3
3
6
6

3
9
3
9
0

4
2
4
9
0

4
3
6
6
0

7
8
9
8
5
4

1
4
4
5
2
5

9
6
8
4
2

1
3
2
7
7
6

3
4
9
6
8

3
4
2
4
8

3
4
9
7
9

3
5
0
7
0

6
6
9
5
6

9
8
0
6
4

1
0
3
8
2
8

8
3
8
0
5

2
8
9
5
1

3
1
3
5
4

3
4
9
5
1

4
5
3
8
7

3
7
6
8
9
9

7
6
2
1
4

9
0
2
8
7

1
3
1
8
4
3

2
8
8
4
8

3
3
9
0
7

3
5
3
8
4

3
0
9
6
8

3
0
4
5
6
8

9
1
6
5
8

7
7
6
1
7

1
0
3
4
1
6

ME−P−P New ME−M−P New ME−M−M New PE−P−P PE−M−P PE−M−M

K
n
o
w

n
 m

a
p
p
in

g
U

n
k
n
o
w

n
 m

a
p
p
in

g

G
H

O
S

T
 (

T
+

S
)

W
A

V
E

 (
T

+
S

)

M
A

G
N

A
+

+
 (

T
+

S
)

L
G

R
A

A
L
 (

T
+

S
)

Is
o
R

a
n
k
N

 (
T

+
S

)

B
E

A
M

S
 (

T
+

S
)

m
u
lt
iM

A
G

N
A

+
+

 (
T

+
S

)

C
o
n
ve

x
A

lig
n
 (

T
+

S
)

Is
o
R

a
n
k
N

 (
T

+
S

)

B
E

A
M

S
 (

T
+

S
)

m
u
lt
iM

A
G

N
A

+
+

 (
T

+
S

)

C
o
n
ve

x
A

lig
n
 (

T
+

S
)

G
H

O
S

T
 (

T
+

S
)

W
A

V
E

 (
T

+
S

)

M
A

G
N

A
+

+
 (

T
+

S
)

L
G

R
A

A
L
 (

T
+

S
)

Is
o
R

a
n
k
N

 (
T

+
S

)

B
E

A
M

S
 (

T
+

S
)

m
u
lt
iM

A
G

N
A

+
+

 (
T

+
S

)

C
o
n
ve

x
A

lig
n
 (

T
+

S
)

Is
o
R

a
n
k
N

 (
T

+
S

)

B
E

A
M

S
 (

T
+

S
)

m
u
lt
iM

A
G

N
A

+
+

 (
T

+
S

)

C
o
n
ve

x
A

lig
n
 (

T
+

S
)

0.0

0.4

0.8

0.0

0.1

0.2

0.3

0.4

A
lig

n
m

e
n
t
q
u
a
lit

y

Precision

Recall

Figure A.8. Comparison of protein function prediction accuracy under the
PE framework (i.e., PE-P-P, PE-M-P, and PE-M-M categories) and ME
framework (i.e., ME-P-P, ME-M-P, and ME-M-M categories). We calculate
the prediction accuracy as described in Fig. 2.6 in the main document.
Each column shows the precision and recall achieved by the new or existing
prediction approach for each NA method, as well as the number of predictions
made by the approach. The alignments are separated into networks sets with
known and unknown mapping.

235

(a)
0.36

0.40

0.44

0.48

0.52

Fly Human Worm Yeast

Scaffold network

N
C
V
-C

IQ

(b)
0.230

0.235

0.240

0.245

0.250

Fly Human Worm Yeast

Scaffold network

G
C

Figure A.9: Illustration of the effect of the choice of scaffold network on alignment
quality when combining pairwise alignments into a multiple alignment. These are
representative results for one of the analyzed TQ measures (NCV-CIQ; panel (a)), one
of the analyzed FQ measures (GO correctness – GC; panel (b)), one of the analyzed
network sets (Y2H1), and one of the analyzed NA methods (WAVE). Clearly, different
choices of scaffold network (x-axis) yield different alignment quality scores (y-axis).
The same holds for other combinations of alignment quality measures, network sets,
and NA methods. In our evaluation, of all scaffold network choices, the one that yields
the best multiple alignment is chosen. In this particular representative scenario, it is
the human network that was chosen as the scaffold, since this scaffold choice clearly
yields significantly better alignment quality than any other scaffold choice.

236

0.0
2.5
5.0
7.5

10.0
12.5

P R

N
o.

of
te
st
s

Known mapping

Framework

PE

Precision

ME

Recall

0.94 (0.07)

of predictions

0.95 (0.05)

0.83 (0.08)

0.85 (0.23)

34084.58 (4303.68)

34456.83 (8672.75)

0.0
2.5
5.0
7.5

10.0
12.5

P R

N
o.

of
te
st
s

Unknown mapping

Framework

PE

Precision

ME

Recall

0.14 (0.09)

of predictions

0.02 (0.02)

0.12 (0.08)

0.05 (0.04)

133762.92 (99302.50)

319117.00 (223913.99)

PE superior PE and ME tied ME superior

Figure A.10. Comparison of protein function prediction accuracy under the
the PE and ME frameworks, where we use approach 2 for the ME framework
(rather than using approach 3 for the ME framework like we do in Fig. 2.7
of the main document). The figure can be interpreted the same way as Fig.
2.6 in the main document.

237

A.3 Supplementary files

File A.1. GuS022022D_supplementary1.csv. Detailed alignment quality scores for

the PE framework.

File A.2. GuS022022D_supplementary2.csv. Detailed alignment quality scores for

the ME framework.

238

APPENDIX B

HETEROGENEOUS NETWORK ALIGNMENT

B.1 Results

(a) (b) (c)

Figure B.1. Detailed alignment quality results regarding the effect of the
number of node colors on alignment quality as a function of noise level
for synthetic, specifically geometric, networks using (a) WAVE, (b)
MAGNA++, and (c) SANA. Gray squares, light blue circles, dark blue trian-
gles, and black stars indicate the aligned networks containing one, two, three,
and four node colors, respectively. For two or more node colors, solid lines
represent using HetNC-HomEC, and dashed lines represent using HetNC-
HetEC.

239

(a) (b) (c)

Figure B.2. Detailed alignment quality results regarding the effect of the
number of node colors on alignment quality as a function of noise level
for synthetic, specifically scale-free, networks using (a) WAVE, (b)
MAGNA++, and (c) SANA. The figure can be interpreted in the same way
as Supplementary Figure B.1.

(a) (b)

Figure B.3. Detailed alignment quality results regarding the effect of the
number of node colors on alignment quality as a function of noise level for
PPI, specifically APMS-Expr, networks using (a) WAVE and (b) SANA.
The figure can be interpreted in the same way as Supplementary Figure B.1.
Recall that for these larger networks, we have not run MAGNA++ due to
its high computational complexity.

240

(a) (b)

Figure B.4. Detailed alignment quality results regarding the effect of the
number of node colors on alignment quality as a function of noise level for
PPI, specifically APMS-Seq, networks using (a) WAVE and (b) SANA.
The figure can be interpreted in the same way as Supplementary Figure B.1.
Recall that for these larger networks, we have not run MAGNA++ due to
its high computational complexity.

(a) (b)

Figure B.5. Detailed alignment quality results regarding the effect of the
number of node colors on alignment quality as a function of noise level for
PPI, specifically Y2H-Expr, networks using (a) WAVE and (b) SANA.
The figure can be interpreted in the same way as Supplementary Figure B.1.
Recall that for these larger networks, we have not run MAGNA++ due to
its high computational complexity.

241

(a) (b)

Figure B.6. Detailed alignment quality results regarding the effect of the
number of node colors on alignment quality as a function of noise level
for PPI, specifically Y2H-Seq, networks using (a) WAVE and (b) SANA.
The figure can be interpreted in the same way as Supplementary Figure B.1.
Recall that for these larger networks, we have not run MAGNA++ due to
its high computational complexity.

(a) (b)

Figure B.7. Detailed alignment quality results regarding the effect of the
number of node colors on alignment quality as a function of noise level
for protein-GO, specifically protein-GO-APMS, networks using (a)
WAVE and (b) SANA. The figure can be interpreted in the same way as
Supplementary Figure B.1. Recall that for these larger networks, we have
not run MAGNA++ due to its high computational complexity.

242

(a) (b)

Figure B.8. Detailed alignment quality results regarding the effect of the
number of node colors on alignment quality as a function of noise level for
protein-GO, specifically protein-GO-Y2H, networks using (a) WAVE
and (b) SANA. The figure can be interpreted in the same way as Supple-
mentary Figure B.1. Recall that for these larger networks, we have not run
MAGNA++ due to its high computational complexity.

243

(a) (b)

(c) (d)

(e) (f)

Figure B.9. Detailed results comparing the running time and effect of the
number of node colors for different methods for all tested noise levels on
synthetic, specifically geometric, networks. The x -axis the the running
time of the method, and the y-axis is the alignment quality. Here we use
different shapes to represent the different methods and different colored lines
to represent how many node colors are used. Lines are drawn between meth-
ods using the same number of colors.

244

(a) (b)

(c) (d)

(e) (f)

Figure B.10. Detailed results comparing the running time and effect of the
number of node colors for different methods for all tested noise levels on
synthetic, specifically scale-free, networks. The figure can be interpreted
in the same way as Supplementary Figure B.9.

245

(a) (b)

(c) (d)

(e) (f)

Figure B.11. Detailed results comparing the running time and effect of the
number of node colors for different methods for all tested noise levels on
PPI, specifically APMS-Expr, networks. The figure can be interpreted
in the same way as Supplementary Figure B.9.

246

(a) (b)

(c) (d)

(e) (f)

Figure B.12. Detailed results comparing the running time and effect of the
number of node colors for different methods for all tested noise levels on
PPI, specifically APMS-Seq, networks. The figure can be interpreted in
the same way as Supplementary Figure B.9.

247

(a) (b)

(c) (d)

(e) (f)

Figure B.13. Detailed results comparing the running time and effect of the
number of node colors for different methods for all tested noise levels on
PPI, specifically Y2H-Expr, networks. The figure can be interpreted in
the same way as Supplementary Figure B.9.

248

(a) (b)

(c) (d)

(e) (f)

Figure B.14. Detailed results comparing the running time and effect of the
number of node colors for different methods for all tested noise levels on
PPI, specifically Y2H-Seq, networks. The figure can be interpreted in
the same way as Supplementary Figure B.9.

249

(a) (b)

(c) (d)

(e) (f)

Figure B.15. Detailed results comparing the running time and effect of the
number of node colors for different methods for all tested noise levels on
protein-GO, specifically protein-GO-APMS, networks. The figure can
be interpreted in the same way as Supplementary Figure B.9.

250

(a) (b)

(c) (d)

(e) (f)

Figure B.16. Detailed results comparing the running time and effect of the
number of node colors for different methods for all tested noise levels on
protein-GO, specifically protein-GO-Y2H, networks. The figure can
be interpreted in the same way as Supplementary Figure B.9.

251

APPENDIX C

DATA-DRIVEN NETWORK ALIGNMENT

C.1 TARA: Data-driven network alignment

C.1.1 Results

(a) (b) (c)

(d) (e) (f)

Figure C.1. Distribution of topological similarity (GDV-similarity) between
node pairs of a (a,b,c) geometric and (d,e,f) scale-free network and their
(a,d) 0%, (b,e) 25% noisy, and (c,f) 50% noisy counterparts. We show three
lines representing the distribution of topological similarity for matching, i.e.,
functionally related, node pairs (blue), for non-matching, i.e., functionally
unrelated, node pairs (red), and for 10 random samples of the same size as
the set of matching pairs, averaged (purple).

252

(a) (b) (c)

(d) (e) (f)

Figure C.2. Distribution of topological similarity (GHOST) between node
pairs of a (a,b,c) geometric and (d,e,f) scale-free network and their (a,d)
0%, (b,e) 25% noisy, and (c,f) 50% noisy counterparts. We show three
lines representing the distribution of topological similarity for matching, i.e.,
functionally related, node pairs (blue), for non-matching, i.e., functionally
unrelated, node pairs (red), and for 10 random samples of the same size as
the set of matching pairs, averaged (purple).

253

(a) (b) (c)

(d) (e) (f)

Figure C.3. Distribution of topological similarity (IsoRank) between node
pairs of a (a,b,c) geometric and (d,e,f) scale-free network and their (a,d)
0%, (b,e) 25% noisy, and (c,f) 50% noisy counterparts. We show three
lines representing the distribution of topological similarity for matching, i.e.,
functionally related, node pairs (blue), for non-matching, i.e., functionally
unrelated, node pairs (red), and for 10 random samples of the same size as
the set of matching pairs, averaged (purple).

254

(a) (b)

(c) (d)

Figure C.4. Average (a,b) prediction accuracy and (c,d) AUROC of 10-
fold cross validation for (a,c) geometric and (b,d) scale-free networks.

255

(a) (b)

(c) (d)

Figure C.5. Average (a,b) prediction accuracy and (c,d) AUROC of per-
cent training tests for (a,c) geometric and (b,d) scale-free networks.

(a) (b)

Figure C.6. Average (a) prediction accuracy and (b) AUROC of 10-fold
cross validation for real-world networks.

256

(a) (b)

Figure C.7. Average (a) prediction accuracy and (b) AUROC of percent
training tests for real-world networks.

257

Figure C.8. Comparison of different TARA evaluation tests in the task of
protein function prediction, for GO term rarity thresholds (a, d, g) ALL,
(b, e) 50, and (c, f) 25 using ground truth datasets (a, b, c) atleast1-EXP,
(d, e, f) atleast2-EXP, and (g) atleast3-EXP. Different percent training
tests, specifically 10, 50, and 90, are compared within each panel. The
alignment size (i.e., the number of aligned yeast-protein pairs) and number
of functional predictions (i.e., predicted protein-GO term associations) made
by each method, averaged over the 10 instances we perform for each test, are
shown on the top. For example, the alignment for TARA-90 in (a) contains
27,155 aligned yeast-human protein pairs, and predicts 91,618 protein-GO
term associations. Raw precision, recall, and F-score values are color-coded
inside each panel.

258

(a) (b) (c)

(d) (e) (f)

(g)

259

Figure C.9. Comparison of the six considered NA methods for rarity thresh-
olds (a, d, g) ALL, (b, e) 50, and (c, f) 25 using ground truth datasets (a,
b, c) atleast1-EXP, (d, e, f) atleast2-EXP, and (g) atleast3-EXP in the
task of protein function prediction. The alignment size (i.e., the number of
aligned yeast-protein pairs) and number of functional predictions (i.e., pre-
dicted protein-GO term associations) made by each method. For example,
the alignment for TARA in (a) contains 27,155 aligned yeast-human protein
pairs, and predicts 91,618 protein-GO term associations. Raw precision, re-
call, and F-score values are color-coded inside each panel.

260

(a) (b) (c)

(d) (e) (f)

(g)

261

(a) (b) (c)

(d) (e) (f)

(g)

Figure C.10. Overlap of the functional predictions made by TARA and
PrimAlign for GO term rarity thresholds (a, d, g) ALL, (b, e) 50, and (c,
f) 25 using ground truth datasets (a, b, c) atleast1-EXP, (d, e, f) atleast2-
EXP, and (g) atleast3-EXP. Percentages are out of the total number of
unique predictions made by both methods combined.

262

Figure C.11. Comparison of TARA on the 2017 versus 2020 networks for
rarity thresholds (a, d, g) ALL, (b, e) 50, and (c, f) 25 using ground truth
datasets (a, b, c) atleast1-EXP, (d, e, f) atleast2-EXP, and (g) atleast3-
EXP in the task of protein function prediction. The alignment size (i.e., the
number of aligned yeast-protein pairs) and number of functional predictions
(i.e., predicted protein-GO term associations) made by each method. For
example, the alignment for TARA-2017 in panel (a) contains 27,155 aligned
yeast-human protein pairs, and predicts 91,618 protein-GO term associa-
tions. Raw precision, recall, and F-score values are color-coded inside each
panel.

263

(a) (b) (c)

(d) (e) (f)

(g)

264

C.1.2 Supplementary files

File C.1. GuS022022D_supplementary3.xlsx. Detailed statistics regarding predic-

tions made by TARA and PrimAlign-TS

265

C.2 Towards TARA++: Integrating topology and sequence to prediction function

C.2.1 Methods

C.2.1.1 TARA-TS’s feature extraction methodology

Graphlets. TARA relies on graphlets, which are small subgraphs (a path, triangle,

square, etc., generally up to five nodes). Graphlets are often used to summarize the

extended neighborhood of a node into its feature vector, as follows. For a node, for

each automorphism orbit (intuitively, node symmetry group) in a graphlet, one can

count how many times the node participates in each graphlet at each of its orbits.

Then, the graphlet-based feature vector of a node, or the node’s graphlet degree vector

(GDV), is formed out of the counts of all considered graphlets/orbits that appear in

the node’s extended network neighborhood; for details, see [112]. To obtain the

feature of a node pair, TARA takes the element-wise absolute difference of the nodes’

GDVs. We found this to be the best (i.e., most accurate) way to simultaneously

combine GDVs of both nodes out of all ways that we tested [68]. So TARA-TS can

apply the same graphlet counting procedure to the integrated network, obtaining the

GDV for each yeast and human node, and taking the absolute difference of two nodes’

GDVs to obtain the feature vector of the yeast-human node pair.

Node2vec. Node2vec method uses random walks to explore the neighborhood of a

node in a network. For a node u, random walks starting at u are performed, and the

sequence of nodes visited by each random walk is recorded. The number of random

walks performed per node is controlled by the parameter “Number of walks per source

(-r:)”, and the length of a random walk is controlled by the parameter “Length of

walk per source (-l:)”. This process is repeated for every node in the network. Then,

a skip-gram model is applied over all sequences of nodes and the feature vector of

each node is obtained; for details, see [66]. The only way to use node2vec, a single-

network method, in the multi-network NA task, is to first integrate the two networks

266

via anchor links, as we do. Otherwise, node2vec fails if applied to the two networks

individually [67]. We first apply node2vec to the integrated network with the default

parameters to obtain a feature vector for each node. Then, as suggested by the

node2vec study [66], to get the feature vector of a yeast-human node pair, we take

the element-wise average of the nodes’ feature vectors.

We use node2vec over other network embedding methods for three reasons. (i)

Even more recent methods, when evaluated in their own papers, achieve similar per-

formance as node2vec in many tasks. So, we do not expect them to outperform

node2vec in our task. (ii) The node2vec source code is available and well docu-

mented, unlike for many other methods. (iii) The goal of this study is not to find the

absolute best feature vector for supervised NA, but to test how combining topological

and sequence information in supervised NA affects protein functional prediction. If

using node2vec already improves upon current NA methods, then using any more

sophisticated ways to extract features will only improve further. In our proposed

framework, features from any new extraction method can simply be “swapped” in,

allowing flexibility for further advancements.

Metapath2vec. Metapath2vec requires the user to define “metapaths”, which direct

how the random walks move. A metapath example is “human-human-yeast-yeast”

(or “humanˆ2 Ñ yeastˆ2”): start at a human node, move to a randomly chosen

neighboring (RCN) human node, move to an RCN yeast node, and move to an RCN

yeast node. This metapath is extended such that its length is as close as possible to

the -l: parameter value. For example, if this value is 12, then this metapath would

be repeated t12{4u “ 3 times. Then, given a node u and the extended metapath,

random walks starting at u are performed such that the nodes visited follow the

constraints of the metapath, and the sequence of nodes visited by each random walk is

recorded. In the process, node2vec’s -l: and -r: parameters apply to metapath2vec

as well. The procedure is repeated for every node in the network. Then, a skip-gram

267

model is applied over all sequences of nodes to obtain node features. We use the

metapath2vec++ implementation of metapath2vec [41] with the default parameters

to obtain each node’s feature vector, and again take the element-wise average of

two nodes’ feature vectors to compute the feature vector of a node pair. Choosing

“optimal” metapaths is non-trivial and often the selection process involves using the

same paths as those of previous studies [145, 41]. However, to our knowledge, this

study is the first to investigate metapaths on an integrated across-species biological

network. Thus, our only option is to do our due diligence and examine reasonable

metapaths, to give a fighting chance to metapath2vec. We test these metapaths:

“humanˆn Ñ yeastˆn” and “yeastˆn Ñ humanˆn” for 3 ď n ď 10, “humanˆ25 Ñ

yeastˆ25” and “yeastˆ25 Ñ humanˆ25”, “humanˆ50 Ñ yeastˆ50” and “yeastˆ50 Ñ

humanˆ50”, and the combination of all of the individual metapaths (i.e., we apply the

skip-gram model to all node sequences obtained from all considered metapaths). We

have verified that the choice of metapath does not affect protein functional prediction

accuracy, as illustrated in Supplementary Fig. S1 (see Chapter “4.2.2 – TARA-TS’s

classification and alignment generation” and “4.2.2 – Using an alignment for protein

functional prediction” for evaluation details). This may be because the metapaths

we have chosen are all performing well, or because we have yet to find the best

metapaths. Regardless, our goal is to test a variety of reasonable metapaths and

choose the best out of them; finding optimal paths is beyond the scope of this study.

Because the metapath choice does not impact accuracy in this case, for simplicity,

we continue with the combination of all the metapaths.

C.2.2 Results

C.2.2.1 TARA-TS versus TARA in the classification context

Here, we comment on the performance of TARA-TS; recall that we use TARA-TS

to refer to any of TARA-TS (graphlets, node2vec, metapath2vec). For a fixed GO

268

term rarity threshold, as k in our atleastk-EXP ground truth datasets increases, we

expect TARA-TS’s (and TARA’s) accuracy and AUROC to increase, as the condition

for proteins to be functionally related becomes more stringent and thus the functional

data becomes of higher quality. Also, for a fixed k, as we decrease the GO term

rarity threshold (i.e., consider rarer GO terms), we expect accuracy and AUROC

to increase, since rarer GO terms may be meaningful [76], again resulting in higher-

quality data. We find the former expectation to hold, for all GO term rarity thresholds

(Supplementary Figs. S1-S2). However, for the latter expectation, we find that

classification accuracy and AUROC somewhat decrease (Supplementary Figs. S1-

S2). This may be because as rarer GO terms are considered, the amount of training

data decreases, which is what could be causing performance decreases.

As we increase y, the amount of training data, we expect accuracy and AUROC

to increase, as more data is used during classification. For accuracy, for TARA-

TS (graphlets), we observe this for 6/7 ground truth-rarity datasets, although for

4/6 of the datasets, the increase is minimal („1%). In the remaining case, the

accuracy increases until about 60% training data, and then drops. For TARA-TS

(node2vec), we observe this for 6/7 ground truth-rarity datasets, although for 4/6,

the increase is minimal. In the remaining case, the accuracy increases until about

60% training data, and then drops. For TARA-TS (metapath2vec), we observe this

for all 7 ground-truth rarity datasets. For AUROC, for TARA-TS (graphlets), we

observe the expected trend for all ground truth-rarity datasets, although for 4/7

of these datasets, the increase is minimal („1%). For both TARA-TS (node2vec)

and TARA-TS (metapath2vec), we observe the expected trend for all ground-truth

rarity datasets, although for 3/7 of these datasets, the increase is minimal. These

unexpected trends (mostly minor increase of accuracy and AUROC even with large

increase of y) are promising though, because they mean that TARA-TS does not

269

have to use a majority of the functional data for training to still obtain good results;

even using only 10% of the data seems to suffice.

C.2.2.2 Matching the number of predictions made by TARA++

Here, we describe the process for ensuring the different methods make the same

number of predictions as TARA++. For a given ground truth-rarity dataset, for a

given method, we first rank the predicted protein-GO term associations based on

their p-values in the hypergeometric tests (Chapter “4.2.2 – Using an alignment for

protein functional prediction”), where a smaller p-value means a better rank. Then,

we take the top k predictions, where k is equal to the number of predictions made by

TARA++. In this way, the best k predictions of each method are chosen, and every

method makes the same number. Finally, we compute the precision and recall of

those k predictions (Fig. 4.14 and Supplementary Fig. C.23). In terms of precision,

we find TARA++ is still the best in 4/7 cases. It is inferior to PrimAlign for 1/7

cases, and only slightly worse than TARA in 2/7 cases. In terms of recall, TARA++

is the best in 4/7 cases, tied with TARA in 1/7 cases, and slightly worse than TARA

in 2/7 cases. Given these results, we believe that combining TARA and TARA-TS

into TARA++ does generally lead to more reliable predictions than other methods,

and that TARA++’s high precision is not simply due to it making fewer predictions.

In a way, TARA-TS filters out the unreliable predictions from TARA and vice versa.

C.2.2.3 Robustness of TARA++ to data noise

Here, we describe how we test TARA++’s robustness to data noise. We introduce

three types of noise. (i) We randomly rewire x% of the PPI edges in each of the yeast

and human networks. This means that for each network, we randomly delete x%

of the edges and randomly add the same number of edges back such that there are

no duplicates. (ii) We randomly rewire x% of the across-network anchor links. This

270

means that we randomly delete x% of the yeast-human anchor links and randomly

add the same number of yeast-human links back such that there are no duplicates.

(iii) For a given ground truth-rarity dataset, we randomly rewire x% of the protein-

GO term associations. This means that we randomly delete x% of the protein-GO

term associations and randomly add the same number of associations back (out of

all possible protein-GO term associations for the given ground truth-rarity dataset)

such that there are no duplicates. We vary x from 0 to 100 in increments of 10.

We apply each type of noise to its respective data, input the data into TARA and

TARA-TS’s frameworks, and combine their results into TARA++ as before. We do

this for GO term rarity threshold 25 and ground truth dataset atleast2-EXP, as this

is where TARA++ has the highest precision.

We find that TARA++’s precision actually increases until 50% noise, after which

it then drops and eventually reaches 0, and its recall steadily decreases to 0 (Fig.

4.16). These trends are somewhat expected. As noise increases, the amount of mean-

ingful information in the data decreases, resulting in fewer possible predictions. As

such, recall naturally decreases. Because of these fewer predictions though, precision

naturally increases. But at a certain point, the data is too noisy, so even the small

number of predictions are mostly incorrect, and eventually no predictions can be

made. Thus, at that point, precision decreases until it reaches 0.

271

Figure C.12. Comparison of different metapath choices for rarity thresholds
(a, d, g) ALL, (b, e) 50, and (c, f) 25 using ground truth datasets (a, b,
c) atleast1-EXP, (d, e, f) atleast2-EXP, and (g) atleast3-EXP in the task
of protein functional prediction. “mp2v-n” refers to the paths “humanˆn Ñ

yeastˆn” and “yeastˆn Ñ humanˆn” (Chapter “4.2.2 – TARA-TS’s feature
extraction methodology”). The alignment size (i.e., the number of aligned
yeast-protein pairs) and number of functional predictions (i.e., predicted
protein-GO term associations) made by each method are shown above. For
example, the alignment for mp2v-3 in (a) contains 27,799 aligned yeast-
human protein pairs, and predicts 88,130 protein-GO term associations. Raw
precision and recall values are color-coded inside each panel.

272

(a) (b) (c)

(d) (e) (f)

(g)

273

(a) (b) (c)

(d) (e) (f)

(g)

Figure C.13. Average prediction accuracy of percent training tests for
rarity thresholds (a, d, g) ALL, (b, e) 50, and (c, f) 25 using ground truth
datasets (a, b, c) atleast1-EXP, (d, e, f) atleast2-EXP, and (g) atleast3-
EXP. A dotted black line indicates the accuracy expected if the classifier
makes random predictions. Qualitatively similar results for AUROC are
shown in Supplementary Figs. S2.

274

(a) (b) (c)

(d) (e) (f)

(g)

Figure C.14. Average AUROC of percent training tests for rarity thresholds
(a, d, g) ALL, (b, e) 50, and (c, f) 25 using ground truth datasets (a, b,
c) atleast1-EXP, (d, e, f) atleast2-EXP, and (g) atleast3-EXP. A dotted
black line indicates the AUROC expected if the classifier makes random
predictions.

275

Figure C.15. Comparison of TARA and TARA-TS using 10% of the data
as training for rarity thresholds (a, d, g) ALL, (b, e) 50, and (c, f) 25
using ground truth datasets (a, b, c) atleast1-EXP, (d, e, f) atleast2-
EXP, and (g) atleast3-EXP in the task of protein functional prediction. The
alignment size (i.e., the number of aligned yeast-protein pairs) and number
of functional predictions (i.e., predicted protein-GO term associations) made
by each method are shown above. For example, the alignment for TARA-
10 in (a) contains 244,433 aligned yeast-human protein pairs, and predicts
538,397 protein-GO term associations. Raw precision and recall values are
color-coded inside each panel.

276

(a) (b) (c)

(d) (e) (f)

(g)

277

Figure C.16. Comparison of TARA and TARA-TS using 50% of the data
as training for rarity thresholds (a, d, g) ALL, (b, e) 50, and (c, f) 25
using ground truth datasets (a, b, c) atleast1-EXP, (d, e, f) atleast2-
EXP, and (g) atleast3-EXP in the task of protein functional prediction. The
alignment size (i.e., the number of aligned yeast-protein pairs) and number
of functional predictions (i.e., predicted protein-GO term associations) made
by each method are shown above. For example, the alignment for TARA-
10 in (a) contains 244,433 aligned yeast-human protein pairs, and predicts
538,397 protein-GO term associations. Raw precision and recall values are
color-coded inside each panel.

278

(a) (b) (c)

(d) (e) (f)

(g)

279

Figure C.17. Comparison of TARA and TARA-TS using 90% of the data
as training for rarity thresholds (a, d, g) ALL, (b, e) 50, and (c, f) 25
using ground truth datasets (a, b, c) atleast1-EXP, (d, e, f) atleast2-
EXP, and (g) atleast3-EXP in the task of protein functional prediction. The
alignment size (i.e., the number of aligned yeast-protein pairs) and number
of functional predictions (i.e., predicted protein-GO term associations) made
by each method are shown above. For example, the alignment for TARA-
10 in (a) contains 244,433 aligned yeast-human protein pairs, and predicts
538,397 protein-GO term associations. Raw precision and recall values are
color-coded inside each panel.

280

(a) (b) (c)

(d) (e) (f)

(g)

281

(a) (b) (c)

(d) (e) (f)

(g)

Figure C.18. Pairwise overlap, measured by Jaccard index, of the alignments
made by TARA and TARA-TS for rarity thresholds (a, d, g) ALL, (b, e)
50, and (c, f) 25 using ground truth datasets (a, b, c) atleast1-EXP, (d,
e, f) atleast2-EXP, and (g) atleast3-EXP, using percent training amounts
described in Chapter “4.2.3 – TARA-TS versus TARA in the task of protein
functional prediction: toward TARA++”.

282

(a) (b) (c)

(d) (e) (f)

(g)

Figure C.19. Pairwise overlap, measure by Jaccard index, of the predictions
made by TARA and TARA-TS for rarity thresholds (a, d, g) ALL, (b, e)
50, and (c, f) 25 using ground truth datasets (a, b, c) atleast1-EXP, (d,
e, f) atleast2-EXP, and (g) atleast3-EXP, using percent training amounts
described in Chapter “4.2.3 – TARA-TS versus TARA in the task of protein
functional prediction: toward TARA++”.

283

(a) (b) (c)

(d) (e) (f)

(g)

Figure C.20. Overlap of the alignments made by TARA and TARA-TS
for rarity thresholds (a, d, g) ALL, (b, e) 50, and (c, f) 25 using ground
truth datasets (a, b, c) atleast1-EXP, (d, e, f) atleast2-EXP, and (g)
atleast3-EXP. Percentages are out of the total number of unique aligned
node pairs made by both methods combined. The overlaps are for one of
the 10 balanced datasets; so, the alignment size of a method may differ from
those in Supplementary Figs. S3-S5, where the statistics are averaged over
all balanced datasets.

284

Figure C.21. Overlap of the predictions made by TARA and TARA-TS for
rarity thresholds (a, d, g) ALL, (b, e) 50, and (c, f) 25 using ground truth
datasets (a, b, c) atleast1-EXP, (d, e, f) atleast2-EXP, and (g) atleast3-
EXP. Percentages are out of the total number of unique predictions made by
both methods combined. Precision and recall are shown for each of the three
prediction sets captured by the Venn diagram; TARA++’s predictions are
those in the overlap. The overlaps are for one of the 10 balanced datasets; so,
the prediction number of a method may differ from those in Supplementary
Figs. S3-S5, where the statistics are averaged over all balanced datasets.

285

(a) (b) (c)

(d) (e) (f)

(g)

286

TABLE C.1

RUNNING TIMES (IN SECONDS) OF TARA-TS, TARA, PRIMALIGN,

AND SEQUENCE, WHEN CONSIDERING ALL GO TERMS

atleast1-EXP atleast2-EXP atleast3-EXP

TARA-TS 3811 480 444

TARA 8090 4676 4634

PrimAlign 16 16 16

Sequence N/A N/A N/A

TARA++’s running time is a function of TARA-TS’s and TARA’s (see Chapter “4.2.3
– TARA++ versus existing NA methods in the task of protein functional prediction” in
the main paper). We use a precomputed alignment for Sequence (see Chapter “4.2.3 –
TARA++ versus existing NA methods in the task of protein functional prediction” in the
main paper), hence the “N/A”s.

287

(a) (b) (c)

(d) (e) (f)

(g)

Figure C.22. Comparison of four NA methods for rarity thresholds (a, d, g)
ALL, (b, e) 50, and (c, f) 25 using ground truth datasets (a, b, c) atleast1-
EXP, (d, e, f) atleast2-EXP, and (g) atleast3-EXP in the task of protein
functional prediction. The alignment size (i.e., the number of aligned yeast-
protein pairs) and number of functional predictions (i.e., predicted protein-
GO term associations) made by each method are shown above, except that
TARA++ does not have an alignment per se. i.e., TARA++ comes from
the overlap of predictions made by TARA and TARA-TS; hence the “N/A”s.
For example, the alignment for TARA in (a) contains 27,155 aligned yeast-
human protein pairs, and predicts 91,618 protein-GO term associations. Raw
precision and recall values are color-coded inside each panel. For TARA++
and TARA, results are averages over all balanced datasets; the standard
deviations are small and thus invisible.

288

(a) (b) (c)

(d) (e) (f)

(g)

Figure C.23. Comparison of four NA methods for rarity thresholds (a, d, g)
ALL, (b, e) 50, and (c, f) 25 using ground truth datasets (a, b, c) atleast1-
EXP, (d, e, f) atleast2-EXP, and (g) atleast3-EXP in the task of protein
functional prediction. The alignment size (i.e., the number of aligned yeast-
protein pairs) and number of functional predictions (i.e., predicted protein-
GO term associations) made by each method are shown above, except that
TARA++ does not have an alignment per se. i.e., TARA++ comes from
the overlap of predictions made by TARA and TARA-TS; hence the “N/A”s.
For example, the alignment for TARA in (a) contains 27,155 aligned yeast-
human protein pairs, and predicts 91,618 protein-GO term associations. Raw
precision and recall values are color-coded inside each panel. For TARA++
and TARA, results are averages over all balanced datasets; the standard
deviations are small and thus invisible.

289

(a) (b) (c)

(d) (e) (f)

(g)

Figure C.24. Overlap of the predictions made by TARA++ and PrimAlign
for rarity thresholds (a, d, g) ALL, (b, e) 50, and (c, f) 25 using ground
truth datasets (a, b, c) atleast1-EXP, (d, e, f) atleast2-EXP, and (g)
atleast3-EXP. Percentages are out of the total number of unique predictions
made by both methods combined. Precision and recall are shown for each
of the three prediction sets captured by the Venn diagram. The overlaps are
for one of the 10 balanced datasets.

290

APPENDIX D

MODELING MULTI-SCALE DATA VIA A NETWORK OF NETWORKS

D.1 Methods

D.1.1 Data

D.1.1.1 Our synthetic NoN generator

Let M be the set of random graph models we consider for generating the synthetic

NoN. For random graph model m P M , let mpx, yq be a random graph of type m

with x nodes and y edges. Let M p2q “ M ˆM be the set of all possible combinations

of the elements of M with themselves. Let |V p2q| be the target number of nodes at

level 2, |Ep2q| be the target number of edges at level 2, |V p1q| be the target number

of nodes for each network at level 1, and |Ep1q| be the target number of edges for

each network at level 1; these parameters allow us to generate synthetic NoNs that

approximate the size of real-world NoNs. Note that in our synthetic NoN generation,

we fix the size of the level 1 networks to eliminate any effect of level 1 network size;

however, our model can easily generate level 1 networks of varying size.

For each pm1,m2q P M p2q, we generate k isolated NoN regions where, for each

region, the level 2 network is of type m2 and every level 1 network is of type m1.

This results in k|M p2q| total isolated NoN regions. After combining all of them,

the resulting NoN should have |V p2q| nodes and |Ep2q| edges. As such, for each

291

pm1,m2q P M p2q, we generate k isolated NoN regions

tG
p2q

pm1,m2q
“ m2pt

|V p2q|

k|M p2q|
u, t

|Ep2q|

k|M p2q|
uq and

tG
p1q

pm1,m2qi
“ m1p|V p1q

|, |Ep1q
|q for i P t1, ..., t

|V p2q|

k|M p2q|
uuu.

(D.1)

Because real-world systems are likely to have many groups of nodes, we set k “ 5

for our synthetic NoNs, corresponding to five instances of each of the four random

graph model combinations. Then, we connect these isolated NoN regions by randomly

removing edges within level 2 node groups and randomly adding the same number

of edges across level 2 nodes groups (across-edge amount). Specifically, we repeat

the following process a%ˆ |Ep2q| times: (i) randomly select a level 2 node group, (ii)

randomly select an edge in that node group, (iii) delete that edge, (iv) randomly select

two level 2 nodes from different node groups, and (v) add an edge between the selected

nodes. If the resulting NoN is still disconnected, we redo the process with a different

random seed. While we could impose a condition to guarantee connectedness, doing

so would bias the generation. If a connected NoN can not be found after 10 tries,

we just continue with the last one. We start with a “ 5 to retain most of the level 2

node groups’ original GEO- and SF-like network topologies, and we vary a to be 25,

50, 75, and 95 to test the effect of breaking the network topologies down. This also

means that at a “ 5 there is significant clustering (each level 2 node group consists

of densely interconnected nodes), while at a “ 95 there is very little clustering.

We also introduce random rewiring to test each method’s robustness to data noise

(rewire-noise amount). Specifically, for r% rewire-noise, for each level 1 network, we

randomly delete r
100

ˆ |Ep1q| edges and randomly add the same number back. For the

level 2 network, for each node group, we randomly delete r% of t
|Ep2q|

5|Mp2q|
u edges and

randomly add the same number back. We vary r to be 0 (no noise), 10, 25, 50, 75,

100 (completely random).

292

D.1.1.2 PIN-PSN NoN

We construct a biological NoN using the human PIN and the proteins’ associated

PSNs. We obtain human PPI data from BioGrid [156] version 4.1.190. We keep only

physical interactions, remove selfloops and multiedges, and take the largest connected

component. This results in a final size of 18,708 nodes and 434,527 edges.

We map proteins in our PIN to their corresponding PDB IDs as follows. Con-

sidering the proteins’ BioGrid IDs, we use UniProt’s [34] mapping service (version

2020_06) to obtain BioGrid-to-UniProt mappings. Any mappings that are not re-

viewed (i.e., not Swiss-Prot) are discarded. Next, we remove any mapped data when

more than one BioGrid ID is mapped to a UniProt ID and vice versa, leaving only

one-to-one mappings between BioGrid IDs and UniProt IDs. Then, we repeat the

process starting with the proteins’ official symbol IDs. As such, for each protein, we

have two UniProt IDs: one originating from its BioGrid ID and the other from its

official symbol ID. To remove any ambiguity moving forward, we only keep proteins

whose two UniProt IDs are equal. In total, we have 16,079 such UniProt IDs.

Given these UniProt IDs, we again use UniProt’s mapping service, but this time

to map UniProt IDs to PDB IDs. Then, we remove any PDB ID whose PDB struc-

ture has a resolution greater than or equal to 3.0Å, as PDB considers these to be “low

resolution” [131]. Next, to obtain a one-to-one mapping between Uniprot IDs and

PDB IDs, we form one set out of every protein sequence associated with the UniProt

IDs and another set out of every protein sequence associated with every PDB chain

(each PDB ID can have multiple corresponding chains). We perform all-vs-all pro-

tein sequence comparison using BLASTP [5] between these two sets and take only

reciprocal best hits as our final one-to-one UniProt-to-PDB mappings. After this

step, we have 4,776 PDB chains.

Regarding GO term labels, we only consider those GO terms with 20 or more

positive instances to ensure there is enough data to perform classification on.

293

D.1.2 Existing approaches for label prediction

Recall that we consider graph theoretic approaches based on graphlets and graph

learning approaches, namely, SIGN and DiffPool.

Graphlets are small subgraphs (a path, triangle, square, etc.) that can be con-

sidered the building blocks of networks, and they can be used to extract features of

both nodes and networks. For each node in a general network, for each automorphism

orbit (intuitively, node symmetry group) in a graphlet, one can count the number of

times the node is a part of a given graphlet orbit. These counts are summarized into

the node’s feature, also called its graphlet degree vector (GDV); when considering

up to 4-node graphlets, GDVs will have length 15. Then, to extract features of the

entire network, GDVs of all nodes can be collected into the network’s GDV matrix

(GDVM) feature. One drawback of the GDVM feature is that its dimensions depend

on the number of nodes in the network – if performing graph classification of differ-

ent sized networks using GDVM features, issues can arise. Thus, we also consider a

transformation of the GDVM, the graphlet correlation matrix (GCM) [173], which

always has the same dimensions regardless of network size.

Given these definitions of graphlet features for nodes in a general network or for

the entire general network itself, we now explain which features we use for nodes in

a level 2 network and which features we use for level 1 networks. For the former,

we extract each level 2 node’s GDV (L2 GDV). For the latter, we extract each level

1 network’s GDVM and GCM (L1 GDVM and L1 GCM). We use L1 GDVM when

analyzing synthetic NoNs since we found that it outperformed L1 GCM. For the

biological NoN, L1 GCM is the only viable feature since level 1 networks (PSNs)

have different numbers of nodes (amino acids).

Then, to obtain NoN graphlet features, we concatenate level 2 nodes’ L2 GDVs

with their networks’ L1 GDVMs or L1 GCMs. This results in five graphlet-based

features: those for level 1 networks (L1 GDVM and L1 GCM) that are used for

294

graph label prediction, those for nodes in a level 2 network (L2 GDV) that are used

for node label prediction, and those for the entire NoN (L1 GDVM + L2 GDV and

L1 GCM + L2 GDV) that are used for entity label prediction. In order to perform

classification, for each graphlet-based feature, we train a logistic regression classifier

(Supplementary Section D.1.4). So for example, when we say L2 GDV, we mean the

L2 GDV feature under logistic regression.

SIGN consists of two parts. First, it extracts different types of adjacency matrices

from a network. SIGN specifically considers the traditional adjacency matrix, the

Personalized PageRank-based adjacency matrix [92], the triangle-induced adjacency

matrix [118], and their powers (see Supplementary Section D.1.4 for which powers

are used); these matrices are concatenated row-wise. Second, they are given as input

into a neural network classifier. Mathematically, SIGN overall is equivalent to an

ensemble of multiple one-layer-deep (i.e., shallow) GCN classifiers, which is why it is

considered a graph learning approach.

DiffPool aims to perform graph classification. However, unlike graphlet-based

approaches and SIGN, which extract “general purpose” features of nodes/networks

that can be used in any downstream machine learning task (label prediction in our

study), DiffPool does not extract general purpose features. Instead, for each input

network, given initial features for each node, DiffPool uses a GNN to aggregate the

nodes’ initial features into a summary hidden feature for the entire network. Then,

given hidden features corresponding to the input networks, the GNN is trained to

perform graph classification. Since the GNN is trained over many iterations, the

hidden feature is dependent on the training data and can only be used as a part

of DiffPool’s GNN. When we say L1 DiffPool, we mean its GNN with the initial

features chosen (Supplementary Section D.1.4), for graph classification using only

level 1 networks.

295

As SIGN and DiffPool are single-level graph learning approaches, we also com-

bine them into an NoN graph learning approach. Given each level 2 node’s feature

extracted by SIGN, we concatenate it with the level 2 node’s corresponding level 1

network’s hidden feature computed by DiffPool’s GNN. The GNN is then trained

on these concatenated features to perform classification (note that any general pur-

pose feature can be incorporated into DiffPool like this). When we say L1 DiffPool

+ L2 SIGN, we mean entity label prediction using the process described above, in-

corporating SIGN’s extracted feature into DiffPool’s GNN. So, we use three graph

learning-based approaches: L1 DiffPool, L2 SIGN, and L1 DiffPool + L2 SIGN.

We also combine L1 GDVM + L2 GDV or L1 GCM + L2 GDV with L1 DiffPool

+ L2 SIGN to test whether integrating information across the graph theoretic and

graph learning domains improves upon either alone. Graphlet-based features can be

incorporated into DiffPool using the process described previously.

In total, we have five single-level approaches: L1 GDVM, L1 GCM, L2 GDV, L1

DiffPool, and L2 SIGN; and five NoN approaches: L1 GDVM + L2 GDV, L1 GCM

+ L2 GDV, L1 DiffPool + L2 SIGN, L1 GDVM + L2 GDV + L1 DiffPool + L2

SIGN, and L1 GCM + L2 GDV + L1 DiffPool + L2 SIGN.

Finally, note that we did test node2vec [66], a prominent random walk-based

embedding method, as a graph learning approach. node2vec extracts general purpose

features like graphlets and SIGN, so we used it with logistic regression. However,

DiffPool outperformed node2vec in level 1 graph classification, SIGN outperformed

node2vec in level 2 node classification, and L1 DiffPool + L2 SIGN outperformed

any combination involving node2vec in level 2 node classification for the entire NoN.

D.1.3 Our integrative GCN approach

Here, we describe how we generalize GCNs to apply to NoNs. First, we summarize

basic GCNs. Second, we discuss our extensions.

296

The important unit of a GCN is the graph convolutional layer, which works as

follows. For each node in some network G “ pV,Eq, the node’s features are aggregated

with its neighbors’ features and then these aggregated features are propagated to the

next layer of the neural network. More formally, summarized from [90], let A be

the adjacency matrix of G and H be a |V | ˆ d matrix of G’s nodes’ features at the

current layer (the ith row corresponds to the feature of the ith node). Then, forward

propagation is carried out through

fpH,Aq “ σpD̃´ 1
2 ÃD̃´ 1

2HW q, (D.2)

where W is the trainable weight matrix for the current layer, σ is an activation func-

tion, Ã “ A`I is the adjacency matrix with self-loops added (so that mathematically,

the aggregation actually includes each node’s features along with its neighbors fea-

tures) and D̃ is the diagonal node degree matrix used for normalizing the adjacency

matrix.

Essentially, graph convolutions allow each node to see information about its neigh-

bors. So, what if we generalized graph convolutions to NoNs so that each node sees

information not only about its neighbors (in the same level), but also about its cor-

responding network at a lower level or about the network it is a part of at a higher

level? This would be in line with our intuition that the feature of a protein should

contain information about how it interacts with other proteins (i.e., its topology in

the level 2 network) and properties of the protein itself that allow for such interac-

tions (topology of level 1 nodes in its level 1 network). So, we define a two part

NoN-GCN layer consisting of one part that propagates level 2 nodes and another

part that propagates level 1 nodes that attempts to do this (below and Fig. D.1).

297

Figure D.1. Illustration of the two part NoN-GCN layer. In the level 1
NoN-GCN layer, the level 1 node circled in red receives features from its
neighbors in its level 1 network as well as features of the level 2 node its level
1 network corresponds to. This is done for every level 1 node in every level
1 network. In the level 2 NoN-GCN layer, the level 2 node circled in red
received features from its neighbors in the level 2 network as well as features
of each of the level 1 nodes in its level 1 network. This is done for every level
2 node in the level 2 network.

Let tGp2q “ pV p2q, Ep2qq and tG
p1q

1 , ..., G
p1q

|V p2q|
uu be an NoN. Let Ap2q be the adja-

cency matrix of Gp2q. Let Hk p2q be the |V p2q| ˆ d matrix of features for Gp2q after the

kth neural network layer; for k “ 0, this would correspond to the input feature matrix

(for example, Gp2q’s GDVM or GCM). Let h
k p2q

i be the feature vector of the ith node

v
p2q

i P V p2q (for example, vp2q

i ’s GDV). Let Ap1q

i be the adjacency matrix of vp2q

i ’s level

1 network G
p1q

i . Let H
k p1q

i be the |V
p1q

i | ˆ d matrix of features for G
p1q

i after the kth

neural network layer. Let h
k p1q

ij
be the feature vector of the jth node v

p1q

ij
of Gp1q

i .

Propagation at level 2 works as follows. For each node v
p2q

i , for the feature matrix

H
k p1q

i of its corresponding level 1 network G
p1q

i , we take the average over all of H
k p1q

i ’s

rows to obtain a 1ˆd vector as a “summary” feature vector of Gp1q

i . Then, we combine

these resulting vectors over all level 1 networks into a |V p2q| ˆ d matrix H̄k p2q, where

each row corresponds to a level 1 network. In other words, H̄k p2q can be thought of

as the feature matrix of the level 2 network based on each node’s level 1 network

(whereas Hk p2q is the feature matrix of the level 2 network based on each level 2

node). Then, our level 2 NoN-GCN layer forward propagation is carried out through

298

Hk`1 p2q
“ fk`1

l2p Hk p2q, H̄k p2q, Ap2q
q “

σpD̃p2q
´ 1

2 Ãp2qD̃p2q
´ 1

2

p Hk p2q
` H̄k p2q

q Wk`1 p2q
q,

(D.3)

where Wk`1 p2q is the trainable weight matrix for the level 2 NoN-GCN layer, σ is an

activation function, Ã “ A ` I is the adjacency matrix with self-loops added and D̃

is the diagonal node degree matrix used for normalizing the adjacency matrix.

Propagation at level 1 works as follows. For each node v
p1q

ij
in each level 1 network

G
p1q

i “ pV
p1q

i , E
p1q

i q, we sum its feature with all of its neighbors’ features as well as

the feature of Gp1q

i ’s corresponding level 2 node. Mathematically, this corresponds to

the following for each level 1 network. Let H̄
k p1q

i be a |V
p1q

i | ˆ d matrix consisting of

h
k p2q

i repeated |V
p1q

i | times. This can be thought of as the (naive) feature matrix of

the level 1 network based on its corresponding level 2 node. Importantly H̄
k p1q

i has

the same dimensions as H
k p1q

i . Then, level 1 NoN-GCN layer forward propagation is

carried out for one level 1 network through

H
k`1 p1q

i “ fk`1
l1i

p H̄
k p1q

i , H
k p1q

i , A
p1q

i q

“ σpD̃p1q
´ 1

2

i Ãp1q
iD̃p1q

´ 1
2

i

p H
k p1q

i ` H̄
k p1q

i q W
k`1 p1q

i q,

(D.4)

where W
k`1 p1q

i is the trainable weight matrix for the ith level 1 network for the current

level 1 NoN-GCN layer, σ is an activation function, Ã “ A`I is the adjacency matrix

with self-loops added and D̃ is the diagonal node degree matrix used for normalizing

the adjacency matrix.

299

So, one full NoN-GCN layer takes as input

Hk p2q, H̄k p2q, Ap2q,

t H̄
k p1q

1 , ..., H̄
k p1q

|V p2q|
u,

t H
k p1q

1 , ..., H
k p1q

|V p2q|
u,

and tA
p1q

1 , ..., A
p1q

|V p2q|
u,

(D.5)

and returns Hk`1 p2q and t H
k`1 p1q

1 , ..., H
k`1 p1q

|V p2q|
u. These outputs can then be fed as

inputs (along with H̄k`1 p2q, which can be constructed from t H
k`1 p1q

1 , ..., H
k`1 p1q

|V p2q|
u,

and each H̄
k`1 p1q

i , which can be constructed from its corresponding h
k`1 p2q

i) into

another NoN-GCN layer, thus allowing these layers to be chained.

We refer to a GCN approach using λ layers as “GCN-λ”.

Note that our implementation of the above is based on the spektral GNN library

[65].

D.1.4 Evaluation

For a given NoN tGp2q “ pV p2q, Ep2qq and tG
p1q

1 , ..., G
p1q

|V p2q|
uu, its label set Y “

y1, ..., yc, and a function that maps level 2 nodes to their true labels ftrue : V p2q Ñ Y ,

the goal is to learn a predictive function fpred : V
p2q Ñ Y . We do this by first splitting

the data into three disjoint sets: training (V p2q

tr), validation (V p2q

val), and testing (V p2q

te).

Then, we train a classifier on the training set that aims to minimize the cross-entropy

loss between ftruepV
p2q

tr q and fpredpV
p2q

tr q. We using V
p2q

val to optimize hyperparameters

and finally report the classifier’s performance on V
p2q

te . Details are as follows.

Denote Y “ y1, ..., yc to be the set of possible level 2 node labels (recall for

synthetic NoNs, given m random graph models, multiclass classification is done on

m ˆ m labels; for the real-world NoN, for each of the 131 ground truth datasets,

binary classification is done on whether proteins have the corresponding label or not)

300

and ftrue : V p2q Ñ Y to be a function that maps level 2 nodes to their true labels.

We split the set of level 2 nodes V p2q into three disjoint subsets as follows. p% of

the data is randomly removed from V p2q and put into the training set V
p2q

tr . Half of

the data remaining from V p2q is randomly removed and put into the validation set

V
p2q

val . The remaining data is put into the testing set V
p2q

te . This results in three sets

with size ratio p:1´p
2

:1´p
2

. Importantly, this splitting is done with the constraint that

the distribution of node labels in each of the three sets matches the original label

distribution of V p2q as closely as possible (i.e., stratified sampling). We train the

classifier on V
p2q

tr , optimize hyperparameters using V
p2q

val , and report results on V
p2q

te .

We repeat the random data splitting 3 different times and perform classification for

each, reporting the average results over them. We do this 3 times so that 1) the

effect of randomness from sampling reduced and 2) running the the approaches is

still computationally feasible. For synthetic NoNs, we choose p “ 0.8 (corresponding

to a 8:1:1 data ratio), as this is a common split amount when data is not scarce. For

real-world NoNs, we choose p “ 1{3 (corresponding to a 1:1:1 data ratio). Because

some of the ground truth sets have as few as 20 positive instances, larger values of p

would result in the validation/testing sets having too few of them.

Below, we describe classifier details. For graphlet-based approaches, we use each

of L1 GDVM, L1 GCM, L2 GDV, L1 GDVM + L2 GDV, and L1 GCM + L2 GDV

in logistic regression. For L2 SIGN, we use its features in own classifier. We refer

to these as “regular classification”. For approaches involving DiffPool, we run them

as described in Supplementary Section D.1.2. We refer to these as “DiffPool-based

classification”. Finally, we refer to classification using NoN-GCNs as “NoN-GCN-

based” classification.

For a given data split, for each feature we consider in regular classification, we

train the corresponding classifier using the ADAM optimizer on V
p2q

tr . We test the

following learning rates t0.1, 0.01, 0.001u and choose the best one with respect to

301

performance when predicting on V
p2q

val . Then, we use this best classifier to predict on

V
p2q

te .

For a given data split, for DiffPool-based classification, we perform a grid search

over the following hyperparameters: hidden dimension: t32, 64, 128u and output

dimension: t32, 64, 128u. We choose the best combination with respect to perfor-

mance when prediction on V
p2q

val and use this best classifier to predict on V
p2q

te .

For a given data split, for NoN-GCN-based classification, we train a neural net-

work that consists of two NoN-GCN layers, each followed by dropout layers, fol-

lowed by a logistic regression classifier (i.e., one fully connected hidden layer). We

specifically add this logistic regression classifier on the end of the neural network,

rather than directly performing classification from the final NoN-GCN layer, to make

the NoN-GCN-based classification as fairly comparable as possible to the regular

classification. Note that for synthetic NoNs with two random graph models, we

tested a version of the neural network with three NoN-GCN layers. However, be-

cause two NoN-GCN layers was as good as three for the majority of the evalua-

tion tests, and because three layers took much more time to compute, we continued

with two layers. We also use the ADAM optimizer. We perform a grid search

over the following hyperparameters: learning rate: t0.1, 0.01, 0.001u, dropout:

t0.0, 0.1, 0.2, 0.3, 0.4, 0.5u, hidden dimension: t128, 256, 512u and choose the best

combination with respect to performance when predicting on V
p2q

val . Then, we use this

best classifier to predict on V
p2q

te .

Both DiffPool and our NoN-GCN require initial features. Ideally, they should use

the same type of initial features so that they are as fairly comparable as possible.

Our NoN-GCN has stricter limitations for what initial features can be used because

it requires level 2 nodes’ initial features to be in the same low dimensional space as

level 1 nodes’ initial features, otherwise it does not make sense to aggregate them.

So, we determined initial features for our NoN-GCN first. We tested random features

302

of lengths 128, 256, and 512, and nodes’ GDVs (each index in the GDV corresponds

to the number of times the node participates in that specific graphlet orbit; hence,

GDVs are in the same low dimensional space) and found that GDVs were the best.

So, we use nodes’ GDV as initial features for our NoN-GCN. Thus, we also use nodes’

GDVs as initial features into DiffPool.

For synthetic NoNs, we report classification accuracy (# of correct predictions /

total # of entities) since class sizes are balanced. For the real-world NoNs, we report

area under precision-recall (AUPR), precision@k, recall@k, and F-score@k, since class

sizes are not balanced. Here @k refers to the corresponding measure when only

considering the top k predictions. That is, for each approach, for each GO term, we

rank each protein for which a prediction is made by the probability that it annotated

by the given GO term, as determined by the approach’s classifier. Then, we compute

the corresponding measure on the top k items of the ranked list. To determine k,

for each approach, for each GO term, we do the following. We choose the k that

maximizes the F-score@k where precision@k is greater than recall@k. We impose

precision@k to be greater than recall@k because we believe that in the biomedical

domain, precision is more important – fewer but mostly correct predictions (e.g., 9

correct out of 10 made), which corresponds to high precision, is better than a greater

number of mostly incorrect predictions (e.g., 300 correct out of 1,000 made), which

corresponds to high recall, in terms of potential wet lab validation. By choosing k in

this way, we give each classifier the best case advantage. We report precision, recall,

and F-score at this k.

We also test if each approach’s performance is significantly better than random.

That is, given an approach, for each measure, for each GO term, we use a one sam-

ple one-tailed t-test (recall that each approach is run 3 times, corresponding to 3

different training/validation/testing splits) to see if the approach’s performance is

significantly greater than the value expected by random. Then, for each measure, for

303

each approach, we perform FDR correction over the 131 GO terms. For each mea-

sure, for each GO term, any approach with a corrected p-value ă 0.05 is considered

significantly better than random for that GO term.

D.2 Results

D.2.1 Synthetic NoNs

We expect an approach only using one level to reach an accuracy of # of models
of labels ,

i.e., 0.5. To see why, consider the following example using the L1 GDVM approach.

Here, there are four possible labels corresponding to the four possible combinations of

random graph models at each level: GEO-GEO, GEO-SF, SF-GEO, SF-SF. Since L1

GDVM uses level 1 information, it will be able to distinguish between GEO and SF

level 1 networks but not between level 2 nodes with GEO- and SF- topology. So, L1

GDVM will only have enough information to predict 2
4

“ 0.5 of the labels correctly.

D.2.2 Biological NoN

304

(a) (b)

(c) (d)

(e) (f)

Figure D.2. Comparison of the nine relevant approaches in the task of entity
label prediction for synthetic NoNs with 5% across-edge amount and the
following rewire-noise amounts: (a) 0%, (b) 10%, (c) 25%, (d) 50%, (e)
75%, and (f) 100%. “Combined all” refers to L1 GDVM + L2 GDV + L1
DiffPool + L2 SIGN. Raw prediction accuracies are shown above. “Combined
all” refers to L1 GDVM + L2 GDV + L1 DiffPool + L2 SIGN. Accuracy is
shown above the bars.

305

(a) (b)

(c) (d)

(e) (f)

Figure D.3. Comparison of the nine relevant approaches in the task of entity
label prediction for synthetic NoNs with 25% across-edge amount and the
following rewire-noise amounts: (a) 0%, (b) 10%, (c) 25%, (d) 50%, (e)
75%, and (f) 100%. “Combined all” refers to L1 GDVM + L2 GDV + L1
DiffPool + L2 SIGN. Raw prediction accuracies are shown above. “Combined
all” refers to L1 GDVM + L2 GDV + L1 DiffPool + L2 SIGN. Accuracy is
shown above the bars.

306

(a) (b)

(c) (d)

(e) (f)

Figure D.4. Comparison of the nine relevant approaches in the task of entity
label prediction for synthetic NoNs with 50% across-edge amount and the
following rewire-noise amounts: (a) 0%, (b) 10%, (c) 25%, (d) 50%, (e)
75%, and (f) 100%. “Combined all” refers to L1 GDVM + L2 GDV + L1
DiffPool + L2 SIGN. Raw prediction accuracies are shown above. “Combined
all” refers to L1 GDVM + L2 GDV + L1 DiffPool + L2 SIGN. Accuracy is
shown above the bars.

307

(a) (b)

(c) (d)

(e) (f)

Figure D.5. Comparison of the nine relevant approaches in the task of entity
label prediction for synthetic NoNs with 75% across-edge amount and the
following rewire-noise amounts: (a) 0%, (b) 10%, (c) 25%, (d) 50%, (e)
75%, and (f) 100%. “Combined all” refers to L1 GDVM + L2 GDV + L1
DiffPool + L2 SIGN. Raw prediction accuracies are shown above. “Combined
all” refers to L1 GDVM + L2 GDV + L1 DiffPool + L2 SIGN. Accuracy is
shown above the bars.

308

(a) (b)

(c) (d)

(e) (f)

Figure D.6. Comparison of the nine relevant approaches in the task of entity
label prediction for synthetic NoNs with 95% across-edge amount and the
following rewire-noise amounts: (a) 0%, (b) 10%, (c) 25%, (d) 50%, (e)
75%, and (f) 100%. “Combined all” refers to L1 GDVM + L2 GDV + L1
DiffPool + L2 SIGN. Raw prediction accuracies are shown above. “Combined
all” refers to L1 GDVM + L2 GDV + L1 DiffPool + L2 SIGN. Accuracy is
shown above the bars.

309

(a) (b)

(c) (d)

Figure D.7. Summarized results of the eight relevant approaches in the
task of protein functional prediction for evaluation measures (a) AUPR, (b)
precision, (a) recall, and (a) F-score. For each GO term (out of the 131
total), we rank the eight approaches’ classification performances from best
(rank 1) to worst (rank 8). If an approach’s performance is not significantly
better than expected by random we deem it “non-significant” instead. Then
for each approach, we calculate the proportion of times it achieves each rank.
“Combined all” refers to L1 GDVM + L2 GDV + L1 DiffPool + L2 SIGN.

310

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure D.8: Overlap of GO terms for which L2 SIGN is the best with those for which
(a, e, i, m) L1 GCM + L2 GDV, (b, f, j, n) L1 DiffPool + L2 SIGN, (c, g, k, o)
Combined all (aka L1 GDVM + L2 GDV + L1 DiffPool + L2 SIGN), and (d, h, l,
p) GCN-2 are the best in terms of (a, b, c, d) AUPR, (e, f, g, h) precision, (i, j,
k, l) recall, and (m, n, o, p) F-score.

311

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure D.9: Overlaps of the four combined level approaches for groups (a, c, e, g)
“S ă C” and (b, d, f, h) “C only” in terms of (a, b) AUPR, (c, d) precision, (e, f)
recall, (g, h) F-score.

312

Figure D.10: Classification performance of the eight relevant approaches for each GO
term in terms of AUPR. GO term IDs and the number of positive instances for that
GO term are shown above. Random performance is indicated by the dotted black
line. Approaches with performance not significantly greater than random are shown
in a lighter shade. GO terms are split into the six groups based on how single versus
combined level approaches perform. “Combined all” refers to L1 GDVM + L2 GDV
+ L1 DiffPool + L2 SIGN. Raw scores for each approach for each GO term can be
found in Supplementary File D.1.

313

Figure D.11: Classification performance of the eight relevant approaches for each GO
term in terms of precision. GO term IDs and the number of positive instances for
that GO term are shown above. Random performance is indicated by the dotted
black line. Approaches with performance not significantly greater than random are
shown in a lighter shade. GO terms are split into the six groups based on how single
versus combined level approaches perform. “Combined all” refers to L1 GDVM + L2
GDV + L1 DiffPool + L2 SIGN. Raw scores for each approach for each GO term can
be found in Supplementary File D.2.

314

Figure D.12: Classification performance of the eight relevant approaches for each GO
term in terms of recall. GO term IDs and the number of positive instances for that
GO term are shown above. Random performance is indicated by the dotted black
line. Approaches with performance not significantly greater than random are shown
in a lighter shade. GO terms are split into the six groups based on how single versus
combined level approaches perform. “Combined all” refers to L1 GDVM + L2 GDV
+ L1 DiffPool + L2 SIGN. Raw scores for each approach for each GO term can be
found in Supplementary File D.3.

315

Figure D.13: Classification performance of the eight relevant approaches for each GO
term in terms of F-score. GO term IDs and the number of positive instances for that
GO term are shown above. Random performance is indicated by the dotted black
line. Approaches with performance not significantly greater than random are shown
in a lighter shade. GO terms are split into the six groups based on how single versus
combined level approaches perform. “Combined all” refers to L1 GDVM + L2 GDV
+ L1 DiffPool + L2 SIGN. Raw scores for each approach for each GO term can be
found in Supplementary File D.4.

316

D.2.3 Running times

Reported times for all approaches except those involving DiffPool (L1 DiffPool,

L1 DiffPool + L2 SIGN, and L1 GDVM + L2 GDV + L1 DiffPool + L2 SIGN) are

obtained by running on the same machine, fully using one core, for fairness; of course,

for practical purposes, some approaches can easily be parallelized given available

resources. Training for DiffPool-based approaches must be done on GPU. We report

their training times on a cluster machine, which means that their times for training

are affected by resource availability/scheduling. While DiffPool-based approaches

are not run under the same conditions as other approaches, we still commented on

their running times, as in a realistic scenario, approaches may be run using different

resources as we have done here.

We run all approaches except those involving DiffPool using one core on a 64-core

AMD Opteron 6376 machine. We run approaches involving DiffPool on a cluster

machine with Dual Twelve-core 2.2GHz Intel Xeon processors and 4 NVIDIA GeForce

GTX 1080 Ti GPUs, accessed through Notre Dame’s Center for Research Computing.

317

TABLE D.1

RUNNING TIMES OF EACH APPROACH IN SECONDS. “COMBINED

ALL” REFERS TO L1 GDVM + L2 GDV + L1 DIFFPOOL + L2 SIGN

Feature
extraction

Training

(1 epoch)
Total

L1 GDVM 485.0 2.2 487.2

L2 GDV 2.1 1.5 3.6

L1 GDVM + L2 GDV 487.1 2.1 489.2

L1 DiffPool 485.0 140.1 625.3

L2 SIGN 6.4 17.6 23.4

L1 DiffPool + L2 SIGN 491.4 25.6 516.4

Combined all 493.5 29.4 522.5

GCN-2 487.1 30.3 517.1

GCN-3 487.1 128.8 615.1

318

D.3 Supplementary files

File D.1. GuS022022D_supplementary4.csv. Raw AUPR scores of the eight relevant

approaches for each GO term in each of the six groups.

File D.2. GuS022022D_supplementary5.csv. Raw precision scores of the eight rele-

vant approaches for each GO term in each of the six groups.

File D.3. GuS022022D_supplementary6.csv. Raw recall scores of the eight relevant

approaches for each GO term in each of the six groups.

File D.4. GuS022022D_supplementary7.csv. Raw F-scores of the eight relevant

approaches for each GO term in each of the six groups.

319

BIBLIOGRAPHY

1. S. Aguinaga, D. Chiang, and T. Weninger. Learning hyperedge replacement
grammars for graph generation. IEEE transactions on pattern analysis and
machine intelligence, 41(3):625–638, 2018.

2. N. K. Ahmed, J. Neville, R. A. Rossi, and N. Duffield. Efficient graphlet counting
for large networks. In 2015 IEEE International Conference on Data Mining
(ICDM), pages 1–10. IEEE, 2015.

3. A. E. Aladağ and C. Erten. SPINAL: scalable protein interaction network
alignment. Bioinformatics, 29(7):917–924, 2013.

4. F. Alkan and C. Erten. BEAMS: backbone extraction and merge strategy for
the global many-to-many alignment of multiple PPI networks. Bioinformatics,
30(4):531–539, 2014.

5. S. F. Altschul, T. L. Madden, A. A. Schäffer, et al. Gapped BLAST and PSI-
BLAST: a new generation of protein database search programs. Nucleic Acids
Research, 25(17):3389–3402, 1997.

6. D. Aparício, P. Ribeiro, T. Milenković, and F. Silva. GoT-WAVE: Tem-
poral network alignment using graphlet-orbit transitions. arXiv preprint
arXiv:1808.08195, 2018.

7. D. Aparício, P. Ribeiro, T. Milenković, and F. Silva. Temporal network align-
ment via GoT-WAVE. Bioinformatics, 35(18):3527–3529, 2019.

8. M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry,
A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, et al. Gene Ontology: tool
for the unification of biology. Nature Genetics, 25(1):25, 2000.

9. S. Bamford, E. Dawson, S. Forbes, J. Clements, R. Pettett, A. Dogan, A. Flana-
gan, J. Teague, P. A. Futreal, M. R. Stratton, et al. The COSMIC (Catalogue of
Somatic Mutations in Cancer) database and website. British Journal of Cancer,
91(2):355, 2004.

10. A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Sci-
ence, 286(5439):509–512, 1999.

11. A.-L. Barabási et al. Network science. Cambridge University Press, 2016.

320

12. D. S. Bassett and M. G. Mattar. A network neuroscience of human learning:
Potential to inform quantitative theories of brain and behavior. Trends in Cog-
nitive Sciences, 21(4):250–264, 2017.

13. A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Automatic
differentiation in machine learning: a survey. Journal of machine learning re-
search, 18, 2018.

14. N. C. Berchtold, D. H. Cribbs, P. D. Coleman, J. Rogers, E. Head, R. Kim,
T. Beach, C. Miller, J. Troncoso, J. Q. Trojanowski, et al. Gene expression
changes in the course of normal brain aging are sexually dimorphic. Proceedings
of the National Academy of Sciences, 105(40):15605–15610, 2008.

15. D. Berenberg, V. Gligorijevic, and R. Bonneau. Graph embeddings for protein
structural comparison. 3DSIG: Structural Bioinformatics and Computational
Biophysics at The 29th Conference on Intelligent Systems for Molecular Biology
and the 20th European Conference on Computational Biology (ISMB/ECCB
2021)., Jul 2021.

16. J. Berg and M. Lässig. Local graph alignment and motif search in biological
networks. Proceedings of the National Academy of Sciences of the United States
of America, 101(41):14689–14694, 2004.

17. J. Berg and M. Lässig. Cross-species analysis of biological networks by bayesian
alignment. Proceedings of the National Academy of Sciences, 103(29):10967–
10972, 2006.

18. C. Berge. Graphs and hypergraphs. North-Holland Pub. Co., 1973.

19. H. M. Berman, J. Westbrook, Z. Feng, et al. The protein data bank. Nucleic
Acids Research, 28(1):235–242, 2000.

20. S. Bhagat, G. Cormode, and S. Muthukrishnan. Node classification in social
networks. In Social Network Data Analytics, pages 115–148. Springer, 2011.

21. B.-J. Breitkreutz, C. Stark, T. Reguly, L. Boucher, A. Breitkreutz, M. Livstone,
R. Oughtred, D. H. Lackner, J. Bähler, V. Wood, K. Dolinski, and M. Tyers.
The BioGRID Interaction Database: 2008 update. Nucleic Acids Research, 36:
D637–D640, 2008. doi: 10.1093/nar/gkm1001.

22. H. Cai, V. W. Zheng, and K. C.-C. Chang. A comprehensive survey of graph
embedding: Problems, techniques, and applications. IEEE Transactions on
Knowledge and Data Engineering, 30(9):1616–1637, 2018.

23. X. Cao, Z. Chen, X. Zhang, and Y. Yu. IMAP: An iterative method for aligning
protein-protein interaction networks. In 2017 IEEE International Conference
on Bioinformatics and Biomedicine (BIBM), pages 317–324. IEEE, 2017.

321

24. A. Chatr-Aryamontri, R. Oughtred, L. Boucher, J. Rust, C. Chang, N. K. Kolas,
L. O’Donnell, S. Oster, C. Theesfeld, A. Sellam, et al. The BioGRID interaction
database: 2017 update. Nucleic Acids Research, 45(D1):D369–D379, 2017.

25. P.-Y. Chen, C.-C. Tu, P. Ting, et al. Identifying influential links for event
propagation on twitter: A network of networks approach. IEEE Transactions
on Signal and Information Processing over Networks, 5(1):139–151, 2018.

26. R. T. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud. Neural ordinary
differential equations. arXiv preprint arXiv:1806.07366, 2018.

27. L. Chindelevitch, C.-S. Liao, and B. Berger. Local optimization for global align-
ment of protein interaction networks. In Biocomputing 2010, pages 123–132.
World Scientific, 2010.

28. X. Chu, X. Fan, D. Yao, Z. Zhu, J. Huang, and J. Bi. Cross-network embedding
for multi-network alignment. In The World Wide Web Conference, pages 273–
284, 2019.

29. G. Ciriello, M. Mina, P. H. Guzzi, M. Cannataro, and C. Guerra. AlignNemo:
a local network alignment method to integrate homology and topology. PLOS
ONE, 7(6):e38107, 2012.

30. C. Clark and J. Kalita. A comparison of algorithms for the pairwise alignment
of biological networks. Bioinformatics, 30(16):2351–2359, 2014.

31. A. Clauset, C. Moore, and M. E. Newman. Hierarchical structure and the
prediction of missing links in networks. Nature, 453(7191):98–101, 2008.

32. S. Collins, P. Kemmeren, X. Zhao, J. Greenblatt, F. Spencer, F. Holstege,
J. Weissman, and N. Krogan. Toward a comprehensive atlas of the physical
interactome of saccharomyces cerevisiae. Molecular Cell Proteomics, 6(3):439–
450, Mar. 2007.

33. A. I. M. Consortium, M. Dreze, A.-R. Carvunis, B. Charloteaux, M. Galli,
S. J. Pevzner, M. Tasan, Y.-Y. Ahn, P. Balumuri, A.-L. Barabási, V. Bautista,
P. Braun, D. Byrdsong, H. Chen, J. D. Chesnut, M. E. Cusick, J. L. Dangl,
C. de los Reyes, A. Dricot, M. Duarte, J. R. Ecker, C. Fan, L. Gai, F. Gebreab,
G. Ghoshal, P. Gilles, B. J. Gutierrez, T. Hao, D. E. Hill, C. J. Kim, R. C. Kim,
C. Lurin, A. MacWilliams, U. Matrubutham, T. Milenkovic, J. Mirchandani,
D. Monachello, J. Moore, M. S. Mukhtar, E. Olivares, S. Patnaik, M. M. Poulin,
N. Przulj, R. Quan, S. Rabello, G. Ramaswamy, P. Reichert, E. A. Rietman,
T. Rolland, V. Romero, F. P. Roth, B. Santhanam, R. J. Schmitz, P. Shinn,
W. Spooner, J. Stein, G. M. Swamilingiah, S. Tam, J. Vandenhaute, M. Vidal,
S. Waaijers, D. Ware, E. M. Weiner, S. Wu, and J. Yazaki. Evidence for Network
Evolution in an Arabidopsis Interactome Map. Science, 333(6042):601–607,
2011.

322

34. U. Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids
Research, 47(D1):D506–D515, 2019.

35. S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of
the Third Annual ACM Symposium on Theory of Computing, pages 151–158.
ACM, 1971.

36. J. Crawford, Y. Sun, and T. Milenković. Fair evaluation of global network
aligners. Algorithms for Molecular Biology, 10(1):19, 2015.

37. P. Cui, X. Wang, J. Pei, and W. Zhu. A survey on network embedding. IEEE
Transactions on Knowledge and Data Engineering, 31(5):833–852, 2018.

38. J. P. de Magalhães. Aging research in the post-genome era: New technologies
for an old problem. Redox Metabolism and Longevity Relationships in Animals
and Plants. Taylor and Francis, New York and Abingdon, pages 99–115, 2009.

39. J. Dohrmann, J. Puchin, and R. Singh. Global multiple protein-protein inter-
action network alignment by combining pairwise network alignments. In BMC
Bioinformatics, volume 16, page S11. Springer, 2015.

40. S. Dong, H. Wang, A. Mostafizi, and X. Song. A network-of-networks perco-
lation analysis of cascading failures in spatially co-located road-sewer infras-
tructure networks. Physica A: Statistical Mechanics and Its Applications, 538:
122971, 2020.

41. Y. Dong, N. V. Chawla, and A. Swami. metapath2vec: Scalable representation
learning for heterogeneous networks. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 135–
144, 2017.

42. B. Du and H. Tong. Mrmine: Multi-resolution multi-network embedding. In
Proceedings of the 28th ACM International Conference on Information and
Knowledge Management, pages 479–488, 2019.

43. B. DuSell and D. Chiang. Learning hierarchical structures with differentiable
nondeterministic stacks. arXiv preprint arXiv:2109.01982, 2021.

44. M. El-Kebir, J. Heringa, and G. Klau. Natalie 2.0: sparse global network
alignment as a special case of quadratic assignment. Algorithms, 8(4):1035–
1051, 2015.

45. R. Elhesha, A. Sarkar, C. Boucher, and T. Kahveci. Identification of co-evolving
temporal networks. BMC Genomics, 20(6):434, 2019.

46. K. W. Ellens, N. Christian, C. Singh, V. P. Satagopam, P. May, and C. L.
Linster. Confronting the catalytic dark matter encoded by sequenced genomes.
Nucleic Acids Research, 45(20):11495–11514, 2017.

323

47. A. Elmsallati, C. Clark, and J. Kalita. Global alignment of protein-protein
interaction networks: A survey. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 13(4):689–705, 2016.

48. F. Emmert-Streib, M. Dehmer, and Y. Shi. Fifty years of graph matching,
network alignment and network comparison. Information Sciences, 346:180–
197, 2016.

49. P. Erdős and A. Rényi. On the evolution of random graphs. Publ. Math. Inst.
Hung. Acad. Sci, 5(1):17–60, 1960.

50. B. S. Everitt, S. Landau, and M. Leese. Cluster Analysis. Wiley, 2001.

51. F. E. Faisal and T. Milenković. Dynamic networks reveal key players in aging.
Bioinformatics, 30(12):1721–1729, 2014.

52. F. E. Faisal, H. Zhao, and T. Milenković. Global network alignment in the con-
text of aging. IEEE/ACM Transactions on Computational Biology and Bioin-
formatics, 12(1):40–52, 2014.

53. F. E. Faisal, L. Meng, J. Crawford, and T. Milenković. The post-genomic
era of biological network alignment. EURASIP Journal on Bioinformatics and
Systems Biology, 2015(1):3, 2015.

54. F. E. Faisal, H. Zhao, and T. Milenković. Global network alignment in the con-
text of aging. IEEE/ACM Transactions on Computational Biology and Bioin-
formatics, 12(1):40–52, 2015.

55. F. E. Faisal, K. Newaz, J. L. Chaney, et al. GRAFENE: Graphlet-based
alignment-free network approach integrates 3d structural and sequence (residue
order) data to improve protein structural comparison. Scientific Reports, 7(1):
1–15, 2017.

56. E. B. Falk and D. S. Bassett. Brain and social networks: fundamental building
blocks of human experience. Trends in Cognitive Sciences, 21(9):674–690, 2017.

57. J. Fan, A. Cannistra, I. Fried, T. Lim, T. Schaffner, M. Crovella, B. Hescott, and
M. D. Leiserson. Functional protein representations from biological networks
enable diverse cross-species inference. Nucleic Acids Research, 47(9):e51–e51,
2019.

58. J. Flannick, A. Novak, B. S. Srinivasan, H. H. McAdams, and S. Batzoglou.
Graemlin: general and robust alignment of multiple large interaction networks.
Genome Research, 16(9):1169–1181, 2006.

59. J. Flannick, A. Novak, C. Do, B. Srinivasan, and S. Batzoglou. Automatic pa-
rameter learning for multiple network alignment. In Research in Computational
Molecular Biology, pages 214–231. Springer, 2008.

324

60. P. Gaudet, N. Škunca, J. C. Hu, and C. Dessimoz. Primer on the gene ontology.
In The Gene Ontology Handbook, pages 97–109. Humana Press, New York, NY,
2017.

61. V. Gligorijević and N. Pržulj. Methods for biological data integration: perspec-
tives and challenges. Journal of the Royal Society Interface, 12(112):20150571,
2015.

62. V. Gligorijević, N. Malod-Dognin, and N. Pržulj. Fuse: multiple network align-
ment via data fusion. Bioinformatics, 32(8):1195–1203, 2016.

63. V. Gligorijević, P. D. Renfrew, T. Kosciolek, J. K. Leman, D. Berenberg,
T. Vatanen, C. Chandler, B. C. Taylor, I. M. Fisk, H. Vlamakis, et al. Structure-
based protein function prediction using graph convolutional networks. Nature
Communications, 12(1):1–14, 2021.

64. P. Goyal and E. Ferrara. Graph embedding techniques, applications, and per-
formance: A survey. Knowledge-Based Systems, 151:78–94, 2018.

65. D. Grattarola and C. Alippi. Graph neural networks in tensorflow and keras
with spektral. arXiv preprint arXiv:2006.12138, 2020.

66. A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 855–864. ACM, 2016.

67. S. Gu and T. Milenković. Graphlets versus node2vec and struc2vec in the task
of network alignment. arXiv preprint arXiv:1805.04222, 2018.

68. S. Gu and T. Milenković. Data-driven network alignment. PloS one, 15(7):
e0234978, 2020.

69. S. Gu and T. Milenković. Data-driven biological network alignment that uses
topological, sequence, and functional information. BMC bioinformatics, 22(1):
1–24, 2021.

70. S. Gu, J. Johnson, F. E. Faisal, and T. Milenković. From homogeneous to
heterogeneous network alignment via colored graphlets. Scientific Reports, 8
(1):12524, 2018.

71. S. Gu, M. Jiang, P. H. Guzzi, and T. Milenkovic. Modeling multi-scale data via
a network of networks. arXiv preprint arXiv:2105.12226, 2021.

72. P. H. Guzzi and T. Milenković. Survey of local and global biological network
alignment: the need to reconcile the two sides of the same coin. Briefings in
Bioinformatics, 19(3):472–481, 2017.

73. S. Hashemifar and J. Xu. HubAlign: an accurate and efficient method for global
alignment of protein–protein interaction networks. Bioinformatics, 30(17):i438–
i444, 2014.

325

74. S. Hashemifar, Q. Huang, and J. Xu. Joint alignment of multiple protein–
protein interaction networks via convex optimization. Journal of Computational
Biology, 23(11):903–911, 2016.

75. S. Hashemifar, J. Ma, H. Naveed, S. Canzar, and J. Xu. ModuleAlign: module-
based global alignment of protein-protein interaction networks. Bioinformatics,
32(17):i658, 2016.

76. W. B. Hayes and N. Mamano. SANA NetGO: a combinatorial approach to
using Gene Ontology (GO) terms to score network alignments. Bioinformatics,
34(8):1345–1352, 2017.

77. M. Heimann, H. Shen, T. Safavi, and D. Koutra. Regal: Representation
learning-based graph alignment. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Management, pages 117–126. ACM,
2018.

78. J. Hibshman, S. Sikdar, and T. Weninger. Towards interpretable graph modeling
with vertex replacement grammars. In 2019 IEEE International Conference on
Big Data (Big Data), pages 770–779. IEEE, 2019.

79. T. Hočevar and J. Demšar. A combinatorial approach to graphlet counting.
Bioinformatics, 30(4):559–565, 2014.

80. J. Hu, B. Kehr, and K. Reinert. NetCoffee: a fast and accurate global align-
ment approach to identify functionally conserved proteins in multiple networks.
Bioinformatics, 30(4):540–548, 2013.

81. J. Hu, J. He, Y. Gao, Y. Zheng, and X. Shang. NetCoffee2: A Novel Global
Alignment Algorithm for Multiple PPI Networks Based on Graph Feature Vec-
tors. In International Conference on Intelligent Computing, pages 241–246.
Springer, 2018.

82. Y. Hulovatyy, R. W. Solava, and T. Milenković. Revealing missing parts of the
interactome via link prediction. PLOS ONE, 9(3):e90073, 2014.

83. R. Ibragimov, M. Malek, and J. Baumbach. GEDEVO: An evolutionary graph
edit distance algorithm for biological network alignment. In GCB, pages 68–79,
2013.

84. R. Ibragimov, M. Malek, J. Guo, and J. Baumbach. Multiple graph edit distance
- simultaneous topological alignment of multiple protein-protein interaction net-
works with an evolutionary algorithm. In Proc. of Annual Conf. on Genetic and
Evolutionary Computation, pages 277–284, 2014.

85. H. Jeong, X. Qian, and B.-J. Yoon. Effective comparative analysis of protein-
protein interaction networks by measuring the steady-state network flow using a
Markov model. In BMC Bioinformatics, volume 17, page 395. BioMed Central,
2016.

326

86. M. Kalaev, M. Smoot, T. Ideker, and R. Sharan. NetworkBLAST: comparative
analysis of protein networks. Bioinformatics, 24(4):594–596, 2008.

87. K. Kalecky and Y.-R. Cho. PrimAlign: PageRank-inspired Markovian align-
ment for large biological networks. Bioinformatics, 34(13):i537–i546, 2018.

88. B. P. Kelley, R. Sharan, R. M. Karp, T. Sittler, D. E. Root, B. R. Stockwell, and
T. Ideker. Conserved pathways within bacteria and yeast as revealed by global
protein network alignment. Proceedings of the National Academy of Sciences,
100(20):11394–11399, 2003.

89. B. P. Kelley, B. Yuan, F. Lewitter, R. Sharan, B. R. Stockwell, and T. Ideker.
PathBLAST: a tool for alignment of protein interaction networks. Nucleic Acids
Research, 32(suppl_2):W83–W88, 2004.

90. T. N. Kipf and M. Welling. Semi-supervised classification with graph convolu-
tional networks. arXiv preprint arXiv:1609.02907, 2016.

91. G. W. Klau. A new graph-based method for pairwise global network alignment.
BMC Bioinformatics, 10(1):S59, 2009.

92. J. Klicpera, S. Weißenberger, and S. Günnemann. Diffusion improves graph
learning. In 33rd Conference on Neural Information Processing Systems, 2019.

93. M. Kotlyar, C. Pastrello, Z. Malik, and I. Jurisica. IID 2018 update: context-
specific physical protein–protein interactions in human, model organisms and
domesticated species. Nucleic Acids Research, 47(D1):D581–D589, 2019.

94. M. Koyutürk, Y. Kim, U. Topkara, S. Subramaniam, W. Szpankowski, and
A. Grama. Pairwise alignment of protein interaction networks. Journal of
Computational Biology, 13(2):182–199, 2006.

95. O. Kuchaiev and N. Pržulj. Integrative network alignment reveals large regions
of global network similarity in yeast and human. Bioinformatics, 27(10):1390–
1396, 2011.

96. O. Kuchaiev, T. Milenković, V. Memišević, W. Hayes, and N. Pržulj. Topolog-
ical network alignment uncovers biological function and phylogeny. Journal of
the Royal Society Interface, 7(50):1341–1354, 2010.

97. M. Li, Q. Zhang, and Y. Deng. Evidential identification of influential nodes in
network of networks. Chaos, Solitons & Fractals, 117:283–296, 2018.

98. Z. Liang, M. Xu, M. Teng, and L. Niu. NetAlign: a web-based tool for compar-
ison of protein interaction networks. Bioinformatics, 22(17):2175–2177, 2006.

99. C.-S. Liao, K. Lu, M. Baym, R. Singh, and B. Berger. IsoRankN: spectral
methods for global alignment of multiple protein networks. Bioinformatics, 25
(12):i253–i258, 2009.

327

100. C. W. Lynn and D. S. Bassett. Compressibility of complex networks. arXiv
preprint arXiv:2011.08994, 2020.

101. A. Mali, A. Ororbia, D. Kifer, and L. Giles. Recognizing long grammatical
sequences using recurrent networks augmented with an external differentiable
stack. In International Conference on Grammatical Inference, pages 130–153.
PMLR, 2021.

102. N. Malod-Dognin and N. Pržulj. L-GRAAL: Lagrangian graphlet-based network
aligner. Bioinformatics, 31(13):2182–2189, 2015.

103. N. Mamano and W. B. Hayes. SANA: simulated annealing far outperforms many
other search algorithms for biological network alignment. Bioinformatics, 33
(14):2156–2164, 02 2017. ISSN 1367-4803. doi: 10.1093/bioinformatics/btx090.
URL https://dx.doi.org/10.1093/bioinformatics/btx090.

104. D. Marcus and Y. Shavitt. Rage–a rapid graphlet enumerator for large networks.
Computer Networks, 56(2):810–819, 2012.

105. L. R. Matthews, P. Vaglio, J. Reboul, H. Ge, B. P. Davis, J. Garrels, S. Vincent,
and M. Vidal. Identification of potential interaction networks using sequence-
based searches for conserved protein-protein interactions or “interologs”. Genome
Research, 11(12):2120–2126, 2001.

106. G. K. Mazandu and N. J. Mulder. DaGO-fun: tool for gene ontology-based func-
tional analysis using term information content measures. BMC Bioinformatics,
14(1):284, 2013.

107. V. Memišević and N. Pržulj. C-GRAAL: Common-neighbors-based global
GRAph ALignment of biological networks. Integrative Biology, 4(7):734–743,
2012.

108. V. Memišević, T. Milenković, and N. Pržulj. Complementarity of network and
sequence information in homologous proteins. Journal of integrative bioinfor-
matics, 7(3):275–289, 2010.

109. V. Memišević, T. Milenković, N., and N. Pržulj. Complementarity of network
and sequence structure in homologous proteins. Journal of Integrative Bioin-
formatics, 9:121–137, 2010.

110. L. Meng, A. Striegel, and T. Milenković. Local versus global biological network
alignment. Bioinformatics, 32(20):3155–3164, 2016.

111. M. Milano, P. H. Guzzi, and M. Cannataro. HetNetAligner: a novel algorithm
for local alignment of heterogeneous biological networks. In Proceedings of the
2018 ACM International Conference on Bioinformatics, Computational Biology,
and Health Informatics, pages 598–599. ACM, 2018.

328

https://dx.doi.org/10.1093/bioinformatics/btx090

112. T. Milenković and N. Pržulj. Uncovering biological network function via
graphlet degree signatures. Cancer Informatics, 6:CIN–S680, 2008.

113. T. Milenković, J. Lai, and N. Pržulj. GraphCrunch: a tool for large network
analyses. BMC Bioinformatics, 9(1):70, 2008.

114. T. Milenković, W. L. Ng, W. Hayes, and N. Pržulj. Optimal network alignment
with graphlet degree vectors. Cancer Informatics, 9:121, 2010.

115. T. Milenković, H. Zhao, and F. E. Faisal. Global network alignment in the con-
text of aging. In Proceedings of the International Conference on Bioinformatics,
Computational Biology and Biomedical Informatics, page 23. ACM, 2013.

116. M. Mina and P. H. Guzzi. AlignMCL: Comparative analysis of protein inter-
action networks through Markov clustering. In 2012 IEEE International Con-
ference on Bioinformatics and Biomedicine Workshops, pages 174–181. IEEE,
2012.

117. M. Mina and P. H. Guzzi. Improving the robustness of local network align-
ment: design and extensive assessment of a markov clustering-based ap-
proach. IEEE/ACM Transactions on Computational Biology and Bioinformat-
ics (TCBB), 11(3):561–572, 2014.

118. F. Monti, K. Otness, and M. M. Bronstein. Motifnet: a motif-based graph
convolutional network for directed graphs. In 2018 IEEE Data Science Workshop
(DSW), pages 225–228. IEEE, 2018.

119. F. Morone, K. Roth, B. Min, et al. Model of brain activation predicts the neural
collective influence map of the brain. Proceedings of the National Academy of
Sciences, 114(15):3849–3854, 2017.

120. R. Mugur, P. Smitha, and M. Pallavi. Predicting the Functions of Unknown
Protein by Analyzing Known Protein Interaction: A survey. Biomedical and
Pharmacology Journal, 11(3):1707–1715, 2018.

121. J. R. Munkres. Elements of Algebraic Topology. CRC press, 2018.

122. A. Narayanan, E. Shi, and B. I. Rubinstein. Link prediction by de-
anonymization: How we won the kaggle social network challenge. In The 2011
International Joint Conference on Neural Networks (IJCNN), pages 1825–1834.
IEEE, 2011.

123. H. Nassar and D. F. Gleich. Multimodal network alignment. In Proceedings
of the 2017 SIAM International Conference on Data Mining, pages 615–623.
SIAM, 2017.

124. W. Nelson, M. Zitnik, B. Wang, J. Leskovec, A. Goldenberg, and R. Sharan.
To embed or not: network embedding as a paradigm in computational biology.
Frontiers in Genetics, 10, 2019.

329

125. K. Newaz, M. Ghalehnovi, A. Rahnama, P. J. Antsaklis, and T. Milenković.
Network-based protein structural classification. Royal Society Open Science, 7
(6):191461, 2018.

126. B. Neyshabur, A. Khadem, S. Hashemifar, and S. S. Arab. NETAL: a new
graph-based method for global alignment of protein–protein interaction net-
works. Bioinformatics, 29(13):1654–1662, 2013.

127. J. Ni, M. Koyuturk, H. Tong, J. Haines, R. Xu, and X. Zhang. Disease gene
prioritization by integrating tissue-specific molecular networks using a robust
multi-network model. BMC Bioinformatics, 17(1):453, 2016.

128. G. Nikolentzos, P. Meladianos, and M. Vazirgiannis. Matching node embed-
dings for graph similarity. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 31, 2017.

129. C. Parkinson, A. M. Kleinbaum, and T. Wheatley. Similar neural responses
predict friendship. Nature Communications, 9(1):1–14, 2018.

130. R. Patro and C. Kingsford. Global network alignment using multiscale spectral
signatures. Bioinformatics, 28(23):3105–3114, 2012.

131. PDB. Pdb101: Learn: Guide to understanding pdb data:
Resolution, 2020. URL http://pdb101.rcsb.org/learn/
guide-to-understanding-pdb-data/resolution.

132. W. Peng, J. Wang, J. Cai, et al. Improving protein function prediction using
domain and protein complexes in PPI networks. BMC Systems Biology, 8(1):
35, 2014.

133. M. Penrose. Random geometric graphs, volume 5. Oxford University Press,
2003.

134. M. G. Perich and K. Rajan. Rethinking brain-wide interactions through multi-
region ‘network of networks’ models. Current Opinion in Neurobiology, 65:
146–151, 2020.

135. H. T. Phan and M. J. Sternberg. PINALOG: a novel approach to align protein
interaction networks—implications for complex detection and function predic-
tion. Bioinformatics, 28(9):1239–1245, 2012.

136. N. Pržulj. Biological network comparison using graphlet degree distribution.
Bioinformatics, 23(2):e177–e183, 2007.

137. M. Rahman, M. A. Bhuiyan, and M. Al Hasan. Graft: An efficient graphlet
counting method for large graph analysis. IEEE Transactions on Knowledge
and Data Engineering, 26(10):2466–2478, 2014.

330

http://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/resolution
http://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/resolution

138. E. Rossi, F. Frasca, B. Chamberlain, et al. SIGN: Scalable inception graph
neural networks. arXiv preprint arXiv:2004.11198, 2020.

139. R. A. Rossi, N. K. Ahmed, A. Carranza, D. Arbour, A. Rao, S. Kim, and E. Koh.
Heterogeneous network motifs. arXiv preprint arXiv:1901.10026, 2019.

140. B. Rost. Twilight zone of protein sequence alignments. Protein Engineering, 12
(2):85–94, 1999.

141. K. Roth, F. Morone, B. Min, and H. A. Makse. Emergence of robustness in
networks of networks. Physical Review E, 95(6):062308, 2017.

142. S. M. E. Sahraeian and B.-J. Yoon. SMETANA: accurate and scalable algorithm
for probabilistic alignment of large-scale biological networks. PLOS ONE, 8(7):
e67995, 2013.

143. V. Saraph and T. Milenković. MAGNA: maximizing accuracy in global network
alignment. Bioinformatics, 30(20):2931–2940, 2014.

144. B.-S. Seah, S. S. Bhowmick, and C. F. Dewey Jr. DualAligner: a dual alignment-
based strategy to align protein interaction networks. Bioinformatics, 30(18):
2619–2626, 2014.

145. J. Shang, M. Qu, J. Liu, L. M. Kaplan, J. Han, and J. Peng. Meta-path
guided embedding for similarity search in large-scale heterogeneous information
networks. arXiv preprint arXiv:1610.09769, 2016.

146. R. Sharan and T. Ideker. Modeling cellular machinery through biological net-
work comparison. Nature Biotechnology, 24(4), 2006.

147. R. Sharan, S. Suthram, R. M. Kelley, T. Kuhn, S. McCuine, P. Uetz, T. Sittler,
R. M. Karp, and T. Ideker. Conserved patterns of protein interaction in multiple
species. Proceedings of the National Academy of Sciences of the United States
of America, 102(6):1974–1979, 2005.

148. O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann. Pitfalls of graph
neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

149. A. Shehu, D. Barbará, and K. Molloy. A survey of computational methods for
protein function prediction. In Big Data Analytics in Genomics, pages 225–298.
Springer, 2016.

150. S. Sikdar, J. Hibshman, and T. Weninger. Modeling graphs with vertex re-
placement grammars. In 2019 IEEE International Conference on Data Mining
(ICDM), pages 558–567. IEEE, 2019.

151. J. E. Simpson, P. G. Ince, P. J. Shaw, P. R. Heath, R. Raman, C. J. Garwood,
C. Gelsthorpe, L. Baxter, G. Forster, F. E. Matthews, et al. Microarray analysis
of the astrocyte transcriptome in the aging brain: relationship to Alzheimer’s
pathology and APOE genotype. Neurobiology of Aging, 32(10):1795–1807, 2011.

331

152. O. Singh, K. Sawariya, and P. Aparoy. Graphlet signature-based scoring method
to estimate protein–ligand binding affinity. Royal Society Open Science, 1(4):
140306, 2014.

153. R. Singh, J. Xu, and B. Berger. Pairwise global alignment of protein interaction
networks by matching neighborhood topology. In Annual International Confer-
ence on Research in Computational Molecular Biology, pages 16–31. Springer,
2007.

154. R. Singh, J. Xu, and B. Berger. Global alignment of multiple protein interaction
networks with application to functional orthology detection. Proceedings of the
National Academy of Sciences, 105(35):12763–12768, 2008.

155. R. W. Solava, R. P. Michaels, and T. Milenković. Graphlet-based edge clustering
reveals pathogen-interacting proteins. Bioinformatics, 28(18):i480–i486, 2012.

156. C. Stark, B.-J. Breitkreutz, T. Reguly, et al. BioGRID: a general repository for
interaction datasets. Nucleic Acids Research, 34(suppl_1):D535–D539, 2006.

157. Y. Sun, A. K. Wong, and M. S. Kamel. Classification of imbalanced data: A
review. International Journal of Pattern Recognition and Artificial Intelligence,
23(04):687–719, 2009.

158. Y. Sun, J. Crawford, J. Tang, and T. Milenković. Simultaneous optimization
of both node and edge conservation in network alignment via WAVE. In In-
ternational Workshop on Algorithms in Bioinformatics, pages 16–39. Springer,
2015.

159. The Gene Ontology Consortium. Gene Ontology: tool for the unification of
biology. Nature Genetics, 25:25–29, 2000.

160. E. G. Tuncay and T. Can. SUMONA: A supervised method for optimizing
network alignment. Comput. Biol. Chem., 63:41–51, 2016.

161. V. Vacic, L. M. Iakoucheva, S. Lonardi, and P. Radivojac. Graphlet kernels for
prediction of functional residues in protein structures. Journal of Computational
Biology, 17(1):55–72, 2010.

162. V. Vijayan and T. Milenković. Aligning dynamic networks with DynaWAVE.
Bioinformatics, page btx841, 2017.

163. V. Vijayan and T. Milenković. Multiple network alignment via multi-
MAGNA++. IEEE/ACM Transactions on Computational Biology and Bioin-
formatics, PP(99), Aug 2017. doi: 10.1109/TCBB.2017.2740381.

164. V. Vijayan, V. Saraph, and T. Milenković. MAGNA++: Maximizing accuracy
in global network alignment via both node and edge conservation. Bioinformat-
ics, 31(14):2409–2411, 2015.

332

165. V. Vijayan, D. Critchlow, and T. Milenković. Alignment of dynamic networks.
Bioinformatics, 33(14):i180–i189, 2017.

166. V. Vijayan, S. Gu, E. Krebs, L. Meng, and T. Milenković. Pairwise versus
multiple global network alignment. IEEE Access, 2020.

167. N. X. Vinh, J. Epps, and J. Bailey. nformation theoretic measures for clusterings
comparison: Variants, properties, normalization and correction for chance. The
Journal of Machine Learning Research, 11:410–420, 2007.

168. H. Wang, D. Lian, Y. Zhang, et al. GoGNN: Graph of graphs neural network
for predicting structured entity interactions. In Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelligence, 2020.

169. X.-D. Wang, J.-L. Huang, L. Yang, D.-Q. Wei, Y.-X. Qi, and Z.-L. Jiang. Iden-
tification of human disease genes from interactome network using graphlet in-
teraction. PLOS ONE, 9(1):e86142, 2014.

170. F. Wu, T. Zhang, H. de Souza, et al. Simplifying graph convolutional networks.
Proceedings of Machine Learning Research, 2019.

171. X. Wu, Q. Liu, and R. Jiang. Align human interactome with phenome to identify
causative genes and networks underlying disease families. Bioinformatics, 25(1):
98–104, 2009. doi: 10.1093/bioinformatics/btn593.

172. J. Xu, T. L. Wickramarathne, and N. V. Chawla. Representing higher-order
dependencies in networks. Science Advances, 2(5):e1600028, 2016.

173. Ö. N. Yaveroğlu, N. Malod-Dognin, D. Davis, et al. Revealing the hidden
language of complex networks. Scientific Reports, 4:4547, 2014.

174. Ö. N. Yaveroğlu, T. Milenković, and N. Pržulj. Proper evaluation of alignment-
free network comparison methods. Bioinformatics, 31(16):2697–2704, 2015.

175. J. Ye, S. McGinnis, and T. L. Madden. BLAST: improvements for better se-
quence analysis. Nucleic Acids Research, 34(Web Server issue):W6–W9, July
2006.

176. R. Ying, J. You, C. Morris, et al. Hierarchical graph representation learning
with differentiable pooling. In Proceedings of the 32nd International Conference
on Neural Information Processing Systems, pages 4805–4815, 2018.

177. R. You, Z. Zhang, Y. Xiong, F. Sun, H. Mamitsuka, and S. Zhu. Golabeler:
improving sequence-based large-scale protein function prediction by learning to
rank. Bioinformatics, 34(14):2465–2473, 2018.

178. M. Zaslavskiy, F. Bach, and J.-P. Vert. Global alignment of protein–protein
interaction networks by graph matching methods. Bioinformatics, 25(12):i259–
1267, 2009.

333

179. F. Zhang, H. Song, M. Zeng, et al. DeepFunc: a deep learning framework for
accurate prediction of protein functions from protein sequences and interactions.
Proteomics, 19(12):1900019, 2019.

180. J. Zhang, B. Chen, X. Wang, H. Chen, C. Li, F. Jin, G. Song, and Y. Zhang.
MEgo2Vec: Embedding Matched Ego Networks for User Alignment Across So-
cial Networks. In Proceedings of the 27th ACM International Conference on
Information and Knowledge Management, pages 327–336. ACM, 2018.

181. S. Zhang, H. Chen, K. Liu, and Z. Sun. Inferring protein function by domain
context similarities in protein-protein interaction networks. BMC Bioinformat-
ics, 10(1):1–6, 2009.

182. Y. Zhang and J. Skolnick. TM-align: a protein structure alignment algorithm
based on the TM-score. Nucleic Acids Research, 33(7):2302–2309, 2005.

183. N. Zhou, Y. Jiang, T. R. Bergquist, A. J. Lee, B. Z. Kacsoh, A. W. Crocker,
K. A. Lewis, G. Georghiou, H. N. Nguyen, M. N. Hamid, et al. The CAFA
challenge reports improved protein function prediction and new functional an-
notations for hundreds of genes through experimental screens. Genome Biology,
20(1):1–23, 2019.

This document was prepared & typeset with pdfLATEX, and formatted with
nddiss2ε classfile (v3.2017.2[2017/05/09])

334

	Abstract
	Contents
	Figures
	Tables
	Chapter 1: Introduction
	1.1 Overview
	1.2 Network alignment
	1.2.1 Background
	1.2.2 Related work
	1.2.3 Research questions and our contributions

	1.3 Modeling multi-scale data via a network of networks
	1.3.1 Background
	1.3.2 Related work
	1.3.3 Research questions and our contributions

	1.4 Organization of the dissertation

	Chapter 2: Pairwise versus multiple network alignment
	2.1 Introduction
	2.1.1 Background and motivation
	2.1.2 Our contributions

	2.2 Methods
	2.2.1 Data
	2.2.2 Network alignment methods that we evaluate
	2.2.3 Alignment quality measures
	2.2.4 Evaluation framework

	2.3 Results and discussion
	2.3.1 Topology versus topology+sequence alignments
	2.3.2 Method comparison: evaluation details
	2.3.3 Method comparison: results in the pairwise evaluation framework
	2.3.4 Method comparison: results in the multiple evaluation framework
	2.3.5 Method comparison: focusing on accuracy of protein function prediction

	2.4 Conclusion

	Chapter 3: Heterogeneous network alignment
	3.1 Introduction
	3.1.1 Background and motivation
	3.1.2 Our contributions

	3.2 Results and discussion
	3.2.1 Evaluation
	3.2.2 Comparison of homogeneous and heterogeneous network alignment

	3.3 Methods
	3.3.1 Calculating node similarities, i.e., node conservation
	3.3.2 From homogeneous to heterogeneous node conservation
	3.3.3 From homogeneous to heterogeneous edge conservation
	3.3.4 From homogeneous to heterogeneous network alignment

	3.4 Conclusion

	Chapter 4: Data-driven network alignment
	4.1 TARA: Data-driven network alignment
	4.1.1 Introduction
	4.1.2 Methods
	4.1.3 Results and discussion
	4.1.4 Conclusion

	4.2 TARA++: Data-driven network alignment that integrates topology and sequence to predict function
	4.2.1 Introduction
	4.2.2 Methods
	4.2.3 Results and discussion
	4.2.4 Conclusion

	Chapter 5: Modeling multi-scale data via a network of networks
	5.1 Introduction
	5.1.1 Our contributions
	5.1.2 Related work

	5.2 Methods
	5.2.1 Network of networks definition
	5.2.2 Problem statement
	5.2.3 Data
	5.2.4 Approaches for label prediction
	5.2.5 Evaluation

	5.3 Results and discussion
	5.3.1 Accuracy on synthetic networks of networks
	5.3.2 Accuracy on the biological network of networks
	5.3.3 Running time analysis

	5.4 Conclusion

	Chapter 6: Concluding remarks
	Appendix A: Pairwise versus multiple network alignment
	A.1 Methods
	A.1.1 NA methods that we evaluate
	A.1.2 Alignment quality measures
	A.1.3 Evaluation framework
	A.1.4 T versus T+S alignments
	A.1.5 Method comparison in the ME framework: accuracy versus running time

	A.2 Results
	A.3 Supplementary files

	Appendix B: Heterogeneous network alignment
	B.1 Results

	Appendix C: Data-driven network alignment
	C.1 TARA: Data-driven network alignment
	C.1.1 Results
	C.1.2 Supplementary files

	C.2 Towards TARA++: Integrating topology and sequence to prediction function
	C.2.1 Methods
	C.2.2 Results

	Appendix D: Modeling multi-scale data via a network of networks
	D.1 Methods
	D.1.1 Data
	D.1.2 Existing approaches for label prediction
	D.1.3 Our integrative GCN approach
	D.1.4 Evaluation

	D.2 Results
	D.2.1 Synthetic NoNs
	D.2.2 Biological NoN
	D.2.3 Running times

	D.3 Supplementary files

	Bibliography

