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GUIDELINES FOR NUMERICAL SEISMIC ANALYSIS OF REINFORCED

CONCRETE AXIAL-FLEXURAL ELEMENTS

Abstract

by

Juan Diego Pozo

In this dissertation, the capability of different distributed plasticity numerical
models to simulate the seismic behavior of reinforced concrete (RC) axial-flexural
elements, namely planar walls and square columns, is evaluated based on previous
experimental results of isolated wall and column test specimens as a well as a 7-story wall
building subassembly. Greater emphasis is placed on slender (flexure-dominant) structures
with softening post-peak behavior (due to concrete crushing with or without rebar
buckling) since this type of behavior has been commonly observed during experimental
tests and after earthquakes and its prediction can be highly sensitive to the mesh size used
in numerical modeling.

Results obtained in this dissertation include: 1) modeling recommendations to
simulate the cyclic global lateral force-displacement (F-D) behavior of slender and squat
RC walls, including a consistent mesh-sensitivity investigation; 2) a new metric to
guantitatively evaluate simulated hysteretic F-D curves as compared with measured curves;

3) plastic hinge integration models that use material regularization (i.e., regularized plastic



Juan Diego Pozo

hinge models) to accurately simulate and obtain objective (i.e., mesh-independent) global
and local (i.e., material strains and section curvatures) behaviors of slender planar RC walls
and square columns; 4) a new confined concrete crushing energy equation for regularized
constitutive models to simulate RC columns through failure; and 5) quantification of
variability in simulated dynamic seismic performance of RC wall structures from different
distributed plasticity models.

The results of this investigation are intended to improve current numerical
modeling guidelines for practitioners conducting nonlinear analysis of axial-flexural RC
walls and columns as part of performance-based seismic design. The results are also aimed
for researchers conducting detailed analysis to predict global and local wall and column

behaviors under seismic loading.
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CHAPTER 1:

INTRODUCTION

1.1 Motivation

Reinforced concrete (RC) axial-flexural elements (i.e., walls and columns) are often
used in building structures to resist seismic loads due to their high lateral strength and
deformation capacity. Current seismic design practices for these structures use linear
models and capacity principles following prescriptive building codes. However, this
traditional design approach cannot adequately predict the seismic performance and the
amount of damage of the structure. Examples of recent damage in RC buildings were
observed after the 2010 Chile, the 2011 New Zealand, and the 2017 Mexico earthquakes
[1-4]. As a result, the performance-based seismic design (PBSD) procedure is desirable to
explicitly evaluate the structural performance of buildings and obtain safer designs [5].

To implement PBSD for a building, accurate, effective, and robust nonlinear
numerical models are needed to simulate the cyclic seismic behavior of its structural
components. Because it is not simple to simulate the seismic behavior of a RC structure,
several documents with nonlinear modeling recommendations [6-11] for use in PBSD have
been published. These recommendations are available mainly for lumped plasticity models
(Figure 1.1a), even though the nonlinear behavior of RC elements can also be simulated

with other numerical models, as presented in Figure 1.1.



Lumped plasticity models (LPMs) concentrate the nonlinear behavior of an element
at its ends (i.e., at concentrated plastic hinges), while the remaining (inner) portion of the
element is considered to remain elastic. LPMs employ predefined nonlinear response (e.g.,
moment-rotation) relationships at the element ends, calibrated to simulate the overall
element behavior. LPMs are computationally efficient, robust, and relatively simple to
implement, however, these models cannot account for the effect of variations in axial load
during the analysis and there is no standardized guidance for its behavior under cyclic
loading [6].

Finite length plasticity models (FLPMSs), presented in Figure 1.1b, concentrate the
nonlinear axial-flexural behavior in a finite length of the element at its ends, while the
remaining (inner) portion of the element is considered to remain linear-elastic. The
nonlinear behavior is based on fiber sections that use uniaxial material stress-strain
relationships. Therefore, axial-flexural interaction due to variations in axial load can be
captured during the analysis, and the cyclic behavior is simulated through material cyclic
stress-strain relationships. However, the inner portion of the element cannot account for
changes in stiffness due to cracking, and the shear behavior is uncoupled from the axial-
flexural interaction in this model.

Distributed plasticity models (DPMs) are also based on fiber sections, but these
models allow the nonlinear axial-flexural behavior to develop along the entire length of the
element, as presented in Figure 1.1c. Therefore, simulation of cyclic axial-flexural
interaction as well as cracking along the entire element is considered during the analysis.
Additionally, depending on the element formulation, the shear behavior can be coupled or

uncoupled with axial-flexural interaction.



Finally, finite element models (FEMs), presented in Figure 1.1d, can represent the
nonlinear behavior of a structure by simulating its response at the continuum level. These
models can account for nonlinear, coupled axial-shear-flexural interaction, including
multiaxial stress-strain relationships. However, FEMs are generally impractical for PBSD
due to their high computational cost and complexities involved in building and running the
models, and interpreting the results.

Among the different available nonlinear models, the use of distributed plasticity
models (Figure 1.1c) has become more common among researchers to evaluate the seismic
behavior of RC structures due to their stability, accuracy, and modest computational cost
[12-18]. However, the ultimate (i.e., failure) displacement is highly mesh sensitive when
simulating RC elements with softening post-peak behavior (due to concrete crushing with
or without rebar buckling) [17-20]. Furthermore, different distributed plasticity models are
available for simulating the nonlinear behavior of RC elements [12-18], with different

assumptions involved in their formulations.



Figure 1.1: Types of nonlinear models: a) Lumped plasticity model
(LPM); b) finite length plasticity model (FLPM); c) distributed
plasticity model (DPM); d) finite element model (FEM). Based on
[21].

1.2 Objectives
Motivated by the recent increase in performance-based seismic design and by the
current limitations of distributed plasticity models, it behooves to elucidate the following
issues: Is it possible to provide reliable modeling guidelines for distributed plasticity
models to simulate the cyclic behavior of RC elements? Is it possible to extrapolate these
guidelines to simulate RC buildings? Is the seismic performance obtained with different
models equivalent? To answer these questions, the primary objective of this research is to
evaluate and provide guidelines for the nonlinear seismic analysis of axial-flexural RC
elements using distributed plasticity models. To this end, the specific research objectives

are to:

1. Evaluate existing nonlinear modeling approaches for isolated planar RC
walls and provide modeling recommendations to accurately predict their

global cyclic lateral force-displacement behavior based on previously tested
wall specimens.



Develop a regularized plastic hinge modeling approach to simulate both the
global and local cyclic behaviors of slender isolated RC walls and columns.

Evaluate wall modeling approaches based on comparisons with previous
shake-table test measurements of a 7-story wall building subassembly.

Quantify the variability in the predicted dynamic seismic performance of
RC wall buildings obtained by different nonlinear models.

The results of this investigation are intended to improve current modeling

guidelines for practitioners conducting nonlinear analysis of axial-flexural RC walls and

columns as part of performance-based seismic design. The results are also aimed for

researchers conducting detailed analysis to predict global and local wall and column

behaviors under seismic loading.

Among the different geometrical configurations and failure mode of RC walls and

columns, the scope of this investigation is as follows:

The focus of the research is mainly on slender planar isolated RC walls with
shear span-to-depth ratios, M/(VL,) > 2.0 and with axial-flexural
compression-controlled failure modes. However, four planar squat walls are
also studied in Chapter 2 to evaluate the benefits of axial-shear-flexural
coupled models to simulate shear-dominant failure modes.

The experimental columns used in this investigation are slender (shear span-
to-depth ratio, M/(VH) = 2.0) and have square cross-sections.

The investigation on regularized plastic hinge models is focused on
elements with softening post-peak behavior due to concrete crushing with
or without bar buckling.

The research is limited to in-plane lateral loads combined with gravity
loads.

More details about the geometry, materials, reinforcement ratios, and axial loads

used in the investigation can be found in each chapter of this document.
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1.4 Outline

This document is written in the format of four independent journal articles, where
each chapter is a self-contained paper that has been published or is currently in the process
of being peer-reviewed. As such, the remaining chapters of this document are organized as
follows:

Chapter 2 aims to evaluate existing nonlinear modeling approaches and provide
modeling recommendations to accurately simulate the global cyclic lateral force-
displacement (F-D) behavior of slender and squat isolated planar RC walls, which is the
first specific objective of this research. To this end, the capabilities of four different
distributed plasticity macro-models to predict the global F-D behaviors of four slender and
four squat, previously tested, planar wall specimens are quantitatively evaluated. This
chapter includes detailed information on all the material and modeling parameters required
by the different models, and an evaluation of the sensitivity of the F-D curves to different
wall model discretizations applied consistently among the models. Additionally, a new
quantitative approach is proposed to assess the hysteretic F-D behaviors predicted by the
numerical models.

Chapter 3 focuses on the development and evaluation of a regularized plastic hinge
modeling approach to simulate the global and local behaviors of slender planar RC walls,
which is part of the second specific objective of this research. Material regularization has
been used to obtain objective global F-D responses of RC elements, however, subsequent
normalization of the section curvatures based on an assumed plastic hinge length is
required to obtain objective local responses, resulting in a two-step analysis process.

Therefore, in this chapter, combination of the plastic hinge modeling concept with the



material regularization concept is proposed and evaluated to result in a one-step analysis
procedure. The proposed model allows the ability to obtain accurate and objective global
and local responses, with no need for a separate curvature normalization step. Analysis
results from plastic hinge models considering several regularized and unregularized
concrete stress-strain relationships are shown. Additionally, it is demonstrated that the
proposed regularized plastic hinge model increases the accuracy of the predicted ultimate
displacement, with significant reduction in mesh-sensitivity, when simulating slender
planar RC walls.

Chapter 4 addresses the part of the second specific objective of this research
pertaining to slender columns. The accuracy of simulating the global and local behaviors
of slender square RC columns is evaluated using plastic hinge models with unregularized
and regularized concrete stress-strain relationships. A new confined concrete crushing
energy equation for the regularization of the post-peak stress-strain relationship is proposed
to reduce model mesh-sensitivity in predicting the ultimate displacement of RC columns,
showing accurate results when compared with available test data.

Chapter 5 aims to (1) evaluate wall modeling approaches based on comparisons
with available measurements from shake-table tests, which is the third specific objective
of this research, and (2) quantify the variability in the dynamic performance of slender
reinforced concrete wall buildings simulated using different numerical modeling
approaches, which is the fourth specific objective of this research. For these two objectives,
fiber-based two-node line-element models (e.g., FLPM and DPM) are considered. The
models use the same material constitutive relationships and other analysis inputs (e.g.,

damping) so that the quantified variability in the building performance is caused by the



numerical modeling approach rather than user-selected parameters. First, the model results
are evaluated against the measured shake-table behavior of a 7-story RC wall building
tested at the University of California, San Diego. Then, nonlinear dynamic analyses of the
7-story wall test specimen and three RC wall archetype buildings of 4-, 8-, and 12-stories
are conducted to quantify the variability in selected seismic performance assessment
parameters. Based on the results, it is strongly recommended that the performance
assessment of slender RC wall buildings be done using global response parameters rather
than local response parameters, since the variability of the predicted response among the
nonlinear models was significantly smaller for global response parameters.

Finally, Chapter 6 summarizes the findings and conclusions from this dissertation

and outlines future work identified based on this research.



CHAPTER 2:
QUANTITATIVE ASSESSMENT OF NONLINEAR MACRO-MODELS FOR

GLOBAL LATERAL LOAD BEHAVIOR AND DESIGN OF PLANAR RC WALLS

In this chapter, two shear-uncoupled and two shear-coupled distributed plasticity
macro-models are evaluated to address the first specific objective of this research. The
chapter presents detailed information on the modeling parameters used to simulate the
cyclic global lateral force-displacement (F-D) behaviors of eight planar RC walls with
flexure-dominant as well as shear-dominant behaviors. The chapter also presents a
sensitivity analysis of the F-D curves to different wall model discretizations applied
consistently between the models, and proposes a new quantitative approach to assess the
hysteretic behaviors predicted by the models. Examples of modeling input files are

presented in Appendix A.

2.1 Introduction

In Chile, US, New Zealand, Japan, Colombia, and many other countries located in
high seismicity areas, reinforced concrete (RC) walls are often used in buildings to resist
seismic loads due to their high lateral stiffness, strength, and deformation capacity. The
majority of these buildings are designed using linear models and a capacity design
procedure. However, this traditional design approach cannot predict the seismic

performance or the amount of damage of RC wall buildings adequately. Examples of recent
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damage in such buildings were observed after the 2010 Chile and the 2011 New Zealand
earthquakes [1-3]. As a result, the Performance-Based Seismic Design (PBSD) procedure
is desirable to explicitly evaluate the performance of buildings and obtain safer designs [5].

To implement PBSD in a RC structural wall building, accurate, effective, and
robust nonlinear numerical models are needed to simulate its seismic behavior. Hence,
several standards with recommendations to develop nonlinear models and to evaluate the
seismic performance of buildings have been published for conducting PBSD [6-11]. The
recommendations for RC walls are mainly focused on lumped plasticity models. However,
several alternate modeling techniques for estimating the nonlinear response of RC walls
have also been developed [12,13,27,28,14,15,17,22-26].

Numerical modeling approaches for the nonlinear cyclic response of RC walls can
be divided into two groups: 1) micro-modeling approaches; and 2) macro-modeling
approaches. Micro-modeling approaches are based on finite elements and can estimate
detailed responses of RC walls. However, due to their high computational cost and
complexities involved in the interpretation of the results, micro-models are generally
impractical for PBSD [16,27,29]. In comparison, macro-models are more computationally
efficient and can still accurately predict the hysteretic response of RC walls. These latter
models can be further classified into two groups: i) shear-uncoupled models, with axial-
flexural interaction and independent shear behavior; and ii) shear-coupled models, with
axial-shear-flexural interaction. Because macro-models are faster and simpler to
implement than micro-models, macro-models are more appealing for predicting the

seismic response of structural walls in engineering practice.
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Although macro-models are attractive for PBSD, their assumptions and modeling
parameters should be understood to select an appropriate model. Additionally, the
predicted responses are sensitive to the input parameters, thus generating confusion and
difficulties for practical applications. Several researchers have investigated the
performance of different macro-models by simulating the behavior of experimentally
tested RC walls. A brief overview of some of these investigations is provided below.

Orakcal et al. [30] modified the shear-uncoupled Multiple-Vertical-Line-Element-
Model (MVLEM) proposed by Vulcano et al. [31] by implementing refined constitutive
relations for the concrete and reinforcing steel materials. The model was validated by
simulating the cyclic response of slender walls, where material stress-strain relationships
were calibrated to represent the experimentally measured properties. Additionally, the
sensitivity of the model response to the material and model parameters was studied.

Kolozvari [32] improved the MVLEM model to include shear and flexure coupled
behavior of RC walls. The proposed model, called Shear-Flexure Interaction MVLEM
(SFI-MVLEM), was validated against experimental results from RC walls with shear span-
to-depth ratios M /(VL,,) of 1.5 and 2.0. The results were found to be sensitive to modeling
parameters, which needed to be calibrated for reliable prediction of nonlinear wall
behaviors.

Pugh et al. [18] investigated force-based fiber-element models to capture the
behavior of slender walls and their failure mechanism. The concrete material parameters
were based on the compressive strength, while parameters to define the steel material
model were taken from experimentally-reported material properties. The study concluded

that regularization of the post-peak concrete compressive behavior is needed to obtain
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accurate and mesh-objective simulations of slender RC walls. For this purpose, equations
to obtain the concrete crushing energy to regularize confined and unconfined concrete
models in compression were recommended. These equations were adopted by the Applied
Technology Council [10].

Lowes et al. [20] studied the shear wall model available in PERFORM 3D software
to analyze slender RC walls. Recommendations of modeling parameters for unconfined
concrete, confined concrete, and reinforcing steel were provided, as well as regularization
recommendations to define the post-peak compressive stress-strain behavior of concrete.

Lu et al. [13] modified the Beam Truss Model (BMT) [33,34] and simulated the
response of tested walls that experienced both shear dominated and flexure dominated
failures. The effects of different model parameters were evaluated and recommendations
were developed about the angle of the diagonal elements, in-plane flexural rigidity of the
vertical elements, and tensile strength of concrete in the horizontal elements. The material
properties used in the models were based on the reported material properties for the
simulated walls.

Kolozvari et al. [35] provided a state-of-the-art review of five RC wall macro-
models. Although the study provided extensive descriptions and simulation capabilities of
the numerical models for the global and local responses of tested walls with different
characteristics, a detailed description of the modeling parameters required to generate each

model was not presented.
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2.2 Scope, Objectives, and Original Contributions
Overall, previous investigations have shown the capabilities of a variety of macro-
models to simulate the nonlinear response of RC walls. The scope of this chapter is a further
contribution on this topic by targeting and addressing the following gaps from previous
research:
1. Mesh-sensitivity analyses have been performed using few walls and few

mesh discretizations that are not consistently applied among the different
models.

2. Effectiveness of the numerical simulations has been quantitatively
evaluated based on the effective stiffness, maximum strength, and ultimate
displacement. However, these parameters are based on the envelope of F-D
curves and do not evaluate the hysteretic behavior (i.e., pinching, reloading
and unloading stiffness, cyclic energy dissipation). The hysteretic behavior
has often been evaluated qualitatively by visual comparison of the predicted
and experimental cyclic F-D curves.

In accordance with these gaps, and considering that global quantities related to the
F-D behavior, such as the effective drift and story drift, are used as engineering demand
parameters (EDPs) to assess the performance of slender and squat RC walls, respectively,
according to FEMA P-58 (2018 edition) [36], this study focuses on the nonlinear modeling
of the global F-D behavior of planar RC walls with the following specific objectives: 1)
provide detailed information on the modeling parameters used to simulate the cyclic global
F-D behaviors of a set of planar RC walls with flexure-dominant as well as shear-dominant
responses, 2) evaluate the sensitivity of the F-D curves to different wall model
discretizations applied consistently between the different models, and 3) propose, validate,
and use a new quantitative approach to assess the hysteretic behaviors predicted by the

numerical models.
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Two shear-uncoupled macro-models and two shear-coupled macro-models are used
to simulate the measured behaviors of eight previously-tested planar walls with different
shear span-to-depth ratios M /(VL,,), axial loads (N), and amount of reinforcement. All of
the modeling parameters are defined using only the concrete compression strength (f;),
reinforcing steel yield strength (f;), geometry of the wall, and reinforcement layout. This
information is commonly available or can be estimated during PBSD. Importantly, the
models do not include any calibration of the material stress-strain curves to measured
behaviors.

In order to provide quantitative evaluations of the predicted hysteretic F-D
behaviors, the Modified Nash-Sutcliffe Efficiency (NSE,,) metric is developed, validated,
and used. Additionally, the predicted results from the consistently varied model
discretizations are evaluated based on the effective stiffness (K,), maximum strength
(Vnax), and ultimate displacement (&,,). Finally, a comparison of the computing times
using the different models is presented, as well as comparisons of the local behavior of a
flexure-dominated wall. Results from this investigation are expected to be used in

engineering practice for conducting PBSD of RC wall buildings.

2.3 Experimental Walls

An experimental data set of eight previously tested planar RC walls were used to
evaluate the numerical models. The selection of these specimens was based on the
following criteria:

¢ Rectangular wall cross-section shape subjected to in-plane loads.
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Available data on concrete compressive strength, reinforcing steel yield
strength, specimen geometry, reinforcement layout, axial load applied to the
wall, and boundary conditions in the laboratory.

Available data on the global force-displacement response and the observed
failure mechanism of each wall to evaluate the simulation results.

The data set is presented in Table 2.1, including the following information:
L,, = wall length.

L, /t,, = cross-sectional aspect ratio, where t,, is the wall thickness.
M/(VL,) = shear span-to-depth ratio, where M and V are the moment and
shear developed at the base of the wall, respectively. For the selected wall
specimens, the shear span-to-depth ratio is equal to the vertical aspect ratio

from the base of the wall to the point of load application (H/L,,).

N/(A,f;) = axial load ratio, where N is the axial load applied to the wall,
A, is the gross cross-section area of the wall, and f; is the concrete
compressive strength.

f¢ = concrete compressive strength.

fybe = yield strength of longitudinal reinforcement in boundary regions.

ppe = longitudinal reinforcement ratio at the wall boundary regions,
computed using a length that includes concrete cover on each side of the
boundary bars (see ACI 318-14 Fig. R18.10.6.5 [11]).

p, = distributed vertical web reinforcement ratio calculated based on the
remaining wall length and reinforcement.

pp, = distributed horizontal web reinforcement ratio.
I, = nominal shear strength of the wall determined using ACI 318-14.
M,, = nominal moment strength of the wall determined using ACI 318-14.

(V@M,,)/V,, = ratio of the lateral load corresponding to the nominal
moment strength (V@M,,) over the nominal shear strength of the wall.

Failure mode indicating the mechanism causing loss of lateral load carrying
capacity as follows: concrete crushing and buckling of longitudinal steel
(CB), diagonal compression failure (DC), diagonal tension failure (DT), and
sliding shear failure (SS).
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The database contains walls with different shear span-to-depth ratios, axial load
ratios, reinforcement ratios, and failure modes. The eight considered walls were cyclically
tested as cantilever structures with a lateral load applied at the top of each wall. All walls
were tested until failure, apart from wall M1, which was tested up to a target drift ratio of
2% [37]. Walls RW1, RW2, M1, and WSH6 with shear span-to-depth ratios greater than
2.0 exhibited flexural dominated behaviors, whereas walls S78, WSL5, LSW1 and LSW2
with shear span-to-depth ratios less than 2.0 showed shear dominated behaviors. All walls,
except for wall WSL5, had (V@M,,)/V,, ratios less than one, implying that the maximum
strength should be controlled by flexural behavior. More information about the walls can
be found in the references listed in Table 2.1. Note that M,, and V}, in Table 2.1 correspond
to the calculated nominal moment and shear strength, respectively, and not to experimental

values.
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TABLE 2.1

EXPERIMENTAL DATA SET

L, M N , V@M, Failure
Wall LW t_ VL Af' fc fybe Pbe Py Pn Vn Mn v
w w c n
o Reference 9 Mode
(mm) (%) (MPa) (MPa) (%) (%) (%) (kN) (kN-m)

LT

RW1 [38] 1219 120 3.13 10.0 31.6 4345 295 0.30 0.33 300 515 0.45 CB
RW?2 [38] 1219 120 313 7.0 428 4345 295 0.30 0.33 319 521 0.43 CB
M1 [37] 900 6.0 250 100 233 4825 2.15% 0.32 0.25 274 330 0.54 -
WSH6 [39] 2000 133 2.26 108 456 576.0 1.74 050 025 736 2366 0.71 CB
S78t [40] 1219 8.0 150 6.4 558 4750 6.04 0.70 0.74 953 1475 0.85 DC
WSL5 [41] 1600 16.0 1.09 00 289 446.0 9.28 0.23 0.20 359 895 1.43 DT
LSW1 [42] 1200 120 1.00 00 222 5850 168 055 052 514 351 0.57 SS

LSW2 [42] 1200 120 1.00 00 216 5850 126 0.27 0.28 342 246 0.60 SS

1 Refers to wall RW-A15-P10-S78

2 Wall M1 did not include transverse reinforcement at boundary regions




2.4 Description of Numerical Models

The wall test specimens described above were modeled using the uncoupled macro-
model shear wall element in PERFORM 3D [43], and three macro-models available in
OpensSees [44], namely the uncoupled Multiple-Vertical-Line-Element-Model (MVLEM)
[14,30,45,46], the coupled Shear-Flexure Interaction MVLEM (SFI-MVLEM)
[15,32,45,47,48], and the coupled Beam Truss Model (BTM) [13,33,34]. These models,

shown in Figure 2.1, are summarized in this section.

N
]
HEN N

=
=
=

A S D D I I

Figure 2.1: Numerical models using: a) PERFORM 3D; b)
MVLEM,; c) SFI-MVLEM,; d) BTM.

2.4.1 PERFORM 3D

The shear wall element in PERFORM 3D is a fiber-based element with four nodes
and six degrees of freedom at each node. This is an uncoupled element in which shear
behavior can be added with a force-deformation rule. The longitudinal (vertical) in-plane

behavior of the shear wall element is governed by a nonlinear fiber section, while the shear
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behaviors is assumed to be linear-elastic. In this study, a total of m pairs of fibers (each
pair consisting of one concrete fiber and one reinforcing steel fiber) were used along the
wall length to model a RC wall as shown in Figure 2.1a. The horizontal length of the
boundary region at each end of the wall was modeled with one shear wall element with a
single pair of fibers. The central region of the wall was modeled with a central shear wall
element with equally distributed m — 2 pairs of fibers. The shear wall element assumes
constant axial strain, shear strain, and curvature along its length (i.e., wall height direction).
Therefore, n sets of three shear wall elements were stacked over the wall height to capture

the nonlinear behavior of the wall.

2.4.2 Multiple Vertical Line Element Model (MVLEM)

As shown in Figure 2.1b, the MVLEM model of each RC wall consisted of n two-
node MVLEM elements over the height. MVLEM is a fiber-based element with three
degrees of freedom at each node. Each MVLEM element had m pairs (one for concrete
and one for reinforcing steel) of uniaxial springs to represent the axial-flexural behavior of
the wall, and one horizontal spring located at a height ch from the bottom node to simulate
the shear behavior. The uniaxial and shear springs were rigidly constrained together at each
end of the MVLEM element. The uniaxial springs were governed by the uniaxial nonlinear
strain-stress relationships for concrete and steel, while the uncoupled shear behavior was

defined by a force-deformation rule for the shear spring.

2.4.3 Shear-Flexure Interaction Model (SFI-MVLEM)
The SFI-MVLEM model is based on the MVLEM formulation, but each pair of

uniaxial springs is replaced with a RC panel subjected to membrane action (Figure 2.1c) to
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achieve coupled nonlinear axial-flexure-shear interaction. The behavior of the panel is
described using a 2D constitutive RC formulation based on the fixed-strut-angle-model

(FSAM) to relate the imposed strain field (e, ¢€,,¥y,) to the resulting stress field
(04, 0y, Txy) [49]. This formulation couples the axial and shear responses at the panel level,

while the coupling of flexural and shear responses is accounted for at the element level.
Shear aggregate interlock across cracks is modeled using a parameter », which is a concrete
friction coefficient to define a bilinear constitutive law for aggregate interlock.
Additionally, the stiffness parameter « is used to define a linear-elastic model with stiffness
aE; (where, E; is the Young’s modulus of steel) to simulate the dowel action in the
reinforcing bars. The compression softening of concrete according to Vecchio and Collins
[50] and the biaxial damage on concrete according to Mansour and Hsu [51] are considered

in the concrete material behavior.

2.4.4 Beam Truss Model (BTM)

Different from the three models presented above, the Beam-Truss-Model (BTM) is
based on the strut-and-tie approach, where the RC wall is discretized using force-based
beam-column elements and diagonal nonlinear truss elements (Figure 2.1d). The diagonal
truss elements use a biaxial material model for the concrete, which accounts for
compression softening and captures shear resistance and axial-shear-flexure coupling [13].
In this study, the vertical elements at the ends of each wall were modeled using force-based
beam-column elements with two Gauss-Lobatto integration points, while the diagonal

elements were modeled using nonlinear four-node truss elements (termed as truss2 in
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OpensSees). The interior vertical and horizontal elements each consisted of two nonlinear
two-node truss elements in parallel to account for the concrete and steel behavior.

The Beam-Truss-Model is sensitive to the angle of the diagonal elements; and thus,
equations have been proposed to calculate a recommended angle [13,52]. Defining the
lengths of the horizontal and vertical elements as L, and L, respectively, for a given
discretization of n and m (refer to Figure 2.1d), the resulting angle of the diagonal elements
is ; = tan"1(L,/Ly). The discretization n and m of a wall in height and length can be
selected to satisfy the recommended angle of the diagonal elements; however, a constant
value over the height is not always possible because of wall geometry constraints (e.g.,
H = YL,). In such cases, at least one vertical element will have a different length in order
for the model height to match the wall height, resulting in a different angle for the diagonal
elements in that row. Alternatively, the values of n and m could be selected to result in a
constant angle as close as possible to (but not exactly the same as) the recommended angle,
while also satisfying the wall geometry constraints. In this study, this constant angle

approach was used as it is more appealing for practical purposes.

2.5 Modeling Parameters

For assessing the seismic behavior of RC walls when conducting PBSD, detailed
information about materials or the wall behavior is not commonly available. Therefore,
this section provides specific information to define the modeling parameters of the four
aforementioned models based only on the wall geometry, reinforcement layout, concrete
compression strength, and steel yield strength. Table 2.2 presents the stress-strain models

used for the concrete and reinforcing steel materials in the different numerical models. As
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described in further detail in the following sub-sections, the material stress-strain
relationships in PERFORM 3D are piecewise linear, while the relationships in the other
models use curved envelopes. Importantly, the concrete and reinforcing steel stress-strain
behaviors used for the wall models in this chapter were not calibrated with experimental
test results so as to generate modeling guidelines suitable for the design of RC walls. The
modeling parameters used for wall WSH6 discretizations in Figure 2.10 a4-d4 are
summarized in Table 2.3 for the four models. The procedures to obtain these values,
described in the following sub-sections, were also used to determine the modeling
parameters for the other walls and discretizations analyzed. The MVLEM, SFI-MVLEM,

and BTM OpenSees input files for wall WSH6 are presented in Appendix A.

22



TABLE 2.2

MATERIAL STRESS-STRAIN RELATIONSHIP

Material model Stress-strain relationship Reference
Inelastic
Piecewise linear defined using the “YULRX” model [43]
Concrete 1D
) nx -
yx) = Te X = Xer
1+(n_r ril)x-i_rx—l
ConcreteCM ¢ ¢ [45]
L Ay _ _
y(x) =y(xg) + dx (e )(x —x5) =20 x> x5
'—E_.¢
fc(e)zEce+fC—gzc “ g2 e<e,
c
ConcretewBeta
f& — fe , [34]
fc(e) = C—CC3(€ - gcc)3 +fcc € < €= €
(gc - Scc)
fe(&) = fee + Eqes(e — &¢c) 2 0 € 2> &
Inelastic Steel
Material Non- Piecewise linear defined using the “YULRX” model [43]
Buckling
o i} (1-b)e”
SteelMPF fSE)=be"+———x [45]
(1 +&* )
o i} (1-b)e”
Steel02 fs'(e") = be* + [53]

(1+&®)"

23



144

TABLE 2.3

MODELING PARAMETERS FOR WALL WSH6

PERFORM 3D? MVLEM?2P SFI-MVLEMP® BTM
m=4, n=20 m=4, n=11 m=4, n=6 m=8, n=11
Inelastic Steel Material, Non-Buckling SteelMPF SteelMPF Steel02
Tension Compression
g D F (MPa) D F (MPa)
‘U"EJ Y 0.00288 576 0.00288 576 fype (MPa) 576 fype” (MPa) 576 fype (MPa) 576
o U 0.07776 876 0.03162 691 Eg (MPa) 200000 Es (MPa) 200000 Es (MPa) 200000
& L 0.08064 876 0.03450 691 b 0.02 b 0.02 b 0.02
T R 0.08352 0.88 0.08352 0.7 Ry 20 Ry 20 Ry 20
& X 0.12528 0.88 0.12528 0.7 cRy 0.925 cRy 0.925 cR, 0.925
FR/FU 0.001 0.001 cR, 0.15 cR, 0.15 cR, 0.15
E(MPa) 200000 200000
Inelastic 1D Concrete Material ConcreteCM ConcreteCM ConcretewBeta
Unconfined Confined Unconfined Unconfined Diagonal® Horizontal® Vertical Confined
D F (MPa) D F (MPa) £/ (MPa) 456 £ (MPa) 456 £/ (MPa) 456 45.6 45.6 45.6
Y 0.00108 34.2 0.00137 43.6 £ 0.00226 £ 0.00226 & 0.00200 0.00200 0.00200 0.00200
U 0.00200 45.6 0.00400 58.1 E. (MPa) 34350 E. (MPa) 34350 feine (MP2) 22.8 22.8 22.8 29.1
L 0.00202 45.6 0.00404 58.1 T 6.87 T 6.87 Eime 0.00439 0.00555 0.00383 0.00949
R 0.01826 0.05 0.03162 0.06 X5 1.065 Xor 1.143 fi (MPa) 0.001 0.001 0.001 0.001
) X 0.02739 0.05 0.04743 0.06 f: (MPa) 2.09 f: (MPa) 2.09 &y 0.00677 0.00911 0.00566 0.01423
2 FR/FU 0.001 0.001 & 0.00008 & 0.00008 f: (MPa) 0.001 0.001 2.23 2.23
£ E. (MPa) 31738 31738 T 1.20 T 1.20 ftine (MPaQ) 0.001 0.001 0.001" 0.001"
] X 10000 xk 10000 Etint 0.00040 0.00040 0.00040" 0.00040"
; GapClose’ GapClose’ ft,0, (MPa) 0.001 0.001 0.001" 0.001"
g Confined? Confined? €t 0.00080 0.00080 0.00080" 0.00080"
S £ (MPa) 58.1 £ (MPa) 58.1 af 161.4 161.4 05 05
© £cc 0.00536 £cc 0.00536 Bint' 0.4 - - -
T 9.28 T 9.28 Enpne’ 0.01767 - - -
X 1.106 X 1.216 Bres' 0.1 - - -
€, 0.07068 - - -
Mf - - 0.0467 0.10875
E.f(MPa) 33764 33764 33764 33764
1. (MPa) - - - 58.1
e - - - 0.00475

2 Also requires a material for shear behavior, which was assumed linear-elastic with effective stiffness G, = ( ) 0.4E, in this study

b Requires additional element parameter c, taken as 0.4 in this study
¢Requires additional FSAM material parameters n and «, taken as 1.0 and 0.002, respectively, in this study
4Values for tension and compression

& Tension behavior neglected in this study
fOptional parameters defined in this study
9 Same values as for unconfined concrete except for parameters listed below
"Dummy values when parameter M is defined

1
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2.5.1 PERFORM 3D

Concrete and reinforcing steel stress-strain envelopes were modeled using the
“YULRX?” cyclic degradation model with strength loss. The YULRX model is based on
values corresponding to the yield strength (YY), ultimate strength (U), strength loss (L),
residual strength (R), and maximum deformation (X) [43] of each material. Unconfined
and confined concrete were modeled with the Inelastic Concrete 1D material without
tension strength, which has been found to have minor effect on the global cyclic behavior

of a RC wall [54]. The modulus of elasticity (Young’s modulus) was defined as E, =

4700\/ﬁ MPa [11], and the concrete compression envelope parameters (FY,FU,FR/
FU,DU,DL and DR) were defined based on the recommendations of Lowes et al. [20].
Note that in these parameters, F refers to stresses and D refers to strains. The peak strength
of confined concrete was taken as f.. = Kf_, where K is the strength increase factor
according to Mander et al. [55]. Zero residual strength was considered to be consistent with
the confined concrete materials of the other two concrete models used in this study. Strain
at residual strength of the concrete was obtained based on a crushing energy approach to
reduce mesh-sensitivity of the F-D results [18,19,56]. Based on previous studies of RC
walls, the crushing energy for unconfined concrete was taken as Gy, = 2f; in MPa [18]
and the crushing energy for confined concrete was taken as Gg../Gr. = 5(K — 0.85),
including a lower limit of 1.0 and an upper limit of 2.5 [20].

Reinforcing steel was modeled using the Inelastic Steel Material Non-Buckling,
with the incorporation of a simple buckling model where the steel compression envelope

drops after the surrounding concrete exceeds the strain corresponding to residual strength
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[18,20]. The point of ultimate strength (DU, FU) on the steel stress-strain envelope was
obtained considering a post-yield stiffness factor of b = 0.02 as adopted by Menegotto and
Pinto [57] and an ultimate-to-yield ratio (FU/FY) of 1.52 for A615 grade 60 steel
according to Bournonville et al. [58] (which is similar to the mean measured FU /FY ratio
of 1.45 for the considered walls). An energy dissipation factor of 0.75 and a stiffness factor
of 0.5 were used to capture the cyclic degradation of the steel stress-strain relationship as
recommended by Lowes et al. [20].

The shear force-deformation relationship can have a significant effect on the
computed responses of RC walls [59]. A typical value for the uncracked shear stiffness of
concrete is G, = 0.4E, based on the assumption that the Poisson’s ratio of concrete is

approximately 0.2. However, the post-cracked shear stiffness is substantially less than the
uncracked stiffness, and an effective value of G, = %OAEC was used in this study as

recommended for nonlinear models in previous research [18] and modeling guideline

documents [9,10].

2.5.2 MVLEM

Concrete response was defined using a modified Chang and Mander [60] model,
which is implemented in OpenSees as ConcreteCM [48]. The parameters needed to define
the stress-strain relationship for unconfined concrete in compression (E., €., 1.) were
calculated using the recommended equations by Chang and Mander [60] as: E, =
82001£/%/8, ¢, = f/** /1150, and 7. = f//5.2 — 1.9, where £/ is in MPa. The required
parameters to define the tensile behavior of concrete (f;, &, 13, xZ,) were obtained

following the recommendations of Orakcal et al. [46] to model the tension stiffening effect,
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which are based on Belarbi and Hsu [61]: f; = 0.31\/ﬁ MPa, &; = 0.00008, r, = 1.2, and
x2%. = 10000. The peak strength of confined concrete was calculated as f/. = Kf/, at a
corresponding strain of e.. = €.[1 + 5(K — 1)] [62], where K is the strength increase
factor according to Mander et al. [55]. The shape parameter of the compression stress-strain
relationship for confined concrete was calculated as r, = f;./5.2 — 1.9, where f,. is in
MPa. The residual stress in ConcreteCM is zero, and its corresponding strain is indirectly
obtained through the parameter xz,.. This parameter is used to define where the envelope
curve starts following a straight line [45] (see Table 2.2). Therefore, the values of x,. for
confined and unconfined concrete were iterated to regularize the post-peak stress-strain
concrete envelopes with the same crushing energies used in the PERFORM 3D models. As
an example, values of x,. of 1.106 and 1.065 were obtained for confined and unconfined
concrete, respectively, using n = 11 elements in height to simulate wall WSH6.
Additionally, a more gradual gap closure was used in this study by defining the GapClose
parameter in ConcreteCM as 1.

The reinforcing steel was modeled using the uniaxial SteelMPF [48] material in
OpenSees, which is based on the Menegotto and Pinto model [57]. A strain hardening ratio
of b =0.02 and parameters used to define the cyclic degradation of the curvature
coefficient and the Bauschinger effect of R, = 20, cR; = 0.925, and cR, = 0.15 were
adopted from Menegotto and Pinto [57]. No isotropic hardening [53] was accounted for,
and symmetric tension and compression behaviors were considered.

The MVLEM simulations used the same linear-elastic shear force-deformation

relationship as detailed in the previous section for the PERFORM 3D models. The value
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of ¢ required to define the height of the center of rotation and the location of the shear

spring from the base of each MVLEM element was taken as 0.4 [46,63].

2.5.3 SFI-MVLEM

Since the SFI-MVLEM model is based on the MVLEM model, the same value of
c, and the same parameters to define the unconfined concrete, confined concrete, and
reinforcing steel behaviors were used. However, in the SFI-MVLEM model, the shear
behavior is coupled using the FSAM material in OpenSees, which incorporates
compression softening and biaxial damage of concrete. To define the FSAM material, the
parameters n and «, as well as the vertical and horizontal reinforcing steel ratios, are
required. A value of n = 1.0 was used, noting that Kolozvari [47] found this parameter to
have a minor effect on the global behavior of a wall. The parameter a was found to affect
the wall behavior and a recommended value was not identified in the literature. Therefore,
a parametric investigation was conducted to calibrate the value of a which is the only
parameter that was calibrated in this study based on the experimental walls presented in
Table 2.1.

To determine «a, several models of each of the eight considered RC walls were
analyzed with constant values of m = 5 and n = 10 but with different values of a. The
resulting lateral F-D curves from these analytical models were compared against the
respective experimental F-D curves in terms of NSE,,, (defined in Section 2.6.2), as shown
in Figure 2.2a. These results show that squat shear-controlled walls are more sensitive to

the value of a as the NSE,, of walls S78, WSL5, LSW1 and LSW?2 varied significantly
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with the selected a values. Note that points corresponding to the largest values of a for
walls S78 and WLS5 are not shown in Figure 2.2a because they are below the y-axis range.

Figure 2.2b presents the number of walls for each value of a that resulted in a value
of NSE,, larger than max(NSE,,) —0.01, where max(NSE,,) is the maximum
NSE,, value predicted for each wall within the considered a values. This small range for
NSE,, was selected because higher values of NSE,,, indicate better model predictions, as
described later in Section 2.6.2. Figure 2.2b shows that the slender walls RW2, M1, and
WSHG6 can be simulated with any of the considered a values, while a value of @ < 0.01
should be used to simulate wall RW1. Figure 2.2b also shows that squat walls (WSLS5,
LSW1, and LSW?2) need lower « values to obtain NSE,, values larger than max(NSE,;,) —
0.01, except for wall S78, where lower NSE,,, values result from « values above or below
0.002. From these findings, values of a between 0.0001 and 0.005 were found to result
in better predictions for the majority of the walls, and a value of « = 0.002 was chosen to
model all slender and squat walls in the current study. Note that even though the selected
value of a was determined based on a parametric investigation using models with constant
m =5 and n = 10, the same value of @ = 0.002 was used in all the simulations with

varying model discretizations as presented later.
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The concrete behavior in the BTM models was defined using the constitutive model
described by Lu and Panagiotou [34], which is available as ConcretewBeta in OpenSees.
The strain at peak stress of unconfined concrete and the modulus of elasticity were defined
as & =0.002 and E, = 5000@ MPa, respectively [34]. The peak strength point
(&ce» foc) of confined concrete was calculated in the same manner as in the MVLEM and
SFI-MVLEM models based on Mander et al. [55]. The compressive stress-strain envelopes
of unconfined and confined concrete were assumed linear between the peak strength point
and the residual stress point (g, f,,) with zero stress at corresponding strains of &, and €.,
for unconfined and confined concrete, respectively. Therefore, values for the intermediate
stress-stress point for the compression post-peak envelope (e, , fc, ) were calculated as
the average values between the peak strength point and the residual stress point. Values of

&, and &, were calculated accounting for mesh-size effects [34]. The trilinear g — ¢,
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relationship passing through the (B,e,) points of (1,0), (0.4, 0.01Lg/L,;), and
(0.1,0.04 Lg/L4) was used to model biaxial effects according to [50] and to account for
axial-shear-flexure interaction in the diagonal elements [13], where L, is the length of the
diagonal elements. The reference length (L) used to regularize the concrete stress-strain

relationships for the vertical and horizontal elements was 600 mm, while the value for
diagonal elements was 6002 mm [50] .

A tensile strength of f; = 0.33\/E MPa [34] was assumed for the vertical elements,
and the post-cracking tension stress-strain relationship considered effects of tension
stiffening through the parameter M according to Stevens et al. [64]. Additionally, a value
of a = 0.5 [34] was used to control the path of unloading from tensile strain. The tension
behavior of concrete in the horizontal and diagonal elements was neglected based on Lu et
al. [13]. Therefore, the post-cracking stress-strain behavior given by the points

[(&t,p0 ftine)r (Etrosr f1r0s)] Was defined with near zero stress values; however, a value of

a= 23.9\/ﬁ (where f. is in MPa) was used for walls with boundary regions to control
the pinching behavior during unloading from tensile strain.

The reinforcing steel was modeled using the uniaxial Steel02 material in OpenSees,
which is also based on the Menegotto and Pinto model [53,57]. A strain hardening ratio of
b = 0.02 and parameters required to define the cyclic degradation and the Bauschinger
effect of R, = 20, cR; = 0.925 and cR, = 0.15 were considered as recommended by

[57].
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2.6 Evaluation of Numerical Simulations

This section presents the criteria used to evaluate the numerical simulations
obtained with the four models based on the effective stiffness, maximum strength,
hysteretic behavior, ultimate displacement, and computing time.

The evaluations of the considered models were made for simulations with varying
discretization of each wall in length (1) and height (n) to assess how the discretization
affects the predicted response of the walls. The discretization schemes adopted for each
wall are presented in Table 2.4. A minimum value of m = 4 (required to represent the axial
stiffness of the wall [46]) was used in all models, where the outer elements at each end
simulated the boundary regions, and the two inner elements simulated the central region of
the wall. The value of m was increased up to a maximum of 8 to have a finer discretization
of the central region. A maximum value of n = 20 was used for all models to simulate a
refined mesh along the wall height, while a minimum value of n = 4 was considered to
adequately capture the nonlinear behavior. Different minimum values of n were used for
the MVLEM and SFI-MVLEM models (Table 2.4) to result in an element length such that
it was possible to regularize the confined and unconfined concrete modeled with
ConcreteCM as described in Section 2.5.2. Matlab scripts were developed to generate the
OpenSees models considering increments of 1 in m and n, while n was incremented by 2
in the PERFORM 3D simulations because each model had to be created manually through
a time-consuming process. Examples of wall discretization using m=6 elements in length

and n=5 elements in height for the four models can be seen in Figure 1.1.
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TABLE 2.4

DISCRETIZATION SCHEMES

PERFORM 3D MVLEM SFI-MVLEM BTM
Number of

Wall m n m n m n m n
simulations
ID min max min max min max min max min max min max min max min max

€€

Rwi 4 8 4 20 4 8 6 20 4 8 6 20 4 8 4 2 280

Rw2 4 8 4 20 4 8 5 20 4 8 5 20 4 8 4 2 290

M1 4 8 4 20 4 8 5 20 4 8 5 20 4 8 4 20 290

WSH6 4 8 4 20 4 8 5 20 4 8 5 20 4 8 4 2 290

S8 4 8 4 20 4 8 5 20 4 8 5 20 4 8 4 20 290

WSLS 4 8 4 20 4 8 5 20 4 8 5 20 4 8 4 20 290

Lswi 4 8 4 20 4 8 6 20 4 8 6 20 4 8 4 20 280

Stw2 4 8 4 20 4 8 5 20 4 8 5 20 4 8 4 2 290




2.6.1 Effective Stiffness and Maximum Strength

Numerical models of RC wall structures have been typically evaluated
quantitatively based on specific information of the backbone force-displacement curves
[12,18,34,46]. In this study, these evaluations were done based on the numerical-to-
experimental effective stiffness ratio (RK,) and maximum strength ratio (RV,,,,), wWhere
K, and V,,,, were calculated from the mean positive and negative backbone curves, and
K, was calculated as the slope between the origin and the point on the mean backbone

curve at 70% of the maximum strength (i.e., 0.7V,,4, ) [65].

2.6.2 Hysteretic Behavior

For PBSD, it is necessary that the numerical models accurately represent the cyclic
response of RC walls, though this has often been done qualitatively by visual comparison
of the predicted and experimental cyclic F-D curves. The models have to properly account
for cyclic deterioration mechanisms like strength deterioration, pinching, and unloading
and reloading stiffness degradation. Evaluation of the accuracy of numerical simulations
based on backbone F-D curves does not take into account these cyclic properties.
Therefore, a hysteretic evaluation method is needed for the numerical simulations of RC
walls under cyclic loads.

To evaluate the hysteretic behavior of the numerical simulations in this study, the
Nash-Sutcliffe Efficiency (NSE) [66] and the energy error (E,) were used. The NSE is a
standardized statistical measure that determines the relative magnitude of the residual

variance compared to the variance of the measured data. This metric, which is computed
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using Eq. (2-1), has been commonly used to evaluate simulated responses of different
watershed models [67,68].

?:1(Yiexp _ Yinum)2

NSE =1— L.
(Y7 = ver)

(2-1)

In the calculation of NSE, Y,**" is the ith value of the experimental data, ;"™ is

the ith value of the numerically simulated data, Y¢*? is the mean of the experimental data,
and n is the total number of data points. NSE ranges between —co and 1.0, where a value
of 1.0 indicates perfect agreement between the experimental and simulated data.
Considering that the numerically simulated nonlinear F-D curve of a RC wall is obtained
through a displacement-controlled cyclic pushover analysis, and if the measured
displacement data from a wall test is used as input for this cyclic pushover analysis, then,
the only difference between the experimental and simulated F-D curves is the vector of
forces. Therefore, Y in Eq. (2-1) represents the vector of forces. It is important to note that
NSE may vary with the number of data points, however, for the common number of points

collected in a cyclic experimental test, the variation of NSE is negligible.

The cumulative area of the force-displacement curve, which represents the amount
of dissipated energy through structural damage, has been used to compare the experimental
and numerical hysteretic responses of structural elements [47,69]. Therefore, an energy
error (E,) can be calculated by Eq. (2-2), where E,,, and E,,, are the cumulative
dissipated energy from the experimental test and numerical simulation of a RC wall,
respectively. In this expression, a value of E, = 0 indicates perfect agreement between the

observed and simulated data.
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Figure 2.3 presents three comparisons of F-D curves for wall M1 (Table 2.1)
modeled by BTM models with m =7 and varying n (refer to Figure 1.1d). The calculated
NSE and E, for each simulation are presented in each graph. The quantitative evaluation
of the NSE and E, values presents a relation with the qualitative evaluation of the F-D
curves, showing that better simulations are achieved when NSE and E, approach 1.0 and
0.0, respectively. In Figure 2.3, better simulations are observed when n increases from 4
to 8. The hysteretic behavior of the simulation with n = 4 (Figure 2.3a) shows significant
strength degradation during the first cycles to drift ratios of approximately 1.5 and 2%.
Despite the lower forces predicted in these cycles, the wide hysteretic loops result in similar
energy dissipation as the one predicted with n = 6 (Figure 2.3b). Therefore, the values of
E, are similar and the values of NSE are different when comparing simulations with n = 4
and n = 6. The opposite is true for the simulations with n = 6 (Figure 2.3b) and n = 8
(Figure 2.3c), showing similar values of NSE and different values of E, because the width
of the cycles do not change substantially while the cycles obtained with n = 8 predict higher
strength, resulting in higher dissipated energy. These results show that the different levels
of accuracy of the three simulated responses cannot be distinguished adequately using

either NSE or E, alone.
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Figure 2.3: Wall M1 simulated by BTM, m=7 a) n=4; b) n=6; c)
n=8.

To overcome this limitation of using NSE or E, alone as a quantitative comparison
metric, a Modified Nash-Sutcliffe Efficiency (NSE,,), presented in Eq. (2-3), is proposed.

In this new metric, the original NSE value is reduced by an energy error factor (E, f),

calculated by Eq. (2-4) that was derived based on qualitative evaluations of the F-D curves
obtained by the four models. The E, increases exponentially until an energy error (E,) of
approximately 0.395, and is capped at a maximum value of E,r = 0.15 (see Figure 2.4).
The values of NSE,, calculated for wall M1 for the three models are also presented in
Figure 2.3. These values exhibit a better quantifiable metric than those of NSE and E,
individually to classify the numerical simulations, and they agree with a qualitative
evaluation of the curves and distinguish different levels of accuracy (i.e., the values
increase for improved simulations from left to right). Therefore, the NSE,,, metric was used
to evaluate the cyclic predictions from the numerical models in this study.
NSE,, = NSE — Ef (2-3)
E.; = min(0.15, 65¢1°~E) — 0,00295) (2-4)
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Figure 2.4: Energy error factor.

2.6.3 Ultimate Displacement

The ultimate displacement was evaluated based on the ratio of numerical-to-
experimental values of the drift capacity (R&,,). The drift capacity was calculated as the
drift corresponding to a strength loss of 20% from the maximum strength, and was obtained
from the mean of the positive and negative backbones of the F-D curve. When the backbone
of the simulated response did not present a strength loss of 20% within the displacement
protocol of the experimental test, larger displacements were applied in the numerical

simulation until this condition was achieved.

2.6.4 Computing Time

Displacement increments of 1.0, 0.5, 0.1 and 0.05 mm were used in the
displacement-controlled protocol of the cyclic pushover analyses to evaluate the computing
time of the studied models. All analyses were performed on a desktop computer with an
Intel® Core™ i7-4790 processor, CPU of 3.60 GHz, and 8.00 GB RAM on Windows 7,

using PERFORM 3D Version 7.0.0 and OpenSees version 2.5.0 32-bit.
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2.6.5 Local Behavior

Even though global quantities, such as the effective drift, are used as engineering
demand parameters (EDPSs) to assess the performance of slender RC walls according to
FEMA P-58 [36], ASCE 41 [6] uses plastic hinge rotation, while PEER TBI [8] uses
strains. Therefore, local quantities (i.e., strains and curvatures) are needed to evaluate the
performance of a slender RC wall when using these documents.

It has been shown that the local behavior from a flexural wall simulation is highly
sensitive to the vertical discretization of the model because the nonlinear deformations
localize in the critical elements with the highest moment [18,19]. In a cantilever wall
model, this localization occurs in the lowest row of elements over a height of H/n (where
H is the wall height and n is the number vertical elements; see Figure 1.1). Therefore,
postprocessing of the simulation results is needed to convert the local deformations
obtained with any vertical discretization to local deformations over an assumed plastic
hinge length, L,,. Coleman and Spacone [19] presented a procedure that can be applied to
postprocess curvatures based on the curvature of the first element. Alternatively,
postprocessing can be conducted based on the curvatures of the elements within the plastic
hinge length. In this process, the plastic hinge rotation (6,) can be estimated using Eq.
(2-5a) or Eq. (2-5b) as

60, = ¢1L, forH/n>1L, (2-5a)
0, =H/M)X_1 b+ (L, — G —1)(H/))¢p;,  forH/n<L,<jH/n (2-5b)
where, ¢; is the curvature in the ith vertical element (see Figure 2.1) and j is the

number of vertical elements within the assumed plastic hinge length (i.e., jH/n = L,).
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The second term in Eq. (2-5b) is the rotation of the part of the jth vertical element within
the plastic hinge length.
The postprocessed 6, obtained from Eq. (2-5) is assumed to be uniform over L,,
and thus, the associated plastic hinge curvature, ¢,, can be calculated as ¢, = 6,/L,,.
Moreover, the average neutral axis depth, ¢, over the plastic hinge length can be calculated
using Eq. (2-6), where c; is the neutral axis depth in the ith vertical element (see Figure
2.1).
Cp =C1 forH/m>=1L, (2-6a)
¢, = [(H/M) Xl e + (L, — G — D(H/))g /Ly for H/n <L, < jH/n (2-6D)
Then, the maximum compression and tension strains of the wall can be calculated
as e, = ¢pc, and &, = ¢, (L, — c,), respectively. Note that if H/n > L, (i.e., Eq. (2-5a)
and Eq. (2-6a) apply), no curvature and strain postprocessing is needed since ¢, = ¢, and

Cp = Cl'

2.7 Results

This section presents the results and evaluations for the simulations conducted with
the four models. The effective stiffness ratio (RK,), maximum strength ratio (RV,,,,), and
Modified Nash-Sutcliffe Efficiency (NSE,,) are presented for the eight walls. The drift
capacity ratio (Rg,) is presented only for walls RW1, WSH6, and S78 because for these
walls a strength loss of 20% from the maximum strength can be identified in the

experimental data. Comparisons of computing time are also presented for these three walls.
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2.7.1 Effective Stiffness and Maximum Strength

The RK, and RV,,,, Vvalues for each analysis with a different wall discretization
(Table 2.4) are presented as boxplots in Figure 2.5. Overall, the variability of RV},,, was
small when using different wall discretizations in the PERFORM 3D, MVLEM, and SFI-
MVLEM simulations (Figure 2.5a-c), while RK, showed more variability for these models.
The variability in the BTM simulations (Figure 2.5d) was generally higher than the
variability in the other models because the wall discretization affected the angle of the
diagonal elements. The influence of the angle of the diagonal elements in BTM models is
presented elsewhere [13,33,34,52].

The maximum strength of the flexure-dominated walls RW1, RW2, M1, and WSH6
were accurately simulated by PERFORM 3D. The RV,,,, values indicated mostly small
overestimations, with a highest value of 1.19 for wall RW1. Median and mean values of
RV,,4, indicated that the model predictions were within +£10% of the values from the
experiments, except for wall RW1, which had a mean error in the order of +18%. The
effective stiffness was underestimated for walls RW1, M1, and WSH6, with values of RK,
as low as 0.55 for wall WSH6, while it was overestimated for wall RW2, with a highest
ratio of 1.17. In comparison, for the shear-dominated walls S78, WSL5, LSW1, and LSW2
(Figure 2.5a), RV,,,, was overestimated while RK, was underestimated using the
PERFORM 3D model. Values of RV;,,, as high as 2.22 resulted for wall WSLJ5, showing
the inaccuracy of the PERFORM 3D model to simulate the behavior of walls in which the
maximum strength was controlled by shear.

Results from MVLEM (Figure 2.5b) adequately predicted the evaluation
parameters for the flexure-dominated walls RW1, RW2, M1, and WSH6. The maximum
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strength was predicted within a range of +£10% of the experimental values; with the
exception of wall RW1, which reached a maximum RV,,,, value of 1.18. Except for wall
WSHS6, the effective stiffness was generally overestimated, with a maximum RK, of 1.56
for wall RW2. Evaluation parameters for the shear-dominated walls S78, WSL5, LSW1
and LSW?2 indicated greater variability than for the flexure-dominated walls. The
maximum strength was overestimated in these four walls, with RV,,,, Vvalues as high as
2.33 for wall WSL5. Mean values of RK, showed overprediction for walls S78, WSL5,
and LSW1, while the mean effective stiffness ratio for wall LSW2 was underestimated
(RK,=0.94).

Evaluation parameters for the flexure-dominated walls simulated by SFI-MVLEM
(Figure 2.5c) were similar to the values for MVLEM, but showed more variability when
considering discretizations with different m and n values. For the effective stiffness, the
highest variability when using different discretizations occurred in wall WSL5, with RK,
reaching a maximum of 1.7 (without considering the outliers of the boxplot). In
comparison, the results for maximum strength were much better, with interquartile ranges
within £16% error of the experimental values for all walls. The SFI-MVLEM predictions
of maximum strength for the shear-dominated walls were better than the values obtained
with PERFORM 3D and MVLEM because of the ability to simulate coupled shear-flexure
behavior.

Numerical-to-experimental ratios obtained from the BTM simulations with
different m and n values varied significantly, which implies that the selected discretization
in BTM is very important in predicting the global response of RC walls. Overall, prediction

of the effective stiffness had the highest range of variability for the flexure-dominated
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walls, while the maximum strength was generally underestimated. The variability of the
maximum strength predictions was greater for the shear-dominated walls, while the
effective stiffness was consistently underestimated for walls WSL5, LSW1, and LSW2.

It can be concluded from Figure 2.5 that simulations obtained with models based
on the fiber analysis approach (PERFORM 3D, MVLEM, and SFI-MVLEM) presented
less variations when using different discretizations. Thus, a reduced number of elements in
length and height could be used in these models to represent the global behavior of RC
walls. Conversely, since the BTM model is based on the strut-and-tie analysis approach,
wall discretization presented a large impact in the global behavior of the simulations, thus

the number of elements should be carefully selected when using this model.
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Figure 2.5: Variability in K, and V;,,,, ratios for models using: a)
PERFORM 3D; b) MVLEM,; ¢) SFI-MVLEM; d) BTM.

Lu et al. [13] recommended that the angle of the diagonal elements 6, in BTM

should be estimated according to Eq. (2-7), where V4, IS the maximum resisted lateral

force, py, is the horizontal web reinforcement ratio, t,,

is the thickness of the wall, d is the

distance between the outermost vertical elements (see Figure 2.1d), and H is the wall

height. In addition, an upper bound of 6,=65° is suggested, and that 8, should be greater

than or equal to 45° for walls with a shear-to-span-ratio larger than 1.0.
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v H
= tan-1 (" < ap-t <_) 2.7
0, = tan ( Tt d) < tan 7 (2-7)

The numerical-to-experimental ratios of the effective stiffness and maximum
strength obtained with the BTM simulations are presented in Figure 2.6 as a function of
the angle of the diagonal elements. The recommended angle from Eq. (2-7) is also
presented in the figure. For the flexure-dominated walls (Figure 2.6a-d), values of 6,
around the recommended value from Eq. (2-7) yielded accurate simulations of the analyzed
parameters (i.e., the numerical-to-experimental ratios are reasonably close to 1.0).
However, for the shear-dominated walls (especially WLS5, LSW1, and LSW2; Figure
2.6f-h), at least one of the evaluation parameters is highly underestimated or overestimated
for diagonal angles around the value calculated by Eq. (2-7). Based on these results, the
values of m and n that define the wall discretization for BTM simulations should be

selected to obtain a 6, value equivalent to Eq. (2-7) for flexure-controlled walls.

45



= RKe o RV = NSE_ ---- Eq.(2-7)

max

oMt ! d) WSH6

b) RW2 !

fljwsLs T

Numerical to experimental ratios

! an ‘-i:? ﬁ E.%%H ﬂ ?%D'ig
E ] 'i' : /-E."'- (-‘-?"'-.

0
20 40

=2}

80 40 60 80 40 60 80 40 60 80
Diagonal angle 0, (°)
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2.7.2 Hysteretic Behavior

The accuracy of the analytical models, when considering discretizations with
different m and n values, in predicting the hysteretic behaviors of the eight walls was
evaluated based on the Modified Nash-Sutcliffe Efficiency (NSE,,), as depicted in Figure
2.7. Like the parameters evaluated before, the highest variability when using different
discretizations occurred in the BTM simulations. Simulations of the flexure-dominated
walls achieved maximum values of NSE,, greater than 0.90, except for the BTM
simulations of wall WSH6 where a maximum value of 0.90 was obtained for a simulation
with m = 8 and n = 11 elements. Excluding the BTM simulations, the minimum NSE,,
value for the flexure-dominated walls, considering all discretizations, was 0.80 for wall
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WSHG6 simulated by PERFORM 3D. The NSE,, values for the shear-dominated walls were
smaller than for the flexure-dominated walls, which implies less accurate predictions from
the simulations of shear-dominated walls. Minimum NSE,,, values of -6.54 and -4.74 (i.e.,
negative values not shown in Figure 2.7) were obtained for wall WSL5 simulated by
MVLEM and PERFORM 3D, respectively. As expected, the shear-coupled models
resulted in greater NSE,, for the shear-dominated walls, demonstrating the benefits of
considering shear-flexure interaction to simulate squat walls.

The simulated hysteretic behavior was classified as good for NSE,, >0.95,
satisfactory for values of NSE,,, between 0.95 and 0.85, unsatisfactory for values between
0.85 and 0.75, and poor for NSE,,, <0.75. These limits were verified through qualitative
evaluations of the F-D simulations, with additional quantitative support by comparing the
measured test results of two identical wall test specimens described subsequently. The large
variability in NSE,,, from the BTM simulations can be seen in the contours depicted in
Figure 2.8 for the different wall discretizations in length and height. This figure shows that
it was possible to obtain good estimations of the hysteretic behavior (i.e., NSE,, >0.95)
from the BTM simulations of the flexure-dominated walls RW1, RW2, and M1 for several
values of m and n. Figure 2.8 shows that all simulations for the other five walls were not
able to achieve NSE,, >0.95, but satisfactory results were obtained for certain
discretizations. Finally, the figure shows similar NSE,,, values for combinations of m and
n distributed along diagonal bands in each plot, indicating an evident relationship between
the model discretization, which affects the angle of the diagonal elements, 8, and the
accuracy in predicting the hysteretic behavior of the experimentally tested walls.

Specifically, a trend is evident where larger values of n (lower L, as presented in Section
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2.4.4), resulting in lower values of 8, also result in lower values of NSE,,, especially for
the shear-controlled walls. This trend can be seen in Figure 2.6 as well. Therefore, a larger
value of m is required to increase 6, and the accuracy of the simulated hysteretic behavior
in BTM models with larger values of n. Based on these results, it is concluded that m and
n pairs that result in a diagonal angle close to the value calculated with Eq. (2-7) are needed

to adequately simulate the hysteretic behavior of the walls.
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Figure 2.7: Variability in NSE,, (results of PERFORM 3D and
MVLEM for WSL5 are below the plot range).
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Figure 2.8: NSE,,, contours for BTM models with varying m and
n.

In order to obtain thresholds for the aforementioned evaluation parameters, the
measured force-displacement curves of two identical RC wall specimens (M1 and M2)
were compared. These walls were built at the same time, using the same material
properties, and were tested under the same axial load and same lateral displacement
protocol at the Laboratory of Structural Engineering of Pontificia Universidad Catdlica de
Chile [37]. The F-D relationships of the two walls, and the calculated NSE,,, RK,, and
RV,,.4x Values are presented in Figure 2.9. Different peak cycle displacements are observed
because they correspond to actual wall displacements and not to the actuator control
displacements. Since slightly different displacement histories were measured for the two
walls, and because NSE,,, requires the force at the same displacement in both walls, forces
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were interpolated between the peak cyclic displacements. The F-D curves of Figure 2.9
show that experimental tests of identical walls present differences, and a NSE,, value of
0.95 was obtained from this comparison [treating the measured results from M2 as
“numerical” results in Eq. (2-1) and Eq. (2-2)]. Although more tests of identical walls are
needed to obtain statistically meaningful results, three main observations can be stated: 1)
the proposed value of NSE,,=0.95 seems reasonable to classify a simulated hysteretic
behavior as good; 2) the effective stiffness presented a relatively large ratio of 1.26 between
the tested walls (Figure 2.9), consistent with the large variation and inaccuracy in the
numerical simulations; and 3) the difference in the maximum strength was negligible
between the two walls, which suggests that models should predict the maximum strength

more precisely than the effective stiffness.
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Figure 2.9: Evaluation of quantitative parameters for two
experimentally tested RC walls.

The F-D responses that resulted in the maximum NSE,, for each of the different
models are depicted in Figure 2.10, which also presents the m and n values for each case
and the corresponding effective stiffness and maximum strength ratios. Figure 2.10 shows

good correlation between the NSE,, values and a qualitative (visual) evaluation of the
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hysteretic results for the four models. The figure shows that the hysteretic behaviors of the
flexure-dominated walls (RW1, RW2, M1, and WSH6) was accurately predicted using
PERFORM 3D (Figure 2.10al1-4). The NSE,, values reflected good hysteretic simulations
for walls RW2 and M1, while the values for walls RW1 and WSH6 were classified as
satisfactory due to the prediction of a more pinched behavior for these walls. On the other
hand, hysteretic simulations of the shear-dominated walls S78, WSL5, LSW1, and LSW2
(Figure 2.10a5-8) were classified as poor, being worst for wall WLS5, with a negative
value of NSE,, (Figure 2.10a6). The low values of NSE,, for squat walls demonstrate the
inability of PERFORM 3D to simulate shear-dominated hysteretic behaviors.

As shown in Figure 2.10b2-4, the hysteretic behaviors from the MVLEM
simulations of the flexure-dominated walls RW2, M1, and WSH6 were classified as good.
The maximum NSE,,,=0.94 for wall RW1 (Figure 2.10b1) was classified as satisfactory,
which is caused by the inability of the model to capture the strength degradation in the last
cycle of the test. All hysteretic simulations of the shear-dominated walls (Figure 2.10b5-8)
were classified as poor in terms of NSE,,,, mainly because the predicted cycles dissipated
more energy due to the incapability of the model to simulate the shear-flexure interaction.
The MVLEM force-displacement curves were similar to those of PERFORM 3D because
both models are shear-uncoupled, use the same shear force-deformation relationship,
present a fiber-based formulation with plane sections, and assume uniform curvature along
the element length. However, as an important difference, the PERFORM 3D concrete and
steel material models are based on linear piecewise envelopes and unloading and reloading
behaviors, whereas the materials in MVLEM are characterized by curved envelopes with
smoothed unloading and reloading behaviors (see Table 2.2). These differences in the
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material constitutive laws influenced the shapes of the force-displacement curves in the
PERFORM 3D and MVLEM simulations (Figure 2.10a,b).

The SFI-MVLEM simulations of the flexure-dominated walls (Figure 2.10c1-4)
resulted in similar hysteretic behaviors as those from the MVLEM simulations, with the
exception that the hysteretic simulation of wall RW1 was classified as good because NSE,,
reached 0.95. This parameter was large for this wall because of the ability to predict the
strength reduction in the last positive cycle with SFI-MVLEM (Figure 2.10c1). The SFI-
MVLEM hysteretic simulations for the shear-dominated walls (Figure 2.10c5-8) were
classified as good for walls LSW1 and LSW?2, satisfactory for wall S78, and unsatisfactory
for wall WSL5. The greater NSE,,, values using SFI-MVLEM are related to the ability of
the model to predict pinching behavior more consistently with the experimental behavior.

The BTM hysteretic simulations generated satisfactory force-displacement curves
for walls WSH6, S78, WSL5, LSW1, and LSW2, and good curves for walls RW1, RW2,
and M1. The largest NSE,, value was for wall M1, where the estimated unloading and
reloading curves followed the test results well, even though the maximum strength was
underpredicted by 10% (Figure 2.10d3). It should be noted that even though all models had
a fixed base; and thus, the sliding shear failure of walls LSW1 and LSW2 could not be
modeled, both SFI-MVLEM and BTM models were still able to satisfactorily capture the
hysteretic behavior of these walls until failure.

The Modified Nash-Sutcliffe Efficiency (NSE,,), which was specifically developed
to quantify the hysteretic behavior of the numerical simulations, should be considered
together with other quantitative metrics such as the effective stiffness ratio (RK,) and the
maximum strength ratio (RV},,,) to evaluate the simulated global behavior. As an example,
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Figure 2.10b7 shows the F-D response of wall LSW1 simulated with MVLEM, where the
maximum strength was overestimated by 15% and the effective stiffness was
underestimated by 6%. These relatively small errors could result in a potentially false sense
of accuracy when clearly the model is not able to capture the cyclic behavior (i.e.,
especially the pinching behavior). This discrepancy in the hysteretic behavior is well
captured by the low value of NSE,,, classifying the wall hysteretic behavior as poorly
simulated. While it may be possible to arrive at this judgement through a qualitative visual
evaluation of the hysteretic curves, the use of NSE,,, allows a more objective, quantitative

evaluation.
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Figure 2.10: Force-displacement curves with maximum NSE,,
(experimental results shown in red and numerical simulations

shown in black).
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2.7.3 Ultimate Displacement

Numerical-to-experimental ultimate displacement ratios obtained from the models
that resulted in the maximum NSE,,, for walls RW1, WSH6, and S78 are presented in Table
2.5. The maximum errors when estimating the ultimate displacement with the shear-
coupled SFI-MVLEM and BTM models occurred for wall RW1, and were 8.6% and 8.0%,
respectively. The PERFORM 3D and MVLEM models were considerably less accurate in
predicting the ultimate displacements of the selected walls, except for wall WSH6, because
these models do not incorporate shear-flexure interaction and assume linear elastic shear
behavior. The largest overestimation of the ultimate displacement occurred for walls RW1
and S78, showing the inadequacy of the shear-uncoupled models to simulate the

experimentally observed ultimate displacements.

TABLE 2.5

EXPERIMENTAL DATA SET

PERFORM 3D MVLEM SFI-MVLEM BTM

RW1 2.493 1.927 1.086 1.080
WSH6 0.983 0.962 1.017 0.969
S78 1.543 1.737 1.001 0.967
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2.7.4 Computing Time

Computing times for the simulations that resulted in the maximum NSE,,, for walls
RW1, WSH6, and S78 are presented in Table 2.6. The shear-uncoupled PERFORM 3D
and MVLEM models required shorter computational times due to the reduced number of
iterations needed to achieve equilibrium at different loading steps. These two models took
similar computational times to finish the analyses for the three walls with displacement
increments of 1.0 mm and 0.5 mm. However, for displacement increments of 0.1 mm and
0.05 mm, the MVLEM simulations required shorter computing times than those with
PERFORM 3D, probably because of the smaller number of degrees of freedom. The shear-
coupled SFI-MVLEM simulations required longer computing times to converge than the
PERFORM 3D and MVLEM models. Finally, the BTM simulations presented several
convergence problems and required smaller displacement increments to obtain a solution
for the entire displacement protocol. In comparison with SFI-MVLEM, the BTM
simulations took similar computing times for wall RW1 and about 2.5 times for wall
WSH6. Although not shown in Table 2.6 because of the reduced displacement increment,
the BTM model required 140.23 seconds with a displacement increment of 0.025 mm to
obtain a solution for the entire loading protocol of wall S78. Note that while there were
significant differences among the numerical models, the times required to simulate walls

were generally short, with the longest time little over 2 minutes.
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TABLE 2.6

COMPUTING TIME

Wall Displacement PERFORM3D MVLEM  SF-MVLEM BTM
ID Increment Computing Time (sec)
1.0 mm 2.4 2.0 8.2 -
0.5 mm 4.4 3.0 15.1 -
RwW1
0.1 mm 16.1 11.2 52.0 45.2
0.05 mm 34.1 21.6 84.8 81.2
1.0 mm 2.1 2.5 4.3 -
0.5 mm 3.4 3.2 7.0 -
WSHG6
0.1 mm 20.0 9.6 23.4 57.4
0.05 mm 37.7 18.2 39.6 100.4
1.0 mm 2.9 3.3 154 -
0.5 mm 4.8 4.6 23.3 -
S78
0.1 mm 22.0 12.0 76.9 -
0.05 mm 52.4 21.3 131.6 -
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2.7.5 Local Behavior

This section presents and evaluates the simulation results for the local behavior of
the flexure-dominated wall RW2 using MVLEM. This model was chosen because the
global behavior of the wall showed little variation to the element discretization (see Figure
2.5b and Figure 2.7). The numerical-to-experimental curvature ratio contours obtained
from the 1% element (R¢,) at a lateral drift of 2.0%, presented in Figure 2.11a, show that:
1) the horizontal discretization of the wall (parameter m) has a negligible effect on the local
behavior of the wall, 2) the local behavior is significantly influenced by the vertical
discretization of the wall (parameter n), and 3) larger simulated curvatures are obtained for
finer vertical discretizations. In comparison, the post-processed numerical-to-experimental
curvature ratio contours (R¢,) at 2.0% drift, presented in Figure 2.11b, show that the
sensitivity of the results to the vertical discretization of the wall is significantly reduced.
The postprocessed curvatures were calculated by applying Eqg. (2-5) to obtain plastic hinge

rotations assuming a plastic hinge length equal to one half of the wall length (i.e., L, =

L,,/2 [70]), as described in Section 2.6.5.

Figure 2.11c and Figure 2.11d compare the unprocessed vertical strains and the
postprocessed vertical strains (i.e., from the postprocessed curvatures) with the measured
strains at different drift levels for coarse (n = 5) and fine (n = 20) vertical discretizations
of the wall, respectively. For the coarse mesh (Figure 2.11c), the unprocessed tensile strains
(i.e., positive strains) were predicted with errors less than 15%, while the compressive
strains were underpredicted with errors between 49% and 74%. In this case, the post-
processed strains were the same as the unprocessed strains because Eq. (2-5a) was applied

(i.e., 1 = ¢,). For the fine mesh (Figure 2.11d), the unprocessed tensile strains (Numz in
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Figure 2.11) were highly overestimated, with errors between 105% and 114%, while the
compressive strain errors were between 29% and 63%. In comparison, the tensile strain
erros from the postprocessed curvatures (Numy in Figure 2.11) decreased significantly to
between 4% and 33%, while the compressive strain errors increased slightly to between

31% and 68%.
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Figure 2.11: Evaluation of local behavior of wall RW2 simulated
using MVLEM based on a) numerical (unprocessed)-to-
experimental curvature ratio contours (R¢,) for 2.0% drift; b)
numerical (post-processed)-to-experimental curvature ratio
contours (R¢,) for 2.0% drift; c) vertical strain profiles for coarse
vertical discretization; d) vertical strain profiles for fine vertical
discretization. Note that in ¢) and d), colors and line styles are
associated with drift and strain source, respectively.
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2.8 Summary and Conclusions

In this study, shear-uncoupled macro-models PERFORM 3D and MVLEM, and
shear-coupled macro-models SFI-MVLEM and BTM, were studied to simulate the
nonlinear hysteretic global lateral force-displacement behavior of eight experimentally
tested planar RC walls. A detailed definition of all modeling parameters was presented
based only on the wall geometry, reinforcement layout, concrete compression strength, and
steel yield strength, which would all be known during the design stage of a wall in practice.
Concrete and reinforcing steel material stress-strain relationships were not calibrated with
the experimental test results so as to generate modeling guidelines for the Performance-
Based Seismic Design (PBSD) of RC walls. A total of 2,300 analyses with different model
discretizations were performed for the eight walls. The predicted force-displacement curve
from each analysis was evaluated based on numerical-to-experimental ratios for the
effective stiffness, maximum strength, and ultimate displacement (RK,, RV,,4, and R&,,,
respectively). Additionally, the hysteretic response of the numerical simulations was
assessed by the proposed Modified Nash-Sutcliffe Efficiency (NSE,,) metric, and the
computing time of the simulations was compared considering four different displacement
control analysis increments. The main conclusions based on the comparisons between the
numerical and experimental results are listed below. Note that these conclusions are mainly
focused on the nonlinear hysteretic global lateral force-displacement behavior of planar
walls. Further studies are needed to investigate the applicability of these findings to the
local behavior (e.g., strains and curvatures), behavior of non-planar or coupled walls, and

behavior under dynamic loading of RC walls.
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. The modeling parameters presented in this study for the PERFORM 3D and
MVLEM models were adequate to simulate the global cyclic behavior of
slender RC walls. In addition, the modeling parameters for the SFI-
MVLEM and BTM models were found suitable to simulate the global cyclic
behavior of both slender and squat walls. Therefore, the proposed
parameters may be used in PBSD to estimate the cyclic lateral force-
displacement behavior of planar RC walls.

. Simulations from PERFORM 3D, MVLEM, and SFI-MVLEM presented
small variations in RK,, RV,,,, and NSE,,, when varying the discretization
of the walls. Consequently, the responses from these models did not
substantially improve when using finer meshes, and a coarse mesh can be
used to simulate the global cyclic behavior of RC walls with these three
models. In comparison, wall discretization had a large effect on the BTM
simulations, and thus, the number of elements in length and height should
be carefully selected when using this model. Values of m and n that result
in a diagonal angle, 8, close to the value calculated with Eqg. (2-7) are
needed to adequately simulate the hysteretic behavior of the walls.

. The effective stiffness from the numerical simulations presented large
variations and inaccuracy when compared with the experimental test results.
The effective stiffness was in general highly overestimated by the MVLEM
and SFI-MVLEM simulations, while it was mostly underestimated by
PERFORM 3D and BTM. The large variability in effective stiffness was
also observed from the experimental results of two identical RC walls,
corroborating the comparatively large unpredictability of this evaluation
metric.

. The proposed Modified Nash-Sutcliffe Efficiency (NSE,,) was shown to be
an appropriate metric to quantify the ability of the models to simulate the
hysteretic behavior of RC walls, as it was able to accurately evaluate
complex cyclic behaviors including strength and stiffness deterioration, and
pinching. Additionally, limit values of NSE,, were defined to classify the
hysteretic simulations, which agreed with qualitative evaluations of the
predicted force-displacement curves. Based on these classifications, shear-
uncoupled PERFORM 3D and MVLEM models provided good and
satisfactory simulations of the hysteretic behavior for the studied slender
walls, but provided poor simulations of the hysteretic behavior for the squat
walls, because of the lack of shear-flexure interaction. In comparison, shear-
coupled models SFI-MVLEM and BTM resulted in NSE,,, factors of more
than 0.90 (classified as satisfactory) for seven of the eight walls
investigated.

. The ultimate displacements predicted by the shear-coupled SFI-MVLEM
and BTM models were within 8.6% error, showing the ability of these
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models to capture the reduction in lateral strength of three walls with
different shear span-to-depth ratios.

Significant differences in computing time were found between the shear-
coupled and shear-uncoupled models, where the latter ones were faster.
Although the computing times required to simulate the considered
rectangular RC walls were short (with the longest time over 2 minutes), the
comparisons presented in the chapter are helpful in evaluating the numerical
efficiency of the RC wall models.

. Comparisons of the local behavior (i.e., base curvatures and strains) for the

flexure-dominated wall RW2 simulated by MVLEM showed that the
horizontal discretization parameter, m has a negligible effect on the results.
However, the local results were significantly influenced by the vertical
discretization of the wall (parameter n), with larger numerical curvatures
resulting from finer vertical discretizations. Significant improvements in
curvature and tension strain accuracy and reduced sensitivity to the vertical
discretization of the wall were obtained when using curvatures
postprocessed according to Section 2.6.5.
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CHAPTER 3:
REGULARIZED PLASTIC HINGE MODEL FOR NONLINEAR CYCLIC LATERAL

LOAD ANALYSIS OF SLENDER RC WALLS

This chapter focuses on the development and evaluation of a regularized plastic
hinge modeling approach to simulate the global and local behaviors of slender planar RC
walls, as part of the second specific objective of this research. Previous research has shown
that one of the biggest limitations of conventional (i.e., without material regularization)
plastic hinge models is that the predicted ultimate (failure) displacement is extremely
sensitive to the assumed plastic hinge length. Based on the analysis of eight previously
tested walls, this chapter shows that the mesh-sensitivity of the analysis results can be
significantly reduced by using regularized material models within the assumed plastic
hinge length. As an important advantage over other regularized models, the proposed
plastic hinge model can accurately predict both the global and local wall behaviors with no
need for a separate normalization step for the curvatures. A sample regularized plastic

hinge wall model is presented in Appendix A.5.

3.1 Introduction
Reinforced concrete (RC) walls are commonly used in buildings to resist seismic
loads due to their large lateral stiffness, strength, and deformation capacity. The design

philosophy for slender RC walls is aimed to generate a ductile failure mechanism
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characterized by flexural yielding of the longitudinal reinforcement at the base. Despite
this design philosophy, walls with non-ductile behavior have been observed after recent
strong earthquakes [2,3,22,71]. Common failure modes have included crushing of the
concrete, buckling of the longitudinal reinforcement, fracture of the longitudinal
reinforcement, and lateral instability of the walls. Moreover, experimental testing has
shown that slender RC walls with shear span-to-depth ratios greater than 2.0 are often
governed by flexural failure modes characterized by concrete crushing and bar buckling
[72,73] or bar fracture [74,75].

Since the use of nonlinear numerical models is becoming common in earthquake
engineering design practice, it is essential to develop effective modeling techniques that
can accurately predict the global behavior as well as the local behavior of RC walls through
failure (e.g., peak strength, ultimate displacement, concrete and reinforcement strains). It
is also important that the modeling techniques present low computational demand (as
compared to continuum finite element models) and that their modeling parameters require
minimum calibration, so that they can be used to analyze a wide range of structures in
design. Previous research towards these modeling goals for flexural RC walls have focused
on compression-controlled [18,20] and tension-controlled [76,77] failure modes. These
latter failure modes are common in lightly reinforced walls.

Developing efficient and practical modeling approaches that perform equally well
independent of mesh size and number of integration points, referred to as mesh-objective
models, has been an important research topic in recent years. Specifically, it is well known
that in force-based beam-column elements, the ultimate displacement of a RC wall with

compression-controlled failure is highly sensitive to the critical length (i.e., length of the
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critical integration point) over which the nonlinear behavior and failure of the element are
concentrated after softening [18]. For this purpose, researchers have proposed regularized
(i.e., modified) constitutive stress-strain models for confined concrete, unconfined
concrete, and reinforcing steel based on experimentally-calibrated failure energy equations
for these materials [17,18]. These previous studies have focused on minimizing the model
mesh sensitivity in predicting the ultimate displacement of flexural walls under
compression-controlled failure modes. However, one major drawback of mesh-objective
models with regularized materials is that the curvature and local material strain response
are still very sensitive to the mesh size, limiting the ability of these models to accurately
capture the wall behavior at the section level [18,19]. To overcome this drawback, Coleman
and Spacone [19] proposed equations to normalize the curvatures in a postprocessing step
based on an assumed plastic hinge length. This normalization is required because the length
of the critical integration point in a mesh-objective model is not necessarily equal to the
assumed plastic hinge length. The normalized section curvatures can then be used to obtain
accurate predictions of the concrete and steel strains. The resulting analysis is a two-step
process, involving: 1) regularization of the constitutive stress-strain models to determine
the global displacements from a mesh-objective structural analysis; and 2) postprocessing
of the section curvatures to determine the material strains based on normalization equations
and an assumed plastic hinge length.

The two-step process makes the structural analysis less practical to implement.
Furthermore, the curvature normalization equations are approximate, are dependent on the
structural configuration, and can be challenging to implement for cyclic behavior.

Importantly, the need for the normalization of section curvatures has been lost or not
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emphasized in recent studies on regularized beam-column element models [17,18],
possibly giving users of these models a potentially false sense of accuracy in terms of
curvatures and material strains.

Alternatively, beam-column elements with a plastic hinge integration method [78-
80] do not require curvature normalization because the length of the critical integration
point can be matched to the assumed plastic hinge length. However, the ultimate
displacement of a RC wall is highly sensitive to the assumed plastic hinge length [29].

In accordance with the described limitations, the current chapter evaluates the
effectiveness of material regularization [18-20] in force-based beam-column elements
utilizing plastic hinge integration [78-80] to simulate slender planar RC walls with
softening responses. The focus is particularly on walls with compression-controlled failure
modes for which the simulated behavior is often highly mesh-sensitive [19]. The
advantages of combining material regularization with plastic hinge integration are: 1)
sensitivity of the estimated global wall displacements (including the ultimate displacement)
to the assumed plastic hinge length is significantly reduced; and 2) local curvatures and
material strains can be estimated with no need for a subsequent postprocessing step. The
proposed approach is described below and then critically evaluated using the measured
results from eight previously-tested slender planar RC wall specimens. The results are also
compared against conventional analyses without regularization of the material stress-strain

curves.
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3.2 Background

Line-element models are commonly used to simulate the nonlinear behavior of
slender RC walls because of their simplicity and balance between accuracy and
computational efficiency. The simplest approach involves lumped-plasticity models, where
an elastic beam-column element is connected in series with nonlinear springs simulating
plastic hinge regions with a predefined moment-rotation relationship. Moment-rotation
backbone curves can be obtained from standard reference documents (e.g., ASCE 2017
[6]), and are based on the wall geometry, axial force, shear force, and concrete
confinement. However, major drawbacks of the lumped-plasticity modeling approach are:
1) it does not take into account variations in axial and shear forces during the analysis; 2)
there is no standardized guidance for cyclic moment-rotation relationships [10], and 3)
spurious damping forces that lead to inaccurate results are generated in nonlinear time
history analysis when Rayleigh damping is used [81].

In comparison with lumped-plasticity models, distributed-plasticity beam-column
models with fiber sections [18,35,82] provide a more accurate approach to simulate RC
walls because they can capture the variation of axial force in the axial-flexural interaction.
Additionally, the cyclic response of distributed-plasticity elements is simulated through
cyclic uniaxial concrete and steel material constitutive stress-strain relationships, and no
spurious damping forces are generated when Rayleigh damping is used [81]. Distributed-
plasticity models can be implemented using: 1) the displacement-based (DB) formulation,
which assumes a linear curvature variation and a constant average axial deformation along
the length of the element [83]; and 2) the force-based (FB) formulation, which assumes a

linear moment variation and a constant axial force along the length of the element [84].
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The FB formulation is used in this study because equilibrium is strictly satisfied, as
opposite to the DB formulation where equilibrium is satisfied in an average sense within
an element.

Two disadvantages of distributed-plasticity models are: 1) shear deformations are
uncoupled from axial-flexure interaction; and 2) highly mesh-sensitive softening responses
can develop due to deformation localization from concrete crushing or rebar buckling in
compression-controlled RC walls [18]. Nevertheless, shear deformations are relatively
small in slender RC walls [85], and regularization techniques based on material failure
energy criteria have been proposed to obtain objective global force-deformation responses
using FB beam-column elements with the Gauss-Lobatto integration method [17,18]. Some
of the important concepts and developments for the nonlinear modeling of flexural RC

walls are discussed below.

3.2.1 Plastic Hinge Length for RC Walls

Previous researchers have proposed different equations for the plastic hinge length,
L, of RC walls [86-93]. These equations have been proposed to accurately simulate the
ultimate displacement of RC walls, and not necessarily to match the actual length where
deformations and damage concentrate, as has been reported in some experimental studies
[93-95]. Among the available plastic hinge length equations for RC walls, Eq. (3-1) [91],
Eq. (3-2) [89], and Eq.(3-3) [90] were selected to calculate a mean plastic hinge length,
Ly mean i this study. Importantly, acknowledging that several L,, equations are available

in the literature, a sensitivity analysis considering a range between 0.75 and 1.25L, ;neqn

was performed. In Eq. (3-1) to Eq. (3-3), L,, is the length of the wall, M/V is the ratio
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between the moment and shear at the expected plastic hinge region and is equal to the
effective wall height, H.r, P/(f;/A,) is the axial load ratio, pgy, is the horizontal web
reinforcement ratio, f, is the steel yield strength, and f¢ is the unconfined concrete

compression strength.

L, = 0.2L,, + 0.044(M/V) (3-1)
L, = (0.2L,, + 0.05(M/V)) (1 - 1.5 ,P ) < 0.8L,, (3-2)
féAg
_ P fypsh M/V 043 _
L, = 0.27L, <1 _fc’Ag> <1 —=F >(ﬁ) (3-3)

3.2.2 Regularization of Materials Stress-Strain Relationship

The concept of constant fracture energy has been widely used in continuum finite-
element models to regularize the mesh-dependent behavior of concrete in tension. The
same concept was also applied by Coleman and Spacone [19] to regularize the concrete
strain-stress behavior in compression, and recently by Pugh et al. [18] and Vasquez et al.
[17], who also proposed to regularize the post yielding slope of the reinforcing steel stress-
strain curve. Most recently, the concrete and reinforcing steel regularization approaches
proposed by Pugh et al. [18] have been adopted by NIST [10] as described below. More
details about regularized materials can be found elsewhere [18].

The need to regularize the concrete compressive stress-strain constitutive behavior
to reduce model mesh-sensitivity when material softening occurs can be explained by
considering unconfined concrete cylinders subjected to uniform compression through
failure. Experimental observations have shown that the stress versus displacement
responses of cylinders with different lengths are similar because damage concentrates in a
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localized region. However, the stress versus strain response is dependent on the gage length
used to measure the strains. Therefore, the average post-peak stress-strain curves obtained
by dividing the total axial displacement with the cylinder length depend on the length of
the tested specimen [56,96]. Such studies ([56,96]) have demonstrated that the unconfined
concrete crushing energy, G f, is a material property. Therefore, regularization of concrete
response in a force-based beam-column element can be accomplished by defining the strain
at residual stress, &, as a function of a critical length, L., and the concrete crushing energy
(refer to Figure 3.1a). However, it is important to note that: 1) appropriate values of Gf,
and G f,. (crushing energy for confined concrete) should be calibrated from experimental
results; and 2) even though the post-peak global force-displacement responses from
regularized models that are meshed differently (i.e., with different L.,) may be objective,

the local material strains will still be different (i.e., non-objective local behaviors) [17,19].

a) b)
O'CA O-SA
fe fu
(fc’c) % (chc> "Es Gfs
Ler Ler fy [ s Z
|
|
R || Ee : Esi /
(Rccfc’c) ﬁ |
€ € s‘ >£c ‘ P
T o u €y Esu Esu S
(ecr) (€co) (&cw)

Figure 3.1: Regularization of material stress-strain relationships. a)
Unconfined and confined concrete (terms in parentheses
correspond to confined concrete); b) reinforcing steel. Based on
[10].
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If a linear post-peak concrete stress-strain relationship and an elastic unloading
response are assumed (Figure 3.1a), the regularized ultimate strain for unconfined concrete
&y, at residual stress R..f,, can be calculated using Eq. (3-4) to obtain a constant concrete
crushing energy Gf.. This equation was derived by equating the shaded area of Figure 3.1a
to Gf./L.,, and reveals that a larger value of ¢, is required in a model with a smaller L.,
A similar equation for confined concrete can be obtained by replacing the corresponding

terms in parentheses in Figure 3.1a.

1 2Gf,  f¢ fe
= |-+ @A +R)e, + RE— 3-4
1+4+R. |fiLs E. “ro T TCE, 3-4)

&y

Note that in a force-based beam-column element, the critical length, L.,
corresponds to the length (or weight) of the integration point where the nonlinear
deformations concentrate. In a cantilever wall with uniform reinforcement along its height,
L., is the length of the bottommost integration point, where the moments are largest [19].

Pugh et al. [18] proposed Eg. (3-5) and Eqg. (3-6) for the crushing energy of
unconfined and confined concrete, Gf. and Gf,., respectively, based on comparisons
between numerical and measured ultimate displacements of slender planar RC walls. They
utilized FB beam-column elements with the Gauss-Lobatto integration method. Eq. (3-5)
was proposed based on the results of two walls without confinement, where f; is in MPa,
whereas Eq. (3-6) was proposed based on the results of eight walls with confined boundary
regions. These concrete crushing energy equations were adopted by NIST [10].

Gf. = 2f! (3-5)

Gf.. = 1.70 Gf. (3-6)

71



The form of Eq. (3-6) implies that the confined concrete crushing energy only
depends on the unconfined concrete strength, £ and not on the amount of confining steel.
Recognizing this limitation, Lowes et al. [20] proposed Eqg. (3-7) for the confined concrete
crushing energy based on the results of five walls simulated with the Shear Wall element
available in Perform 3D. Eq. (3-7) considers the effect of confinement by using the
confined concrete strength ratio, K = f_./f. according to Mander et al. [55] and has a lower
limit of G f_. 1t should be noted that the Shear Wall element in Perform 3D is a four-node
element that uses a displacement-based formulation, and Eq. (3-7) has not been evaluated
in a force-based beam-column element, which is the element used in this study.

Gf.. = Gf. <5(K —0.85) Gf. < 2.5Gf. (3-7)

The tensile stress-strain relationship of reinforcing steel presents hardening
behavior after yielding and before the ultimate stress, f,,. Since larger strains are
accompanied by larger stresses in this hardening range, localization of damage is not
expected before reaching the ultimate stress, resulting in a spread of yielding. Despite this
distribution of yielding, Pugh et al. [18] demonstrated that when concrete in compression
softens and deformations localize, reinforcing steel has to be also regularized to improve
model objectivity for the global behavior of RC walls. Pugh et al. proposed the post-yield
ultimate strain and slope of the steel stress-strain relationship to be regularized using Eq.
(3-8) and Eq. (3-9), respectively (Figure 3.1b). Eq. (3-8) requires a critical length, L., and
an assumed gage length of L;q4. =200 mm. This steel regularization was adopted by NIST

[10].

L
Equ = & + ( ‘zage) (esu - ey) (3-8)
cr
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b = =
ES(EQL - gy) (55’;1 - sy)

(3-9)

3.2.3 Normalization of Section Curvatures
To obtain objective local section curvatures (and strains) from force-based beam-
column elements with regularized materials, Coleman and Spacone [19] developed a
curvature normalization (postprocessing) method. This normalization step is required
because the critical length, L., of a mesh-objective model does not necessarily match the
assumed plastic hinge length, L,, where damage concentrates. The curvature normalization
approach is based on the assumption that the total curvature (¢) has an elastic (¢,) and an
inelastic (¢p;) component, where the latter is concentrated in the model over L.,.. For a
cantilever wall with uniform reinforcement along its height, L., is the length (or weight)
corresponding to the first integration point above the base. Coleman and Spacone [19]
proposed to estimate the normalized curvatures using Eq. (3-10), where the inelastic
curvatures are scaled by the factor sf given in Eq. (3-11). In this latter equation, H,sf is
the height of the wall from the base to the point of zero moment, and L,, is the assumed
plastic hinge length of the wall.
¢ = P +sf ¢ (3-10)

_ Lcr(ZHeff - Lcr
LP(ZHeff - Lp)

(3-11)

3.3 Experimental Walls
Eight previously-tested RC walls, presented in Table 3.1, were used to evaluate the
numerical simulations in this chapter. All of these walls are planar and slender, with shear
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span-to-depth ratios [M /(VL,,)] equal to or greater than 2.0. Walls that did not have lap
splices near the base, failed through a compression-controlled mode (concrete crushing
and/or bar buckling), and showed a lateral strength reduction of at least 20% of the
maximum strength were selected. Therefore, the ultimate failure displacement of the
selected walls was reached after a range of softening behavior. In Table 3.1, K = f../f/ is
the confined concrete strength ratio calculated according to Mander et al. [55], and §,, is
the ultimate lateral displacement of the wall at 20% strength reduction from the maximum
strength. For wall WP1, the ultimate displacement was taken at 15% strength reduction
during positive loading because bar buckling and significant crushing were reported at this
displacement level [97]. Note that walls WP1, WP2, and WP3 had nonsymmetrical
confined toe regions at the two ends.

Values of plastic hinge length (L,,) calculated for the eight walls using Eq. (3-1) to
Eq. (3-3) are presented in Table 3.2, as well as the mean of the calculated values for each

wall.

74



7

TABLE 3.1

EXPERIMENTAL WALLS

. d .
¢ Ly “Hyy y P £ 5 5, Scaling %Failure
Wall ID  Reference Vi [ K
[mm] [mm] [mm] °™ J¢*9 [MPa] [MPa] [mm] Factor Mode
WSH4 [39] 150 2000 4560 2.3 0.057 40.9 576 1.00 73.0 0.50 CS
WSH6 [39] 150 2000 4520 2.3 0.108 45.6 576 1.27 92.9 0.50 CS
RW1 [98] 102 1219 3810 3.1 0.102 31.6 434 1.18 82.2 0.25 S

WP1 [94] 152 2286 8560 3.7 0.096 35.80 506 1.30(°1.31) 34.9 0.50 CS
WP2 [94] 152 2286 8560 3.7 0.083 417 506 1.49(°1.50) 43.7 0.50 CS
WP3 [94] 152 2286 8560 3.7 0.081 424 506 1.28("1.39) 37.6 0.50 CS
WR10 [99] 200 1500 3000 2.0 0.076 36.2 449 1.19 86.1 ‘NR CS

HPCWO03  [100] 100 1000 2100 2.1 0.175 57.2 433 1.30 52.8 ‘NR C

& Effective height, H,r= height between the base of the wall to the point of zero moment

® Values in parentheses correspond to the west boundary region [94]
¢ NR= Not reported

d CS = concrete crushing and steel buckling; C = concrete crushing; S = steel buckling




TABLE 3.2

PLASTIC HINGE LENGTH OF THE ANALYZED WALLS

L, (mm)
Wall ID
Eq. (3-1) Eq. (3-2) Eq. (3-3) Lpmean

WSH4 601 575 523 566
WSH6 599 525 494 539
RwW1 411 368 430 403
WP1 834 757 645 745
WP2 834 775 662 757
WP3 834 7 664 758
WR10 432 399 414 415
HPCWO03 292 225 306 274
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3.4 Element and Material Models

The force-based (FB) beam-column element in OpenSees [44] was used to model
the eight experimental walls. This is a two-node line-element where fiber cross sections
are assigned at different integration points (IP) along the length, and plane-section
deformations are assumed at each IP. The locations and weights of the IPs depend on the
integration method (e.g., Gauss-Lobatto, Gauss-Legendre, Gauss-Radau, modified Gauss-
Radau). Each fiber cross section simulates the axial-flexural behavior of the wall, and is
divided into a number of fibers, where nonlinear concrete and steel uniaxial stress-strain
material relationships are assigned (see Figure 3.2).

In this study, unconfined and confined concrete fibers were simulated with the
Concrete02 [101] material in OpenSees. The pre-peak compressive stress-strain
relationship in Concrete02 is defined by the Hognestad parabola (see Table 3.3). The strain

at peak strength was calculated as ¢, = 2f,/E. (or €., = 2f;./E. for confined concrete)

to achieve a Young’s modulus of E, = 4700\/E (in MPa units) according to ACI 318
[102]. The post-peak stress-strain relationship is linear to a residual compressive stress of

R.f. (or R..fz. for confined concrete). The tensile response is bilinear, where the tensile

strength was defined as 0.33\/E (in MPa units) as in [18], and the post-cracking behavior
considers zero residual tensile stress.

Steel reinforcement was simulated with the Menegotto and Pinto [57] model, which
is available in OpenSees as the Steel02 material. The parameters of the Steel02 model are
defined elsewhere [53,57]. The MinMax material (parameter § in Table 3.3) was used in
combination with Steel02 to simulate complete loss of the steel compressive stress, as a

simple model to represent the effect of rebar buckling, when the ultimate strain of confined
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concrete fiber immediately adjacent to the steel fiber was exceeded [18]. Other models that
realistically simulate the process of rebar buckling can be found in [103-105].

The constitutive relationships of the materials used to simulate the axial-flexural
behavior of the walls in this study are presented in Table 3.3. The reported test-day material
properties for concrete (e.g., ;') and for steel (e.g., f,, fu, and &g,) were used to define
these constitutive models. The shear behavior was simulated using a linear-elastic material

with an effective shear modulus of G,.fr = 0.04E,, as recommended elsewhere [9,18].

0 e
feel———_ Concrete02
fe
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@ e
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3
Ly,
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I3 bE,
[
. Ecu Es R
Drop due to MinMax—» f Steel02 + MinMax
y

Figure 3.2: Fiber section and material constitutive models.
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TABLE 3.3

MATERIAL CONSTITUTIVE RELATIONSHIPS.

Material Constitutive relationship
2. (&:\?
oc(e) = [ ——(—) 0<e <s¢,
o &
,  Je —Refe
Concrete02? 0c(er) = fl +=——(ec — &) g <& <&y
& — &y
oc(ec) = R f¢ Ec > &y
P ., (A-=b)
Steel02 o5 (") =B |be" + ———= 7
(1+&*®)
+ MinMax

B=10ncee; <éegy, =0

! Concrete compression stress-strain relationship is presented using positive values

3.5 Effect of Material Regularization in Gauss-Lobatto Integration Method

The FB beam-column element with Gauss-Lobatto integration method has been
commonly used to model isolated RC walls [17-19] because it includes integration points
located at the ends of the element, where the maximum moments occur. Furthermore, all
of the previous work on material regularization for FB beam-column elements has used the

Gauss-Lobatto integration method. A schematic representation of a cantilever wall with
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different number of Gauss-Lobatto integration points (NIP) is presented in Figure 3.3. The
location and weight of each IP are tabulated in the same figure. Since the maximum
moment in a cantilever wall occurs at the base, the critical integration point is the
bottommost one, with its corresponding critical length, L, highlighted in the figure. It can

be seen that the critical length is shorter for models with a greater number of IPs.

v lP 3IP 41P 5IP 6IP NP Location Weight
ﬂ @ (& [ @ -1 1/3
A 3 0 4/3
H 1 1/3
® 1 1/6
i ' . —-1/V5 5/6
i 1/V5 5/6
® 1 1/6
T W =) 1/10
[] Node —21/7 49/90
5 0 32/45
H o 1 o H e IP V2177 49/90
1 1/10
] ILcr -1 1/15
I “[aznyravr)  as-Vir30
@
L —|ajzn (7-2v7)  (14+V7)/30
o 6
L o (1/21) (7-2v7) (14 +7)/30
(1/21) (7+2v7)  (14=V7)/30
v bas

1 1/15

Figure 3.3: Schematic representation of a cantilever wall with
different number of Gauss-Lobatto IPs.

Figure 3.4 shows the monotonic pushover analysis results of wall WSH4 [39]. Four
different models of the wall were developed; each with a single element but using three,
four, five, and six Gauss-Lobatto integration points (refer to Figure 3.3). The legend of the
figure shows the resulting critical length, L., at the base of each model. Materials without
regularization (WQO), with only concrete regularization (C), and with both concrete and
steel regularization (CS) were considered in the analyses. The regularization of concrete

and steel materials are shown in Figure 3.1.
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The monotonic pushover analyses were conducted using displacement-control
loading protocol until a reduction of 20% in lateral load (V) was reached. It can be seen
from Figure 3.4 that when the same material stress-strain relationships without
regularization (WQ) were used for the four models with the different L.,., the global lateral
load, V versus displacement, § response (Figure 3.4 al) was nonobjective, i.e., the models
with different L., predicted different responses. However, the local moment-curvature
response at the critical IP for the models without material regularization (Figure 3.4 b1)
was objective. This difference is because the sectional behavior depends on the material
stress-strain relationships, the axial force, and the moment at the location of the IP, which
are the same for the critical IP regardless of the total number of IPs. However, the global
response depends not only on the sectional behavior but also the integration length, which
depends on the number of IPs, as shown in Figure 3.3.

Once the concrete was regularized, the global behavior in Figure 3.4 a2 became
objective, with further (albeit considerably smaller) improvements when steel was also
regularized (Figure 3.4 a3). However, when regularized material models were used, the
local moment-curvature behavior was nonobjective (Figure 3.4 b2, b3), limiting the

performance evaluation of the wall based on section curvature and material strains.

81



500

Global

250 /

at)
50 100
: c
f a2)
100

250 | =)

CS
al3)

Using Eq. (3-10) and Eq. (3-11) with the mean plastic hinge length (L, meqn =

50
4 [mm]

100

Moment [kN-m]

Local Unprocessed

2000
\
1000
WO
b1)
0
0.05
2000 m
1000
52
0 )
0.05
2000 f—i\
1000
CS
b3)
0
0.05 0.1
o [1/m]

Moment [kN-m]

2000

1000

1000

Local Postprocessed

—_— 3 IP (Lcr=760 mm
— 4 |P (Lcr=380 mm
— 5 |P (Lcr=228 mm

)
)
)
6IP (Lcr=152 mm)

0 0.015

CS
c3)

0.03

¢ [1/m]
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regularization, CS: with concrete and steel regularization): a)
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mm) from Table 3.2, the normalized local moment-curvature responses from the

regularized models of wall WSH4 are presented in Figure 3.4 ¢2 and c3. It can be seen that

the normalized moment-curvature results of the monotonic pushover analyses were

objective. However, it may be challenging to implement Eq. (3-10) and Eq. (3-11) for
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cyclic analysis. Furthermore, the assumptions involved in Eq. (3-11) may not be
appropriate for walls interacting with other elements (e.g., coupled walls) since the
displacement contribution due to the flexibility of the other elements is not considered in
the equation. These limitations can be overcome by combining material regularization with

plastic hinge integration, as described below.

3.6 Effect on Material regularization in Plastic Hinge Integration Method

If the critical length, L., in a model matches the plastic hinge length, L,,, over which
damage is assumed to concentrate, then such a model will result in objective global as well
as local responses without requiring normalization of the curvatures because the scale

factor presented in Eq. (3-11) will be 1.0. However, different equations for L,, are available

in the literature [e.g., Eq. (3-1) to Eq. (3-3)], and the analysis results can vary greatly based
on the selected L,. This sensitivity of the nonlinear analysis results to L, can be
significantly reduced by using regularized materials and the plastic hinge integration
method. The accuracy and advantages of the proposed approach are presented below by
comparing analysis results of the eight walls listed in Table 3.1 with results from
conventional (i.e., unregularized) materials.

The Gauss-Radau integration method has been used in recent studies to simulate
the nonlinear lateral load behavior of RC walls [106]. In order to ensure that the critical
length exactly matches the desired plastic hinge length, the FB beam-column element with
the modified Gauss-Radau plastic hinge integration method [78-80] was used with both
regularized and unregularized materials. The modified Gauss-Radau integration method
uses one element with six integration points along its length [80], as follows: 1) two Gauss-
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Radau points with weights scaled by four at each end of the element, and 2) two Gauss-
Legendre points in the interior part of the element. The locations and weights of the six
integration points in the modified Gauss-Radau method are presented in Eg. (3-12) and are

schematically presented in Figure 3.5.

8L Line(3 —V3) Lint (3 +3) 8L
_ . pl | int . int i _ pJ .
x= {0 = AMp " Ayt L= L} (3-12)
w= {L,; 3Ly 0.5Line; 0.5L;p¢ 3Lyj; Ly}

Where, H is the total length of the element, L,,; and L,,; are the plastic hinge lengths
specified by the user at the two ends, and the interior length of the element is determined
as Liny = H — 4Ly, — 4L,;. An important advantage of the modified Gauss-Radau method
is that it includes integration points at the element ends (i.e., x; and x¢ in Figure 3.5), thus
accurately modeling the maximum moment at the base of a cantilever wall. Note that L,,, =
0 was used in this study because a cantilever wall has zero moment at the top. This also
ensured that L;,, remained positive for all of the plastic hinge lengths (i.e., L,,;) investigated
in this chapter.

The following sections present the results of using the modified Gauss-Radau
plastic hinge integration method with unregularized and regularized concrete and steel
materials. As stated previously, the experimentally reported test-day material properties for
concrete (e.g., f¢') and steel (e.g., f;, f,, and g,) were used to define the unregularized and

regularized stress-strain constitutive relationships.
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Figure 3.5: Locations and integration weights for the modified
Gauss-Radau integration method.

3.6.1 Unregularized Materials

Cyclic pushover analyses of the eight walls from Table 3.1 were conducted using
the FB beam-column element with the described plastic hinge integration method with
unregularized concrete and steel materials. Assumed plastic hinge lengths equal t0 L, ;neqn
(Table 3.2) were used to define the location and weights of the integration points (see
Figure 3.5) of each wall. The peak confined concrete strength, f. as well as the ultimate
compression strains &, and ¢.,, (for unconfined and confined concrete, respectively) were
determined using three models: Priestley et al. [107], Saatcioglu and Razvi [108], and Scott
et al. [109]. The stress-strain relationships from the three models, for unconfined and
confined concrete of wall WP1, are shown in Figure 3.6. The ultimate concrete

compression strain, &, or &, was assumed to occur at a residual stress of 20% (i.e., R, =
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R.. = 0.2) of the respective peak stress (i.e., 0.2f, and 0.2f_.) for unconfined and confined
concrete, respectively. Note that this assumption is not consistent with Priestley et al. [107],
where a greater confined concrete stress at ultimate strain is assumed following the
Popovics equation. Furthermore, the strain corresponding to the peak strength was
calculated as ¢, = 2f; /E. and €., = 2f_./E to obtain a predetermined value of E. when

using the Concrete02 material in OpenSees. The modulus of elasticity for the three models

and for both unconfined and confined concrete was calculated as E, = 4700\/E (in MPa

units) according to ACI 318 [102].
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Figure 3.6: Concrete material constitutive models for wall WP1
(east boundary region). a) Unconfined concrete, b) confined
concrete.

The numerical-to-experimental ultimate displacement ratios, R, =6y, num/ 8y exp fOr
the eight walls using unregularized materials and L, ;y.qn, from Table 3.2 are presented in
Table 3.4. The models with flcc, &, and &, from Saatcioglu and Razvi [108] resulted in
highly unconservative overpredictions of the measured ultimate displacement for all walls,

while the models with f'CC, &, and g, from Scott et al. [109] and Priestley et al. [107]
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resulted in unconservative overpredictions for all but two of the walls (WSH4 and
HPCWO03). On average, the best results were obtained using f'CC, &y, and &, from Priestley
et al. [107], which assumes an ultimate strain of £,=0.004 for unconfined concrete and Eq.
(3-13) for confined concrete, where, p_ is the total volumetric ratio of confining steel and

&4, 1S the confining steel strain at maximum tensile stress, which was taken as 9%.

L4p f &5
£y = 0.004 + —>F — (3-13)

cc

Figure 3.7 presents the hysteretic lateral force versus displacement behaviors of the
eight walls, where the numerical results (black lines) were obtained using the unregularized
concrete materials with £, €, and &, from Priestley et al. [107]. The predicted hysteretic
behaviors of the walls prior to substantial strength loss were similar to the measured
behaviors (red lines). However, the predicted ultimate displacement at failure was
substantially different and unconservative for the majority of the walls. From Table 3.4 and
Figure 3.7, it is clear that unregularized plastic hinge models are not adequate to predict

the ultimate displacement of the considered slender planar RC walls.
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TABLE 3.4
NUMERICAL-TO-EXPERIMENTAL ULTIMATE DISPLACEMENT RATIOS, R§,, =

Sy mum!Bu,exp OBTAINED WITH SIMULATIONS USING L mean.

Unregularized Materials Regularized Materials
Scott et al. Saatcioglu and Priestley et Pughetal. Lowesetal.

Wall ID
1982 Razvi 1992 al. 1996 2015 2016
WSH4 0.63 1.68 0.68 1.10 1.10
WSH6 1.47 2.19 1.36 0.86 0.98
RW1 1.26 2.23 1.40 1.15 1.13
WP1 2.56 4.16 1.93 0.86 0.98
WP2 3.27 5.47 2.46 0.80 1.03
WP3 2.55 4.39 2.74 0.92 1.06
WR10 2.21 3.33 1.86 1.00 1.00
HPCWO03  0.88 1.99 0.86 0.87 1.04
Mean 1.85 3.18 1.66 0.94 1.04
St. Dev. 0.93 1.38 0.73 0.13 0.05
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Figure 3.7: Lateral force-displacement behaviors using plastic
hinge integration method and unregularized materials based on
Priestley et al. [107] (Measured results in red and numerical results
in black).

3.6.2 Regularized Materials

This section presents the analysis results of the eight walls using the same FB beam-
column element with the modified Gauss-Radau plastic hinge integration method described
above, but with regularized concrete and steel materials. Since regularization only affects
the post-peak behavior of concrete, the unconfined concrete stress-strain relationships up
to the peak point were the same as those in the unregularized plastic hinge models.
Similarly, the regularized confined concrete stress-strain relationships up to the peak point
were the same as the unregularized confined concrete relationship with f,. based on
Priestley et al. [107], which uses the confined strength ratio, K = f../f, according to
Mander et al. [55]. For the post-peak strain-stress behavior, regularization was done using

a constant concrete crushing energy for both unconfined and confined concrete. The
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unconfined concrete crushing energy in Eq. (3-5) was used in combination with two values
of confined concrete crushing energy per Pugh et al. [18] [Eq. (3-6)] and Lowes et al. [20]
[Eqg. (3-7)]. Based on these Gf. and Gf.. values, the ultimate strains of unconfined and
confined concrete were calculated using Eq. (3-4). The ultimate concrete compression
strain, &, or ., was assumed to occur at a residual stress of 20% (i.e., R, = R.. = 0.2) of
the respective peak stress (i.e., 0.2f and 0.2f.) for unconfined and confined concrete,
respectively. As an example, the regularized unconfined and confined concrete stress-strain
models for wall WP1 (using L. = Ly mean =745 mm) are shown in Figure 3.6. The only
difference between the two regularized confined concrete models is the ultimate strain
based on the different G f,. values from Eq. (3-6) and Eq. (3-7). Steel regularization was
also considered in the regularized plastic hinge models by using Eq. (3-8) and Eq. (3-9)
with a gage length of Ly, 4. = 200 mm.

The numerical-to-experimental ultimate displacement ratios, RS, for the eight
walls using the regularized materials and L, ,;.qn from Table 3.2 are presented in Table
3.4. Regularized materials consistently provided better predictions of the measured
ultimate displacements (i.e., the R§,, values were closer to 1.0) than simulations with
unregularized materials. The best predictions were obtained using Eq. (3-7) [20] for the
confined concrete crushing energy, Gf,. resulting in R&,, ratios within +13% error. The
lateral force-displacement curves from these analyses are presented in Figure 3.8, showing
accurate simulations of the cyclic behavior of the eight walls up through the ultimate
displacement. This is an important finding because it shows the benefits of combining
regularized materials with the plastic hinge integration method, as compared with

unregularized materials.
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Figure 3.8: Lateral force-displacement behaviors using plastic
hinge integration method and regularized materials with concrete
crushing energy according to Eg. (3-5) and Eq. (3-7) (Measured

results in red and numerical results in black).

It should be noted that the numerical lateral force-displacement behaviors for walls
WSH6, WR10, and HPCWO03 in Figure 3.7 and Figure 3.8 generally underestimated the
measured residual displacements of the walls upon unloading (i.e., displacement at each
zero force crossing). This discrepancy in the residual displacement was likely due to a
combination of the following two factors. First, the Concrete02 [101] material in OpenSees
was not able to accurately simulate the gradual crack closure behavior of concrete as
compared to other concrete material models (e.g., [60,110]). Second, all of these slender
walls had a relatively low shear-to-depth ratio (close to 2.0), resulting in increased
contribution of shear to the wall lateral displacement. Specifically, nonlinear shear

deformations in slender RC walls are generally associated with non-zero residual
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displacements [63], but this behavior was not captured in the models since a linear-elastic

material was used to simulate the shear deformations of the walls.

3.7 Sensitivity of Ultimate Displacement to Assumed Plastic Hinge Length
The analysis results presented in the previous section were obtained using the
modified Gauss-Radau plastic hinge integration method with the mean plastic hinge length

(Lpmean) from Table 3.2. To study the sensitivity of the numerical predictions of the

ultimate displacement to the assumed plastic hinge length, parametric analyses were
conducted considering L, values ranging between 0.75 and 1.25L, peq,. This range is
greater than the mean + one standard deviation, and is also greater than the range between
the minimum and maximum L,, values in Table 3.2. This wide range was considered in
order to include L, values that can result from equations other than Eq. (3-1) — Eg. (3-3).
The numerical-to-experimental ultimate displacement ratios (R &,,) using the unregularized
and regularized material models are presented in Figure 3.9 (note that RS, values greater
than 4.0 are not presented in the figure because of the selected plot range). In general, the
ultimate displacements from the unregularized material models (Figure 3.9a-c) were very
sensitive to the assumed plastic hinge length, with the greatest variations when using the
Saatcioglu and Razvi [108] concrete parameters. In comparison, the ultimate displacements
from the regularized material models (Figure 3.9 d,e) were much less sensitive to the
assumed plastic hinge length. This reduced sensitivity of the results to the assumed plastic
hinge length, which is a major benefit of using regularized materials, was because of the
regularized post-peak stress-strain behaviors of the unconfined and confined concrete [Eq.
(3-4)] based on the critical length (i.e., L., = Ly).
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Scott et al. 1982 Saatcioglu and Razvi 1992 Priestley et al. 1996 Pugh et al. 2015 Lowes et al. 2016
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Figure 3.9: Sensitivity of the predicted ultimate displacement to the
assumed plastic hinge length. Unregularized (conventional)
material models (a-c), regularized material models (d,e).

3.8 Comparisons of Local Wall Response

The ability to predict local wall response is very important for accurate assessment
of the performance at the section level (curvature and material strain demands).
Comparisons between the numerically simulated axial-flexural (i.e., vertical) strains and
the average experimentally measured strains along the length of walls WP1 and WP3, at
various rotation levels, are shown in Figure 3.10 and Figure 3.11 for models with
unregularized and regularized materials, respectively. The simulations were conducted
using the plastic hinge integration method with the mean plastic hinge length. Ratios of
numerical-to-experimental extreme compression (C) and tension (T) vertical strains of the
walls are listed in Table 3.5.

The experimental strains were measured at five locations along the length of each
wall, and are average strains over a total gage height of 1118 mm (44 in.) [94,97]. The

corresponding simulations with unregularized and regularized materials were based on f,
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&y, and g, from Priestley et al. [107], and Gf, and Gf.. from Eq. (3-5) and Eq. (3-7),
respectively. Each model included two elements, where the bottommost element had a total
height of 1118 mm (to match the experimental measurement height for the strains) with a
critical length, L., matching Ly meqn (745 mm and 758 mm for walls WP1 and WP3,
respectively from Table 3.2). To be consistent with the measured strains, the predicted
strains in Figure 3.10 and Figure 3.11 were calculated as average strains from all of the IPs
in the bottom element, thus covering the full experimental gage height of 1118 mm. Note
that because walls WP1 and WP3 had unsymmetrical confined regions at the ends, the
vertical strain comparisons are presented for both positive and negative rotations (Figure
3.10 and Figure 3.11, top and bottom rows, respectively). Note also that it was not possible
to obtain reliable curvature or strain predictions from models with regularized materials
but other integration methods (e.g., Figure 3.3) because it was not practical to implement
the curvature normalization in Eq. (3-10) and Eq. (3-11) to the cyclic analysis results. As
stated previously, this is a major limitation of the curvature normalization approach.

The numerical-to-experimental ratios of strains in Table 3.5 show that both
unregularized and regularized material models resulted in underpredictions (i.e., ratios
smaller than 1.0) of the compressive strains for positive rotations of wall WP1, and mostly
overpredictions for negative rotations. The tension strains were overpredicted by both
models. The largest differences between the numerical and experimental results were for
the compression strains at +1.5% rotation, reaching errors of 49% and 35% for the
unregularized and regularized material models, respectively. The mean errors in
compressive strains considering both directions of loading were 12% and 5% for the
unregularized and regularized material models, respectively, showing better accuracy
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when using material regularization. The tension strains were also generally considerably
better predicted by the model with regularized materials at both positive and negative
rotations, with mean error of 1% as compared with 12%.

The extreme compression strains for wall WP3 were mostly underestimated by both
models with unregularized and regularized materials, while the extreme tension strains
were generally overpredicted. The largest differences were in the tension strains at the third
cycle (3/3) to +1.5% rotation, with 65% and 51% error in models with unregularized and
regularized materials, respectively. The mean errors from the two models were 15% and
12% for the compressive strains, and 17% and 11% for the tension strains, respectively,
again, showing the increased accuracy from the material regularization. Even though the
improvement in the strain predictions were smaller for wall WP3 than for wall WP1,
models with regularized materials were also able to capture the ultimate displacement as
reported in Table 3.4. The larger differences in the local response predictions of the walls
as compared to the global predictions can be attributed to the modeling assumption of
plane-section deformations, which can be inaccurate, especially at large lateral
displacements [35]. While recent studies have shown better predictions of compression and
tension strains of slender planar RC walls using continuum finite element models (which
do not assume plane-section deformations), the ultimate failure displacement predictions
from these models present considerable variations [111]. As such, the simplicity,
efficiency, and improved global as well as local accuracy of FB beam-column element
models with plastic hinge integration and material regularization provide significant

benefits for the nonlinear analysis of flexural RC walls.

95



It should also be mentioned that measured strains can be greatly sensitive to the
location and gauge length of the potentiometers used in the experiments. Therefore, the
numerical-to-experimental ratios presented in Table 3.5 may have been significantly
different if the potentiometers were placed differently in each test. Because the sensitivity
of the ultimate displacement to the assumed L,, is effectively reduced by using regularized
materials (Figure 3.9d,e), future development of new L, equations calibrated based on

measured local (rather than global) behaviors can ultimately result in models that predict

the local behavior of RC walls with higher accuracy.
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TABLE 3.5
RATIOS OF NUMERICAL-TO-EXPERIMENTAL VERTICAL STRAINS; EXTREME

COMPRESSION (C) AND EXTREME TENSION (T).

WP1 WP3
Rotation Unregularized Regularized Rotation  Unregularized Regularized
(%) C T C T (%) C T C T

+075 075 101 077 096  +075 100 1.09 102 1.07
+10 072 107 075 1.01 +10 101 123 1.02 1.19
+15 051 122 065 108 +15(1/3) 085 137 092 129

+15(3/3) 057 165 060 151
075 109 114 113 1.10 -0.75 096 088 098 0.87
-1.0 110 107 114 1.02 -1.0 082 088 083 0.86
-15 108 124 128 091 -15(1/3) 093 109 097 1.03

-15(2/3) 067 115 070 1.06
mean  0.88 112 095 1.01 mean 085 1.7 0.88 111
COV 029 008 027 007 COV 019 022 0.18 0.20
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Figure 3.10: Vertical strain profiles at various rotation levels using
unregularized materials. a.1) Wall WP1, positive rotation; a.2) wall
WP1, negative rotation; b.1) wall WP3, positive rotation; b.2) wall
WP3, negative rotation.
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Figure 3.11: Vertical strain profiles at various rotation levels using
regularized materials. a.1) Wall WP1, positive rotation; a.2) wall
WP1, negative rotation; b.1) wall WP3, positive rotation; b.2)
wall WP3, negative rotation.
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3.9 Summary and Conclusions

This chapter discusses and critically evaluates the effect of material regularization
in force-based beam column elements with plastic hinge integration to simulate the global
and local responses (including the ultimate failure displacement, section curvatures, and
material strains) of slender planar RC walls under cyclic lateral loading. The study extends
the plastic hinge integration method by incorporating material models that regularize the
post-peak stress-strain relationships of concrete and steel based on available failure energy
approaches. The important findings and conclusions from this research are as follows:

1. The use of material regularization with the Gauss-Lobatto integration
method results in mesh-objective predictions of the global behavior of
slender RC walls. However, the local section curvature and material strains
from these models are still extremely sensitive to the mesh size.
Normalization of the curvatures based on an assumed plastic hinge length
has been proposed in the literature, showing significant reductions of this
sensitivity. As an important limitation, the equations needed for curvature
normalization have not been generalized. Furthermore, the need to
normalize the curvatures in a second step after the nonlinear analysis has
been lost or not emphasized in some of the recent literature on nonlinear RC
wall modeling.

2. In comparison, the use of unregularized materials with the Gauss-Lobatto
integration method results in objective section curvatures and material
strains. However, the predicted ultimate displacement at failure is extremely
sensitive to the length of the critical integration point.

3. The modified Gauss-Radau plastic hinge integration method allows the user
to match the critical length to an assumed plastic hinge length. As a major
benefit demonstrated in this chapter, the sensitivity of the model results to
the assumed plastic hinge length is significantly reduced when regularized
rather than unregularized materials are used.

4. Asan additional benefit, curvature and strain predictions using the modified
Gauss-Radau plastic hinge integration method with regularized materials do
not require an additional normalization step. As such, this approach is
suitable for a wider range of nonlinear modeling applications.
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5. Regularization of the concrete stress-strain relationship has a more
significant effect on the analysis results than regularization of the steel
stress-strain relationship.

Future research is needed to investigate the modified Gauss-Radau plastic hinge
integration method with regularized materials for: 1) nonplanar RC walls; 2) nonlinear

dynamic analysis; and 3) improved predictions of local wall behavior.
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CHAPTER 4:
REGULARIZED PLASTIC HINGE MODEL FOR NONLINEAR CYCLIC LATERAL

LOAD ANALYSIS OF SLENDER RC COLUMNS

Due to the demonstrated benefits of regularized plastic hinge models to simulate
the global and local behaviors of RC walls presented in Chapter 3, this chapter investigates
the use of regularized plastic hinge models for slender RC columns as part of the second
specific objective of this research. Unregularized concrete stress-strain relationships, as
well as regularized material stress-strain relationships developed for RC walls are studied.
A new confined concrete regularization equation is proposed to reduce model mesh
sensitivity in cyclic analysis of RC columns, showing accurate results when compared with
available test data. A sample regularized plastic hinge column model is presented in

Appendix A.6.

4.1 Introduction

The use of nonlinear numerical analysis is becoming increasingly common in
earthquake engineering design practice of reinforced concrete (RC) structures. As such, it
is essential to develop effective modeling techniques that can accurately predict the cyclic
axial-flexural behavior of RC columns and walls through failure (e.g., peak lateral strength,
ultimate displacement). Previous research towards this goal for RC columns has

investigated lumped plasticity models using semi-empirical equations to define the
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moment-rotation backbone parameters [65,112]. Although lumped plasticity models are
numerically robust and simple to implement, they present two major drawbacks: 1)
variations in axial load cannot be accounted for during the analysis; and 2) there is no
standardized guidance for cyclic hysteretic moment-rotation relationships [6].

In comparison, distributed plasticity models with fiber cross sections can predict
the nonlinear response of RC columns more accurately than lumped plasticity models
because: 1) the variation of axial load in the axial-flexural interaction can be captured; and
2) the hysteretic behavior of the element is simulated through cyclic uniaxial concrete and
steel material constitutive stress-strain relationships. However, as a major disadvantage of
distributed plasticity models, the ultimate displacement (i.e., failure displacement) of a RC
element with softening post-peak behavior (e.g., due to concrete crushing or rebar
buckling) is highly sensitive to the length of the critical integration point (IP) over which
the nonlinear behavior and failure of the element are concentrated [17-19,78]. To reduce
this variability, researchers have proposed two families of numerical analysis techniques:
1) plastic hinge integration methods in which the length of the critical IP is matched to an
experimentally-calibrated plastic hinge length, L,, [78]; and 2) regularized concrete stress-
strain relationships based on an experimentally-calibrated post-yield crushing energy [19].
Each of these techniques have limitations as follows.

In the case of the plastic hinge integration method, the simulated ultimate
displacement of the element can be highly sensitive to the assumed plastic hinge length
and material stress-strain relationships [29,113,114]. Importantly, since several plastic
hinge length equations [115-120] and concrete stress-strain relationships [107—109] are

available in the literature, different results could be obtained when using different
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parameters. In the case of regularized material constitutive relationships, the local response
of the element (e.g., section curvatures and material strains) can be highly inaccurate if the
length of the critical IP is significantly different than the plastic hinge length [18,19,82].

It may be possible to mitigate the aforementioned limitations by combining the
plastic hinge integration concept with regularized material stress-strain relationships.
Accordingly, the objective of this chapter is to evaluate the accuracy and sensitivity of the
simulated global and local behaviors of RC columns to the plastic hinge length and material
stress-strain regularization. For this purpose, a force-based (FB) beam-column element
with plastic hinge integration method is used to analyze a set of twenty-eight previously-
tested RC columns. The evaluation of the FB beam-column element is conducted using: 1)
unregularized (conventional) material stress-strain relationships; and 2) regularized
material stress-strain relationships.

Previous researchers have recommended material regularization equations for the
cyclic simulation of RC walls [10,18]. The plastic hinge analysis results of the 28
previously-tested columns are used to evaluate the applicability of these equations to
columns. Additionally, to the best of the authors’ knowledge, no concrete stress-strain
regularization recommendations are available specifically for the cyclic modeling of RC
columns. Therefore, a new regularization equation for the compressive crushing energy of
confined concrete is proposed based on calibration and validation of the analysis results to

the measured data from the 28 columns.
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4.2 Experimental Dataset
A dataset of twenty-eight previously tested square RC columns, as listed in Table

4.1, was used to evaluate the numerical models. These specimens constitute a subset of the
database developed by Berry et al. [121], focusing on columns that failed due to concrete
crushing (with or without rebar buckling), and therefore, evidenced softening post-peak
behavior of the lateral load versus displacement relationship. The dataset contains only
slender columns with a shear span-to-depth ratio M /(VH) >2.9, including a wide range of
material properties, axial load ratios, and reinforcement ratios. The following information
is presented for each column in the dataset:

e H =column cross section height (same as width).

e f =compressive strength of unconfined concrete.

e f, =yield strength of longitudinal steel.

e P/(f/Ay) = axial load ratio, where P is the axial load applied to the column
and A, is the gross cross-section area.

e M/(VH) = shear span-to-depth ratio, where M and V' are the moment and
shear developed at the critical section of the column, respectively.

e s/d;, = transverse reinforcement spacing, s divided by the longitudinal bar
diameter, d,,.

e p; = longitudinal steel ratio, calculated as A, /A,, Where Ay, is the total area
of longitudinal steel in the section.

o Ag,/(sb.) = transverse reinforcement ratio in each direction defined
according to ACI 318 [102], where Agy, is the transverse reinforcement area,
and b, is the cross-sectional dimension of the concrete core measured to the
outside edge of the outer transverse reinforcement.

® L, mean = Mean plastic hinge length calculated from the plastic hinge length
equations presented in Table 4.2, where d is the effective depth of the
column section, z is the distance from the critical section to the point of
contraflexure, P, is the nominal axial capacity (calculated by Eq. 22.4.2.2
of the ACI 318 [102]), and the rest of variables were previously defined.
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The column specimen dataset was divided into two groups: 1) columns 1 to 17,
which were used to calibrate an equation for the confined concrete crushing energy
(referred to as the “calibration” columns); and 2) columns 18 to 28, which were used to
validate the proposed regularization equation (referred to as the “validation” columns).
This division of the full dataset of 28 columns was done considering three aspects: 1) to
use about 60% of the columns for calibration and 40% of the columns for validation of the
equation; 2) to have validation columns from the same experimental programs as for the
calibration columns; and 3) to have experimental parameters (as presented in Table 4.1)
for the validation columns within the maximum and minimum range of the parameters for

the calibration columns, so that the validation is done within the limits of the calibration.
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TABLE 4.1

EXPERIMENTAL COLUMN DATASET

Column  Column Ref H f! fy P M5 ) Ash  Lpmean
ID Name " (mm) (MPa) (MPa) fiAg VH dp "' sb,  (mm)
1 Unit3  [122] 400 236 427.0 038 4.0 6.3 0015 0.013 237
2 Unitl  [123] 400 465 4460 0.10 4.0 53 0.015 0.005 215
3 Unit4  [123] 400 400 4460 030 4.0 59 0.015 0.003 232
4 Unitl  [124] 400 256 4740 020 4.0 40 0016 0.013 243
5 Unit4  [124] 400 256 4740 020 4.0 4.0 0016 0013 243
6 Unité  [124] 550 320 511.0 0.10 3.0 55 0.012 0.009 267
7 Unit8  [124] 550 321 511.0 030 3.0 4.5 0012 0011 283
8 No.3 ~ [125] 400 248 3620 003 4.0 53 0014 0.004 213
9  Specimen6 [126] 305 31.8 4290 018 55 58 0.016 0.005 230
10 Specimen9 [126] 305 333 3630 026 55 35 0.016 0.007 228
11 Specimen1l [126] 305 31.0 3630 0.28 55 35 0016 0.007 230
12 u1 [127] 350 43.6 430.0 0.00 29 6.0 0.032 0.003 209
13 u7 [127] 350 39.0 437.0 013 29 26 0032 0.010 217
14 BG-1  [128] 350 340 4556 043 4.7 7.8 0.020 0.005 250
15 BG-2  [128] 350 340 4556 043 47 3.9 0.020 0.010 250
16 BG-3  [128] 350 340 4556 020 4.7 3.9 0.020 0.010 233
17 BG-4  [128] 350 34.0 4556 046 4.7 7.8 0.029 0.006 257
18 Unit4  [122] 400 250 4270 021 4.0 56 0015 0.010 224
19 Unit2  [123] 400 440 4460 030 4.0 4.9 0015 0.007 232
20 Unit3  [123] 400 440 4460 030 4.0 57 0.015 0.005 232
21 Unit2  [124] 400 256 4740 020 4.0 4.0 0016 0.013 243
22 Unit5  [124] 550 320 511.0 010 3.0 55 0.012 0.009 267
23 Unit7  [124] 550 321 511.0 030 3.0 4.5 0012 0011 283
24 Specimen10 [126] 305 324 3630 027 55 58 0.016 0.004 229
25  Specimen12 [126] 305 31.8 3630 027 55 58 0.016 0.004 230
26 U3 [127] 350 348 4300 0.4 29 3.0 0032 0007 218
27 U6 [127] 350 37.3 437.0 013 29 26 0032 0.010 218
28 BG-8  [128] 350 340 4556 023 4.7 3.9 0.029 0.006 242
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TABLE 4.2

PLASTIC HINGE LENGTH EQUATIONS

Plastic Hinge Equation Reference
L, = 0.5d + 0.032z/v/d (in meter units) [115]
L, = 0.5d + 0.05z [116]
L, = 0.08z + 6d, [117]
L, = 0.08z + 0.022d, £, (in mm and MPa units) [118]
L, = 0.05z + 0.1f,dp/\/f! (in mm and MPa units) [119]
L, =[0.3P/P, + 3p, — 0.1]z + 0.25H > 0.25H [120]

4.3 Force-Based Beam-Column Element with Plastic Hinge Integration Method

A single force-based (FB) beam-column element in OpenSees [44] was used to
model the nonlinear axial-flexural behavior of each column specimen. This is a two-node
line-element where fiber sections are assigned at different integration points along the
length, and plane section deformations are assumed at each integration point (IP). Each
fiber section is divided into several concrete and steel fibers, where nonlinear concrete and
steel uniaxial stress-strain material relationships are assigned. In this study, the shear force-
deformation relationship of the element was assumed to be linear-elastic, with an effective

shear modulus of G.rr = 0.04E. as recommended elsewhere [9,10,18], where E_ is the

concrete Young’s modulus. Further information on the plastic hinge integration method
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and the fiber cross-sections used to model the axial-flexural behavior of the column is

provided below.

4.3.1 Plastic Hinge Integration Method

The critical IPs in a column are generally located at the ends, where the moments
are largest and damage is expected to concentrate. To ensure that the concentration of
damage in the element exactly matches a desired, user-defined plastic hinge length in each
model, the modified Gauss-Radau integration method [80] could be used. This method
utilizes six IPs to integrate the axial-flexural deformations of the FB beam-column element
over the column length. The IPs are distributed as follows: 1) two Gauss-Radau points with
weights scaled by four at each end of the element; and 2) two Gauss-Legendre points in
the interior part of the element. The IP locations (x) and weights (w) of the six integration
points in the modified Gauss-Radau method are given in Eq. (4-1), and are schematically
presented for a cantilever column in Figure 4.1, where L is the total length of the
element, L,,; and L, are the plastic hinge lengths specified by the user at the two ends, and

Line = L — 4Ly, — 4Ly;. Since the modified Gauss-Radau integration method includes

integration points at the element ends [i.e., x; and x¢ in Eq. (4-1)], it accurately simulates
the response under the maximum end moments of the element. Additionally, it integrates
quadratic polynomials exactly, and provides the exact solution for the linear elastic

behavior of the element [78].

8L Line(3 —V3) Lint(3 +3) 8L
_ . pl int . int i _ pJ .
x= {0 —= Mpyt——F—5 Ay t——— L-—= 1} (4
w= {L,; 3Lp; 0.5Lint; 0.5Lint; 3Ly Ly}
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Figure 4.1: Locations and integration weights used in plastic hinge
integration method.

The drawback of the modified Gauss-Radau integration method is that negative
integration weights occur in the interior IPs when L, > 0.125L (with L, = L,; = Ly,
which is common in prismatic RC columns), since L;,,; becomes negative. When negative
integration weights occur, the locations of the 3™ and 4" IPs move towards the top and
bottom of the element, respectively. These interior IPs with negative weights do not affect
the element response because the nonlinear behavior is controlled by the IPs located at the
ends of the element. However, if L,, reaches a value of 0.342L, the locations of the 3 and
4™ |Ps reach the element ends, after which the element response is not accurate. Therefore,

L, cannot be larger than 0.342L.
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For cantilever columns, the weight of the 6™ IP (i.e., L,;) can be set to zero, for
which the number of IPs in the modified Gauss-Radau method are reduced to four, to
increase the range of L, that does not cause negative integration weights. However, this is
not an appropriate approach to simulate columns in a moment resisting frame where plastic
hinges can form at both ends. Alternatively, to ensure that L., = L,, at both ends and to
further increase the range of L, that does not cause negative integration weights, the
Endpoint integration method [78] could be used. The drawback of this method is that the
elastic response is not accurate for elements with varying moment diagram (i.e., the method
provides exact solutions only for constant functions), therefore, it is not acceptable for
columns where the moment diagram is typically linear.

Based on the advantages and disadvantages of the different integration methods
described above, the modified Gauss-Radau integration method with L., = L,; = Ly,; =
L,, was used for the column analyses described in this chapter. This selection was made
because this method accurately represents the elastic response of the element, and because
the largest L,, used in all of the analyses conducted was 0.327L, which is smaller than the
maximum limit of 0.342L when negative integration weights impact the nonlinear

response.

4.3.2 Fiber Cross Sections

The column cross sections were divided in three types of fibers: 1) unconfined
concrete fibers to simulate the behavior of the section cover; 2) confined concrete fibers to
simulate the behavior of the concrete core (defined center-to-center of outer hoop

reinforcement); and 3) steel fibers to simulate the behavior of the reinforcing bars. The
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section cover and concrete core were divided into 30 (on each side) and 200 fibers,
respectively, while one fiber per reinforcing bar was used for the steel.

The unconfined and confined concrete fibers in each column section were simulated
with the Concrete02 material in OpenSees. The pre-peak compressive stress-strain
relationship in Concrete02 is defined by the Hognestad parabola. The strain at peak stress
was calculated as ¢, = 2f,/E. for unconfined concrete and ¢., = 2f_./E. for confined

concrete (where f. is the compressive strength of confined concrete), to obtain a material

with an initial stiffness (i.e., Young’s modulus) of E, = 4700\/E (in MPa units) according
to ACI 318 (2019). Beyond the peak stress point, the stress-strain relationship reduces
linearly to a residual compressive stress. The tensile behavior of the concrete is bilinear,

reducing to zero residual stress through tension-softening behavior after cracking, which

was assumed to occur at a tensile strength of 0.33\/ﬁ (in MPa units) according to ACI 318
(2019).

The longitudinal steel reinforcement in each column was simulated using the
Menegotto and Pinto (1973) stress-strain model, which is available in OpenSees as the
Steel02 material. The MinMax material model was used in combination with Steel02 to
simulate complete loss of the steel compressive stress, as a simple model to represent the
effect of rebar buckling, when the ultimate (i.e., crushing) strain, &., of the confined
concrete fiber immediately adjacent to the steel fiber was exceeded [18].

As stated previously, plastic hinge models using both unregularized and regularized
material stress-strain relationships were evaluated. Regularization of the concrete stress-
strain relationship is typically done for compression, while steel regularization has been

proposed for both compression and tension (Pugh et al. 2015). The unregularized and
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regularized concrete and steel material relationships utilized in this study are described

below.

4.4 Unregularized Concrete and Steel Material Model Parameters

Conventional plastic hinge models use unregularized stress-strain curves to define
the concrete and steel stress-strain relationships [129]. For the unregularized concrete
models in this chapter (Figure 4.2a,b), the compressive strength of confined concrete, f..
as well as the ultimate compression strains, &, and &, for unconfined and confined
concrete, respectively, were determined according to the following three models: 1)
Priestley et al. (1996); 2) Saatcioglu and Razvi (1992); and 3) Scott et al. (1982). For the
Saatcioglu and Razvi (1992) and Scott et al. (1982) models, ¢, and ., were assumed to
be reached at a residual stress of 0.2f, and 0.2f;., respectively (i.e., R, = R.. = 0.2).

For the model by Priestley et al. (1996), the ultimate strain of unconfined concrete
was taken as &,=0.004 at a residual stress of 0.2f,. For confined concrete, the model
assumes that the ultimate strain, €., is reached at fracture of the transverse confining steel
according to Eq. (4-2) from Priestley et al. (1996), where p is the volumetric ratio of the
transverse steel and ¢, is the transverse steel strain at maximum tensile strength, which
was taken as 0.09.

gy = 0.004 + 1.4p,fy e,/ fec (4-2)

The stress at ultimate strain, €., of the confined concrete model by Priestley et al

(1996) was obtained following Mander et al. (1988), which uses the Popovic’s equation.

Finally, the MinMax material model in OpenSees was used in combination with
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Concrete02 to simulate the complete loss of concrete compressive stress at €., sSimulating
the effect of the confining steel fracture.

For the unregularized steel materials, a bilinear stress-strain envelope with
hardening post-yielding behavior, defined by a strain hardening ratio, b (i.e., post-yield
stiffness bE) (Figure 4.2c), was modeled using the Steel02 material in OpenSees. The steel
strain hardening ratio for each column specimen was determined using the reported yield

strength, f,, the corresponding yield strain, ¢, (determined as f,,/E, with E;=200 GPa),

the reported maximum tensile strength, f,,, and the corresponding strain, which was taken

as 0.09 per NIST (2017b) recommendations.

4.5 Regularized Concrete and Steel Material Model Parameters

Regularization of the concrete compressive stress-strain constitutive behavior can
be explained by considering unconfined concrete cylinders subjected to uniform
compression through failure. Laboratory observations have shown that the post-peak axial
load versus total displacement behaviors of cylinders with different lengths are similar
because damage concentrates in a localized region regardless of the total length. However,
the average post-peak stress-strain curves obtained by dividing the total axial displacement
with the cylinder length depend on the length of the tested specimen [56,96].

In a distributed-plasticity beam-column element, the critical length, L,
corresponds to the length assigned to the integration point where the moment is largest and
nonlinear deformations concentrate (i.e., critical integration point x; in Figure 4.1).
However, the assumed critical length, L., in a model may not accurately represent the
length over which damage concentrates in a real column, resulting in erroneous predictions
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in the post-peak softening range of behavior [19]. Researchers [56,96] have found that the
concrete crushing energy, defined as Gf, (refer to the shaded area in Figure 4.2a) is an
invariant material property, regardless of the assumed L,.. Similarly, the crushing energy

for confined concrete can be defined as G, (refer to the shaded area in Figure 4.2b).

RCfC’

Figure 4.2: Material stress-strain curves. a) Unconfined concrete;
b) confined concrete; c) reinforcing steel.

If the concrete post-peak stress-strain curve is regularized so that the concrete
crushing energies for unconfined and confined concrete are equal to constant
predetermined (calibrated) values of Gf, and Gf., respectively, then models with different
L. will result in similar (i.e., objective) global force-displacement responses [19].
Considering the linear post-peak stress-strain relationship and elastic unloading response
of Concrete02 (Figure 4.2a), the regularized ultimate strain for unconfined concrete, g, at
a residual stress of R.f. can be calculated using Eg. (4-3) to obtain a constant unconfined
concrete crushing energy Gf.. This equation was derived by equating the shaded area of
Figure 4.2a to Gf./L.-. A similar equation for confined concrete can be obtained by

replacing the appropriate terms, as shown in Eq. (4-4).
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In this concrete regularization approach, it is important to note that: 1) appropriate
values of Gf, and G f.. need to be calibrated from experimental results; and 2) even though
the post-peak global force-displacement responses from models that have critical IPs with
different locations and weights (i.e., that result in a different L..) will be similar (i.e.,
objective), the local material strains will be different (i.e., non-objective local behaviors)
[19].

For the column models developed using the plastic hinge integration method in

Section 4.3.1, L, in Eq. (4-3) and Eq. (4-4) was taken as L,,. Furthermore, similar to the

unregularized concrete models, the ultimate concrete compression strains, €, and &, of
the regularized unconfined and confined concrete models were assumed to occur at a
residual stress of 0.2f. and 0.2f;. (i.e., R, = R.. = 0.2), respectively.

The tensile stress-strain relationship of reinforcing steel presents hardening
behavior after yielding and before the ultimate stress. Since larger strains are accompanied
by larger stresses in this hardening range, localization of damage is not expected before
reaching the ultimate stress, resulting in a spread of yielding. However, Pugh et al. (2015)
demonstrated that steel regularization is required to improve objectivity of the global
behavior when simulating RC walls. In this steel regularization, the post-yield stiffness of
the stress-strain relationship is regularized based on an assumed gage length of Ljq4. =

200 mm. However, its applicability has not been investigated in RC columns. More details
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of the steel regularization method based on Pugh et al. (2015) can also be found in NIST

(2017a).

4.5.1 Available Regularized Concrete Crushing Energy Equations for Slender RC Walls

Unconfined and confined concrete crushing energy equations for modeling slender
RC walls have been proposed by Pugh et al. (2015) and adopted by NIST (2017a) as:

Gf. = 2.0f; (N/mm for f. in MPa units) (4-5)

Gfe.c = 1.70G f. (N/mm for . in MPa units) (4-6)
As shown later in this chapter, these equations for slender RC walls do not result in
accurate simulations of the ultimate displacement prediction of slender RC columns. Note
that when using these equations, regularization of the steel stress-strain relationship is also

required as described in Pugh et al. (2015).

4.5.2 Proposed Regularized Concrete Crushing Energy Equations for Slender RC Columns

There are currently no recommendations specifically developed of the concrete
crushing energy for cyclic analyses of slender RC columns. Thus, an equation to estimate
the confined concrete crushing energy, Gf.. was developed based on the 17 calibration
column specimens listed in Table 4.1. The proposed equation was subsequently validated
using the remaining 11 specimens. The peak strength of confined concrete, f., was defined
according to Mander et al. (1988), and regularization of the post-peak concrete stress-strain
relationship was performed using Eq. (4-3) and Eq. (4-4), where the mean plastic hinge
length from Table 4.1 (i.e., L, = Ly mean) Was used in each model.

Four cases were evaluated by analyzing the predicted ultimate displacements of the

calibration columns. These cases differed based on the equation used for the unconfined
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concrete crushing energy, Gf., and the regularization of the steel stress-strain relationship.
For Gf,, Eq. (4-5) from Pugh et al. (2015) and Eq. (4-7) from Nakamura and Higai (2001)
were used. Then, simulations with and without steel regularization [10,18] were performed
with each of these two G £, equations and varying values of G f,.. This process considered
G f,. to be represented as a function of G £, as in the case of Eq. (4-6) for slender walls.
Gf. = 88\f, (N/mm for £/ in MPa units) (4-7)

Out of the four cases, the best simulation results were obtained by using Eq. (7) to
define G f;, and without steel regularization. These results are demonstrated in Figure 4.3a,
which shows the simulated-to-measured ultimate displacement ratio, R§,, for the
calibration columns as a function of Gf,./G f.. For all columns, a positive correlation can
be seen where R, increases with increasing G f.../G f.. The ultimate displacement of each
column, &,, was defined as the displacement corresponding to 20% reduction in lateral
resistance, based on the effective lateral load-displacement curve with P-A effects removed
as presented in Berry et al. (2004). The removal of the P-A effects was necessary in order
to capture strength loss due to material deterioration rather than geometric effects.

Figure 4.3b shows the value of Gf../Gf, required to obtain an ultimate
displacement ratio of R§,,=1.0 (meaning exact match of the simulated and measured &,,)
for each calibration column plotted versus the confined concrete strength ratio, K = f,./f,
according to Mander et al. (1988). The ID of each column is presented in the figure. Except
for column ID 11, a value of Gf_. larger than G f. was required to accurately simulate the
ultimate displacement of the analyzed columns. Furthermore, G f../G f. generally increased
with increasing confinement (i.e., increasing K). The linear regression that best matches

the results is presented with a dashed line in the plot, obtaining an R?=0.57.
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A better linear regression fit was investigated by considering other relationship
forms, while still maintaining simplicity of the equation as a goal for use in design. For the
development of the final recommended equation, Figure 4.3c shows the results of Gf.. /G f;
normalized by fc’2 versus K, where an improved linear regression equation was obtained,
with an R? value of 0.84. Based on these results, the proposed confined concrete crushing
energy is given according Eq. (4-8), where Gf_. is constrained to a minimum of Gf,

following the trend in Figure 4.3.

Gf.e = 0.008(K — 1)f/*Gf. = Gf. (N/mm for £/ in MPa units) (4-8)
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Figure 4.3: Confined concrete crushing energy calibration. a)
Ultimate displacement ratio, R&,, versus G f../Gf.; b) Gf../Gf:

versus K for R§,,=1; c) (GfCC/GfC)/fC’2 versus K for R§,,=1.
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Note that as stated previously, Eq. (4-8) was determined using G f, defined with Eq.
(4-7), and without steel regularization, as these selections resulted in the best match to the
measured ultimate displacements of the calibration specimens. Table 4.3 shows the values
of the confined concrete strength ratio, K = f../f., the unconfined concrete crushing
energy, Gf., the proposed confined concrete crushing energy, G f., and the simulated-to-
measured ultimate displacement ratio, Rd,,, for all of the 28 column specimens. The mean
and coefficient of variation of R§,, for the columns used to calibrate (ID 1-17) and to
validate (ID 18-28) Eq. (4-8) are also tabulated. It can be seen that Eq. (4-7) and Eq. (4-8)
resulted in reasonably accurate simulations of the ultimate displacement even for the
validation columns that were not used in the calibration process.

Additionally, Figure 4.4 presents comparisons between the experimental
(measured) and simulated lateral load versus displacement curves for the entire column
dataset, including P-A effects. The experimental and simulated curves are presented beyond
the ultimate displacement (as defined previously), which is marked in each plot. The cyclic
behavior of each column up to the onset of failure is captured reasonably well, simulating

the peak strength, ultimate displacement, and strength and stiffness degradation.
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TABLE 4.3
SIMULATED-TO-MEASURED ULTIMATE DISPLACEMENT RATIO, Ré,,, USING

THE PROPOSED EQ. (4-8)

Model Calibration Model Validation
Gfe G fec Gfe G fec
Column (N/mm)  (N/mm) Column (N/mm)  (N/mm)
K RS, K RS,
ID [Eq. [Eq. ID [Eq. [Eq.
@41  (4-8)] (41 (4-8)]
1 166 4275 12483 1.11 18 146  44.00 101.23 1.39
2 117 60.01 178.97 1.17 19 126  58.37 232.12 0.97
3 1.09 55.66 65.85 0.70 20 1.17  58.37 151.31 1.08
4 1.64 4452 149.93 0.76 21 1.64 4452 149.93 0.84
5 1.64 4452 149.93 0.87 22 138 49.78 155.40 1.47
6 1.38 49.78 155.40 0.94 23 147  49.86 19422 0.71
7 147 49.86 194.22 0.96 24 112 50.10 51.39 0.83
8 113 4382 43.82 1.00 25 112  49.59 4959 0.85
9 113 49.62 53.73 0.97 26 128 5191 142.82 0.84
10 125 50.76 113.97 1.12 27 147 53.74 283.22 1.02
11 125 49.02 9356 1.36 28 145 5131 21479 0.94
12 1.09 58.11 78.27 1.02
13 146 54.96 304.64 1.11
14 124 5131 115.80 1.04
15 1.60 5131 285.93 0.91
16 1.60 5131 285.93 1.38
17 135 5131 16752 0.72
mean 1.01 1.00
cov 0.19 0.24
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Figure 4.4: Lateral load versus displacement comparisons using
proposed regularized plastic hinge model. Ultimate displacement
points shown using small, filled circles.
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4.6 Comparison of Plastic Hinge Model Results

This section presents comparisons of the column simulations using the proposed
regularized concrete parameters in Section 4.5.2 with four other simulations using: 1)
unregularized concrete parameters from Priestley et al. (1996), Saatcioglu and Razvi
(1992), and Scott et al. (1982), as described in Section 4.4; and 2) regularized concrete and
steel parameters developed by Pugh et al. (2015) for RC walls, as described in Section
4.5.1. For all simulations, the critical integration length of the FB beam-column element,
L., was assumed to be equal to the mean plastic hinge length, L, 1.qn presented in Table
4.1.

To demonstrate the differences between the simulation models, the unregularized
and regularized compressive stress-strain relationships for the five sets of unconfined
concrete material parameters for column ID 13 are shown in Figure 4.5a. All five
unconfined concrete stress-strain relationships are the same up to the peak point, while the
post peak behaviors are different because the models reach the residual stress of 0.2f. at
different values of &,. Note that to calculate ¢, for the regularized models, Eq. (4-5) was
used for the model by Pugh et al. (2015), while Eq. (4-7) from Nakamura and Higai (2001)
was used for the proposed model.

Similarly, the unregularized and regularized compressive stress-strain relationships
for the confined concrete material parameters for column ID 13 are shown in Figure 4.5b.
The peak point and post-peak behavior of the unregularized confined concrete stress-strain
relationships are different due to the different approaches to estimate f,. and &.,,. For both
of the regularized models, the confined concrete stress-strain relationships up to the peak
point at f. are the same as the unregularized relationship based on Priestley et al. (1996).
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Beyond the peak point, the two regularized confined concrete models reach the residual
stress of 0.2f.. at different values of ¢.,, calculated based on the confined concrete

crushing energy Eg. (4-6) as proposed by Pugh et al. (2015) and Eq. (4-8) as proposed

herein.
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Figure 4.5: Concrete compressive stress-strain relationships for
column ID 13. a) Unconfined concrete; b) confined concrete.

4.6.1 Comparison of Global Column Behaviors

This section presents comparisons of the predicted global lateral load versus
displacement behaviors of the 28 column specimens using the three sets of unregularized
and two sets of regularized material parameters. In addition to the ultimate displacement
ratio, RS, defined in Section 4.5.2, the global behaviors are compared based on the
simulated-to-measured ratios of the effective stiffness, RK,, and maximum strength,
RVax- The effective stiffness and maximum strength were determined from the mean
(considering both the positive and negative loading directions) backbone lateral load-

displacement curve for each specimen. The effective stiffness was calculated as the slope
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between the origin and the point on the mean backbone curve at 70% of the maximum
strength.

Figure 4.6 presents the variability (as box plots) of the simulated-to-measured ratios
of the effective stiffness, maximum strength, and ultimate displacement obtained using the
five sets of material parameters for the 28 columns. The variabilities for the effective
stiffness were similar among the different material sets. This may be expected since all of
the material model parameters had the same concrete Young’s modulus. The different
models also resulted in similar simulations for the maximum strength, which was likely
because 25 out of the 28 columns were controlled by yielding of the steel in tension, and
thus, differences in the concrete compression strength had relatively small effect on their
axial-flexural strength. All five material parameter sets predicted the maximum strength
within +£20% error, and overpredicted the effective stiffness, which is common in RC
components and is typically attributed to un-simulated shrinkage cracking that may have

occurred in the laboratory test specimens [130].
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Figure 4.6: Variability in simulation of column global behaviors.

The ultimate displacement presented the largest differences among the simulations
with the different material parameter sets. Table 4.4shows the simulated-to-measured
ultimate displacement ratio using the unregularized and regularized sets of material
parameters for all the columns in the dataset. On average, the unregularized models with
fier €4, and e, from Saatcioglu and Razvi (1992) resulted in the highest un-conservative
overpredictions of the measured ultimate displacement, while the best unregularized model
results were obtained using f_., €,, and &, from Priestley et al. (1996). Importantly, the
regularization approach developed by Pugh et al. (2015) for slender RC walls was not
adequate to simulate the ultimate displacement of the RC columns, since it presented a
large variability (see Figure 4.6 and COV in Table 4.4). In comparison, there were
significant improvements of the accuracy and reduced variability on the simulation of the
ultimate displacement when using the proposed regularization for RC columns [i.e., Eq.

(4-8), together with Eq. (4-7)] for RC columns.
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TABLE 4.4

SIMULATED-TO-MEASURED ULTIMATE DISPLACEMENT RATIO, Ré,

Unregularized Regularized
Column  Scottet Saatciogluand Priestley et Pugh et
. Proposed
ID al. 1982  Razvi 1992 al. 1996 al. 2015
1 1.90 5.00 1.99 0.87 111
2 1.09 1.29 0.67 1.05 1.17
3 0.78 1.07 0.61 1.16 0.70
4 1.66 2.68 1.08 0.63 0.76
5 1.85 2.95 1.20 0.58 0.87
6 1.58 2.15 0.96 0.74 0.94
7 1.24 3.06 1.18 0.74 0.96
8 131 1.58 1.08 2.63 1.00
9 1.03 2.03 1.38 2.48 0.97
10 1.27 1.11 1.15 2.01 1.12
11 1.38 1.38 1.39 2.31 1.36
12 0.97 1.18 0.97 1.96 1.02
13 1.26 1.55 0.71 0.63 111
14 0.85 0.97 0.99 0.99 1.04
15 0.71 0.72 0.95 0.65 0.91
16 1.40 2.07 1.23 0.72 1.38
17 0.62 0.63 0.97 0.70 0.72
18 2.62 4.09 1.63 1.19 1.39
19 0.91 1.16 0.74 0.72 0.97
20 0.99 1.38 0.86 1.10 1.08
21 1.66 2.69 1.08 0.52 0.84
22 2.42 3.26 1.52 1.10 1.47
23 0.84 1.51 0.79 0.47 0.71
24 0.83 1.09 0.83 1.71 0.83
25 0.83 0.86 0.86 1.70 0.85
26 0.85 0.85 0.97 1.03 0.84
27 1.23 1.55 0.75 0.61 1.02
28 0.81 1.03 0.83 0.70 0.94
mean 1.25 1.82 1.05 1.13 1.00
Ccov 0.40 0.59 0.30 0.56 0.21
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4.6.2 Comparison of Local Column Behaviors

Results for measured local behaviors (i.e., curvatures and strains) of tested RC
columns are scarce in the literature. As such, this section presents simulated-to-measured
comparisons for the available local behavior data for nine of the columns in Table 4.1.
These simulations were conducted using the mean plastic hinge length, Ly, ¢4, (Table 4.1)
with unregularized steel material properties and: 1) unregularized concrete material
properties from Priestley et al. (1996); and 2) the proposed regularized concrete materials
[i.e., using Eq. (4-7) and Eq. (4-8)]. These two sets of concrete material parameters were
selected because they provided the best ultimate displacement results out of the three
unregularized and two regularized sets of material parameters, respectively, as described
previously.

Figure 4.7a-b presents the measured and simulated results of local curvatures for
two columns (ID 1 and 18) tested by Ang (1981), plotted against the lateral displacement
ductility, us = §/8, (where &, is the experimentally reported yield displacement). The
measured curvatures are averages of the two reported values closest to the critical sections
above and below the center block [where the lateral load was applied as described in Ang
(1981)], while the simulated curvatures correspond to the values obtained from the critical
integration point in each model. It can be seen that both sets of material parameters
presented similar curvature estimations that generally underestimated the experimental
values; with better predictions at greater ps. The higher underestimation at lower us is
likely because of the stiffness overestimation shown in the previous section.

Figure 4.7c-i compares the extreme confined concrete compressive strains for
seven columns tested by Tanaka (1990). The experimental strains correspond to the values
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measured from potentiometers closest to the critical section, over gauge lengths of 160 mm
for column ID 4, 5, and 21, and 180 mm for column ID 6, 7, 22, and 23. The simulation
results underestimated the extreme confined concrete compressive strains for all seven
columns, except for us < 2 in column ID 23. These underestimations can be explained by

the values of L, ;n0qn Used in the models (Table 4.1), which were larger than the length of

the potentiometers, thus modeling average strains over a greater column length. Generally,
both sets of material parameters presented similar strain estimations, but at larger ugs, the
strains from the simulations using the proposed concrete regularization were more accurate
than those from the unregularized simulations. At the last measured data point of the seven
columns (i.e., closest reported point to failure), the strains from the proposed regularized
model varied between -63% to -7% of the measured values. When excluding column ID 5
and 21 for which the simulations had the greatest underestimation of strain, the simulated

strains for the last available data point were within -29% to -7% of the measured values.
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Figure 4.7: Comparison of local results at critical IP. Curvature (a-
b); extreme confined concrete compression strain (c-i).
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4.7 Sensitivity Analysis

The analysis results presented in the previous section were obtained using models
with L., equal to the mean plastic hinge length, L, ;.4 from Table 4.1. Since many plastic
hinge length equations for RC columns are available in the literature (see Table 4.2), the
sensitivity of the simulated global and local column behaviors to the assumed plastic hinge
length is studied herein based on parametric analyses using L. = L, values ranging
between 0.5L, meqn and 1.5Ly meqn. It is important to note that none of these models
reached the limit of L, = 0.342L, and thus, negative integration weights did not affect the

element response as discussed in Section 4.3.1.

4.7.1 Sensitivity Analysis of Global Results

Since the concentration of damage in a RC column occurs in the post-peak
softening range of the lateral load versus displacement behavior, the assumed plastic hinge
length has a small effect on the effective stiffness and maximum strength [18]. As such,
only the sensitivity of the ultimate displacement prediction to the assumed value of L, is
presented in this section.

The simulated-to-measured ultimate displacement ratios from the three
unregularized and two regularized sets of material parameters are depicted in Figure 4.8
for the 28 columns (note that R§,, values greater than 5.0 are not presented in the figure
because of the plot range selected for clarity). In general, the predicted ultimate
displacement increased as the assumed plastic hinge length increased. The ultimate
displacements predicted by the unregularized models (Figure 4.8a-c) were highly sensitive

to the assumed plastic hinge length, with the greatest variations when using the Saatcioglu
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and Razvi (1992) concrete parameters. In comparison, the ultimate displacements predicted
by the regularized models (Figure 4.8d,e) were much less sensitive to the assumed plastic
hinge length.

The reduced sensitivity of the global results to the assumed plastic hinge length is
the most important benefit from the regularization of the post-peak concrete stress-strain
relationships [i.e., Eq. (4-3) and Eq. (4-4)]. The results in Figure 4.8e show that the
proposed confined concrete regularization [using Eq. (4-8), together with Eq. (4-7)]
provided much more accurate simulations of the ultimate displacement, with a small and
generally constant variability for the considered range of L, (see mean + o lines in Figure
4.8), as compared to the regularization equations proposed by Pugh et al. (2015) for slender

RC walls (Figure 4.8d).
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Figure 4.8: Sensitivity of predicted ultimate displacement to
assumed plastic hinge length. Unregularized plastic hinge models
(a-c); regularized plastic hinge models (d,e).

4.7.2 Sensitivity Analysis of Local Results

The simulated-to-measured ratio of curvatures, R¢ and extreme confined concrete
compressive strains, Re.. corresponding to the last points plotted in Figure 4.7 (i.e., at the
largest reported us in each test) are presented in Figure 4.9. Missing points (resulting in
incomplete lines) in Figure 4.9 correspond to simulations that did not reach the largest
measured ugs because of earlier predicted failure of the column when using smaller values
of Ly, /Ly mean- These premature failure predictions were more common when using the
unregularized concrete materials (Figure 4.9a) than when using the proposed regularized
concrete materials (Figure 4.9b; where, the only missing points are for the simulations of
column ID 6 with Ly, /Ly, mean <0.65). In general, the results show that the local column
behavior is very sensitive to the assumed plastic hinge length when using either set of

material parameters. As such, concrete regularization did not reduce the sensitivity of the
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simulated local behavior to the assumed L,,, unlike the effectiveness of regularization in
reducing the sensitivity of the simulated global behavior to L,, as shown in Figure 4.8e.

It should be mentioned that measured local behaviors (curvatures and strains) can
also be greatly sensitive to the location and gauge length of the potentiometers used in each
experiment. Therefore, the simulated-to-measured curvature and strain ratios presented in
Figure 4.9 may have been significantly different if the potentiometers were placed
differently in each test (since the denominator of the ratios would change). To investigate
this effect, the large black circle markers in Figure 4.9 represent the results that may be
expected from models for which the plastic hinge length, L,, exactly matched the gauge
length of the potentiometers used in each column test. Missing circle markers in each plot
indicate models outside the plotted data range or with earlier predicted failure of the
column. Note that these results were not simulated, but rather interpolated between the
analyzed cases (depicted by the smaller markers) in Figure 4.9. It can be seen that the
predictions of local behavior would not have been accurate even if the assumed L,, values
exactly matched the experimental gauge lengths.

As another important observation from Figure 4.9, different L, /Ly, meqn ratios
ranging between 0.70 and 1.05 (not considering column ID 5 and 21) would be needed to
obtain accurate simulations of local behavior (i.e., R¢ and Re_. ratios that are close to 1.0)
using the proposed regularized concrete parameters. Since the sensitivity of global column
response to the assumed L, is significantly reduced by these regularized concrete
parameters (Figure 4.8e), future development of new L, equations calibrated based on

measured local (rather than global) column behavior can ultimately result in a regularized
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plastic hinge model that can accurately capture both global

and local behaviors of RC
columns.
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Figure 4.9: Sensitivity of predicted curvatures and strains to
assumed plastic hinge length. a) Unregularized plastic hinge
models with concrete materials from Priestley et al. [107]; b)

proposed regularized plastic hinge models.

4.8 Summary and Conclusions

This chapter critically evaluates the accuracy and sensitivity of the simulated global
and local lateral load behaviors of slender RC columns to the assumed plastic hinge length
and material stress-strain relationships. The study was conducted using the force-based
beam-column element in OpenSees with the modified Gauss-Radau plastic hinge
integration method. A new equation for the confined concrete crushing energy was
calibrated based on the measured ultimate (failure) displacement of 17 previously-tested
column specimens, and validated using a set of 11 additional column specimens. The
simulated global lateral load behaviors (effective stiffness, maximum strength, and

ultimate displacement) of these 28 columns using the proposed regularization equation
134



were compared with results obtained using three sets of unregularized (conventional)
concrete stress-strain models as well as a regularized concrete model available for slender
RC walls. For the evaluation of local column behaviors (curvatures and strains), the results
obtained from the proposed regularization equation and one set of unregularized material
parameters were evaluated using available measured data from nine columns. Finally,
sensitivity analyses of the simulated global and local column behaviors to the assumed
plastic hinge length were conducted. The important findings and conclusions from the
chapter are as follows:

1. The proposed regularization equation for the confined concrete crushing
energy provided reasonably accurate simulations of the ultimate (i.e.,
failure) lateral displacement of the 28 column specimens, including the 11
validation columns that were not used in the calibration of the equation. The
confined concrete crushing energy is given in Eq. (4-8) and is based on the
unconfined concrete crushing energy using Eq. (4-7) from Nakamura and
Higai (2001). Unlike available regularization procedures for slender RC
walls, the proposed model for RC columns does not require regularization
of the reinforcing steel stress-strain relationship.

2. The full reversed-cyclic hysteretic behaviors up to the ultimate
displacement of the 28 column specimens were also generally well captured
by the proposed regularized plastic hinge model, simulating cyclic strength
and stiffness degradation.

3. The accuracy and variability of the effective stiffness and maximum
strength from the simulation of the 28 columns were similar among the three
unregularized and two regularized sets of material parameters. The effective
stiffness was generally overpredicted (as is common for the numerical
modeling of RC components), while the maximum strength was predicted
within +20% error.

4. The ultimate (failure) lateral displacement of the columns presented much
larger variability than effective stiffness and maximum strength. The best
unregularized model results were obtained using the concrete material
parameters from Priestley et al. (1996). The model using the available
regularization equations for slender RC walls was not adequate to
consistently simulate the ultimate displacement of the column specimens
with high accuracy. In comparison, the model using the proposed
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regularization equation presented significant improvements of accuracy in
the prediction of ultimate displacement.

In terms of local column responses, unregularized (with concrete material
parameters from Priestley et al. (1996)) and regularized (using the proposed
regularization equation) plastic hinge models presented similar curvature
predictions, which generally underestimated the measured values at the
critical sections of two column specimens, with better predictions at greater
lateral displacements.

The simulation results from the unregularized (with concrete material
parameters from Priestley et al. (1996)) and regularized (using the proposed
regularization equation) plastic hinge models mostly underestimated the
available measured extreme confined concrete compression strains for
seven columns. This underestimation was because the plastic hinge lengths
used in these models were larger than the potentiometer lengths used for the
measurements, thus modeling average strains over greater lengths. At large
column displacements, the strains from the proposed regularized plastic
hinge model were better than the simulations from the unregularized model.

The predicted ultimate displacement was very sensitive to the assumed
plastic hinge length, L, when using unregularized models. This sensitivity
was significantly reduced when using regularized models, and further
improved when using the proposed regularization equation. This presents a
major advantage of the proposed regularized plastic hinge model over
unregularized plastic hinge models.

The predictions of local behavior (curvatures and strains) were very
sensitive to the assumed plastic hinge length, L,, for both the unregularized
and regularized models. As such, regularization of the material stress-strain
relationships did not reduce the sensitivity of the simulated local behaviors
to the assumed L,, unlike the effectiveness of regularization in reducing the
sensitivity of the simulated global behavior to L,,.

The simulations of local behavior would not have provided accurate results
even if the assumed L, values exactly matched the gauge lengths of the
potentiometers used in the experimental measurements of column
curvatures and concrete strains. Further, different L,, /L, ;eqn ratios would
be needed to obtain accurate simulations of local behavior for the different
column specimens. Since the sensitivity of global column response to the
assumed L, is significantly reduced by using the proposed regularized
plastic hinge model, future development of new L, equations calibrated
based on measured local (rather than global) column behavior can
ultimately result in accurate predictions of both global and local behaviors.
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CHAPTER 5:
QUANTIFICATION OF VARIABILITY IN SIMULATED SEISMIC PERFORMANCE

OF RC WALL BUILDINGS

In this chapter, the third and fourth specific objectives of this dissertation are
studied based on five numerical models with different fiber-based two-node line-elements,
namely FB-BC, DB-BC, MVLEM, FLPM-H/6, and FLPM-H/2. The models were
developed using the same material constitutive relationships and other analysis inputs (e.g.,
damping) so that the quantified variability in the predicted building performance was
caused by the numerical modeling approach rather than user-selected parameters. The
models were first validated against the measured shake-table behavior of a 7-story RC wall
building tested at the University of California San Diego. Then, nonlinear dynamic
analyses of the 7-story wall test specimen and three RC wall archetype buildings of 4-, 8-,
and 12-stories were conducted to quantify the variability in selected seismic performance
assessment parameters. Additionally, damage fragility curves for the buildings were
developed and compared following the FEMA P695 methodology.

The variability in the numerical model responses of the four buildings was
evaluated using ground motion suites corresponding to three hazard levels with 50%, 10%,
and 2% probability of exceedance in 50 years, and based on commonly-used global
(interstory drift ratio and roof drift ratio) and local (plastic hinge rotation and curvature at

the critical length) response parameters. The results show that the variability in global
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response parameters is significantly smaller than the variability in local response

parameters.

5.1 Introduction

Advances in the nonlinear numerical simulation of reinforced concrete (RC)
structural walls have allowed the assessment of their inelastic behavior when conducting
performance-based seismic design (PBSD). In this design approach, the structure is
evaluated considering different seismic hazard levels and performance objectives based on
global response parameters (e.g., interstory drifts) as well as local or element-level
response parameters (e.g., plastic hinge rotations). If the wall response quantified using
these performance parameters does not comply with specified acceptance criteria, it must
be redesigned, involving an iterative process.

Several nonlinear modeling approaches can be used for the performance assessment
of RC wall structures. Since different nonlinear models are based on different assumptions
and approaches, the analysis results and the performance assessment can vary, limiting
confidence in the design outcome. The effect of the modeling approach on the predicted
seismic behavior of RC walls has been evaluated based on linear analyses [131] and
nonlinear analyses of pseudo-static experimental tests [18,35,82,111]. In comparison,
evaluations of model variability based on nonlinear dynamic response are rare in the
literature because of the higher computational cost as well as limited shake-table
experimental data.

Several studies [132-135] have shown the capabilities of different nonlinear

models to predict the shake-table test response of a 7-story wall building subassembly
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[136], while other studies [22,137-140] have used different models to simulate the
observed damage in wall buildings after the 2010 Chilean earthquake. However, the results
from these studies cannot be used to quantify the variability of the response predicted by
the different modeling approaches since the simulations included other differences that
impacted the outcomes (e.g., different material constitutive relationships, damping
assumptions, element connectivity assumptions).

Marafi et al. [141] quantified the variability in the collapse probability of RC wall
archetypes when using force-based and displacement-based beam-column numerical
modeling approaches. As an important limitation, many of the numerical analyses did not
converge when using the force-based approach, leading to interpretations of unrealistic
collapse probabilities. Moreover, the variability in the analysis results was only quantified
for the collapse of the archetypes, even though other performance levels (i.e., at different
seismic hazard levels) are also important for PBSD.

In accordance with the above knowledge gaps, the current study investigates and
quantifies the variability obtained from stable (i.e., without convergence problems)
numerical analyses of RC wall buildings in terms of 1) global and local performance
assessment parameters at three seismic hazard levels, and 2) damage fragility curves. The
focus is on slender walls where the axial-flexural behavior dominates the nonlinear
response. The considered numerical models, which are described next, are referred to as:
FB-BC, DB-BC, MVLEM, FLPM-H/6, and FLPM-H/2. These five models are first
validated against the measured seismic shake-table test behavior of a 7-story wall building
subassembly. Then, nonlinear dynamic analyses of the 7-story wall test specimen and three

archetype wall buildings from Marafi et al. [141] are conducted to quantify the variability
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in the resulting performance assessment parameters and fragility curves. Importantly, the
models investigated all used the same material constitutive relationships and other analysis
inputs (e.g., damping) so that the quantified differences in the building performance are

caused by the numerical modeling approach rather than user-selected parameters.

5.2 Description of Numerical Modeling Approaches

The following five nonlinear approaches for modeling RC walls are compared in
the study: 1) force-based beam-column (FB-BC) element model; 2) displacement-based
beam-column (DB-BC) element model; 3) multiple vertical line element model
(MVLEM); and 4) two finite length plasticity models using two different plastic hinge
lengths (FLPM-H/6 and FLPM-H/2). These modeling approaches were selected because
they have been used quite frequently in previous research. Furthermore, these element
models are available in a single computational platform (OpenSees, [44]), and thus, the
same material constitutive relationships, damping definitions, and element connectivity
can be used, resulting in the modeling approach to be the only difference among the
simulations.

All five modeling approaches utilize two-node line elements based on fiber sections
with cyclic uniaxial concrete and steel material constitutive stress-strain relationships. The
models simulate axial-flexural interaction by assuming a linear strain distribution over the
cross-section depth (i.e., plane sections remain plane assumption), while the shear behavior
is uncoupled from the axial-flexural behavior. The shear behavior was considered as linear-

elastic in the five models because shear deformations are relatively small in slender RC
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walls [85]. The following paragraphs present a summary of the primary differences in the
selected modeling approaches.

The force-based beam-column (FB-BC) element model [84] assumes linear
moment variation and constant axial force along the length of each line element. This
model accurately represents the moment and axial force distributions over the height of a
wall, therefore, one element per story with multiple integration points is enough to
represent the nonlinear curvature distribution (Figure 5.1a). Equilibrium is strictly satisfied
at each integration point of the FB-BC model; however, intra-element iterations are
required to relate the element forces with the nodal displacements. The shear behavior can
be incorporated at the section level in OpenSees per Marini and Spacone [142].

The displacement-based beam-column (DB-BC) element model [83] employs
linear curvature variation and constant average axial deformation along the length of each
line element. Therefore, multiple elements per story are required to accurately capture the
nonlinear variation of curvatures when simulating a wall (Figure 5.1b). Equilibrium is
satisfied on average within an element, and not at each integration point as in the case of
the FB-BC model. To simulate the shear behavior, a shear spring in series with each DB-
BC element is required, resulting in additional nodes to model the wall.

The multiple vertical line element model (MVLEM) [143] employs a series of
vertical uniaxial springs (i.e., macro fibers) that represent the axial-flexural behavior of the
wall, and one horizontal spring to simulate the shear behavior. The vertical uniaxial springs
are rigidly constrained together at each end of the element to force the plane sections
remain plane assumption. The MVLEM model assumes constant curvature variation and

constant average axial deformation along the length of each element. Therefore, multiple
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elements per story are required to accurately capture the nonlinear variation of curvatures
when simulating a wall (Figure 5.1c).

The finite length plasticity model (FLPM) [78] is similar to the FB-BC model.
However, nonlinearity is concentrated over an assumed plastic hinge length located at each
end of the element, while the inner length of the element is assumed to remain linear-
elastic. This modeling approach has been implemented in OpenSees using the
beamWithHinges element, where the user specifies an assumed plastic hinge length. FLPM
models with two different plastic hinge lengths are considered in this study, as defined in
the next section (Figure 5.1d,e). The shear behavior can be incorporated at the section level
as in the case of the FB-BC model.

Note that RC elements with softening post-peak behavior (e.g., due to concrete
crushing and rebar buckling) are highly sensitive to the critical length, L., over which the
nonlinear behavior and failure of the element are localized. The critical length corresponds
to the weight of the first integration point in the FB-BC model, it is equal to the element
length in the DB-BC and MVLEM models, and it is equal to the assumed plastic hinge

length in the FLPM models (see Figure 5.1).
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Figure 5.1: Nonlinear models to simulate each story of a RC wall.
a) FB-BC; b) DB-BC; ¢) MVLEM; d) FLPM-H/6; and &) FLPM-
H/2.

5.3 Validation of Numerical Models

The selected models were validated using the measured shake-table test response
of a 7-story wall building subassembly. Only a brief description of the tested building is
presented here, since more information can be found elsewhere [136,144]. The building
was designed for a site in Los Angeles, California and had a story height of 2.74 m,
resulting in a total height of 19.2 m from the top of the foundation. The test subassembly
comprised of: 1) a 3.66 m long web wall with thickness of 203 mm in the first and seventh
stories, and 152 mm elsewhere; 2) a 4.88 m long flange wall with thickness of 203 mm in
the first story and 152 mm elsewhere; 3) a precast segmental wall for torsional stability;
and 4) a 203 mm thick slab at each floor that was also supported on four auxiliary gravity

steel columns. The web and flange walls were connected by a slotted slab connection

143



designed to enable shear transfer with minimal moment transfer between these walls, while
the web wall and the precast segmental wall were connected using a pin-pin horizontal
steel truss. The structure was subjected to four ground motion records (referred to as EQ1,
EQ2, EQ3, and EQ4, with sequentially increasing intensities), in addition to low amplitude
white noise before and after each record for system damage identification. The records
were applied in the direction of the web wall; therefore, the web wall provided the main
lateral resistance while the flange wall and the precast segmental wall provided transverse
and torsional stability.

Two-dimensional (2D) models of the test specimen were developed with lumped
masses at each floor (Figure 5.2). As shown later in the chapter, it was adequate to model
the structure in 2D since the lateral loading and primary response during the tests
concentrated in the web wall direction. The models consisted of nonlinear line elements to
simulate the web wall (primary focus of the current study) at its centerline, horizontal rigid
links at each floor level to connect the centerline of the web wall with its edges, linear
elastic line elements simulating the flange wall and the precast segmental wall, linear
elastic truss elements simulating their connections to the web wall, and linear elastic line

elements simulating the foundation.
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Figure 5.2: 2D numerical model geometry of the 7-story wall
building.

The nonlinear axial-flexural behavior of the web wall was simulated using the five
models in Figure 5.1. One element with three Gauss-Lobatto integration points (grey
circles in Figure 5.1a) was used in each story of the FB-BC model. This selection for the
integration points resulted in a critical length of one-sixth the story height (L., = 457 mm),
where the nonlinear axial-flexural deformations concentrated. Six elements per story were
used in the DB-BC and MVLEM models to obtain the same critical length as in the FB-
BC model (see Figure 5.1b,c). One element per story, with nonlinear behavior concentrated
at both ends of the element was considered in the FLPM models (Figure 5.1d,e). As stated

previously, the critical length in a FLPM element is equal to the assumed plastic hinge
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length specified by the user. In this study, FLPM models with two different plastic hinge
lengths were considered as follows: 1) a plastic hinge length equal to one-sixth the story
height (FLPM-H/6; Figure 5.1d) — to result in the same critical length as in the FB-BC,
DB-BC, and MVLEM models; and 2) a plastic hinge length equal to one half the story
height (FLPM-H/2; Figure 5.1e) — following the recommendations of ASCE 41 [6].

Unconfined and confined concrete were simulated in all the models using the
uniaxial Concrete02 material in OpenSees. The pre-peak compressive stress-strain
relationship in Concrete02 is defined by the Hognestad parabola. An initial stiffness (i.e.,
Young’s modulus) of E, = 4700\/ﬁ (in MPa units) was assumed for both unconfined and
confined concrete following ACI 318 [102], where f_ is the compressive strength of the
unconfined concrete. The peak stress point in Concrete02 is assumed to be reached at a
strain of ¢, = 2f. /E. for unconfined concrete and ¢., = 2f_./E, for confined concrete,
where f,. is the compressive strength of the confined concrete. In this study, f,. was
calculated as f.. = Kf_., where K is the confined concrete strength ratio from Mander et
al. [55]. Beyond the peak strength, the compressive stress-strain relationship reduces
linearly to a residual stress point, which was determined by regularization [18] based on
the critical length of each model. The regularization of the post-peak stress-strain
relationship was done using an unconfined concrete crushing energy of Gf, = 2f; (N/mm
for f/ in MPa units; [18]) and a confined concrete crushing energy of Gf.. =
5(K —0.85) Gf. < 2.5 Gf, but not less than G £, (in N/mm units; [20]).

The tensile behavior of the Concrete02 material is bilinear, reducing to zero stress

through tension-softening after cracking. The tensile strength at cracking was taken as
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0.62\/E (in MPa units) according to ACI 318 [102], while the tension softening stiffness

was taken as 0.1E..

The reinforcing steel was simulated using the Menegotto and Pinto [57] model,
which is available in OpenSees as the Steel02 material. The MinMax material model was
used in combination with Steel02 to simulate: 1) complete loss of steel compressive stress,
representative of buckling, when the ultimate (i.e., crushing) strain of confined concrete
was exceeded [18], and 2) steel fracture in tension. Note that when one of the MinMax
material limits is exceeded, the steel fiber no longer contributes to the resistance of the
section in either direction (i.e., compression or tension).

The gravity loads in all models were applied first, by means of a static analysis.
Then, a dynamic analysis was conducted using a single continuous sequence of
concatenated ground motion records from EQ1 to EQ4. Rayleigh damping proportional to
the mass and initial stiffness was assumed, with a damping ratio of 1.0% in the first two
vibration modes of the building [133].

Roof displacement responses of the 7-story wall building subassembly, subjected
to the four ground motions, are presented in Figure 5.3. The numerical responses predicted
by the five models show good agreement with the measured response for the four ground
motions. Maximum response parameters are typically used for performance assessment,
and thus, experimental and numerical envelopes of maximum floor displacement,
interstory drift ratio, and story shear force are presented in Figure 5.4. The numerical
models generally overpredicted the maximum floor displacements and interstory drifts,
except for EQ3 (see the first two columns of plots in Figure 5.4). Furthermore, the
numerical models generally underpredicted the story shear forces, except for EQ1 (see the
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third column in Figure 5.4). Numerical-to-experimental ratios of the maximum roof
displacement, interstory drift ratio, and base shear are presented in Figure 5.5, showing that
the analyses were generally able to predict the measurements within +30% error (except
for the maximum interstory drift ratio for EQ2 and the maximum base shear for EQ1 using
the FLPM-H/6 model).

The results in Figure 5.3, Figure 5.4, and Figure 5.5 demonstrate the capabilities of
the selected models to simulate the dynamic response of a RC wall building subassembly.
However, different models predict different results and thus, the performance assessment
of the structure can differ from model to model. Therefore, the variability in the simulated
performance assessment parameters is quantified next using three RC wall building

archetypes in addition to the 7-story wall building test subassembly.
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5.4 Building Archetypes and Seismic Hazard Levels

The previous section presented the validation of the numerical models to simulate
the measured dynamic shake-table behavior of a 7-story wall building test subassembly.
This section presents a description of three archetype wall buildings (referred to as 4-, 8-,
and 12-story buildings) designed by Marafi et al. [141] for a site in Los Angeles, California,
that are used in addition to the 7-story wall building test subassembly to quantify the
variability in the numerical performance assessment. The three archetypes are 36.6 m long
by 36.6 m wide in plan, with four 9.15 m bays of slab-column gravity framing in each
direction. The lateral resisting system consists of two solid RC walls in each direction in
the 4- and 8-story buildings (Figure 5.6a), and four walls in each direction in the 12-story
building (Figure 5.6b). The walls in the 4-story building are 610 mm thick by 7.32 m long,

while the walls in the 8- and 12-story buildings are 610 mm thick by 9.15 m long. The three
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archetypes have a first story height of 4.57 m, while the other stories are 3.96 m high, as

shown for the first four stories of the buildings in Figure 5.6c.
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Figure 5.6: Archetype buildings. a) 4- and 8-story building floor
plan; b) 12-story building floor plan; and c) elevation of the lower
four stories of the buildings.

The archetypes were analyzed using 2D numerical models where only one of the
RC walls was simulated because of symmetry. Therefore, one-half of the total mass was
considered when simulating the 4- and 8-story buildings and one-fourth of the total mass
when simulating the 12-story building. Every 2D model (Figure 5.6¢) included nonlinear
elements to simulate each story of the RC wall, a leaning column to simulate P-Delta
effects, a horizontal rigid truss element to connect the leaning column with the wall
centerline at each floor, and a lumped mass at each floor. Five different models were
developed for each building, with the FB-BC, DB-BC, MVLEM, FLPM-H/6, and FLPM-
H/2 elements in Figure 5.1 representing the RC wall in each story. The concrete and steel

material models presented in Section 5.3 were used in the simulations, based on the
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expected concrete and steel material strengths (f¢ = 44.8 MPa and f,, = 484 MPa) from
Marafi et al. [141]. A Rayleigh damping ratio of 2.0% was assigned in the first two
vibration modes of the archetype buildings. This value was chosen because it is less than
the maximum damping ratio of 2.5% suggested by ASCE 7 [145], and is consistent with
the 2.0% damping ratio used by Marafi et al. [141] to simulate the same archetypes.

The FB-BC, DB-BC, FLPM-H/6, and FLPM-H/2 models resulted in fundamental
periods of T=0.61, 0.30, 0.74, and 1.18 sec for the 7-, 4-, 8-, and 12-story buildings,
respectively. Slightly longer fundamental periods (with negligible differences) of T=0.62,
0.31, 0.76, and 1.20 sec, respectively, were obtained using the MVLEM model. The longer
periods obtained with the MVLEM are attributed to the use of macro fibers to represent
the wall cross section, which resulted in slightly smaller moments of inertia.

The variability in the numerical model responses was evaluated using three ground
motion suites corresponding to three hazard levels: 1) ten pairs of records with a 50%
probability of exceedance in 50 years (i.e., 50%/50) developed by the SAC steel project
for a site in Los Angeles [146]; 2) ten pairs of records with a 10% probability of exceedance
in 50 years (i.e., 10%/50) developed by the SAC steel project for a site in Los Angeles
[146]; and 3) twenty-two pairs of records recommended by FEMA P695 [147] for the
maximum considered earthquake with a probability of exceedance of 2% in 50 years (i.e.,
2%/50). The ground motion records in each suite were scaled such that the average 5%-
damped acceleration response spectrum was not less than the target spectrum for each
hazard level over a range of periods from 0.2T and 1.5T [148], where T=0.61, 0.30, 0.74,

and 1.18 sec for the 7-, 4-, 8-, and 12-story buildings, respectively.
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The target spectrum for the 50%/50 hazard level was obtained following the
procedure in FEMA 356 [149], while the 10%/50 and 2%/50 target spectra corresponded
to the design basis earthquake (DBE) and the maximum considered earthquake (MCE),
respectively, in ASCE 7 [148]. As an example, the scaled ground motion suites for the 8-
story building (with T=0.74 sec) are presented in Figure 5.7, with target spectra for the

three hazard levels obtained for a site in Los Angeles.
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Figure 5.7: Ground motion records scaled for the 8-story building.
a) 50%/50; b)10%/50; and c) 2%/50 hazard level.

5.5 Performance Assessment Parameters

Nonlinear dynamic response analyses of the 7-story wall building subassembly, and
of the 4-, 8-, and 12-story building archetypes were conducted to quantify the variability
in selected performance (i.e., damage) assessment parameters under the three hazard levels
(50%/50, 10%/50, and 2%/50) as simulated by the five modeling approaches. Existing

PBSD guidelines [6,7] specify criteria to assess the seismic performance of wall buildings
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based on the interstory drift ratio, IDR as a global parameter, and plastic hinge rotation, 6,
as a local or element-level parameter. As such, these parameters were included in the
variability assessment. The variability in roof drift ratio, A,.,, s Was also studied as a global
performance parameter since ACI 318 [102] requirements for special boundary elements
of structural walls are based on A, . Finally, since strain response parameters have also
been recommended for the performance assessment of walls when using fiber-based
models [8,150], the curvature at the critical length, ¢, was also considered as a local
parameter in the variability assessment. Note that the ¢, results from the FLPM-H/2
model were not considered in this quantification since the L. of this model was
significantly greater than the L., of the other models (see Figure 5.1), preventing consistent
comparisons.

The plastic hinge rotation was calculated as the rotation over an assumed plastic
hinge length, L,, of one half the story height, H according to ASCE 41 [6]. The equations
used to calculate the plastic hinge rotation and the curvature at the critical length for each

story are given in Table 5.1.

155



TABLE 5.1
EQUATIONS USED TO CALCULATE PLASTIC HINGE ROTATION AND

CURVATURE AT THE CRITICAL LENGTH FOR EACH STORY.

Model Plastic hinge rotation Curvature

FB-BC 0p = P1Ler + (Lp — Ly )2 Per = P21

DB-BC 6y = O/2 — 60y ber = Oy = 60))/Ler
MVLEM 6y = Og/2 — 60y ber = Oy = 60))/Ler
FLPM-H/6 0y, = ¢p1Ler + 6, bcr = P4

FLPM-H/2 Op = 1L -

¢, is the curvature of the first integration point, ¢, is the curvature of the second integration point, 8, is the rotation
of the internal elastic element up to L,, = H/2, where H is the story height. 64,,, 8._,), and 6 ¢, are the rotations

of the nodes located at distances L,, = H/2, L., and at the base of each story, respectively.

As examples of the response data generated from the dynamic analyses, the gray
lines in Figure 5.8 show the peak interstory drift ratios (IDR) of the 8-story building
simulated with the five models (each row of the figure) and with the seismic records of the
three hazard levels (each column of the figure). Note that the peak IDR values for the
different stories in a particular simulation (i.e., in each dotted line) did not necessarily occur
at the same time during the simulation. The average peak IDR values are represented using

continuous lines in each plot.
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Figure 5.8: Peak interstory drift ratio for the 8-story building.
Response to a single record in dotted lines and average response in
continuous lines.

The average peak interstory drift ratios (IDR) predicted for all four buildings are
presented in Figure 5.9 (the average results shown in Figure 5.8 for the 8-story building
are the same as those in Figure 5.9g, h, and i). Similarly, the average results for the plastic
hinge rotation, 8, are presented in Figure 5.10. These average results, and those for roof
drift ratio, A,.,,f, and curvature at the critical length, ¢, are used in the next section to
quantify the variability in the response parameters. As may be expected for axial-flexural
response, the plastic hinge rotations, 8, were concentrated at the base of each building

(Figure 5.10), while larger IDR results were predicted in the top stories (Figure 5.9). Two
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different deformation components contributed most to the calculated IDR values: 1) axial-
flexural deformations within the particular story, and 2) rigid body rotation of the wall due
to the damage concentration (i.e., plastic hinge rotation) at the base. Since the second
component due to base rotation does not correspond to damage in the top stories, the larger

IDR results in the top stories do not indicate larger damage in these stories.
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Figure 5.9: Average interstory drift ratio.
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Figure 5.10: Average plastic hinge rotation.

Table 5.2 shows the number of earthquake records resulting in predicted collapse
from the five considered models of each building at the 2%/50 hazard level. Building
collapse was defined to occur at expected failure of the gravity resisting system at 5%
interstory drift ratio, as has been recommended based on experimental results of slab-
column gravity systems [151,152], which is the most typical gravity system used in RC
wall buildings. This 5% interstory drift ratio has been previously used to define collapse in
RC wall buildings by other authors [141,153]. Overall, the FLPM-H/6 model predicted the
same or more number of collapses than the other models. The seismic records that produced
collapse in the FB-BC, DB-BC, MVLEM, and FLPM-H/2 models were part of the records

that produced collapse in the FLPM-H/6 model. As such, the records that produced collapse
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when using the FLPM-H/6 model were excluded from the average results from all of the
models at the 2%/50 hazard level. This exclusion was also considered when estimating the
average results in Figure 5.8, Figure 5.9, and Figure 5.10. This decision was made so that
the average results used in the variability quantification would not be skewed by the few

extreme values from these records.

TABLE 5.2

NUMBER OF PREDICTED COLLAPSES FOR 2%/50 HAZARD LEVEL.

4S 7S 8S 12S
FB-BC 3 1 2 3
DB-BC 1 0 1 0
MVLEM 1 0 1 0
FLPM-H/6 3 2 3 3
FLPM-H/2 2 2 2 3

The generally larger number of collapses predicted by the FLPM-H/6 model may
be explained by the reduced ultimate (i.e., failure) displacement capacity from this model,
as illustrated by the pushover curves of the 8-story building in Figure 5.11. The FLPM-H/6
model showed strength degradation at a significantly lower displacement than the other
four models, which caused larger drift demands in the nonlinear dynamic analyses. Since

the nonlinearity in the FLPM-H/6 model is concentrated over a short length of the element,
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this model is not capable to simulate the spread of nonlinear behavior in a RC wall, limiting
the ductility capacity of the structure at failure. Ultimately, because of the significant
difference in the average IDR results from the FLPM-H/6 model as compared with the
other models (Figure 5.9), and also considering the larger differences from the validation
results of this model for the maximum floor displacements and interstory drifts in Figure
5.4d and Figure 5.4e, it was decided to exclude the FLPM-H/6 model from the

quantification of variability discussed in the next sections.
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Figure 5.11: Pushover curves of the 8-story building.

5.6 Variability in Performance Assessment Parameters

The model-to-model variability in the performance assessment parameters
described in the previous section is quantified in Figure 5.12 as boxplots that show
normalized results. The maximum values of the average results of each parameter were
normalized by the mean value from the four considered models. Since the boxplots were
normalized by the mean value from the four models, the mean value of each boxplot is 1.0,

thus allowing more consistent comparisons between the different response parameters. The
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number presented under each boxplot indicates the coefficient of variation (COV) for that
boxplot.

Overall, the global assessment parameters (i.e., IDR and A, in plots a-c and g-i,
respectively) presented considerably less variation between the different numerical models
than the local assessment parameters (i.e., 8, and ¢, in plots d-f and j-1, respectively). For
example, the COV for the interstory drift ratio was less than or equal to 4.0%, while the
COV for the plastic hinge rotation was in general greater than 10%. Furthermore, the
boxplot sizes for the global parameters were similar regardless of the hazard level,
suggesting that similar levels of model-to-model variability may be expected in these
parameters at different hazard levels. These results show that global parameters are more
appropriate for performance assessment of buildings since different modeling approaches
are more likely to yield similar results, and consequently similar performance classification
of a given building.

The largest variability among the considered parameters was for the curvature at
the critical length, ¢.,-, even though the same critical length and material constitutive
relationships were used in the four models. This shows that performance assessment based
on material strains obtained from curvature predictions is highly dependent on the
modeling approach, and may result in different performance outcomes of a building when
using different models. The results for ¢., were also more sensitive to the hazard level
(i.e., increasing boxplot size with increased hazard level), when compared to the other
assessment parameters. In comparison, the variability and sensitivity to the hazard level

were reduced when using the plastic hinge rotation, 8,, (Figure 5.12d-f).
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Figure 5.12: Normalized variability in performance assessment
parameters. a-c) Maximum interstory drift ratio; d-f) maximum
plastic hinge rotation; g-i) maximum roof drift ratio; and j-I)
maximum curvature at L.,-. COV values are presented in bold.
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5.7 Variability in Damage Fragility Curves

The previous two sections investigated the model-to-model variability in the
performance parameters of the four buildings at three hazard levels. The current section
further investigates this variability based on predicted damage fragility curves of the 4-, 7-
, 8-, and 12-story buildings. Specifically, incremental dynamic analyses, IDA [154] were
conducted to obtain damage fragility curves using the twenty-two far-field pairs of records
from the FEMA P695 methodology [147].

To demonstrate the process, Figure 5.13a shows the IDA results of the 8-story
building obtained with the DB-BC model. The red markers represent the ground motion
intensities based on spectral acceleration, S,, at C,T, (i.e., approximate value for the
fundamental period of the structure according ASCE 7 [148], as required by FEMA P695)
corresponding to assumed collapse due to failure of the slab-column gravity system at an
IDR limit of 5% as described in the previous section. However, experimental evidence
[151] has shown that failure of the slab-column system can develop at interstory drift ratios
between 2% to 8%, thus presenting a range of IDR at which collapse can be expected. As
such, it is important to evaluate fragility curves over a range of performance parameter
values, rather than at a single value. For example, the black and blue markers in Figure 13a
show the ground motion intensities at IDR limits of 3% and 7%, respectively.

As is typical in fragility analysis, lognormal fragility curves [Eq. (5-1)] were fitted
to the collapse S, values for each IDR limit (Figure 5.13b). The fragility curves of the 8-
story building obtained with the four modeling approaches are compared in Figure 5.13c
for IDR=3%, 5% and 7%. These results show that the differences between the fragility

curves predicted by the models increased as the IDR limit was increased. This difference
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was expected since greater IDR corresponds to greater amounts of nonlinear behavior in

the models, thus leading to greater differences in the predicted response.
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Figure 5.13: Variability in collapse fragility curves of the 8-story
building. a) IDA results for the DB-BC model; b) collapse fragility
curves for the DB-BC model at IDR=3%, 5%, and 7%); c) collapse

fragility curves for the four models at IDR=3%, 5%, and 7%.

Considering that the selected IDR values of 3%, 5%, and 7% in Figure 5.13 are
rather arbitrary, comparisons of fragility curves from the four models were made over a
range of values for the four performance parameters (IDR, 6,, A.oof, and ¢.,.). Each
lognormal fragility curve was defined using the median, 8, and the logarithmic standard
deviation, g [i.e., the standard deviation of In(S,)]. The median represents the value of
ground motion intensity (i.e., S, at C,T,) that corresponds to a 50% probability of
exceeding a certain damage state. This is an important metric for comparing fragility curves

because larger median values correspond to views of lower vulnerability (i.e., relatively
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less conservative) whereas smaller median values correspond to views of higher
vulnerability (i.e., relatively more conservative). For example, it can be seen in Figure
5.13b that the median S, increased as the IDR limit assumed for collapse was increased,
indicating reduced vulnerability of reaching IDR=7% as compared to 5% or 3% (i.e., IDR
limit of 7% is the least conservative value for predicting collapse).

The variation in 6 between the four models for each of the four buildings and for
varying values of the global response parameters (IDR and A,,,r) and local response
parameters (6, and ¢,,.) are presented in Figure 5.14. The most conservative results for 6
(i.e., smaller 8 values) were obtained using models with a force-based formulation (i.e.,
FB-BC and FLPM-H/2), while models with a displacement-based formulation (i.e., DB-
BC and MVLEM) presented less conservative results. For performance assessment based
on global parameters (i.e., IDR in Figure 5.14a-d and A, in Figure 5.14i-1), the FB-BC
model consistently provided the lowest value of 8 among the models, especially at larger
IDR and A,,,. In terms of local parameters (i.e., 8, in Figure 5.14e-h and ¢, in Figure
5.14m-p), the 6 values from the DB-BC and MVLEM models were essentially the same
(showing small differences at larger values of 8, and ¢.,), since both models used a
displacement-based approach with the same critical length. Contrarily, larger differences
in 8 were obtained for the local parameters from the FB-BC and FLPM-H/2 models,
because these models used different critical lengths even though they both utilized a force-
based formulation.

Similarly, the variation in g is presented in Figure 5.15, where the DB-BC and
MVLEM models were comparable, while the FB-BC and FLPM-H/2 models presented

larger differences. Additionally, the results show that the largest values of 8 were generally
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obtained for close to zero values of the damage response parameters IDR, 6, A, and
¢, Where the model-to-model differences were small. This may have been because the
wall responses for these cases were still in the linear-elastic range, and thus the record-to-
record variability was high (i.e., large in 8) while the model-to-model variability was small.

The variability in the damage fragility curves predicted with the four numerical
models is further quantified in Figure 5.16 in terms of the coefficient of variation, COV in
0 and 8 over the range of each response parameter. The results again show that, in general,
the models presented less variability when considering global parameters (Figure 5.16a-d
and Figure 5.16i-1) rather than local parameters (Figure 5.16e-h and Figure 5.16m-p).
Moreover, the COV of 8 was less than the COV of 8, presenting values mostly less than
0.15 in the considered range of the response parameters. The COV of 6 generally increased
for larger values of IDR, 8,, and A,,, ¢ (Figure 5.16a-d, Figure 5.16e-h, and Figure 5.16i-
I, respectively), with the largest COV values less than or equal to 0.2, except for the 12-
story building (see Figure 5.16d,h,l). In contrast, the COV of 8 did not show a clear
tendency for ¢, (Figure 5.16m-p), and presented values mostly greater than 0.2 in the
considered range. Therefore, significant variations in fragility curves may be expected from
different models when using ¢.-, and consequently material strains, as assessment

response parameters.
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Figure 5.14: Variation in fragility curve parameter 6. a-d)
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Figure 5.16: Coefficient of variation in fragility curve parameters.
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5.8 Summary and Conclusions

This study investigated the variability in the simulated seismic response of slender
RC wall buildings to the nonlinear numerical modeling approach. First, five different
nonlinear modeling approaches (i.e., FB-BC, DB-BC, MVLEM, FLPM-H/6, and FLPM-
H/2) were validated against experimental results of a 7-story wall building shake-table test.
Then, four of these modeling approaches (i.e., FB-BC, DB-BC, MVLEM, FLPM-H/2)
were used to conduct nonlinear dynamic response analyses of the 7-story test specimen and
three additional wall building designs (4-, 8-, and 12-story buildings) to investigate the
variability in selected global response parameters (interstory drift ratio, IDR, and roof drift

ratio, A, ) and local response parameters (plastic hinge rotation, 6,,, and curvature at the

critical length, ¢.,-), including damage fragility curves. The models used the same material
constitutive relationships and other analysis inputs (e.g., damping) so that the quantified
differences in the building performance were caused by the numerical modeling approach
rather than other user-selected parameters. The most important findings of this study are
summarized below:

1. Reasonable error magnitudes within 30% were obtained for the simulated
dynamic response of the shake-table test specimen, except for the maximum
interstory drift ratio and base shear using the FLPM-H/6 model. In general,
it is recommended that FLPM models be used with caution when significant
nonlinearity is expected.

2. Overall, the global response parameters (IDR and A,,,r) presented
considerably less variation between the different numerical models than the
local parameters (6,, and ¢.,). For example, the coefficient of variation,
COV for the interstory drift ratio was less than or equal to 4.0%, while the
COQV for the plastic hinge rotation was in general greater than 10%.

3. The variability for the global response parameters was similar regardless of
the hazard level (i.e., using (50%/50, 10%/50, and 2%/50 ground motion
sets), suggesting that similar levels of model-to-model variability may be
expected in these parameters at different hazard levels.
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4. The curvature at the critical length, which has been previously
recommended to calculate maximum material strains in performance based
seismic design, was the response parameter that varied the most between
the numerical models. Therefore, evaluating the performance of a wall
building using the curvature at the critical length can provide significantly
different outcomes when using different models.

5. The most conservative fragility curves (i.e., resulting in the lowest ground
motion intensity corresponding to a certain damage state) were obtained
with models using a force-based approach (i.e., FB-BC and FLPM-H/2),
while models with a displacement-based formulation (i.e., DB-BC and
MVLEM) presented less conservative results.

6. For the fragility curves based on global parameters (IDR and A,.,,), the
FB-BC model consistently provided the lowest median, 8 (i.e., 50%
probability of exceeding a damage state) among the models, especially at
larger IDR and A,

7. Interms of local parameters (8, and ¢,), the 6 values of the fragility curves
from the DB-BC and MVLEM models were essentially the same (showing
small differences at larger values of 6,, and ¢.,), since both models used a
displacement-based approach with the same critical length. Contrarily,
larger differences in 8 were obtained for the local parameters from the FB-
BC and FLPM-H/2 models, because these models used different critical
lengths even though they both utilized a force-based formulation.

8. The COV of 8 from the different numerical models generally increased for
larger values of IDR, 6,,, and A,.,, ¢, with largest values less than or equal
to 0.2, except for the 12-story building. In contrast, the COV of 8 did not
show a clear tendency for ¢, and presented values mostly greater than 0.2,
showing that significant variations in fragility curves may be expected from
different models when ¢.., and consequently material strains, are
considered as response parameters.

It is strongly recommended that the performance assessment of slender RC wall
buildings be done based on global response parameters and not local response parameters
since the simulated results from different nonlinear modeling approaches are expected to

vary considerably less when using global response parameters.
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CHAPTER 6:

SUMMARY, CONCLUSIONS, AND FUTURE WORK

This chapter presents: 1) a summary of this dissertation, including its objectives
and principal contributions; 2) important conclusions from the research; and 3) identified

areas for related future work.

6.1 Summary

The focus of this research was to evaluate and provide guidelines for the nonlinear
seismic analysis of axial-flexural RC elements using distributed plasticity models.
Different models were used to simulate the cyclic behavior of slender (flexure-dominant)
RC walls and columns. Four planar shear-dominant walls were also studied in Chapter 2.
Greater emphasis was placed on structures with softening post-peak behavior due to
concrete crushing with or without bar buckling because: 1) this type of behavior has been
commonly observed to dominate axial-flexural failure of slender RC walls and columns
during experimental tests and after earthquakes; and 2) the prediction of this behavior can
be highly sensitive to the mesh size used in numerical modeling. The accomplished specific

objectives of this research are:
1. Evaluate existing nonlinear modeling approaches for isolated planar RC
walls and provide modeling recommendations to accurately predict their

global cyclic lateral force-displacement behavior based on previously tested
wall specimens.
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2. Develop aregularized plastic hinge modeling approach to simulate both the
global and local cyclic behaviors of slender isolated RC walls and columns.

3. Evaluate wall modeling approaches based on comparisons with previous
shake-table test measurements of a 7-story wall building subassembly.

4. Quantify the variability in the predicted dynamic seismic performance of
RC wall buildings obtained by different nonlinear models.

The principal contributions of this dissertation include: 1) detailed modeling
recommendations to accurately simulate the global cyclic behavior of slender and squat
RC walls; 2) a new metric to quantitatively evaluate numerical simulations of hysteretic
behavior; 3) combination of plastic hinge integration and material regularization to
accurately simulate the nonlinear behavior of slender RC walls and columns through axial-
flexural failure; 4) a new confined concrete crushing energy equation for regularized
concrete post-peak stress-strain relationships of RC columns; and 5) quantification of
variability in the predicted seismic performance of RC wall buildings considering

important local and local response parameters.

6.2 Conclusions

The following important observations and conclusions were made from this research.
These observations and conclusions are also listed at the end of each chapter and are repeated
herein as a complete list for convenience to the reader. Note that the conclusions may be limited
to the numerical models, material relationships, and modeling assumptions used in the

investigation.

6.2.1 Conclusions from Specific Objective 1

e The modeling parameters presented in this study for the PERFORM 3D and
MVLEM models were adequate to simulate the global cyclic behavior of
slender RC walls. In addition, the modeling parameters for the SFI-
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MVLEM and BTM models were found suitable to simulate the global cyclic
behavior of both slender and squat walls. Therefore, the proposed
parameters may be used in PBSD to estimate the cyclic lateral force-
displacement behavior of planar RC walls.

Simulations from PERFORM 3D, MVLEM, and SFI-MVLEM presented
small variations in RK,, RV,,,, and NSE,,, when varying the discretization
of the walls. Consequently, the responses from these models did not
substantially improve when using finer meshes, and a coarse mesh can be
used to simulate the global cyclic behavior of RC walls with these three
models. In comparison, wall discretization had a large effect on the BTM
simulations, and thus, the number of elements in length and height should
be carefully selected when using this model. Values of m and n that result
in a diagonal angle, 6, close to the value calculated with Eqg. (2-7) are
needed to adequately simulate the hysteretic behavior of the walls.

The effective stiffness from the numerical simulations presented large
variations and inaccuracy when compared with the experimental test results.
The effective stiffness was in general highly overestimated by the MVLEM
and SFI-MVLEM simulations, while it was mostly underestimated by
PERFORM 3D and BTM. The large variability in effective stiffness was
also observed from the experimental results of two identical RC walls,
corroborating the comparatively large unpredictability of this evaluation
metric.

The proposed Modified Nash-Sutcliffe Efficiency (NSE,,) was shown to be
an appropriate metric to quantify the ability of the models to simulate the
hysteretic behavior of RC walls, as it was able to accurately evaluate
complex cyclic behaviors including strength and stiffness deterioration, and
pinching. Additionally, limit values of NSE,,, were defined to classify the
hysteretic simulations, which agreed with qualitative evaluations of the
predicted force-displacement curves. Based on these classifications, shear-
uncoupled PERFORM 3D and MVLEM models provided good and
satisfactory simulations of the hysteretic behavior for the studied slender
walls, but provided poor simulations of the hysteretic behavior for the squat
walls, because of the lack of shear-flexure interaction. In comparison, shear-
coupled models SFI-MVLEM and BTM resulted in NSE,,, factors of more
than 0.90 (classified as satisfactory) for seven of the eight walls
investigated.

The ultimate displacements predicted by the shear-coupled SFI-MVLEM
and BTM models were within 8.6% error, showing the ability of these
models to capture the reduction in lateral strength of three walls with
different shear span-to-depth ratios.
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Significant differences in computing time were found between the shear-
coupled and shear-uncoupled models, where the latter ones were faster.
Although the computing times required to simulate the considered
rectangular RC walls were short (with the longest time over 2 minutes), the
comparisons presented in the chapter are helpful in evaluating the numerical
efficiency of the RC wall models.

Comparisons of the local behavior (i.e., base curvatures and strains) for the
flexure-dominated wall RW2 simulated by MVLEM showed that the
horizontal discretization parameter, m has a negligible effect on the results.
However, the local results were significantly influenced by the vertical
discretization of the wall (parameter n), with larger numerical curvatures
resulting from finer vertical discretizations. Significant improvements in
curvature and tension strain accuracy and reduced sensitivity to the vertical
discretization of the wall were obtained when using curvatures
postprocessed according Section 2.6.5.

6.2.2 Conclusions from Specific Objective 2 for RC Walls

The use of material regularization with the Gauss-Lobatto integration
method results in mesh-objective predictions of the global behavior of
slender RC walls. However, the local section curvature and material strains
from these models are still extremely sensitive to the mesh size.
Normalization of the curvatures based on an assumed plastic hinge length
has been proposed in the literature, showing significant reductions of this
sensitivity. As an important limitation, the equations needed for curvature
normalization have not been generalized. Furthermore, the need to
normalize the curvatures in a second step after the nonlinear analysis has
been lost or not emphasized in some of the recent literature on nonlinear RC
wall modeling.

In comparison, the use of unregularized materials with the Gauss-Lobatto
integration method results in objective section curvatures and material
strains. However, the predicted ultimate displacement at failure is extremely
sensitive to the length of the critical integration point.

The modified Gauss-Radau plastic hinge integration method allows the user
to match the critical length to an assumed plastic hinge length. As a major
benefit demonstrated in this chapter, the sensitivity of the model results to
the assumed plastic hinge length is significantly reduced when regularized
rather than unregularized materials are used.

As an additional benefit, curvature and strain predictions using the modified
Gauss-Radau plastic hinge integration method with regularized materials do
not require an additional normalization step. As such, this approach is
suitable for a wider range of nonlinear modeling applications.
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e Regularization of the concrete stress-strain relationship has a more
significant effect on the analysis results than regularization of the steel
stress-strain relationship.

6.2.3 Conclusions from Specific Objective 2 for RC Columns

e The proposed regularization equation for the confined concrete crushing
energy provided reasonably accurate simulations of the ultimate (i.e.,
failure) lateral displacement of the 28 column specimens, including the 11
validation columns that were not used in the calibration of the equation. The
confined concrete crushing energy is given in Eq. (4-8) and is based on the
unconfined concrete crushing energy using Eq. (4-7) from Nakamura and
Higai (2001). Unlike available regularization procedures for slender RC
walls, the proposed model for RC columns does not require regularization
of the reinforcing steel stress-strain relationship.

e The full reversed-cyclic hysteretic behaviors up to the ultimate
displacement of the 28 column specimens were also generally well captured
by the proposed regularized plastic hinge model, simulating cyclic strength
and stiffness degradation.

e The accuracy and variability of the effective stiffness and maximum
strength from the simulation of the 28 columns were similar among the three
unregularized and two regularized sets of material parameters. The effective
stiffness was generally overpredicted (as is common for the numerical
modeling of RC components), while the maximum strength was predicted
within +£20% error.

e The ultimate (failure) lateral displacement of the columns presented much
larger variability than effective stiffness and maximum strength. The best
unregularized model results were obtained using the concrete material
parameters from Priestley et al. (1996). The model using the available
regularization equations for slender RC walls was not adequate to
consistently simulate the ultimate displacement of the column specimens
with high accuracy. In comparison, the model using the proposed
regularization equation presented significant improvements of accuracy in
the prediction of ultimate displacement.

e In terms of local column responses, unregularized (with concrete material
parameters from Priestley et al. (1996)) and regularized (using the proposed
regularization equation) plastic hinge models presented similar curvature
predictions, which generally underestimated the measured values at the
critical sections of two column specimens, with better predictions at greater
lateral displacements.
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The simulation results from the unregularized (with concrete material
parameters from Priestley et al. (1996)) and regularized (using the proposed
regularization equation) plastic hinge models mostly underestimated the
available measured extreme confined concrete compression strains for
seven columns. This underestimation was because the plastic hinge lengths
used in these models were larger than the potentiometer lengths used for the
measurements, thus modeling average strains over greater lengths. At large
column displacements, the strains from the proposed regularized plastic
hinge model were better than the simulations from the unregularized model.

The predicted ultimate displacement was very sensitive to the assumed
plastic hinge length, L,, when using unregularized models. This sensitivity
was significantly reduced when using regularized models, and further
improved when using the proposed regularization equation. This presents a
major advantage of the proposed regularized plastic hinge model over
unregularized plastic hinge models.

The predictions of local behavior (curvatures and strains) were very
sensitive to the assumed plastic hinge length, L,, for both the unregularized
and regularized models. As such, regularization of the material stress-strain
relationships did not reduce the sensitivity of the simulated local behaviors
to the assumed L, unlike the effectiveness of regularization in reducing the
sensitivity of the simulated global behavior to L,,.

The simulations of local behavior would not have provided accurate results
even if the assumed L, values exactly matched the gauge lengths of the
potentiometers used in the experimental measurements of column
curvatures and concrete strains. Further, different L, /L, ;eqn ratios would
be needed to obtain accurate simulations of local behavior for the different
column specimens. Since the sensitivity of global column response to the
assumed L, is significantly reduced by using the proposed regularized
plastic hinge model, future development of new L, equations calibrated
based on measured local (rather than global) column behavior can
ultimately result in accurate predictions of both global and local behaviors.

6.2.4 Conclusions from Specific Objectives 3 and 4

Reasonable error magnitudes within 30% were obtained for the simulated
dynamic response of the shake-table test specimen, except for the maximum
interstory drift ratio and base shear using the FLPM-H/6 model. In general,
it is recommended that FLPM models be used with caution when significant
nonlinearity is expected.

Overall, the global response parameters (IDR and A,,,r) presented
considerably less variation between the different numerical models than the
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local parameters (6, and ¢.,). For example, the coefficient of variation,
COV for the interstory drift ratio was less than or equal to 4.0%, while the
COV for the plastic hinge rotation was in general greater than 10%.

The variability for the global response parameters was similar regardless of
the hazard level (i.e., using (50%/50, 10%/50, and 2%/50 ground motion
sets), suggesting that similar levels of model-to-model variability may be
expected in these parameters at different hazard levels.

The curvature at the critical length, which has been previously
recommended to calculate maximum material strains in performance based
seismic design, was the response parameter that varied the most between
the numerical models. Therefore, evaluating the performance of a wall
building using the curvature at the critical length can provide significantly
different outcomes when using different models.

The most conservative fragility curves (i.e., resulting in the lowest ground
motion intensity corresponding to a certain damage state) were obtained
with models using a force-based approach (i.e., FB-BC and FLPM-H/2),
while models with a displacement-based formulation (i.e., DB-BC and
MVLEM) presented less conservative results.

For the fragility curves based on global parameters (IDR and A,,,f), the
FB-BC model consistently provided the lowest median, 8 (i.e., 50%
probability of exceeding a damage state) among the models, especially at
larger IDR and A,

In terms of local parameters (6,, and ¢,-), the & values of the fragility curves
from the DB-BC and MVLEM models were essentially the same (showing
small differences at larger values of 6,, and ¢.,), since both models used a
displacement-based approach with the same critical length. Contrarily,
larger differences in 8 were obtained for the local parameters from the FB-
BC and FLPM-H/2 models, because these models used different critical
lengths even though they both utilized a force-based formulation.

The COV of 8 from the different numerical models generally increased for
larger values of IDR, 8, and A, s, with largest values less than or equal
to 0.2, except for the 12-story building. In contrast, the COV of @ did not
show a clear tendency for ¢.,., and presented values mostly greater than 0.2,
showing that significant variations in fragility curves may be expected from
different models when ¢.., and consequently material strains, are
considered as response parameters.
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6.3 Future Work

The primary focus of this Ph.D. research was to develop numerical modeling
guidelines for the nonlinear seismic analysis of axial-flexural RC elements within the scope
described in Section 1.3. Future research is needed on nonplanar RC walls (e.g., C-, U-,
and T-shaped walls), coupled walls, non-square/rectangular columns, as well as shear-
dominant structures to increase the robustness and accuracy of their global and local
behavior predictions for performance-based seismic design and analysis. Additionally, an
investigation of different concrete crushing energy equations is needed for use with other
concrete constitutive material models (i.e., different than the Concrete02 material used in

Chapter 3 and Chapter 4).
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APPENDIX A:

OPENSEES MODEL EXAMPLES

This section presents examples of the OpenSees models used in the dissertation.
The analysis file (Appendix A.1) was used to run all the models presented in the following
subsections (A.2 to A.6). The MVLEM (A.2), SFI-MVLEM (A.3), and BTM (A.4) files
were used to simulate the RC walls in Chapter 2. The OpenSees code for defining the
regularized plastic hinge model (RPHM) for walls (Chapter 3) is presented in Appendix
A.5. Finally, the code for defining the RPHM for columns (Chapter 4) is presented in
Appendix A.6. The sample files presented in Appendices A.2 to A.5 are for wall WSH6,

while the file presented in Appendix A.6 is for column ID 6.

A.1 Analysis File

exec >&@stdout $::env(COMSPEC) /c cls;
wipe all;
model basic -ndm 2 -ndf 3

#Models defined in Kip-in units
setinl,;

set kip 1.;

setsec 1.

set kN [expr 0.2248089431*$Kkip];
set ksi [expr $kip/pow($in,2)];
set psi [expr $ksi/1000.];

set mm [expr $in/25.4];

set mm2 [expr Smm*$mm];

set mm4 [expr $mm2*$mm2];
set MPa [expr 145.*$psi];
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set GPa [expr 1000.*$MPa];

#Load model
source MVLEM_WSHG6.tcl; # or another model name

#Lateral Analysis

set Nsteps 1

set Tol 1.0e-5;

set Nmax 1000;

test Energylncr $Tol $Nmax

system BandGeneral

numberer Plain

constraints Plain

algorithm KrylovNewton -maxDim 10 -increment initial

#Cyclic pushover: Displacement protocol from file
setdl0.;
while {[gets $file temp] > 0} {
foreach d2 $temp {
set DLoad [expr {($d2 - $d1)/$Nsteps}];
integrator DisplacementControl $IDctrINode $IDctrIDOF $DLoad
analysis Static
set ok [analyze $Nsteps]
if {$ok =0} {
if {$ok =0} {
puts "Trying Newton"
algorithm Newton -initial
set ok [analyze 1 ]
algorithm KrylovNewton -maxDim 10 -increment initial
j
if {$ok =0} {
puts "Trying Newton Line Search"
algorithm NewtonLineSearch -maxIter SNmax
set ok [analyze 1]
algorithm KrylovNewton -maxDim 10 -increment initial
I3
if {$ok =0} {
puts "ANALYSIS NOT FINISHED"
return -1
3
3
set d1 $d2;
3
I3
if {$Sok '=0}{
puts "ANALYSIS NOT FINISHED"
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}else {
puts "DONE!! :)"

}

A.2 MVLEM

## GEOMETRY

set H 177.9528; #Height (in)
set L 78.7402; #Length (in)
set t 5.9055; #Thickness (in)

#Nodes

node 1 0 [expr 0*$H];

node 2 0 [expr 0.090909*$H];
node 3 0 [expr 0.18182*$H];
node 4 0 [expr 0.27273*$H];
node 5 0 [expr 0.36364*$H];
node 6 0 [expr 0.45455*$H];
node 7 0 [expr 0.54545*$H];
node 8 0 [expr 0.63636*$H];
node 9 0 [expr 0.72727*$H];
node 10 O [expr 0.81818*$H];
node 11 0 [expr 0.90909*$H];
node 12 0 [expr 1*$H]J;

fix1111; #fix the base
set IDctrINode 12;  #Control node
set IDctrIDOF 1; #Control DOF

## MATERIALS

#Reinforcing steel

uniaxialMaterial SteelMPF 1 [expr 576.0*$MPa] [expr 576.0*$MPa] [expr
200000.*$MPa] 0.02 0.02 20. 0.925 0.15; #For boundary regions

uniaxialMaterial SteelMPF 2 [expr 583.7*$MPa] [expr 583.7*$MPa] [expr
200000.*$MPa] 0.02 0.02 20. 0.925 0.15; #For web regions

#Concrete

uniaxialMaterial ConcreteCM 3 -[expr 58.1*$MPa] -0.00536 [expr
34350.*$MPa] 9.28 1.106 [expr 2.09*$MPa] 0.00008 1.20 10000. -GapClose 1;
#Confined
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uniaxialMaterial ConcreteCM 4 -[expr 45.6*$MPa] -0.00226 [expr
34350.*$MPa] 6.87 1.065 [expr 2.09*$MPa] 0.00008 1.20 10000. -GapClose 1;
#Unconfined

# Shear

set Ec [expr 34350.*$MPa]; # Concrete Young's Modulus

set G [expr 0.4*$Ec];

set GA [expr 0.1*$G*$L*$t];

uniaxialMaterial Elastic 5 $GA;

s

## ELEMENTS

set Dens 0.0; #Wall density (to get mass for dynamic analyses)
setc 0.4; #Element rotation center (from node i)

set pb 0.0174; #Boundary region steel ratio

set pw 0.0049813; #Web region steel ratio

set wl [expr 260*$mm]; #Boundary region width
set w2 [expr 740*$mm]; #Web region width
setm 4; #Number of macro fibers

element MVLEM 1 $Dens 1 2 4 $c -thick $t $t $t $t -width $wl $w2 $w2 $w1l -rho $pb
$pw $pw $pb -matConcrete 3 4 4 3 -matSteel 1 2 2 1 -matShear 5;

element MVLEM 2 $Dens 2 3 4 $c -thick $t $t $t $t -width $wl $w2 $w2 $w1l -rho $pb
$pw $pw $pb -matConcrete 3 4 4 3 -matSteel 1 2 2 1 -matShear 5;

element MVLEM 3 $Dens 3 4 4 $c -thick $t $t $t $t -width $wl $w2 $w2 $w1l -rho $pb
$pw $pw $pb -matConcrete 3 4 4 3 -matSteel 1 2 2 1 -matShear 5;

element MVLEM 4 $Dens 4 5 4 $c -thick $t $t $t $t -width $wl $w2 $w2 $w1l -rho $pb
$pw $pw $pb -matConcrete 3 4 4 3 -matSteel 1 2 2 1 -matShear 5;

element MVLEM 5 $Dens 5 6 4 $c -thick $t $t $t $t -width $wl $w2 $w2 $w1l -rho $pb
$pw $pw $pb -matConcrete 3 4 4 3 -matSteel 1 2 2 1 -matShear 5;

element MVLEM 6 $Dens 6 7 4 $c -thick $t $t $t $t -width $wl $w2 $w2 $w1l -rho $pb
$pw $pw $pb -matConcrete 3 4 4 3 -matSteel 1 2 2 1 -matShear 5;

element MVLEM 7 $Dens 7 8 4 $c -thick $t $t $t $t -width $wl $w2 $w2 $w1l -rho $pb
$pw $pw $pb -matConcrete 3 4 4 3 -matSteel 1 2 2 1 -matShear 5;

element MVLEM 8 $Dens 8 9 4 $c -thick $t $t $t $t -width $wl $w2 $w2 $w1l -rho $pb
$pw $pw $pb -matConcrete 3 4 4 3 -matSteel 1 2 2 1 -matShear 5;

element MVLEM 9 $Dens 9 10 4 $c -thick $t $t $t $t -width $wl $w2 $w2 $w1l -rho $pb
$pw $pw $pb -matConcrete 3 4 4 3 -matSteel 1 2 2 1 -matShear 5;

element MVLEM 10 $Dens 10 11 4 $c -thick $t $t $t $t -width $wl $w2 $w2 $wl -rho
$pb $pw Spw $pb -matConcrete 3 4 4 3 -matSteel 1 2 2 1 -matShear 5;

element MVLEM 11 $Dens 11 12 4 $c -thick $t $t $t $t -width Swl $w2 $w2 $w1l -rho
$pb $pw Spw $pb -matConcrete 3 4 4 3 -matSteel 1 2 2 1 -matShear 5;
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## LOADS

#Gravity Load
set P [expr 1476*$kN];
pattern Plain 1 "Linear" {
load $1DctrINode 0.0 [expr -$P] 0.0
j
set Tol 1.0e-5;
integrator LoadControl 0.1
system BandGeneral
test NormDisplncr $Tol 100 0
numberer RCM
constraints Transformation
algorithm Newton
analysis Static
analyze 10
loadConst -time 0.0; #Keep axial load constant

#Lateral Load
set Plateral 1.0;
pattern Plain 2 "Linear" {
load $IDctrINode $Plateral 0.0 0.0
¥

set file [open "Protocolo.dat" r]; #File with disp protocol in in

## RECORDERS

set WallName WSHG6;#Wall name

file mkdir Results;  #Save results in "Results” folder

recorder Node -file Results.out -time -node $IDctrINode -dof $IDctrIDOF disp

recorder Node -file Results/FD$WallName.out -time -node $1DctrINode -dof $I1DctrIDOF
disp

recorder Node -file Results/NodeDisplacements$WallName.out -time -nodeRange 1
10000000 -dof 1 2 3 disp;

recorder Element -file Results/FiberStraingWallName.out -time  -eleRange 1 11
fiber_strain;

recorder Element -file Results/FiberStressC$WallName.out -time -eleRange 1 11
fiber_stress_concrete

recorder Element -file Results/FiberStressS$WallName.out -time -eleRange 1 11
fiber_stress_steel
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A.3 SFI-MVLEM

e
## GEOMETRY

set H 177.9528; #Height (in)

set L 78.7402; #Length (in)

set t 5.9055; #Thickness (in)

#Nodes

node 1 0 [expr 0*$H];

node 2 0 [expr 0.16667*$H];
node 3 0 [expr 0.33333*$H];
node 4 0 [expr 0.5*$H];
node 5 0 [expr 0.66667*$H];
node 6 0 [expr 0.83333*$H];
node 7 0 [expr 1*$H];

fix1111; #fix the base
set IDctrINode 7; #Control node
set IDctrIDOF 1; #Control DOF

## MATERIALS

#Reinforcing steel

uniaxialMaterial SteelMPF 1 [expr 576.0*$MPa] [expr 576.0*$MPa] [expr
200000.*$MPa] 0.02 0.02 20. 0.925 0.15; #For boundary regions

uniaxialMaterial SteelMPF 2 [expr 583.7*$MPa] [expr 583.7*$MPa] [expr
200000.*$MPa] 0.02 0.02 20. 0.925 0.15; #For web regions

uniaxialMaterial SteelMPF 3 [expr 518.9*$MPa] [expr 518.9*$MPa] [expr
200000.*$MPa] 0.02 0.02 20. 0.925 0.15; #Horizontal steel

#Concrete

uniaxialMaterial ConcreteCM 4 -[expr 58.1*$MPa] -0.00535 [expr
34350.*$MPa] 9.28 1.2157 [expr 2.09*$MPa] 0.00008 1.20 10000. -GapClose 1,
#Confined

uniaxialMaterial ConcreteCM 5 -[expr 45.6*$MPa] -0.00226 [expr
34350.*$MPa] 6.87 1.1428 [expr 2.09*$MPa] 0.00008 1.20 10000. -GapClose 1,
#Unconfined

e s

## ELEMENTS

set Dens 0.0; #Wall density (to get mass for dynamic analyses)
setc 0.4, #Element rotation center (from node i)

set wl [expr 260*$mm]; #Boundary region width
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set w2 [expr 740*$mm]; #Web region width

setm 4; #Number of macro fibers
#Longitudinal steel

set pbY 0.0174; #Boundary region steel ratio
set pwY 0.0049813; #Web region steel ratio
#Horizontal steel

set pbX 0.0025133; #Boundary region steel ratio
set pwX 0.0025133; #Web region steel ratio
#Shear parameters

setnu 1; #Concrete friction coefficient
set alfadow 0.002; #Dowel action coefficient

#FSAM materials

nDMaterial FSAM 6 3$Dens 3 1 4 $pbX $pbY $nu $alfadow; #Boundary
region

nDMaterial FSAM 7 $Dens 3 2 5 $pwX $pwY $nu $alfadow; #Web
region

element SFI_MVLEM 1 1 2 4 $c -thick $t $t $t $t -width $wl $w2 $w2 $wl -mat 6 7 7 6;
element SFI_MVLEM 2 2 3 4 $c -thick $t $t $t $t -width Swl $w2 $w2 $wl -mat 6 7 7 6;
element SFI_ MVLEM 3 3 4 4 $c -thick $t $t $t $t -width $wl $w2 $w2 $wl -mat6 7 7 6;
element SFI_MVLEM 4 4 5 4 $c -thick $t $t $t $t -width Swl $w2 $w2 $wl -mat 6 7 7 6;
element SFI_MVLEM 55 6 4 $c -thick $t $t $t $t -width Swl $w2 $w2 $wl -mat 6 7 7 6;
element SFI_MVLEM 6 6 7 4 $c -thick $t $t $t $t -width Swl $w2 $w2 $wl -mat 6 7 7 6;

## LOADS

#Gravity Load
set P [expr 1476*$kN];
pattern Plain 1 "Linear" {
load $IDctrINode 0.0 [expr -$P] 0.0
Y
set Tol 1.0e-5;
integrator LoadControl 0.1
system BandGeneral
test NormDisplncr $Tol 100 0
numberer RCM
constraints Transformation
algorithm Newton
analysis Static
analyze 10
loadConst -time 0.0; #Keep axial load constant
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#L ateral Load
set Plateral 1.0;
pattern Plain 2 "Linear" {
load $1DctrINode $Plateral 0.0 0.0
}

set file [open "Protocolo.dat" r]; #File with disp protocol in in

## RECORDERS

set WallName WSH6;#Wall name
file mkdir Results;  #Save results in "Results" folder
recorder Node -file Results.out -time -node $IDctrINode -dof $IDctrIDOF disp

recorder Node -file Results/FD$WallName.out -time -node $IDctriINode -dof $IDctrIDOF

disp

recorder Node -file Results/NodeDisplacements$WallName.out -time -nodeRange
10000000 -dof 1 2 3 disp

recorder Element -file Results/SX1$WallName.out -time  -eleRange 1 6 RCPanel
strain_stress_steelX;

recorder Element -file Results/SY1$WallName.out -time  -eleRange 1 6 RCPanel
strain_stress_steelY;

recorder Element -file Results/C11$WallName.out -time  -eleRange 1 6 RCPanel
strain_stress_concretel;

recorder Element -file Results/C21$WallName.out -time  -eleRange 1 6 RCPanel
strain_stress_concrete2;

recorder Element -file Results/CrackAngles1$WallName.out -time -eleRange 1
RCPanel 1 cracking_angles;

recorder Element -file Results/SX2$WallName.out -time  -eleRange 1 6 RCPanel
strain_stress_steelX;

recorder Element -file Results/SY2$WallName.out -time  -eleRange 1 6 RCPanel
strain_stress_steelY;

recorder Element -file Results/C12$WallName.out -time  -eleRange 1 6 RCPanel
strain_stress_concretel;

recorder Element -file Results/C22$WallName.out -time  -eleRange 1 6 RCPanel
strain_stress_concrete2;

recorder Element -file Results/CrackAngles2$WallName.out -time -eleRange 1
RCPanel 2 cracking_angles;

recorder Element -file Results/SX3$WallName.out -time  -eleRange 1 6 RCPanel
strain_stress_steelX;

recorder Element -file Results/SY3$WallName.out -time  -eleRange 1 6 RCPanel
strain_stress_steelY;

recorder Element -file Results/C13$WallName.out -time  -eleRange 1 6 RCPanel
strain_stress_concretel,;

recorder Element -file Results/C23$WallName.out -time  -eleRange 1 6 RCPanel
strain_stress_concrete2;
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recorder Element -file Results/CrackAngles3$WallName.out -time -eleRange 1
RCPanel 3 cracking_angles;

recorder Element -file Results/SX4$WallName.out -time  -eleRange 1 6 RCPanel
strain_stress_steelX;

recorder Element -file Results/SY4$WallName.out -time  -eleRange 1 6 RCPanel
strain_stress_steelY;

recorder Element -file Results/C14$WallName.out -time  -eleRange 1 6 RCPanel
strain_stress_concretel;

recorder Element -file Results/C24$WallName.out -time  -eleRange 1 6 RCPanel
strain_stress_concrete2;

recorder Element -file Results/CrackAngles4$WallName.out -time -eleRange 1
RCPanel 4 cracking_angles;

recorder Element -file Results/GlobalForce$WallName.out -time -eleRange 1
globalForce;

recorder Element -file Results/ShearDef$WallName.out -time -eleRange 1
ShearDef;
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e
## GEOMETRY

set H 177.9528; #Height (in)

set L 78.7402; #Length (in)

set t 5.9055; #Thickness (in)

set Ld 480.2437;  #Diagonal element length (mm)

set Lv 410.9091;  #Vertical element length (mm)

set Lh 248.5714;  #Horizontal element length (mm)

set wd 8.3734; #Diagonal element width (in)

set wv 9.7113; #Vertical web element width (in)

set wh 16.1775; #Horizontal element width (in)

set wb 10.2362; #Vertical boundary element width (in)

#Nodes

node 1 5.1181 0.0000
node 2 14.9044 0.0000
node 3 24.6907 0.0000
node 4 34.4769 0.0000
node 5 44.2632 0.0000
node 6 54.0495 0.0000
node 7 63.8358 0.0000
node 8 73.6220 0.0000
node 9 5.1181 16.1775

node 10 14.9044 16.1775
node 11 24.6907 16.1775
node 12 34.4769 16.1775
node 13 44.2632 16.1775
node 14 54.0495 16.1775
node 15 63.8358 16.1775
node 16 73.6220 16.1775
node 17 5.1181 32.3550
node 18 14.9044 32.3550
node 19 24.6907 32.3550
node 20 34.4769 32.3550
node 21 44.2632 32.3550
node 22 54.0495 32.3550
node 23 63.8358 32.3550
node 24 73.6220 32.3550
node 25 5.1181 48.5326
node 26 14.9044 48.5326
node 27 24.6907 48.5326
node 28 34.4769 48.5326
node 29 44.2632 48.5326
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node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

54.0495 48.5326
63.8358 48.5326
73.6220 48.5326
5.1181 64.7101
14.9044 64.7101
24.6907 64.7101
34.4769 64.7101
44.2632 64.7101
54.0495 64.7101
63.8358 64.7101
73.6220 64.7101
5.1181 80.8876
14.9044 80.8876
24.6907 80.8876
34.4769 80.8876
44.2632 80.8876
54.0495 80.8876
63.8358 80.8876
73.6220 80.8876
5.1181 97.0651
14.9044 97.0651
24.6907 97.0651
34.4769 97.0651
44.2632 97.0651
54.0495 97.0651
63.8358 97.0651
73.6220 97.0651
5.1181 113.2427
14.9044 113.2427
24.6907 113.2427
34.4769 113.2427
44.2632 113.2427
54.0495 113.2427
63.8358 113.2427
73.6220 113.2427
5.1181 129.4202
14.9044 129.4202
24.6907 129.4202
34.4769 129.4202
44.2632 129.4202
54.0495 129.4202
63.8358 129.4202
73.6220 129.4202
5.1181 145.5977
14.9044 145.5977
24.6907 145.5977
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node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

34.4769 145.5977
44.2632 145.5977
54.0495 145.5977
63.8358 145.5977
73.6220 145.5977
5.1181 161.7752
14.9044 161.7752
24.6907 161.7752
34.4769 161.7752
44.2632 161.7752
54.0495 161.7752
63.8358 161.7752
73.6220 161.7752
5.1181 177.9528
14.9044 177.9528
24.6907 177.9528
34.4769 177.9528
44.2632 177.9528
54.0495 177.9528
63.8358 177.9528
73.6220 177.9528

#Restrictions

fix 1
fix
fix
fix
fix
fix
fix
fix
fix

OO ~NO O WN

fix 10
fix 11
fix 12
fix 13
fix 14
fix 15
fix 16
fix 17
fix 18
fix 19
fix 20
fix 21
fix 22
fix 23

Oo0oo0co0o0co0coo0cocoocococolrRPrRPREPRERERER

Oo0oo0co0o0co0coo0cocoocococolrRPrRPREPRERERER
PFRPRPRPRRPRRPRPRPROORRRRRLRROeRPRPEPRPEPRERRER
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fix 70
fix 71
fix 72
fix 73
fix 74
fix 75
fix 76
fix 77
fix 78
fix 79
fix 80
fix 81
fix 82
fix 83
fix 84
fix 85
fix 86
fix 87
fix 88
fix 89
fix 90
fix 91
fix 92
fix 93
fix 94
fix 95
fix 96

eNeoNoNoloNolololoNololololNoNoloNoNoloNoloeloelNoelollolNolNo]
eNeoNoNoloNolololoNololololNoNoloNoNoloNoloeloelNoelollolNolNo]
OO0 O0OO0O0OO0CO0OORRPRRPRRPRPRPROORRPRRPRPRPRPLPOORR

#Top beam Equal DOF

equalDOF
equalDOF
equalDOF
equalDOF
equalDOF
equalDOF
equalDOF

89
89
89
89
89
89
89

90
91
92
93
94
95
96

1

N

set IDctrINode 89; #Control node
set IDctrIDOF 1;

## MATERIALS

set SteelB
set SteelW

1;
2,

#Control DOF
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set SteelX 3;
set ConVertW 4;
set ConVertB 5;
set ConHor  6;
set ConDiag 7;

#Reinforcing steel

uniaxialMaterial Steel02 $SteelB [expr 576.0*$MPa] [expr 200000.*$MPa] 0.02 20. 0.925
0.15; #For boundary regions

uniaxialMaterial Steel02 $SteelW [expr 583.7*$MPa] [expr 200000.*$MPa] 0.02 20.
0.925 0.15; #For web regions

uniaxialMaterial Steel02 $SteelX [expr 518.9*$MPa] [expr 200000.*$MPa] 0.02 20. 0.925
0.15; #Horizontal steel

#Concrete for vertical web elements

uniaxialMaterial ConcretewBeta $ConVertW -[expr 45.6*$MPa] -0.002 -[expr
22.8*$MPa] -0.00383 -0.001 -0.00566 [expr 2.23*$MPa] 0.001 0.0004 0.001 0.0008 -E
[expr 33764.*$MPa] -alpha 0.5 -M 0.0467;

#Concrete for vertical boundary elements

uniaxialMaterial ConcretewBeta  $ConVertB -[expr 45.6*$MPa] -0.002 -[expr
29.1*$MPa] -0.00949 -0.001 -0.01423 [expr 2.23*$MPa] 0.001 0.0004 0.001 0.0008 -E
[expr 33764.*$MPa] -alpha 0.5 -M 0.10875 -conf -[expr 58.1*$MPa] -0.00475
#Concrete for horizontal elements

uniaxialMaterial ConcretewBeta $ConHor -[expr 45.6*$MPa] -0.002 -[expr 22.8*$MPa]
-0.00555 -0.001 -0.00911 0.001 0.001 0.0004 0.001 0.0008 -E [expr 33764.*$MPa] -alpha
161.4;

#Concrete for diagonal elements

uniaxialMaterial ConcretewBeta $ConDiag -[expr 45.6*$MPa] -0.002 -[expr
22.8*$MPa] -0.00439 -0.001 -0.00677 0.001 0.001 0.0004 0.001 0.0008 -E [expr
33764.*$MPa] -alpha 161.4 -beta 0.4 0.01767 0.1 0.07068

#Concrete Young's Modulus for transfer beam

set Ec [expr 33764.*$MPa]

## SECTIONS

#Vertical boundary

set Boundary 1

setdY [expr $wb/2.0];

setdZ [expr $t/2.0];

set Ny 6;

setNz 1;

section fiberSec $Boundary {
patch rect $ConVertB $Ny $Nz -$dY -$dZ $dY $dZ
fiber [expr 100*$mm] 0.0 [expr 226.1947*$mm2] $SteelB;
fiber [expr 0*$mm] 0.0 [expr 226.1947*$mm2] $SteelB;
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}

#Vertical web

set pv 0.0049813;

set Hw [expr $t*$wv];
set Aw [expr $pv*$Hw];

#Horizontal

set ph 0.0025133;

set Hh [expr $t*$wh];
set Ah [expr $ph*$Hh];

#Diagonal
set Hd [expr $t*$wd];

#Transfer beam

set Avc [expr 400.*1000.*$mm2];
set Ivc [expr 400.*pow(1000.,3)/12.*$mm4];

## ELEMENTS

#Vertical boundary elements
set NIP 2

set FBETol 1.e-5;

set FBEiter 1000;
geomTransf Linear 1;
element forceBeamColumn
$FBEiter $FBETOI;
element forceBeamColumn
$FBEiter $FBETOI;
element forceBeamColumn
$FBEiter $FBETOI;
element forceBeamColumn
$FBEiter $FBETOI;
element forceBeamColumn
$FBEiter $FBETOI;
element forceBeamColumn
$FBEiter $FBETOI;
element forceBeamColumn
$FBEiter $FBETOI;
element forceBeamColumn
$FBEiter $FBETOI;

17

25

33

41

49

57

#Vertical web steel ratio

#Horizontal steel ratio

9 S$NIP
17 $NIP
25 $NIP
33 $NIP
41 $NIP
49 $NIP
57 $NIP

65 $NIP
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$Boundary
$Boundary
$Boundary
$Boundary
$Boundary
$Boundary
$Boundary

$Boundary

fiber [expr -100*$mm] 0.0 [expr 226.1947*$mm2] $SteelB;

1 -integration Lobatto -iter
1 -integration Lobatto -iter
1 -integration Lobatto -iter
1 -integration Lobatto -iter
1 -integration Lobatto -iter
1 -integration Lobatto -iter
1 -integration Lobatto -iter
1 -integration Lobatto -iter



element forceBeamColumn
$FBEiter $FBETOI;
element forceBeamColumn
$FBEiter $FBETOI;
element forceBeamColumn
$FBEiter $FBETOI;
element forceBeamColumn
$FBEiter $FBETOI;
element forceBeamColumn
$FBEiter $FBETOI;
element forceBeamColumn
$FBEiter $FBETOI;
element forceBeamColumn
$FBEiter $FBETOI;
element forceBeamColumn
$FBEiter $FBETOI;
element forceBeamColumn
$FBEiter $FBETOI;
element forceBeamColumn
$FBEiter $FBETOI;
element forceBeamColumn
$FBEiter $FBETOI;
element forceBeamColumn
$FBEiter $FBETOI;
element forceBeamColumn
$FBEiter $FBETOI;
element forceBeamColumn
$FBEiter $FBETOI;

#Vertical web elements

9

10

11

12

13

14

15

16

17

18

19

20

21

22

65

73

81

16

24

32

40

48

56

64

72

80

88

73

81

89

16

24

40

48

56

64

80

88

96

$NIP
$NIP
$NIP
$NIP
$NIP
$NIP
$NIP
$NIP
$NIP
$NIP
$NIP
$NIP
$NIP

$NIP

element truss 23 2 10 $Hw $ConVertW;

element truss 24
element truss 25
element truss 26
element truss 27
element truss 28
element truss 29
element truss 30
element truss 31
element truss 32
element truss 33

10 18 $Hw $ConVertW;
18 26 $Hw $ConVertW,
26 34 $Hw $ConVertW,
34 42 $Hw $ConVertW,
42 50 $Hw $ConVertW;
50 58 $Hw $ConVertW,
58 66 $Hw $ConVertW;
66 74 $Hw $ConVertW,
74 82 $Hw $ConVertW,
82 90 $Hw $ConVertWw,

element truss 34 3 11 $Hw $ConVertW;

element truss 35 11 19 $Hw $ConVertW;
element truss 36 19 27 $Hw $ConVertW,
element truss 37 27 35 $Hw $ConVertW;
element truss 38 35 43 $Hw $ConVertW,
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$Boundary
$Boundary
$Boundary
$Boundary
$Boundary
$Boundary
$Boundary
$Boundary
$Boundary
$Boundary
$Boundary
$Boundary
$Boundary

$Boundary

element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss

1 -integration Lobatto -iter
1 -integration Lobatto -iter
1 -integration Lobatto -iter

1 -integration Lobatto -iter
1 -integration Lobatto -iter
1 -integration Lobatto -iter
1 -integration Lobatto -iter
1 -integration Lobatto -iter
1 -integration Lobatto -iter
1 -integration Lobatto -iter
1 -integration Lobatto -iter
1 -integration Lobatto -iter
1 -integration Lobatto -iter

1 -integration Lobatto -iter

1023 2 10 $Aw $SteelWw;
1024 10 18 $Aw $SteelW;
1025 18 26 $Aw 3$SteelW,
1026 26 34 $Aw $SteelW;
1027 34 42 $Aw 3$SteelW,
1028 42 50 $Aw $SteelW;
1029 50 58 $Aw 3$SteelW,
1030 58 66 $Aw $SteelW;
1031 66 74 $Aw 3$SteelW,
1032 74 82 $Aw $SteelW;
1033 82 90 $Aw 3$SteelW,
1034 3 11 $Aw $SteelW;
1035 11 19 $Aw $SteelW,
1036 19 27 $Aw $SteelW;
1037 27 35 $Aw 3$SteelW,
1038 35 43 $Aw $SteelW;



element truss 39
element truss 40
element truss 41
element truss 42
element truss 43
element truss 44
element truss 45
element truss 46
element truss 47
element truss 48
element truss 49
element truss 50
element truss 51
element truss 52
element truss 53
element truss 54
element truss 55
element truss 56
element truss 57
element truss 58
element truss 59
element truss 60
element truss 61
element truss 62
element truss 63
element truss 64
element truss 65
element truss 66
element truss 67
element truss 68
element truss 69
element truss 70
element truss 71
element truss 72
element truss 73
element truss 74
element truss 75
element truss 76
element truss 77
element truss 78
element truss 79
element truss 80
element truss 81
element truss 82
element truss 83
element truss 84

43 51 $Hw $ConVertW;
51 59 $Hw $ConVertW,
59 67 $Hw $ConVertWw,
67 75 $Hw $ConVertW,
75 83 $Hw $ConVertW,
83 91 $Hw $ConVertW;
4 12 $Hw $ConVertW;
12 20 $Hw $ConVertW;
20 28 $Hw $ConVertW,
28 36 $Hw $ConVertW,
36 44 $Hw $ConVertW,
44 52 $Hw $ConVertW;
52 60 $Hw $ConVertW,
60 68 $Hw $ConVertW;
68 76 $Hw $ConVertWw,
76 84 $Hw $ConVertW,
84 92 $Hw $ConVertWw,
5 13 $Hw $ConVertW;
13 21 $Hw $ConVertW,
21 29 $Hw $ConVertW;
29 37 $Hw $ConVertWw,
37 45 $Hw $ConVertW,
45 53 $Hw $ConVertW;
53 61 $Hw $ConVertW;
61 69 $Hw $ConVertWw,
69 77 $Hw $ConVertW,
77 85 $Hw $ConVertW,
85 93 $Hw $ConVertW;
6 14 $Hw $ConVertW;
14 22 $Hw $ConVertW,
22 30 $Hw $ConVertW,
30 38 $Hw $ConVertW;
38 46 $Hw $ConVertWw,
46 54 $Hw $ConVertW;
54 62 $Hw $ConVertW,
62 70 $Hw $ConVertW,
70 78 $Hw $ConVertWw,
78 86 $Hw $ConVertW;
86 94 $Hw $ConVertW,
7 15 $Hw $ConVertW;
15 23 $Hw $ConVertW,
23 31 $Hw $ConVertW,
31 39 $Hw $ConVertWw,
39 47 $Hw $ConVertW,
47 55 $Hw $ConVertW;
55 63 $Hw $ConVertW;
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element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss

1039 43 51 $Aw 3$SteelW,
1040 51 59 $Aw $SteelW;
1041 59 67 $Aw $SteelW,
1042 67 75 $Aw $SteelW;
1043 75 83 $Aw 3$SteelW,
1044 83 91 $Aw $SteelW;
1045 4 12 $Aw $SteelW;
1046 12 20 $Aw $SteelW;
1047 20 28 $Aw 3$SteelW,
1048 28 36 $Aw $SteelW;
1049 36 44 $Aw $SteelW,
1050 44 52 $Aw 3$SteelW,
1051 52 60 $Aw 3$SteelW,
1052 60 68 $Aw $SteelW,
1053 68 76 $Aw 3$SteelW,
1054 76 84 $Aw $SteelW;
1055 84 92 $Aw $SteelW,
1056 5 13 $Aw $SteelW;
1057 13 21 $Aw 3$SteelW,
1058 21 29 $Aw 3$SteelW,
1059 29 37 $Aw 3$SteelW,
1060 37 45 $Aw $SteelW;
1061 45 53 $Aw 3$SteelW,
1062 53 61 $Aw $SteelW;
1063 61 69 $Aw 3$SteelW,
1064 69 77 $Aw $SteelW;
1065 77 85 $Aw 3$SteelW,
1066 85 93 $Aw $SteelW,
1067 6 14 $Aw $SteelW;
1068 14 22 $Aw $SteelW;
1069 22 30 $Aw $SteelW,
1070 30 38 $Aw $SteelW;
1071 38 46 $Aw 3$SteelW,
1072 46 54 $Aw $SteelW;
1073 54 62 $Aw 3$SteelW,
1074 62 70 $Aw $SteelW;
1075 70 78 $Aw $SteelW,
1076 78 86 $Aw $SteelW;
1077 86 94 $Aw 3$SteelW,
1078 7 15 $Aw $SteelW;
1079 15 23 $Aw 3$SteelW,
1080 23 31 $Aw 3$SteelW,
1081 31 39 $Aw 3$SteelW,
1082 39 47 $Aw $SteelW:;
1083 47 55 $Aw $SteelW,
1084 55 63 $Aw $SteelW;



element truss 85 63 71 $Hw $ConVertW; elementtruss 1085 63 71 $Aw $SteelW,
element truss 86 71 79 $Hw $ConVertW; elementtruss 1086 71 79 $Aw $SteelW;
element truss 87 79 87 $Hw $ConVertW; elementtruss 1087 79 87 $Aw $SteelW,
element truss 88 87 95 $Hw $ConVertW; elementtruss 1088 87 95 $Aw $SteelW;

#Horizontal elements

element truss 89 9 10 $Hh $ConHor; element truss 1089 9 10 $Ah $SteelX;
element truss 90 10 11 $Hh $ConHor; element truss 1090 10 11 $Ah $SteelX;
element truss 91 11 12 $Hh $ConHor; element truss 1091 11 12 $Ah $SteelX;
element truss 92 12 13 $Hh $ConHor; element truss 1092 12 13 $Ah $SteelX;
element truss 93 13 14 $Hh $ConHor; element truss 1093 13 14 $Ah $SteelX;
element truss 94 14 15 $Hh $ConHor; element truss 1094 14 15 $Ah $SteelX;
element truss 95 15 16 $Hh $ConHor; element truss 1095 15 16 $Ah $SteelX;
element truss 96 17 18 $Hh $ConHor; element truss 1096 17 18 $Ah $SteelX;
element truss 97 18 19 $Hh $ConHor; element truss 1097 18 19 $Ah $SteelX;
element truss 98 19 20 $Hh $ConHor; element truss 1098 19 20 $Ah $SteelX;
element truss 99 20 21 $Hh $ConHor; element truss 1099 20 21 $Ah $SteelX;
element truss 100 21 22 $Hh $ConHor; element truss 1100 21 22 $Ah $SteelX;
element truss 101 22 23 $Hh $ConHor; element truss 1101 22 23 $Ah $SteelX;
element truss 102 23 24 $Hh $ConHor; element truss 1102 23 24 $Ah $SteelX;
element truss 103 25 26 $Hh $ConHor; element truss 1103 25 26 $Ah $SteelX;
element truss 104 26 27 $Hh $ConHor; element truss 1104 26 27 $Ah $SteelX;
element truss 105 27 28 $Hh $ConHor; element truss 1105 27 28 $Ah $SteelX;
element truss 106 28 29 $Hh $ConHor; element truss 1106 28 29 $Ah $SteelX;
element truss 107 29 30 $Hh $ConHor; element truss 1107 29 30 $Ah $SteelX;
element truss 108 30 31 $Hh $ConHor; element truss 1108 30 31 $Ah $SteelX;
element truss 109 31 32 $Hh $ConHor; element truss 1109 31 32 $Ah $SteelX;
element truss 110 33 34 $Hh $ConHor; element truss 1110 33 34 $Ah $SteelX;
element truss 111 34 35 $Hh $ConHor; element truss 1111 34 35 $Ah $SteelX;
element truss 112 35 36 $Hh $ConHor; elementtruss 1112 35 36 $Ah $SteelX;
element truss 113 36 37 $Hh $ConHor; element truss 1113 36 37 $Ah $SteelX;
element truss 114 37 38 $Hh $ConHor; elementtruss 1114 37 38 $Ah $SteelX;
element truss 115 38 39 $Hh $ConHor; element truss 1115 38 39 $Ah $SteelX;
element truss 116 39 40 $Hh $ConHor; element truss 1116 39 40 $Ah $SteelX;
element truss 117 41 42 $Hh $ConHor; element truss 1117 41 42 $Ah $SteelX;
element truss 118 42 43 $Hh $ConHor; element truss 1118 42 43 $Ah $SteelX;
element truss 119 43 44 $Hh $ConHor; element truss 1119 43 44 $Ah $SteelX;
element truss 120 44 45 $Hh $ConHor; elementtruss 1120 44 45 $Ah $SteelX;
element truss 121 45 46 $Hh $ConHor; element truss 1121 45 46 $Ah $SteelX;
element truss 122 46 47 $Hh $ConHor; element truss 1122 46 47 $Ah $SteelX;
element truss 123 47 48 $Hh $ConHor; element truss 1123 47 48 $Ah $SteelX;
element truss 124 49 50 $Hh $ConHor; elementtruss 1124 49 50 $Ah $SteelX;
element truss 125 50 51 $Hh $ConHor; element truss 1125 50 51 $Ah $SteelX;
element truss 126 51 52 $Hh $ConHor; element truss 1126 51 52 $Ah $SteelX;
element truss 127 52 53 $Hh $ConHor; element truss 1127 52 53 $Ah $SteelX;
element truss 128 53 54 $Hh $ConHor; element truss 1128 53 54 $Ah $SteelX;

212



element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

54
55
57
58
59
60
61
62
63
65
66
67
68
69
70
71
73
74
75
76
77
78
79
81
82
83
84
85
86
87

#Diagonal elements

element Truss2 159 1 10 9 2 $Hd $ConDiag;

$Hd $ConDiag;

element Truss2 161 2

$Hd $ConDiag;

element Truss2 163 3

$Hd $ConDiag;

element Truss2 165 4

$Hd $ConDiag;

element Truss2 167 5

$Hd $ConDiag;

element Truss2 169 6

$Hd $ConDiag;

element Truss2 171 7

$Hd $ConDiag;

55 $Hh $ConHor;
56 $Hh $ConHor;
58 $Hh $ConHor;
59 $Hh $ConHor;
60 $Hh $ConHor;
61 $Hh $ConHor;
62 $Hh $ConHor;
63 $Hh $ConHor;
64 $Hh $ConHor;
66 $Hh $ConHor;
67 $Hh $ConHor;
68 $Hh $ConHor;
69 $Hh $ConHor;
70 $Hh $ConHor;
71 $Hh $ConHor;
72 $Hh $ConHor;
74 $Hh $ConHor;
75 $Hh $ConHor;
76 $Hh $ConHor;
77 $Hh $ConHor;
78 $Hh $ConHor;
79 $Hh $ConHor;
80 $Hh $ConHor;
82 $Hh $ConHor;
83 $Hh $ConHor;
84 $Hh $ConHor;
85 $Hh $ConHor;
86 $Hh $ConHor;
87 $Hh $ConHor;
88 $Hh $ConHor;

11 10 3
12 11 4
13 12 5
14 13 6
15 14 7

16 15 8

$Hd $ConDiag;
$Hd $ConDiag;
$Hd $ConDiag;
$Hd $ConDiag;
$Hd $ConDiag;

$Hd $ConDiag;

element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
element truss
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1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158

54
55
57
58
59
60
61
62
63
65
66
67
68
69
70
71
73
74
75
76
77
78
79
81
82
83
84
85
86
87

element Truss2

element Truss2

element Truss2

element Truss2

element Truss2

element Truss2

element Truss2

55 $Ah $SteelX;
56 $Ah $SteelX;
58 $Ah $SteelX;
59 $Ah $SteelX;
60 $Ah 3$SteelX;
61 $Ah $SteelX;
62 $Ah 3$SteelX;
63 $Ah $SteelX;
64 $Ah 3$SteelX;
66 $Ah $SteelX;
67 $Ah $SteelX;
68 $Ah $SteelX;
69 $Ah 3$SteelX;
70 $Ah $SteelX;
71 $Ah $SteelX;
72 $Ah $SteelX;
74 $Ah $SteelX;
75 $Ah $SteelX;
76 $Ah $SteelX;
77 $Ah 3$SteelX;
78 $Ah $SteelX;
79 $Ah $SteelX;
80 $Ah 3$SteelX;
82 $Ah $SteelX;
83 $Ah $SteelX;
84 $Ah $SteelX;
85 $Ah $SteelX;
86 $Ah $SteelX;
87 $Ah 3$SteelX;
88 $Ah $SteelX;

162 10 3

164 11 4

166 12 5

168 13 6

170 14 7

172 15 8

2

160 9 2 1 10

11

12

13

14

15

16



element Truss2 173 9 18 17 10 $Hd $ConDiag;

$Hd $ConDiag;

element Truss2 175
19 $Hd $ConDiag;
element Truss2 177
20 $Hd $ConDiag;
element Truss2 179
21 $Hd $ConDiag;
element Truss2 181
22 $Hd $ConDiag;
element Truss2 183
23 $Hd $ConDiag;
element Truss2 185
24 $Hd $ConDiag;
element Truss2 187
26 $Hd $ConDiag;
element Truss2 189
27 $Hd $ConDiag;
element Truss2 191
28 $Hd $ConDiag;
element Truss2 193
29 $Hd $ConDiag;
element Truss2 195
30 $Hd $ConDiag;
element Truss2 197
31 $Hd $ConDiag;
element Truss2 199
32 $Hd $ConDiag;
element Truss2 201
34 $Hd $ConDiag;
element Truss2 203
35 $Hd $ConDiag;
element Truss2 205
36 $Hd $ConDiag;
element Truss2 207
37 $Hd $ConDiag;
element Truss2 209
38 $Hd $ConDiag;
element Truss2 211
39 $Hd $ConDiag;
element Truss2 213
40 $Hd $ConDiag;
element Truss2 215
42 $Hd $ConDiag;
element Truss2 217
43 $Hd $ConDiag;

10

11

12

13

14

15

17

18

19

20

21

22

23

25

26

27

28

29

30

31

33

34

19

20

21

22

23

24

26

27

28

29

30

31

32

34

35

36

37

38

39

40

42

43

18

19

20

21

22

23

25

26

27

28

29

30

31

33

34

35

36

37

38

39

41

42

11

12

13

14

15

16

18

19

20

21

22

23

24

26

27

28

29

30

31

32

34

35

$Hd
$Hd
$Hd
$Hd
$Hd
$Hd
$Hd
$Hd
$Hd
$Hd
$Hd
$Hd
$Hd
$Hd
$Hd
$Hd
$Hd
$Hd
$Hd
$Hd
$Hd

$Hd

$ConDiag;
$ConDiag;
$ConDiag;
$ConDiag;
$ConDiag;
$ConDiag;
$ConDiag;
$ConDiag;
$ConDiag;
$ConDiag;
$ConDiag;
$ConDiag;
$ConDiag;
$ConDiag;
$ConDiag;
$ConDiag;
$ConDiag;
$ConDiag;
$ConDiag;
$ConDiag;
$ConDiag;

$ConDiag;
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element Truss2 174 17 10 9

element Truss2 176 18 11

element Truss2

element Truss2

element Truss2

element Truss2

element Truss2

element Truss2

element Truss2

element Truss2

element Truss2

element Truss2

element Truss2

element Truss2

element Truss2

element Truss2

element Truss2

element Truss2

element Truss2

element Truss2

element Truss2

element Truss2

element Truss2

178

180

182

184

186

188

190

192

194

196

198

200

202

204

206

208

210

212

214

216

218

19

20

21

22

23

25

26

27

28

29

30

31

33

34

35

36

37

38

39

41

42

12

13

14

15

16

18

19

20

21

22

23

24

26

27

28

29

30

31

32

34

35

10

11

12

13

14

15

17

18

19

20

21

22

23

25

26

27

28

29

30

31

33

34



element Truss2 219
44 $Hd $ConDiag;
element Truss2 221
45 $Hd $ConDiag;
element Truss2 223
46 $Hd $ConDiag;
element Truss2 225
47 $Hd $ConDiag;
element Truss2 227
48 $Hd $ConDiag;
element Truss2 229
50 $Hd $ConDiag;
element Truss2 231
51 $Hd $ConDiag;
element Truss2 233
52 $Hd $ConDiag;
element Truss2 235
53 $Hd $ConDiag;
element Truss2 237
54 $Hd $ConDiag;
element Truss2 239
55 $Hd $ConDiag;
element Truss2 241
56 $Hd $ConDiag;
element Truss2 243
58 $Hd $ConDiag;
element Truss2 245
59 $Hd $ConDiag;
element Truss2 247
60 $Hd $ConDiag;
element Truss2 249
61 $Hd $ConDiag;
element Truss2 251
62 $Hd $ConDiag;
element Truss2 253
63 $Hd $ConDiag;
element Truss2 255
64 $Hd $ConDiag;
element Truss2 257
66 $Hd $ConDiag;
element Truss2 259
67 $Hd $ConDiag;
element Truss2 261
68 $Hd $ConDiag;
element Truss2 263
69 $Hd $ConDiag;

35

36

37

38

39

41

42

43

44

45

46

47

49

50

51

52

53

54

55

57

58

59

60

44

45

46

47

48

50

51

52

53

54

55

56

58

59

60

61

62

63

64

66

67

68

69

43

44

45

46

47

49

50

51

52

53

54

55

57

58

59

60

61

62

63

65

66

67

68

36

37

38

39

40

42

43

44

45

46

47

48

50

51

52

53

54

55

56

58

59

60

61

$Hd
$Hd
$Hd
$Hd
$Hd
$Hd
$Hd
$Hd
$Hd
$Hd
$Hd
$Hd
$Hd
$Hd
$Hd
$Hd
$Hd
$Hd
$Hd
$Hd
$Hd
$Hd

$Hd

$ConDiag;
$ConDiag;
$ConDiag;
$ConDiag;
$ConDiag;
$ConDiag;
$ConDiag;
$ConDiag;
$ConDiag;
$ConDiag;
$ConDiag;
$ConDiag;
$ConDiag;
$ConDiag;
$ConDiag;
$ConDiag;
$ConDiag;
$ConDiag;
$ConDiag;
$ConDiag;
$ConDiag;
$ConDiag;

$ConDiag;

215

element Truss2

element Truss2

element Truss2

element Truss2

element Truss2

element Truss2

element Truss2

element Truss2

element Truss2

element Truss2

element Truss2

element Truss2

element Truss2

element Truss2

element Truss2

element Truss2

element Truss2

element Truss2

element Truss2

element Truss2

element Truss2

element Truss2

element Truss2

220

222

224

226

228

230

232

234

236

238

240

242

244

246

248

250

252

254

256

258

260

262

264

43

44

45

46

47

49

50

51

52

53

54

55

57

58

59

60

61

62

63

65

66

67

68

36

37

38

39

40

42

43

44

45

46

47

48

50

51

52

53

54

55

56

58

59

60

61

35

36

37

38

39

41

42

43

44

45

46

47

49

50

51

52

53

54

55

57

58

59

60



element Truss2 265
70 $Hd $ConDiag;
element Truss2 267
71 $Hd $ConDiag;
element Truss2 269
72 $Hd $ConDiag;
element Truss2 271
74 $Hd $ConDiag;
element Truss2 273
75 $Hd $ConDiag;
element Truss2 275
76 $Hd $ConDiag;
element Truss2 277
77 $Hd $ConDiag;
element Truss2 279
78 $Hd $ConDiag;
element Truss2 281
79 $Hd $ConDiag;
element Truss2 283
80 $Hd $ConDiag;
element Truss2 285
82 $Hd $ConDiag;
element Truss2 287
83 $Hd $ConDiag;
element Truss2 289
84 $Hd $ConDiag;
element Truss2 291
85 $Hd $ConDiag;
element Truss2 293
86 $Hd $ConDiag;
element Truss2 295
87 $Hd $ConDiag;
element Truss2 297
88 $Hd $ConDiag;
element Truss2 299
90 $Hd $ConDiag;
element Truss2 301
91 $Hd $ConDiag;
element Truss2 303
92 $Hd $ConDiag;
element Truss2 305
93 $Hd $ConDiag;
element Truss2 307
94 $Hd $ConDiag;
element Truss2 309
95 $Hd $ConDiag;
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element Truss2 311 87 96 95 88 $Hd $ConDiag; element Truss2 312 95 88 87
96 $Hd $ConDiag;

#Transfer beam

element elasticBeamColumn 313 89 90 $Avc $Ec $lvc
element elasticBeamColumn 314 90 91 $Avc $Ec $lvc
element elasticBeamColumn 315 91 92 $Avc $Ec $lvc
element elasticBeamColumn 316 92 93 $Avc $Ec $lvc
element elasticBeamColumn 317 93 94 $Avc $Ec $lvc
element elasticBeamColumn 318 94 95 $Avc $Ec $lvc
element elasticBeamColumn 319 95 96 $Avc $Ec $lvc

vl sl s

## LOADS

#Gravity Load

set P [expr 1476*$kN];

pattern Plain 1 "Linear" {
load 89 0.0 [expr -$P/8] 0.0;
load 90 0.0 [expr -$P/8] 0.0;
load 91 0.0 [expr -$P/8] 0.0;
load 92 0.0 [expr -$P/8] 0.0;
load 93 0.0 [expr -$P/8] 0.0;
load 94 0.0 [expr -$P/8] 0.0;
load 95 0.0 [expr -$P/8] 0.0;
load 96 0.0 [expr -$P/8] 0.0;

j

set Tol 1.0e-5;

integrator LoadControl 0.1

system BandGeneral

test NormDisplncr $Tol 100 0

numberer RCM

constraints Transformation

algorithm Newton

analysis Static

analyze 10

loadConst -time 0.0; #Keep axial load constant

#L ateral Load
set Plateral 1.0;
pattern Plain 2 "Linear™ {
load $IDctrINode $Plateral 0.0 0.0
}

set file [open "Protocolo.dat" r]; #File with disp protocol in in
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## RECORDERS

set WallName WSH6;#Wall name

file mkdir Results;  #Save results in "Results” folder

recorder Node -file Results.out -time -node $IDctrINode -dof $IDctrIDOF disp

recorder Node -file Results/FD$WallName.out -time -node $IDctrINode -dof $1DctrIDOF
disp

recorder Node -file Results/NodeDisplacements$WallName.out -time -nodeRange 1
10000000 -dof 1 2 3 disp

recorder Element -file Results/StressStrainConcrete$WallName.out -time -eleRange 23
312 -material stressStrain

recorder Element -file Results/StressStrainSteel$WallName.out -time -eleRange 1023
1158 -material stressStrain

recorder Element -file Results/StressStrainFiberCLeft$WallName.out -time -eleRange 1
11 section 1 fiber [expr 100*$mm] 0 $ConVertB stressStrain

recorder Element -file Results/StressStrainFiberSLeft$WallName.out -time -eleRange 1 11
section 1 fiber [expr 100*$mm] O $SteelB stressStrain

recorder Element -file Results/StressStrainFiberCRight$WallName.out -time -eleRange 12
22 section 1 fiber [expr -100*$mm] 0 $ConVertB stressStrain

recorder Element -file Results/StressStrainFiberSRight$WallName.out -time -eleRange 12
22 section 1 fiber [expr -100*$mm] O $SteelB stressStrain
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A.5 RPHM for RC Walls

e

## GEOMETRY

set H 177.9528; #Height (in)

set L 78.7402; #Length (in)

set t 5.9055; #Thickness (in)

set Lb 10.2362; #Confined length (in)
set rech 0.0709; #Horizontal clear cover (in)
set recv 0.0709; #Vertical clear cover (in)
set Lp 21.3223; #Plastic hinge length (in)
#Nodes

node 1 0 0;

node 2 0 $H;

fix1111; #fix the base

set IDctrINode 2; #Control node

set IDctrIDOF 1, #Control DOF
Mmoo e

## MATERIALS

#Reinforcing steel

uniaxialMaterial Steel02 10 [expr 576.0*$MPa] [expr 200000.*$MPa] 0.01904 20. 0.925
0.15; #For boundary regions

uniaxialMaterial Steel02 20 [expr 583.7*$MPa] [expr 200000.*$MPa] 0.02331 20. 0.925
0.15; #For web regions

uniaxialMaterial MinMax 1 10 -min -0.007905;

uniaxialMaterial MinMax 2 20 -min -0.012409;

#Concrete

uniaxialMaterial Concrete02 3 -[expr 58.1*$MPa] -0.00365 -1.679 -0.012409 0.1
0.323 230.1; #Confined

uniaxialMaterial Concrete02 4 -[expr 45.6*$MPa] -0.00287 -1.322 -0.007905 0.1
0.323 230.1; #Unconfined

# Shear

set Ec [expr 31738.*$MPa]; # Concrete Young's Modulus

set G [expr (5./6.)*0.4*$Ec];

set GA [expr 0.1*$G*$L*$t];

uniaxialMaterial Elastic 5 $GA;
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## SECTIONS

set nfibersb 40; #Number of fibers for boundary regions

set nfibersw 200; #Number of fibers for web regions

set Al 0.3506; #Area of 12 mm bar x2 (for boundary regions)
set A2 0.1558; #Area of 8 mm bar x2 (for web regions)

section fiberSec 10 {
patch rect 3 $nfibersb 1 [expr ($L/2.)-$Lb+S$rech] -[expr $t/2.-$recv] [expr $L/2.-$rech]
[expr $t/2.-$recv]

patch rect 4 $nfibersw 1 -[expr ($L/2.)-$Lb+$rech] -[expr $t/2.] [expr ($L/2.)-
$Lb+$rech] [expr $t/2.]
patch rect 3 $nfibersb 1 -[expr $L/2.-$rech] -[expr $t/2.-$recv] -[expr ($L/2.)-

$Lb+$rech] [expr $t/2.-$recv]

patch rect 4 $nfibersb 1 [expr ($L/2.)-$Lb+$rech] -[expr $t/2.] [expr ($L/2.)-$rech]
-[expr $t/2.-$recv]

patch rect 4 $nfibersb 1 [expr ($L/2.)-$Lb+$rech] [expr $t/2.-Srecv] [expr ($L/2.)-$rech]
[expr $t/2.]

patchrect4 3 1 [expr($L/2.)-$rech]  -[expr $t/2.] [expr ($L/2.)] [expr
$t/2.]

patch rect 4 $nfibersb 1 -[expr ($L/2.)-$rech] -[expr $t/2.]  -[expr ($L/2.)-$Lb+$rech]
-[expr $t/2.-$recv]

patch rect 4 $nfibersb 1 -[expr ($L/2.)-$rech] [expr $t/2.-$recv] -[expr ($L/2.)-
$Lb+$rech] [expr $t/2.]

patchrect4 3 1 -[expr ($L/2.)] -[expr $t/2.]  -[expr ($L/2.)-$rech]  [expr
$t/2.]

fiber 38.1890 0.0 $A1 1
fiber 34.2520 0.0 $A1 1
fiber 30.3150 0.0 $A1 1
fiber 25.3937 0.0 $A2 2
fiber 20.4724 0.0 $A2 2
fiber 15.5512 0.0 $A2 2
fiber 10.6299 0.0 $A2 2
fiber 5.7087 0.0 $A2 2
fiber 0.0000 0.0 $A2 2
fiber -5.7087 0.0 $A2 2
fiber -10.6299 0.0 $A2 2
fiber -15.5512 0.0 $A2 2
fiber -20.4724 0.0 $A2 2
fiber -25.3937 0.0 $A2 2
fiber -30.3150 0.0 $A1 1
fiber -34.2520 0.0 $A1 1
fiber -38.1890 0.0 $A1 1

¥
section Aggregator 1 5 Vy -section 10
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## ELEMENTS

setgT 1

set FBETol 1.e-8;

set FBEiter 1000;

geomTransf Linear $gT;

set integration "HingeRadau 1 $Lp 1 [expr 0.*$Lp] 1"
element forceBeamColumn 1 1 2 $gT S$integration;

## LOADS

#Gravity Load
set P [expr 1476*$kN];
pattern Plain 1 "Linear" {
load $IDctrINode 0.0 [expr -$P] 0.0
Y
set Tol 1.0e-5;
integrator LoadControl 0.1
system BandGeneral
test NormDisplncr $Tol 100 0
numberer RCM
constraints Transformation
algorithm Newton
analysis Static
analyze 10
loadConst -time 0.0; #Keep axial load constant

#L ateral Load
set Plateral 1.0;
pattern Plain 2 "Linear" {
load $1DctrINode $Plateral 0.0 0.0
¥

set file [open "Protocolo.dat" r]; #File with disp protocol in in

## RECORDERS

set WallName WSH6;#Wall name
file mkdir Results;  #Save results in "Results" folder
recorder Node -file Results.out -time -node $IDctrINode -dof $IDctrIDOF disp
recorder Node -file Results/FD$WallName.out -time -node $IDctrINode -dof $IDctrIDOF
disp
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recorder Element -file Results/Concrete1$WallName.out -time -ele 1 section 1 fiber [expr
-$L/2.0] 0.0 3 stressStrain

recorder Element -file Results/Concrete2$WallName.out -time -ele 1 section 1 fiber [expr
$L/2.0] 0.0 3 stressStrain

recorder Element -file Results/Steel1$WallName.out -time -ele 1 section 1 fiber [expr -
$L/2.] 0.0 1 stressStrain

recorder Element -file Results/Steel2$WallName.out  -time -ele 1 section 1 fiber [expr
$L/2.] 0.0 1 stressStrain
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A.6 RPHM for RC Columns

## GEOMETRY

set H 21.653;
set W 21.653;
set L 64.96;
set cover 1.57,
set Lp 10.5;

#Nodes
node 10 0;
node 2 0 $L;

fix1111;
set IDctrINode 2;
set IDctrIDOF 1;

#Column cross section height (in)
#Column cross section width (in)
#Column length (in)

#Column cross section cover (in)
#Plastic hinge length (in)

#fix the base
#Control node
#Control DOF

## MATERIALS

#Reinforcing steel
uniaxialMaterial Steel02 10 74.095 29000. 0.0094 20. 0.925 0.15; #Longitudinal steel
uniaxialMaterial MinMax 1 10 -min -0.02392;

#Concrete
uniaxialMaterial Concrete02 2 -6.40 -0.00332 -1.281 -0.02392 0.1 0.27 192.75;
#Confined
uniaxialMaterial Concrete02 3 -4.64 -0.00241 -0.928 -0.01117 0.1 0.27 192.75;

#Unconfined

# Shear

set Ec [expr 26587.2*$MPa]; # Concrete Young's Modulus
set G [expr (5./6.)*0.4*$Ec];

set GA [expr 0.1*$G*$H*$W];

uniaxialMaterial Elastic 4 $GA;

## SECTIONS

set nh 4
setnv 4

set dl 0.787;
set As 0.486;
set dt 0.472;

#Diameter of longitudinal bar (in)
#Area of longitudinal bar (in?)
#Diameter of transverse bars (in)
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set rec [expr $cover+$dt/2.]; #Bar cover
set dx [expr $cover+$dt+$dl/2.]; #Distance from the edge to the bar
set sx [expr ($H-2.*$dx)/($nh-1)];  #Distance between bar layers

set nfibers 200; #Number of fibers for confined region

section fiberSec 10 {
patch rect 3 30 1 -[expr ($3H/2.)]  -[expr ($W/2.)]  -[expr ($H/2.-$rec)]
[expr ($W/2.)]

patch rect 3 $nfibers 1 -[expr ($H/2.-$rec)] [expr ($W/2.-$rec)] [expr ($H/2.-
$rec)] [expr ($W/2.)]

patch rect 3 $nfibers 1 -[expr ($H/2.-$rec)] -[expr (BW/2.)]  [expr ($H/2.-
$rec)] -[expr ($W/2.-$rec)]

patch rect 3 30 1 [expr ($H/2.-$rec)] -[expr ($W/2.)] [expr ($H/2.)]
[expr ($W/2.)]

patch rect 2 $nfibers 1 -[expr ($H/2.-$rec)] -[expr (SW/2.-$rec)] [expr ($H/2.-
$rec)] [expr ($W/2.-$rec)]

fiber [expr (-$H/2.+$dx+0.*$sx)] 0.0 [expr $nv*$As] 1

for {set i 1} {$i<=[expr $nh-2]} {incri 1} {

fiber [expr (-$H/2.+$dx+$i*$sx)] 0.0 [expr 2.*$As] 1

Y

fiber [expr (-$H/2.+$dx+($nh-1)*$sx)] 0.0 [expr $nv*$As] 1
Y
section Aggregator 1 4 Vy -section 10

## ELEMENTS

setgT 1

set FBETol 1.e-8;

set FBEiter 1000;

geomTransf Linear $gT;

set integration "HingeRadau 1 $Lp 1 $Lp 1"

element forceBeamColumn 1 1 2 $gT S$integration;

## LOADS

#Gravity Load
set P [expr 968.0*$kN];
pattern Plain 1 "Linear" {

load $IDctrINode 0.0 [expr -$P] 0.0
o
set Tol 1.0e-5;
integrator LoadControl 0.1
system BandGeneral

224



test NormDisplncr $Tol 100 0

numberer RCM

constraints Transformation

algorithm Newton

analysis Static

analyze 10

loadConst -time 0.0; #Keep axial load constant

#L ateral Load
set Plateral 1.0;
pattern Plain 2 "Linear" {
load $1DctrINode $Plateral 0.0 0.0
¥

set file [open "Protocolo.dat" r]; #File with disp protocol in in

## RECORDERS

set ColumnID 6; #Column ID

file mkdir Results;  #Save results in "Results” folder

recorder Node -file Results.out -time -node $IDctrINode -dof $IDctrIDOF disp

recorder Node -file Results/FD$ColumnID.out -time -node $IDctrINode -dof $IDctrIDOF
disp

recorder Element -file Results/Concrete1$ColumniD.out -time -ele 1 section 1 fiber [expr
-$L/2.0] 0.0 2 stressStrain

recorder Element -file Results/Concrete2$ColumniD.out -time -ele 1 section 1 fiber [expr
$L/2.0] 0.0 2 stressStrain

recorder Element -file Results/Steel1$ColumnID.out -time -ele 1 section 1 fiber [expr -
$L/2.] 0.0 1 stressStrain

recorder Element -file Results/Steel2$ColumnID.out  -time -ele 1 section 1 fiber [expr
$L/2.] 0.0 1 stressStrain
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