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CHAPTER 8:  

EXPERIMENTAL DATA 

8.1 General comments 

All chemicals purchased were reagent grade and used without purification unless 

noted otherwise.  Dry CH2Cl2, CH3CN, and Et3N were prepared by distillation from 

calcium hydride under Ar.  Dry THF was prepared by distillation from 

sodium/benzophenone ketyl radical under Ar.  Reactions were carried out under an inert 

atmosphere of argon only when specified in the experimental details, and were monitored 

by TLC as described in the experimental procedure using aluminum-backed 0.2 mm 

silica gel 60 F-254 plates.  Visualization of TLC plates was performed under a UV lamp 

irradiating at 254 nm or by staining with CAM stain (Ceric Ammonium Molybdate stain, 

Hanessian’s stain), ferric chloride stain, or ninhydrin stain.  Column chromatography was 

conducted using silica gel 60 (230-400 mesh). All melting points were measured on a 

Thomas-Hoover Melting Apparatus and are uncorrected.  All NMR spectra were 

recorded on a Varian 300 MHz or 500 MHz instrument under ambient temperatures 

unless otherwise noted.  Chemical shift values for NMR spectra are reported as δ in ppm 

relative to the solvent residual peak or to an internal tetramethylsilane standard.  Infrared 

spectra were recorded using an FT-IR spectrometer and are reported in cm-1.  Mass 

spectra were obtained as specified.  Optical rotations were measured on a Rudolph 

Research Autopol III.  Analytical LC/MS analyses were carried out on a Waters ZQ 
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instrument consisting of chromatography module Alliance HT, photodiode array detector 

2996, and mass spectrometer Micromass ZQ, using a 3 x 50 mm Pro C18 YMC reverse 

phase column (Waters).  Compounds were eluted using a gradient of 5-80% CH3CN in 

10 mM ammonium acetate over 10 min at a flow rate of 0.7 mL/min.  The MS 

electrospray source was operated at capillary voltage 3.5 kV and a desolvation 

temperature of 300 °C. 

8.2 Experimental procedures for chapter 3 

CO2H

OBn  

2-Benzyloxy-benzoic acid (3.2).  Methyl salicylate (5.87 g, 5.0 mL, 38.6 mmol) 

was added to K2CO3 (15.38 g, 111.3 mmol) and CH3CN (150 mL) at 20oC.  The reaction 

was stirred at 60oC overnight.  The reaction was filtered and concentrated to yield a clear 

oil.  10% aqueous KOH was added to the oil (65 mL) and the reaction was heated to 

100oC for 2.5 h.  The mixture was washed with CH2Cl2 (2 x 100 mL), and acidified to an 

apparent pH of 2 using 1M HCl.  The aqueous layer was extracted with EtOAc (3 x 100 

mL) and the combined EtOAc layers were washed with H2O (2 x 100 mL) and brine (2 x 

100 mL).  The EtOAc was dried over Na2SO4, filtered, and concentrated to yield a white 

solid that was recrystallized from MeOH (8.54 g, 97%). mp 74-75oC; 1H NMR (300 

MHz, CDCl3) δ 5.31 (s, 2H), 7.12-7.20 (m, 2H), 7.40-7.48 (m, 5H), 7.57 (ddd, J = 1.8, 

7.5, 8.1 Hz, 1H), 8.22 (dd, J = 1.8, 7.8 Hz, 1H) ppm.  HRMS (FAB) m/z [M+H] + calcd, 

229.0865; obsd, 229.0841. 
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H3N CO2Bn

OH
Cl

 

L-Serine benzyl ester hydrochloride (3.4).  A 1-L round-bottomed flask was 

charged with Boc-L-serine (10.08 g, 49.11 mmol) and K2CO3 (8.86 g, 64.1 mmol).  DMF 

(400 mL) was added and the mixture was stirred under a stream of Ar for a few min.  

Benzyl bromide (6.20 mL, 52.2 mmol) was added to the reaction and the mixture was 

stirred vigourously at RT under Ar.  After stirring overnight, the white solid was removed 

by vacuum filtration and washed with 200 mL of DMF.  The filtrate was concentrated 

under vacuum and the residue was partitioned between H2O (100 mL) and EtOAc (200 

mL).  The layers were separated and the organic layer was washed with saturated 

NaHCO3 (3 x 100 mL) and brine (2 x 100 mL), dried over Na2SO4, filtered, and 

concentrated under vacuum to yield a yellow oil (14.159 g, 98% crude).  The crude 

material was dissolved in 500 mL of anhydrous ether in a 1-L round-bottomed flask. The 

solution was cooled in an ice/H2O bath to 4°C.  Freshly prepared dry HCl gas was 

bubbled through the solution for 2h.  (HCl gas was prepared by adding conc. HCl 

dropwise to anhydrous CaCl2, and the gas was then dried by bubbling through conc. 

H2SO4).  The solution had turned opaque and the HCl gas flow was ceased.  The opaque 

solution was stirred (with the attached septum) at RT overnight.  The white solid was 

collected by vacuum filtration to yield only ~4 g (~35% yield).  The filtrate was left to 

stand overnight to precipitate out more solid.  A second crop of solid was collected to 

yield additional white solid.  Compound 3.4 was isolated as a white solid (9.8439 g, 

86.5% yield from Boc-serine). 
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N
H

O

CO2Bn

OH

OBn  

(S)-Benzyl 2-(2-(benzyloxy)benzamido)-3-hydroxypropanoate (3.5) using 

EDC-mediated amide coupling.  Dichloromethane (160 mL) was added to 3.4 (6.83 g, 

29.5 mmol) and 3.2 (8.11 g, 35.5 mmol) under Ar.  Et3N (4.80 mL, 34.5 mmol) was 

added followed by EDC•HCl (6.57 g, 34.3 mmol), and the mixture was stirred at rt 

overnight under Ar.  The mixture was washed with H2O (3 x 100 mL), saturated NaHCO3 

(3 x 100 mL), 5% aqueous citric acid (3 x 100 mL), and brine (3 x 100 mL), dried over 

MgSO4, filtered, and concentrated to yield a white solid (11.2 g, 93.3% yield). 

 

Compound 3.5 from the acid chloride.  Compound 3.2 (13.21 g, 56.72 mmol) 

was dissolved in 150 mL of anhydrous CH2Cl2 in a 500-mL round-bottomed flask.  

Oxalyl chloride (9.95 mL, 114 mmol) was added to the colorless solution slowly, 

followed by a catalytic amount of anhydrous DMF (0.10 mL, 1.3 mmol).  The light 

yellow solution bubbled profusely and was stirred at RT under Ar.  Bubbling ceased after 

~2h, and the reaction became yellow in color.  After 4h, the reaction was concentrated 

under vacuum, then dissolved in toluene and concentrated under vacuum (2x), then 

dissolved in CHCl3 and concentrated under vacuum (2x) to yield the crude acid chloride. 

The crude acid chloride (8.59 g, 34.1 mmol) was dissolved in 170 mL of 

anhydrous CH2Cl2 in a 500-mL round-bottomed flask under Ar.  3.4 (8.39 g, 36.2 mmol) 

was added to the flask and the mixture cooled in an ice/H2O bath under Ar.  

Diisopropylethylamine (14.9 mL, 85.6 mmol) was added to the reaction slowly.  Most of 

the solid material dissolved, and the light orange solution was warmed to RT and stirred 
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under Ar overnight.  After 19h, TLC of the reaction (90% CH2Cl2/acetone) indicated the 

reaction was complete.  The orange solution was concentrated under vacuum to yield an 

orange oil.  The oil was partitioned between EtOAc (~300 mL) and H2O (~150 mL).  The 

layers were separated and the organic layer was washed with H2O (1 x 100 mL), 5% 

citric acid (3 x 100 mL), H2O (1 x 100 mL), saturated NaHCO3 (3 x 100 mL), H2O (1 x 

100 mL), and brine (2 x 100 mL), dried over Na2SO4, filtered and concentrated to yield 

3.5 as a fluffy white solid (13.5 g, 97.8% yield). mp 119-120oC; 1H NMR (300 MHz, 

CDCl3) δ 1.76 (br, 1H, -OH), 3.92 (m, J = 3.9 Hz, 1H, -NH), 4.89 (dt, J = 3.9, 6.9 Hz, 

1H, α-CH), 5.12-5.30 (m, 4H, OCH2-Ph), 7.05 (d, J = 8.4 Hz, 1H, Ar-H), 7.11 (d, J = 7.8 

Hz, 1H, Ar-H), 7.30-7.48 (m, 10H, Ar-H), 8.20 (dd, J = 1.5, 7.8 Hz, 1H, Ar-H), 8.80 (d, J 

= 6.6 Hz, 1H, Ar-H) ppm; 13C NMR (75 MHz, CDCl3) δ 55.62, 63.79, 67.39, 71.47, 

113.0, 121.3, 121.7, 128.2, 128.3, 128.6, 128.8, 129.0, 132.5, 133.4, 135.5, 135.7, 157.2, 

165.8, 170.4 ppm; HRMS-FAB (m/z) [M + H]+ found 406. 

 

Et3N
S

N

O O

O

O

PEG
 

PEG-supported Burgess’s Reagent (3.7).  Polyethylene glycol (PEG) (6.96 g, 

9.29 mmol) was dried in vacuo for 4 h and added dropwise as a solution in 20 mL of 

benzene to a solution of chlorosulfonyl isocyanate (1.20 g, 0.74 mL, 8.47 mmol) in 20 

mL of benzene at RT.  The reaction was allowed to stir for an additional 1h before 

concentrating to yield a yellow-tan oil.  The oil was stored under vacuum overnight.  The 

oil was dissolved in 20 mL of benzene and added dropwise to a solution of Et3N (1.97 g, 
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2.74 mL, 19.5 mmol) in 15 mL of benzene at RT.  The reaction was stirred for an 

additional 15 min, filtered, and concentrated to afford a tan solid (8.14 g). mp ~ 20-25 °C. 

 

N

O

OBn
CO2Bn

 

(S)-Benzyl 2-(2-(benzyloxy)phenyl)-4,5-dihydrooxazole-4-carboxylate (3.8) 

using PEG-Burgess reagent.  Compound 3.5 (0.59 g, 1.46 mmol) and compound 3.7 

(2.8 g, 2.8 mmol) were dissolved in 10 mL 1:1 THF/dioxane at RT.  The reaction was 

heated to 95 °C for 3 h.  The solvent was removed to yield a yellow oil.  Chromatography 

through silica gel using a solvent system of 95% CH2Cl2/EtOAc provided 3.8 as a white 

solid (0.428 g ,76%). 

 

General procedure for the preparation of oxazolines using DAST.  Oxazoline 

3.8 using DAST.  Amide 3.5 (3.27 g, 8.07 mmol) was dissolved in 100 mL of CH2Cl2 

under Ar.  The solution was cooled to -78 °C (dry ice/acetone bath) and DAST (1.20 mL, 

9.16 mmol) was added dropwise over 4 min.  The reaction was stirred at -78 °C for 3.5 h.  

The reaction was monitored by TLC (1:1 hexanes/EtOAc – UV lamp) for the 

disappearance of amide 3.5.  K2CO3 (3.03 g, 21.9 mmol) was added to the reaction in one 

portion and the mixture was allowed to reach RT over 45 min.  The mixture was poured 

into 100 mL of saturated NaHCO3 and the layers were separated.  The aqueous layer was 

extracted with CH2Cl2 (3 x 50 mL).  The combined organic layers were washed with H2O 

(2 x 100 mL) and brine (2 x 100 mL), dried over MgSO4, filtered, and concentrated to 

yield a yellow oil that solidified in the freezer overnight.  Recrystallized from MeOH to 
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yield oxazoline 3.8 as a white solid (2.87 g, 91.7%).  mp = 69-70 °C.  1H NMR (CDCl3, 

300 MHz) δ 4.55-5.70 (m, 2H), 5.03 (dd, J = 7.9, 10.6 Hz, 1H), 5.20-5.32 (m, 4H), 7.00 

(m, 2H), 7.27-7.44 (m, 10H), 7.50 (dd, J = 0.9, 8.1 Hz, 2H), 7.82 (ddd, J = 0.6, 1.8, 8.1 

Hz, 1H) ppm.  13C NMR (125 MHz, CDCl3) δ 171.0, 165.7, 157.6, 136.8, 135.5, 132.6, 

131.6, 128.5, 128.4, 128.3, 128.2, 127.5, 126.7, 120.7, 117.2, 113.8, 70.6, 69.2, 68.8, 67.1 

ppm.  [α]D
23 = +105 ° (c = 1, MeOH).  HRMS (FAB) m/z [M+H] + calcd, 388.1549; obsd, 

388.1549. 

 

N

O

OH
CO2H

 

(S)-2-(2-Hydroxy-phenyl)-4,5-dihydro-oxazole-4-carboxylic acid (2.62).  To 

an Ar-purged solution of 3.8 (2.00 g, 5.16 mmol) in MeOH (100 mL) was added 10 wt% 

Pd/C catalyst (3.75 mg, 18 wt %).  The solution was stirred under H2 (balloon) for 3.5h.  

The reaction was filtered through celite and the filtrate was concentrated and triturated 

from EtOAc/hexanes to yield 2.62 as a white solid (1.06 g, 99%). mp 149-150 °C (turns 

pink).  1H NMR (500 MHz, d6-DMSO, 30 °C) δ 7.63 (dd, J = 8.0, 2.0 Hz, 1H), 7.46 (ddd, 

J = 9.0, 7.0, 1.5 Hz, 1H), 7.00 (dd, J = 8.5, 1.0 Hz, 1H), 6.94 (ddd, J = 8.0, 7.5, 1.0 Hz, 

1H), 5.02 (dd, J = 10.0, 7.5 Hz, 1H), 4.63 (m, 2H) ppm.  13C NMR (125 MHz, d6-DMSO, 

30 °C) δ 171.6, 166.1, 159.1, 134.0, 127.9, 119.0, 116.5, 109.6, 69.2, 66.7 ppm.  HRMS 

(FAB) m/z calcd for C10H9NO4, 208.0610; obsd, 208.0609. 
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N
H

O

CO2Bn

OH

 

(S)-Benzyl 2-benzamido-3-hydroxypropanoate (3.9).  Compound 3.4 (8.018 g, 

34.609 mmol) and benzoic acid (4.692 g, 38.42 mmol) were added to a flame-dried 500-

mL round-bottomed flask along with 150 mL of dry CH2Cl2 under Ar.  Et3N (5.20 mL, 

37.0 mmol) was added to the suspension, followed by EDC•HCl (7.79 g, 40.6 mmol).  

After stirring for 2h under Ar at RT, the suspended material had fully dissolved and the 

resultant colorless solution was stirred at RT under Ar overnight.  After ~26 h, the 

reaction was concentrated and the resultant orange oil was partitioned between EtOAc 

(300 mL) and H2O (200 mL).  The layers were separated and the aqueous layer was 

extracted with EtOAc (2 x 150 mL).  The combined organic layers were washed with 

H2O (200 mL), 5% citric acid (3 x 200 mL), H2O (1 x 200 mL), saturated NaHCO3 (3 x 

200 mL), H2O (1 x 200 mL), and brine (2 x 200 mL), dried over Na2SO4, filtered, and 

concentrated to yield 3.9 as a white solid (9.94 g, 95.9% yield).  mp = 91-92 °C.  1H 

NMR (300 MHz, CDCl3) δ 3.36 (t, J = 5.4 Hz, 1H), 3.90 – 4.05 (m, 2H), 4.82 (dt, J = 

7.5, 3.3 Hz, 1H), 5.15 (s, 2H), 7.29 – 7.34 (m, 7H), 7.42 (t, J = 7.5 Hz, 1H), 7.74 (d, J = 

7.5 Hz, 2H) ppm.  13C NMR (125 MHz, CDCl3) δ 55.48, 63.41, 127.19, 128.08, 128.44, 

128.62, 131.76, 133.93, 135.39, 167.74, 170.44 ppm.  HRMS (FAB) m/z [M+H] + calcd 

for C17H17NO4, 300.1236; obsd, 300.1231. 
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N

O

CO2Bn  

(S)-Benzyl 2-phenyl-4,5-dihydrooxazole-4-carboxylate (3.10).  Compound 3.9 

(5.123 g, 17.12 mmol) was dissolved in 100 mL of CH2Cl2 in a flame-dried 250-mL 

round-bottomed flask and cooled to -78°C in a dry ice/acetone bath under Ar.  

Diethylaminosulfur trifluoride (2.50 mL, 18.9 mmol) was added dropwise to the reaction 

over ~5 min.  The reaction was stirred under Ar at -78°C.  After 4 h, the reaction was 

complete by TLC (1:1 hexanes/EtOAc - UV lamp), and K2CO3 (6.31 g, 45.7 mmol) was 

added to the reaction in one portion.  The reaction was removed from the dry ice/acetone 

bath and allowed to warm to RT under Ar over ~30 min while stirring.  The solution was 

poured into ~100 mL of saturated NaHCO3 and H2O was added until all of the solid 

material had dissolved.  The layers were separated and the aqueous layer was extracted 

with CH2Cl2 (3 x 60 mL).  The combined CH2Cl2 layers were washed with saturated 

NaHCO3 (1 x 80 mL), H2O (2 x 80 mL), and brine (1 x 80 mL), dried over Na2SO4, 

filtered, and concentrated to yield a yellow oil that solidified upon storage at -10°C 

overnight to a white solid (4.96 g). Recrystallization from EtOAc/hexanes afforded 

oxazoline 3.10 as a white solid (4.103 g, 85.2% yield).  mp = 49-50 °C.  1H NMR (500 

MHz, CDCl3) δ 7.99 (m, 2H), 7.50 (m, 1H), 7.42-7.32 (m, 7H), 5.28 (d, J = 12 Hz, 1H), 

5.22 (d, J = 12 Hz, 1H), 4.98 (dd, J = 10.5, 8.0 Hz, 1H), 4.67 (t, J = 8.5 Hz, 1H), 4.60 

(dd, J = 10.5, 8.5 Hz, 1H) ppm.  13C NMR (125 MHz, CDCl3) δ 170.9, 166.3, 135.3, 

131.8, 128.49, 128.47, 128.31, 128.26, 128.2, 126.8, 69.5, 68.6, 67.2 ppm. 
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N

O

CO2H  

(S)-2-Phenyl-4,5-dihydrooxazole-4-carboxylic acid (3.11).  To an Ar-purged 

solution of 3.10 (1.71 g, 6.07 mmol) in MeOH (50 mL) was added 10 wt% Pd/C catalyst 

(0.283 g, 17 wt %).  The solution was stirred under H2 (balloon) for 2.5h.  The reaction 

was filtered through celite and the filtrate was concentrated and triturated from 

EtOAc/hexanes to yield 3.11 as an off-white solid (1.16 g, 99%). mp 128-131 °C (turns 

red at 125 °C).  1H NMR (300 MHz, d6-DMSO) δ 7.89 (d, J = 7.2 Hz, 2H), 7.58 (m, 1H), 

7.49 (m, 2H), 4.86 (m, 1H), 4.62-5.51 (m, 2H) ppm. 

 

H3N CO2Bn

OH
Cl

 

D-Serine benzyl ester hydrochloride (3.12).  Compound 3.12 was prepared 

following the same procedure used for compound 3.4.  Boc-D-serine (2.00 g, 9.77 mmol) 

afforded 3.12 as a white solid (2.10 g, 93%). 

 

N
H

O

CO2Bn

OH

 

(R)-Benzyl 2-benzamido-3-hydroxypropanoate (3.13).  Compound 3.13 was 

prepared following the same procedure used for compound 3.9.  Benzoic acid (0.250 g, 

2.05 mmol) and 3.12 (0.401 g, 1.73 mmol) provided 3.13.  Recrystallization from 

EtOAc/hexanes provided 3.13 as a white solid (0.386 g, 75%).  mp = 103-104 °C.  1H 

NMR (300 MHz, CDCl3) δ 7.80 (d, J = 7.5 Hz, 1H), 7.49 (m, 1H), 7.34 - 7.41 (m, 5H), 
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7.24 (d, J = 7.5 Hz, 1H), 5.22 (s, 2H), 4.88 (m, 1H), 4.07 (dd, J = 11.1, 3.6 Hz, 1H), 4.00 

(dd, J = 11.4, 3.3 Hz, 1H), 3.05 (br-s, 1H) ppm.  13C NMR (75 MHz, CDCl3) δ 170.4, 

167.7, 135.1, 133.4, 131.9, 128.60, 128.56, 128.47, 128.1, 127.1, 67.5, 63.3, 55.2 ppm. 

 

N
H

O

CO2Bn

OH

OBn  

(R)-Benzyl 2-(2-(benzyloxy)benzamido)-3-hydroxypropanoate (3.14).  

Compound 3.14 was prepared following the same procedure used for compound 3.5 

using EDC-mediated amide coupling.  3.2 (0.476 g, 2.09 mmol) and 3.12 (0.401 g, 1.73 

mmol) provided 3.14.  Recrystallization from EtOAc/hexanes yielded amide 3.14 as a 

white solid (0.559 g, 80%).  mp = 118-120 °C.  1H NMR (300 MHz, CDCl3) δ 8.86 (d, J 

= 6.9 Hz, 1H), 8.19 (dd, J = 8.1, 1.8 Hz, 1H), 7.32 – 7.46 (m, 10H), 7.02 – 7.10 (m, 2H), 

5.17 (s, 2H), 5.13 (m, 2H), 4.88 (m, 1H), 3.91 (m, 2H), 2.25 (br-s, 1H) ppm.  13C NMR 

(75 MHz, CDCl3) δ 170.1, 165.6, 156.9, 135.5, 135.3, 133.2, 132.3, 128.7, 128.3, 128.1, 

128.0, 121.5, 112.8, 71.3, 67.2, 63.6, 55.4 ppm. 

 

N

O

CO2Bn  

(R)-Benzyl 2-phenyl-4,5-dihydrooxazole-4-carboxylate (3.15).  Compound 

3.15 was prepared following the same procedure used for oxazoline 3.10.  3.13 (0.204 g, 

0.682 mmol) and DAST (0.110 mL, 0.839 mmol) provided oxazoline 3.15 as a colorless 

oil (0.166 g, 86%). 
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N

O

CO2Bn
OBn  

(R)-Benzyl 2-(2-(benzyloxy)phenyl)-4,5-dihydrooxazole-4-carboxylate (3.16).  

Compound 3.16 was prepared following the same procedure used for oxazoline 3.10.  

3.14 (0.301 g, 0.743 mmol) and DAST (0.110 mL, 0.839 mmol) provided oxazoline 3.16.  

Recrystallization from MeOH yielded 3.16 as a white solid (0.201 g, 70%).  mp = 60.5-

62.5 °C.  1H NMR (300 MHz, CDCl3) δ 7.82 (dd, J = 7.8, 1.8 Hz, 1H), 7.50 (m, 2H), 

7.27 – 7.43 (m, 9H), 6.99 (m, 2H), 5.25 (m, 2H), 5.19 (s, 2H), 5.01 (dd, J = 10.5, 7.8 Hz, 

1H), 4.53 – 4.69 (m, 2H) ppm. 

 

N

O

OBn
CO2Bn

 

Benzyl 2-(2-(benzyloxy)phenyl)oxazole-4-carboxylate (3.17).  Compound 3.8 

(0.101 g, 0.261 mmol) was dissolved in 2.6 mL of CH2Cl2 in a flame-dried 10-mL flask 

under Ar.  The solution was cooled in a dry ice/acetone bath maintained at -25 to -20 °C.  

Bromotrichloromethane (0.186 g, 0.937 mmol) was added dropwise to the reaction 

followed by 1,8-diazabicyclo[5.4.0]undec-7-ene (0.140 mL, 0.936 mmol).  The reaction 

was stirred for 5 min in the dry ice/acetone bath, then warmed to 4 °C in an ice/H2O bath 

and stirred for 2.5 h under Ar.  The reaction was complete by TLC (3:2 hexanes/EtOAC – 

UV lamp) and the reaction was warmed to RT.  The mixture was quenched with saturated 

NaHCO3, then poured into 10 mL of saturated NaHCO3 and diluted with 12 mL of 

EtOAc.  The layers were separated and the aqueous layer was extracted with EtOAC (3 x 

10 mL).  The combined organic layers were washed with brine (10 mL), 1M HCl (2 x 10 
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mL), brine (10 mL), 0.5% NaOCl (2 x 10 mL), and brine (2 x 10 mL), dried over MgSO4, 

filtered, and concentrated to yield an oil residue.  Chromatography through 13 g of silica 

using 100% CH2Cl2 provided oxazole 3.17 as a colorless oil (70.6 mg, 70%).  1H NMR 

(300 MHz, CDCl3) δ 8.32 (s, 1H), 8.07 (dd, J = 8.1, 1.8 Hz, 1H), 7.53 (m, 2H), 7.29 – 

7.49 (m, 9H), 7.06 (m, 2H), 5.41 (s, 2H), 5.22 (s, 2H) ppm.  13C NMR (75 MHz, CDCl3) 

δ 161.4, 161.3, 156.7, 143.9, 135.6, 133.9, 132.4, 131.1, 128.54, 128.46, 128.3, 127.7, 

126.8, 121.0, 116.2, 113.5, 70.5, 66.6 ppm. 

 

N
H

O

CO2Me

OH

OBn  

(S)-Methyl 2-(2-(benzyloxy)benzamido)-3-hydroxypropanoate (3.19).  

Compound 3.19 was prepared following the same procedure used for compound 3.5 

using EDC-mediated amide formation.  3.18 (3.15 g, 20.3 mmol), 3.2 (5.55 g, 24.3 

mmol), Et3N (3.33 mL, 24.0 mmol), and EDC•HCl (4.50 g, 23.5 mmol) provided amide 

3.19 as a white solid (6.19 g, 93%).  mp = 127-128 °C.  1H NMR (500 MHz, CDCl3) δ 

8.78 (d, J = 7.0 Hz, 1H), 8.18 (dd, J = 7.5, 1.5 Hz, 1H), 7.48 – 7.35 (m, 5H), 7.06 – 7.03 

(m, 2H), 5.22 (m, 2H), 4.82 (m, 1H), 3.88 (m, 2H), 3.68 (s, 3H) ppm. 

 

N

O

CO2Me
OBn  

(S)-Methyl 2-(2-(benzyloxy)phenyl)-4,5-dihydrooxazole-4-carboxylate (3.20).  

Prepared following the same procedure used for oxazoline 3.10.  3.19 (6.78 g, 20.6 

mmol) and DAST (3.00 mL, 22.7 mmol) provided oxazoline 3.20.  Recrystallization 
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from MeOH provided shiny, off-white crystals (5.57 g, 87%).  mp = 121-123 °C.  1H 

NMR (300 MHz, CDCl3) δ 7.81 (dd, J = 13, 2.5 Hz, 1H), 7.50 (m, 2H), 7.42 – 7.28 (m, 

4H), 7.01 – 6.95 (m, 2H), 5.18 (s, 2H), 4.97 (dd, J = 17.5, 13.5 Hz, 1H), 4.67 (t, J = 13.5 

Hz, 1H), 4.57 (dd, J = 17.5, 14.5 Hz, 1H), 3.80 (s, 3H) ppm.  13C NMR (125 MHz, 

CDCl3) δ 171.7, 165.6, 157.6, 136.8, 132.6, 131.6, 128.3, 127.5, 126.7, 120.7, 117.2, 

113.7, 70.6, 69.1, 68.6, 52.5 ppm.  HRMS (FAB) m/z [M+H] + calcd for C18H18NO4
+, 

312.1236; obsd, 312.1247. 

 

N

O

OBn

H
N

O

OH

 

(S)-2-(2-(Benzyloxy)phenyl)-N-hydroxy-4,5-dihydrooxazole-4-carboxamide 

(3.21).  A methanolic solution of KOH (400 mg, 7.14 mmol) in 5 mL of MeOH (~1.4M) 

was slowly added to a solution of hydroxylamine hydrochloride (242 mg, 3.48 mmol) in 

2.5 mL of MeOH at 0 °C.  A solution of 3.20 (509 mg, 1.63 mmol) in 10 mL of MeOH 

was added to the reaction and the reaction was stirred for 3h at 0 °C and then stored at -

10 °C overnight.  The reaction was acidified to an apparent pH of 4 through the dropwise 

addition of 1M HCl.  EtOAc and H2O were added to the reaction and the biphasic 

solution was extracted with EtOAc (3 x 30 mL).  The combined EtOAc layers were 

washed with H2O (2 x 40 mL) and brine (3 x 40 mL), dried over MgSO4, filtered, and 

concentrated to yield hydroxamate 3.21 as a white solid (108 mg, 22%).  mp = 115-120 

°C (dec.).  1H NMR (300 MHz, d6-DMSO) δ 4.45 (t, J = 8.1 Hz, 1H), 4.52 (t, J = 8.1 Hz, 

1H), 4.67 (dd, J = 9.5, 8.4 Hz, 1H), 5.22 (s, 2H), 7.02 (t, J = 7.3 Hz, 1H), 7.19 (d, J = 8.1 



 222 

Hz, 1H), 7.27-7.52 (m, 6H), 7.72 (dd, J = 7.5, 1.3 Hz, 1H), 9.02 (s, 1H), 10.77 (s, 1H) 

ppm.  HRMS (FAB) m/z [M+H] + calcd for C17H17N2O4
+, 313.1188; obsd, 313.1198. 

 

General procedure for hydroxamate formation from esters using Me3Al and 

hydroxylamines.  Attempted formation of hydroxamate 3.22 from ester 3.20 (Table 

3.7, entry 6).  O-allylhydroxylamine hydrochloride (0.160 g, 1.46 mmol) was suspended 

in 5 mL of CH2Cl2 and cooled under Ar in an ice/H2O bath.  Trimethylaluminum (2.0M 

in heptane, 0.740 mL, 1.48 mmol) was added dropwise and the resultant mixture was 

warmed to RT and stirred for 1 h, at which time the solid material was fully in solution.  

The solution was cooled in the ice/H2O bath again as a solution of ester 3.20 (0.250 g, 

0.800 mmol) in 5 mL of CH2Cl2 was added dropwise to the reaction.  The reaction was 

allowed to reach RT and stirred overnight under Ar.  10% Citric acid (5 mL) was added 

dropwise to the reaction and the mixture was stirred at RT for 1 h.  The layers were 

separated and the aqueous layer was extracted with CH2Cl2 (3 x 15 mL).  The combined 

organic layers were washed with 10% citric acid (2 x 25 mL), H2O (20 mL), saturated 

NaHCO3 (2 x 30 mL), and brine (2 x 40 mL), dried over MgSO4, filtered, and 

concentrated. 

 

N

O

O

OBn

 

N-Benzyloxy-phthalimide (3.25).  Compound 3.25 was prepared following the 

procedure outlined by Welch and Seper.1  N-hydroxyphthalimide (70.0 g, 429 mmol) and 

benzyl bromide (55.0 mL, 463 mmol) were dissolved in 550 mL of CH3CN.  The solution 
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was warmed and Et3N (47.3 g, 65.0 mL, 467 mmol) was added slowly to the solution.  

The mixture was heated at reflux for 6 h until all of the solid material dissolved.  The 

reaction was cooled to RT and poured into 300 mL of H2O and extracted with EtOAc (3 

x 500 mL).  The combined organic layers were dried over MgSO4, filtered, and 

concentrated to yield a yellow solid.  Recrystallization from MeOH provided 3.25 as pale 

yellow crystals (87.4 g, 80%). mp 142-143°C (lit.1 141-142°C).  1H NMR (300 MHz, 

CDCl3) δ 7.82 - 7.70 (m, 4H), 7.53 (m, 2H), 7.37 (m, 3H), 5.21 (s, 2H) ppm. 

 

H3N
O

Cl

 

O-Benzylhydroxylamine hydrochloride, OBHA•HCl (3.27).  EtOH (400 mL) 

was added to compound 3.25 (20.0 g, 79.0 mmol) in a 1-L round-bottomed flask.  The 

mixture was heated to 40 °C in an oil bath and anhydrous hydrazine (2.90 mL, 92.4 

mmol) was added.  After 1 min, most of the solid material was in solution.  The flask was 

equipped with a jacketed condenser and the yellow solution was heated at reflux 

overnight (oil bath temp at 100 °C).  After a few min, a white solid started to precipitate 

out of the solution.  After heating to reflux for 18 h, the reaction was allowed to cool to 

RT and stirred for an additional 7 h.  The mixture was filtered under vacuum to afford the 

by-product 3.26, as a white solid (12.7 g, 99%) and a yellow filtrate.  The filtrate was 

concentrated under vacuum to afford a yellow solid that was partitioned between CH2Cl2 

(400 mL) and 3M NaOH (300 mL).  The layers were separated and the CH2Cl2 layer was 

washed with 3M NaOH (2 x 250 mL), H2O (250 mL), and brine (250 mL), dried over 

Na2SO4, filtered, and concentrated to yield free O-benzylhydroxylamine as a thin yellow 

oil (9.3 g, ~96%). 
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The free amine was dissolved in 500 mL of anhydrous Et2O.  HCl gas (prepared 

by adding conc. HCl to a round-bottomed flask containing anhydrous CaCl2, then 

bubbling through conc. H2SO4 to dry) was bubbled through the solution for 10 min.  

White solid began to precipitate out of solution immediately.  After standing for a few 

days, HCl was bubbled through the solution for an additional 45 min (more solid 

precipitated out during this time) in order to saturate the solution with an excess of HCl.  

The white solid was collected via vacuum filtration.  The remaining amount of solid in 

the filtrate was collected via vacuum filtration through a coarse glass frit and provided 

3.27 as a white solid (10.3 g, 82%).  mp = 238 °C (sublimes).  1H NMR (300 MHz, d6-

DMSO) δ 11.25 (s, 2H), 7.41 (s, 5H), 5.06 (s, 2H) ppm.  13C NMR (75 MHz, d6-DMSO) 

δ 133.6, 129.2, 129.0, 128.6, 75.6 ppm. 

 

N

O

OH

H
N

O

OBn

 

General procedure for hydroxamate formation under aqueous conditions 

using EDC•HCl.  (S)-N-(Benzyloxy)-2-(2-hydroxyphenyl)-4,5-dihydrooxazole-4-

carboxamide (3.28).  Carboxylic acid 2.62 (0.105 g, 0.508 mmol) and 3.27 (0.245 g, 

1.54 mmol) were dissolved in 5 mL of 3:2 THF/H2O.  The apparent pH of the mixture 

was adjusted to 4.5 using a dilute aqueous solution of NaOH.  EDC•HCl (0.162 g, 0.845 

mmol) was added to the reaction in portions and the mixture was stirred at RT, 

maintaining an apparent pH of 4.5 by adding aqueous HCl to the reaction mixture.  The 

reaction was complete when adding portions of EDC•HCl no longer had a significant 

effect on the apparent pH of the reaction mixture.  The mixture was diluted with H2O (20 
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mL) and extracted with EtOAc (3 x 15 mL).  The combined organic layers were washed 

with 5% citric acid (3 x 15 mL) and brine (3 x 15 mL), dried over MgSO4, filtered, and 

concentrated to yield a white solid (94% crude yield).  Chromatography through 15 g of 

silica using 95:5 CH2Cl2/EtOAc provided hydroxamate 3.28 as a white solid (130.7 mg, 

83%).  mp = 178-180 °C (turns red, then melts).  Rf = 0.302 (1:1 hexanes/EtOAc – UV 

lamp).  1H NMR (500 MHz, CDCl3) δ 11.15 (br-s, 1H), 8.93 (s, 1H), 7.66 (dd, J = 7.5, 

1.5 Hz, 1H), 7.42 – 7.31 (m, 6H), 6.99 (dd, J = 8.5, 0.5 Hz, 1H), 6.90 (m, 1H), 4.93 (s, 

2H), 4.88 (dd, J = 11, 8.0 Hz, 1H), 4.68 (m, 1H), 4.61 (dd, J = 11, 9.0 Hz, 1H) ppm.  13C 

NMR (125 MHz, CDCl3) δ 168.0, 167.7, 159.5, 134.4, 129.3, 128.9, 128.6, 128.5, 119.2, 

116.8, 109.8, 78.5, 69.3, 66.8 ppm.  HRMS (FAB) m/z [M+H] + calcd for C17H17N2O4
+, 

313.1188; obsd, 313.1215. 

 

N

O
H
N

O

OBn

 

(S)-N-(Benzyloxy)-2-phenyl-4,5-dihydrooxazole-4-carboxamide (3.29).  

Compound 3.29 was prepared following the same procedure used for the preparation of 

hydroxamate 3.28.  Carboxylic acid 3.11 (0.169 g, 0.882 mmol), 3.27 (0.422 g, 2.64 

mmol) and EDC•HCl (0.262 g, 1.37 mmol) provided hydroxamate 3.29.  

Chromatography through 15 g of silica using 4:1 CH2Cl2/EtOAc yielded 3.29 as a white 

solid (0.103 g, 39%).  mp = 104-106 °C.  1H NMR (500 MHz, CDCl3) δ 9.38 (s, 1H), 

7.85 (d, J = 7.0 Hz, 2H), 7.50 (td, J = 7.5, 1.0 Hz, 1H), 7.40 – 7.30 (m, 7H), 4.92 (s, 2H), 

4.77 (dd, J = 11.0, 8.0 Hz, 1H), 4.68 (t, J = 8.0 Hz, 1H), 4.62 (dd, J = 11.0, 9.0 Hz, 1H) 

ppm.  13C NMR (125 MHz, CDCl3) δ 168.7, 166.5, 134.8, 132.1, 129.25, 129.21, 128.8, 
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128.5, 128.4, 128.0, 126.5, 78.4, 70.1, 67.8 ppm.  HRMS (FAB) m/z [M+H] + calcd for 

C17H17N2O3
+, 297.1239; obsd, 297.1219. 

 

N

O
H
N

O

OBn

 

N-(Benzyloxy)-2-phenyloxazole-4-carboxamide (3.31).  Compound 3.31 was 

prepared following the same procedure used for the preparation of hydroxamate 3.28.  

Carboxylic acid 3.30 (0.492 g, 2.60 mmol), 3.27 (0.540 g, 3.38 mmol), and EDC•HCl 

(0.615 g, 3.21 mmol) provided hydroxamate 3.31.  Chromatography through 50 g of 

silica using a solvent gradient from 100% CH2Cl2 to 90% CH2Cl2/EtOAc yielded 3.31 as 

a white solid (0.506 g, 66%).  mp = 140-142 °C.  Rf = 0.21 (95:5 CH2Cl2/EtOAc – UV 

lamp).  1H NMR (500 MHz, CDCl3) δ 9.46 (br-s, 1H), 8.30 (s, 1H), 7.97 (m, 2H), 7.46-

7.38 (m, 8H), 5.06 (s, 2H) ppm.  13C NMR (125 MHz, CDCl3) δ 161.6, 158.6, 141.4, 

135.1, 135.0, 131.2, 129.2, 128.84, 128.77, 128.6, 126.6, 126.2, 78.8 ppm.  HRMS (FAB) 

m/z [M+H] + calcd for C17H15N2O3
+, 295.1083; obsd, 295.1073. 

 

N

O

OH

H
N

O

OH

 

(S)-N-Hydroxy-2-(2-hydroxyphenyl)-4,5-dihydrooxazole-4-carboxamide 

(3.32).  All glassware was washed with 6M HCl, then rinsed with H2O and acetone 

before using in order to remove residual metals.  MeOH (25 mL) was added to 3.28 

(0.487 g, 1.56 mmol) in a 100-mL round-bottomed flask under Ar.  The solid did not 

dissolve completely.  EtOAc was added to the mixture until the solid completely 
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dissolved (~8 mL).  The solution was purged with Ar for 10 min and 10 wt% Pd/C (52 

mg, ~11 wt%)  was added to the solution.  The reaction was purged with Ar for 5 min, 

then H2 for 5 min, then stirred under H2 (balloon) for 2 h, after which time a more polar, 

FeCl3-positive spot was observed by TLC analysis.  The reaction was purged with Ar for 

10 min, then filtered through a small amount of celite.  The filtrate was concentrated to 

yield a white solid (336 mg, 98%).  mp = 154-155 °C.  Rf = 0.42 (9:1 CH2Cl2/MeOH- 

UV lamp, FeCl3 stain).  1H NMR (300 MHz, d6-DMSO) δ 11.69 (s, 1H), 11.04 (s, 1H), 

9.11 (s, 1H), 7.63 (dd, J = 7.8, 1.5 Hz, 1H), 7.46 (ddd, J = 9.0, 7.5, 1.8 Hz, 1H), 7.01 – 

6.92 (m, 2H), 4.81 (dd, J = 9.9, 7.5 Hz, 1H), 4.64 – 4.51 (m, 2H) ppm.  13C NMR (125 

MHz, d6-DMSO) δ 166.2, 165.8, 158.9, 133.9, 127.9, 118.9, 116.4, 109.7, 68.9, 65.3 

ppm.  HRMS (FAB) m/z [M+H] + calcd for C10H11N2O4
+, 223.0719; obsd, 223.0711. 

 

N
H

O

CO2H

OH

 

(S)-2-Benzamido-3-hydroxypropanoic acid (3.33).  Compound 3.33 was 

prepared following the same procedure used for the preparation of 2.62.  Compound 3.9 

(0.725 g, 2.42 mmol) provided 3.33 as a white foam (0.516 g, 99% yield).  1H NMR (300 

MHz, CD3OD) δ 7.87 (m, 2H), 7.45 – 7.58 (m, 3H), 4.72 (t, J = 4.2 Hz, 1H), 3.94 – 4.06 

(m, 2H) ppm.  13C NMR (75 MHz, CD3OD) δ 173.5, 170.2, 135.3, 133.0, 129.6, 128.5, 

63.0, 56.8 ppm. 
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N
H

O

CO2H

OH

OH  

(S)-3-Hydroxy-2-(2-hydroxybenzamido)propanoic acid (3.34).  Compound 

3.34 was prepared following the same procedure used for the preparation of 2.62.  

Compound 3.5 (1.41 g, 3.47 mmol) provided 3.34 as a light purple foam (0.784 g, 99%).  

1H NMR (500 MHz, d6-DMSO, 30 °C) δ 11.85 (br, 1H), 8.93 (d, J = 7.5 Hz, 1H), 7.95 

(dd, J = 7.5, 1.0 Hz, 1H), 7.39 (m, 1H), 6.93 (m, 2H), 4.53 (dt, J = 6.5, 4.5 Hz, 1H), 3.86 

(dd, J = 16.0, 5.0 Hz, 1H), 3.80 (dd, J = 11.0, 4.0 Hz, 1H) ppm.  13C NMR (125 MHz, d6-

DMSO, 30 °C) δ 171.7, 167.1, 158.3, 133.4, 129.2, 118.9, 117.1, 116.5, 61.1, 55.0 ppm.  

HRMS (FAB) m/z [M+H] + calcd for C10H12NO5
+, 226.0715; obsd, 226.0717. 

 

N
H

O
OH

H
N

O

OBn

 

(S)-N-(1-(Benzyloxyamino)-3-hydroxy-1-oxopropan-2-yl)benzamide (3.35).  

Compound 3.35 was prepared following the same procedure used for the preparation of 

hydroxamate 3.28.  Carboxylic acid 3.33 (58 mg, 0.28 mmol), 3.27 (51 mg, 0.32 mmol), 

and EDC•HCl (65 mg, 0.34 mmol) provided 3.35 as a white solid (62 mg, 71%). 

 

N
H

O
OH

OH

H
N

O

OBn

 

(S)-N-(1-(Benzyloxyamino)-3-hydroxy-1-oxopropan-2-yl)-2-

hydroxybenzamide (3.36).  Compound 3.36 was prepared following the same procedure 
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used for the preparation of hydroxamate 3.28.  Carboxylic acid 3.34 (74 mg, 0.33 mmol), 

3.27 (57 mg, 0.36 mmol), and EDC•HCl (73 mg, 0.38 mmol) provided 3.36 as a fluffy 

white solid (77 mg, 71%). 

 

O N
H

O

OH

 

tert-Butyl N-hydroxycarbamate (3.37).  Hydroxylamine hydrochloride (10.00 g, 

144.0 mmol) was suspended in 240 mL of THF and 60 mL of H2O in a 1-L flask.  

NaHCO3 (24.25 g, 288.7 mmol) was added (some bubbling was observed).  The biphasic 

mixture (aq. layer was cloudy) was stirred vigorously at RT for 5-10 min.  Di-tert-

butyldicarbonate (33.0 g, 151 mmol) was added in one portion (bubbling observed), and 

the mixture was stirred vigorously at RT for 3.75 h.  The mixture was diluted with 200 

mL of H2O and 150 mL of EtOAc (most of the solid dissolved), and the aqueous layer 

was acidified to an apparent pH of 4 (pH paper) by adding a 10 wt% solution of citric 

acid (bubbled profusely).  The layers were separated and the aqueous layer was extracted 

with EtOAc (3x 150 mL).  The combined organic layers were washed with brine (1x 200 

mL), dried (Na2SO4), filtered, and concentrated to yield a colorless oil.  The oil was dried 

under vacuum overnight and provided 3.37 as a white solid (18.8 g, 98% yield).  mp = 

47-50 °C.  1H NMR (300 MHz, CDCl3) δ 7.28 (br-s, 1H), 1.44 (s, 9H) ppm.  13C NMR 

(75 MHz, CDCl3) δ 158.9, 82.0, 28.1 ppm. 
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O
N Boc

(±)  

(±)-tert-Butyl 3-oxa-2-aza-bicyclo[2.2.1]hept-5-ene-2-carboxylate (3.38).  

Freshly cracked cyclopentadiene (8.20 mL, 99.0 mmol) was added to a solution of 3.37 

(3.24 g, 24.3 mmol) in 4:1 MeOH/H2O (200 mL) at 4 °C (internal temperature).  A 

solution of sodium periodate (5.71 g, 26.7 mmol) in H2O (60 mL) was added dropwise to 

the reaction mixture over 35 min.  The reaction mixture turned slightly yellow after 2 

min, and a considerable amount of white solid was observed.  The reaction was stirred for 

an additional 1.5 h at 4 °C, then filtered to remove the solid material and the volume was 

reduced with a minimal amount of heating to about 50 mL.  The mixture was diluted with 

H2O (30 mL), and brine (50 mL), and extracted with EtOAc (5 x 85 mL).  The combined 

organic layers were washed with brine (3 x 85 mL), dried over MgSO4, filtered, and 

concentrated to a brown oil.  The oil was chromatographed through 150 g of silica using 

4:1 hexanes/EtOAc to yield a yellow oil.  Recrystallization from hexanes yielded 3.38 as 

a white solid (2.76 g, 58%).  mp = 43-45 °C.  1H NMR (500 MHz, CDCl3) δ 6.36 (m, 

2H), 5.16 (m, 1H), 4.93 (m, 1H), 1.93 (dt, J = 8.5, 2.0 Hz, 1H), 1.68 (d, J = 8.5 Hz, 1H), 

1.41 (s, 9H) ppm.  13C NMR (125 MHz, CDCl3) δ 158.5, 134.0, 132.9, 83.5, 82.0, 64.9, 

48.0, 28.1 ppm. 

 

(±)

O
N Boc

 

(±)-tert-Butyl 3-oxa-2-aza-bicyclo[2.2.2]oct-5-ene-2-carboxylate (3.39).  

Compound 3.39 was prepared following the same procedure used for cycloadduct 3.38.  
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3.37 (3.23 g, 24.3 mmol), 1,3-cyclohexadiene (4.0 mL, 41.9 mmol), and sodium 

periodate (5.63 g, 26.3 mmol) provided a crude orange oil.  Chromatography through 200 

g of silica using 4:1 hexanes/EtOAc yielded 3.39 as an orange oil that solidified to an 

orange waxy solid upon storage (3.53 g, 69%).  Rf = 0.40 (1:1 hexanes/EtOAc – UV 

lamp, CAM stain).  1H NMR (500 MHz, CDCl3) δ 6.56 – 6.50 (m, 2H), 4.72 (m, 2H), 

2.20 – 2.14 (m, 1H), 2.11 – 2.07 (m, 1H), 1.50 – 1.44 (m, 1H), 1.45 (s, 9H), 1.36 – 1.31 

(m, 1H) ppm.  13C NMR (125 MHz, CDCl3) δ 157.7, 131.7, 131.5, 81.6, 70.7, 50.1, 28.2, 

23.6, 20.5 ppm. 

 

O
N Boc

(±)  

(±)-tert-Butyl 8-oxa-7-aza-bicyclo[4.2.2]dec-9-ene-7-carboxylate (1c).  tert-

Butyl hydroxycarbamate (12.1 g, 90.6 mmol) was dissolved in 470 mL of MeOH in a 1-L 

3-necked round-bottomed flask equipped with a mechanical stirrer and an addition 

funnel.  The solution was cooled in a crushed ice/H2O bath to 3 °C (internal temperature).  

cis,cis-1,3-cyclooctadiene (15.0 mL, 120 mmol) was suspended in the reaction while 

stirring vigorously and a solution of  sodium periodate (20.6 g, 95.3 mmol) in 230 mL of 

H2O was added to the reaction dropwise through the addition funned.  After a few 

minutes, the reaction turned yellow and a lot of white solid formed.  After 1.5 h, the 

addition of the NaIO4 solution was complete and the reaction was stirred at 25 °C for an 

additional 5.5 h.  The solid material was removed by filtration and washed with EtOAc 

(150 mL) until all of the yellow color was removed from the solid.  The volume of the 

orange filtrate was reduced by rotary evaporation to about 300 mL (35-40 °C, 21 mm 



 232 

Hg).  250 mL of brine and 200 mL of Et2O were added and the layers were separated.  

The aqueous layer was extracted with Et2O (3 x 200 mL) and the combined Et2O layers 

were washed with brine (2 x 200 mL), dried over MgSO4, filtered, and concentrated (35-

40 °C, 21 mm Hg) to yield an orange solid.  The crude material was loaded onto silica 

and purified in two portions through a Biotage 40M column using a solvent gradient from 

90% CH2Cl2/hexanes to 100% CH2Cl2 to afford 1c as a light yellow solid (10.2 g, 47% 

yield).  mp = 88-89 °C.  1H NMR (500 MHz, CDCl3) δ 6.37 (dd, J = 9.7, 6.9 Hz, 1H), 

5.76 (dd, J = 10.1, 4.4 Hz, 1H), 4.90 (br-m, 1H), 4.56 (br-m, 1H), 2.15-1.96 (m, 2H), 

1.80-1.53 (m, 6H), 1.46 (s, 9H) ppm.  13C NMR (125 MHz, CDCl3) δ 157.9, 131.9, 

126.2, 81.1, 75.2, 54.0, 34.1, 31.4, 28.0, 25.7, 22.1 ppm.  HRMS (FAB) m/z [M+H] + 

calcd for C13H22NO2
+, 240.1600; obsd, 240.1606. 

 

O
N Cbz

(±)  

(±)-Benzyl 3-oxa-2-aza-bicyclo[2.2.1]hept-5-ene-2-carboxylate (3.42).  

Compound 3.41 (7.34 g, 43.9 mmol) was dissolved in 460 mL of MeOH in a 3-necked 2-

L flask and cooled to 2 °C (internal temperature) in an ice/H2O bath.  Freshly cracked 

cyclopentadiene (18.0 mL, 217 mmol) was added to the reaction and sodium periodate 

(9.92 g, 46.4 mmol) was added dropwise over 75 min.  White solid formed in the reaction 

and the mixture turned yellow in color after a few min.  The reaction was stirred for an 

additional 2 h at 2 °C, and workup of the reaction was completed following the workup 

procedure for cycloadducts 3.38-3.40.  Chromatography of the crude amber oil through 

silica using a solvent gradient from 85% hexanes/EtOAc to 70% hexanes/EtOAc yielded 
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3.42 as a yellow oil (6.31 g, 62%).  1H NMR (500 MHz, CDCl3) δ 7.33 – 7.29 (m, 5H), 

6.35 (m, 2H), 5.21 (m, 1H), 5.17 (d, J = 12.5 Hz, 1H), 5.10 (d, J = 12.5 Hz, 1H), 5.02 (m, 

1H), 1.97 (dt, J = 8.5, 2.0 Hz, 1H), 1.72 (d, J = 8.5 Hz, 1H) ppm.  13C NMR (125 MHz, 

CDCl3) δ 159.1, 135.4, 134.2, 132.8, 128.3, 128.1, 127.9, 67.6, 64.9, 48.0 ppm. 

 

O
N Cbz

(±)  

(±)-Benzyl 8-oxa-7-aza-bicyclo[4.2.2]dec-9-ene-7-carboxylate (3.43).  3.41 

(5.00 g, 29.9 mmol) was dissolved in 200 mL of MeOH in a 1-L flask and cooled to 4 °C 

in an ice/H2O bath.  cis,cis-1,3-cyclooctadiene (9.5 mL, 76 mmol) was added, followed 

by a solution of sodium periodate (6.47 g, 30.3 mmol) in H2O (0.43 M solution) dropwise 

over 20 min.  A lot of white solid was observed in the reaction.  The mixture was stirred 

vigorously at 4 °C for 1.5 h, then allowed to reach RT slowly.  After 6 h, workup of the 

reaction was completed following the workup procedure for cycloadducts 3.38-3.40.  The 

crude amber oil was purified through silica using a solvent gradient from 95% CH2Cl2 to 

100% CH2Cl2 and yielded 3.43 as an amber oil (3.35 g, 41%).  1H NMR (300 MHz, 

CDCl3) δ 7.35 (m, 5H), 6.36 (dd, J = 10.2, 6.9 Hz, 1H), 5.79 (dd, J = 10.2, 4.5 Hz, 1H), 

5.18 (m, 2H), 4.93 (br-m, 1H), 4.68 (br-m, 1H), 2.20 – 1.60 (m, 8H) ppm.  13C NMR (75 

MHz, CDCl3) δ 157.9, 136.1, 131.7, 128.4, 128.0, 127.8, 126.4, 76.0, 67.6, 34.2, 31.4, 

25.4, 22.2 ppm.  HRMS (FAB) m/z [M+H] + calcd for C16H20NO3
+, 274.1443; obsd, 

274.1440. 
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General procedure for acylnitroso HDA reaction using Bu4NIO 4 as oxidant.  

Preparation of cycloadduct 3.40 (Table 3.4, entry 4).  Tetrabutylammonium periodate 

(4.31 g, 9.92 mmol) was dissolved in 30 mL of CH2Cl2 in a flame-dried 200-mL flask 

under Ar.  The solution was cooled in an ice/H2O bath and cis,cis-1,3-cyclooctadiene 

(1.50 mL, 12.0 mmol) was added.  A solution of 3.37 (1.32 g, 9.89 mmol) in 20 mL of 

CH2Cl2 was added dropwise to the reaction using an addition funnel over a period of ~20 

min.  The reaction turned yellow, and a white solid was observed after the addition was 

complete.  The reaction was stirred under Ar, allowing the ice/H2O bath to melt and the 

reaction to reach RT gradually.  During this time, the reaction became orange.  The 

mixture was stirred overnight under Ar (24 h).  Most of the solid had dissolved, and the 

reaction was reddish-orange in color.  The reaction was washed with H2O (2 x 50 mL) 

and brine (50 mL), dried over MgSO4, filtered, and concentrated.  The crude material was 

filtered through a plug of silica gel (~30 g), eluting with Et2O (300 mL).  The yellow 

filtrate was concentrated by rotary evaporation to yield a light yellow solid (1.54 g, 

65.1% yield). 1H-NMR shows residual diene. The solid was dissolved in ~50 mL of 

toluene and concentrated by rotary evaporation with heating to get remove the excess 

diene, providing 3.40 as a light yellow solid (1.29 g, 54% yield). 

 

General procedure for acylnitroso HDA reaction using CuCl/tBuOOH as 

oxidant.  Preparation of cycloadduct 3.40 (Table 3.4, entry 6).  Compound 3.37 (1.00 

g, 7.52 mmol) was dissolved in 15 mL of CH2Cl2 in a 50-mL round-bottomed flask under 

Ar and cooled in a -20 °C dry ice/acetone bath.  CuCl (111.3 mg, 1.124 mmol) was 

added, followed by 5.0 M tert-butylhydroperoxide in decane (1.6 mL, 8.0 mmol).  After 5 
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min, the reaction was removed from the dry ice/acetone bath and stirred in an ice/H2O 

bath.  The reaction was stirred in the ice/H2O bath as it slowly melted.  The reaction color 

changed from colorless to yellow, then green, then dark green, then finally blue over the 

course of the reaction.  The reaction was quenched by adding 10 wt% sodium thiosulfate 

(20 mL).  The layers were separated and the CH2Cl2 layer was washed with 10 wt% 

sodium thiosulfate (20 mL), H2O (2 x 20 mL), brine (2 x 20 mL), dried over MgSO4, 

filtered, and concentrated by rotary evaporation (35°C, 21 torr) to yield a blue liquid.  

The liquid was stored at 4 °C overnight to afford a light blue solid.  Chromatography 

through 150 g of silica using 100% CH2Cl2 provided 3.40 as a light blue solid, 

contaminated with Cu-salts (0.587 g, 32.6% yield). 

 

General procedure for performing acylnitroso HDA reaction using 

FeCl3/H2O2 as oxidant.  Preparation of cycloadduct 3.43 (Table 3.4, entry 7).  

Compound 3.41 (5.07 g, 30.3 mmol) was dissolved in 50 mL of CH2Cl2 in a 250-mL 

round-bottomed flask.  Cis,cis-1,3-cyclooctadiene (4.0 mL, 32.1 mmol) was added, 

followed by FeCl3•6H2O (249.8 mg, 0.924 mmol, 3.0 mol%) and 1,2-ethylenediamine 

(0.31 mL, 4.63 mmol, 15.2 mol%).  The yellow solution turned deep red in color upon 

the addition of FeCl3 and 1,2-ethylenediamine.  To this blood-red solution was added 30 

wt% aqueous H2O2 (22.0 mL, 215 mmol) dropwise over 50 min.  Bubbling was observed 

as the internal temperature of the reaction climbed to 35-40 °C.  The reaction was stirred 

for an additional 1 h at RT.  Analysis of the bottom (CH2Cl2) layer by TLC (1:1 

hexanes/EtOAc - CAM stain, UV lamp) indicated a complex mixture.  The reaction was 

allowed to stir for an additional 4 h.  CH2Cl2 (50 mL) and H2O (100 mL) were added and 
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the layers were separated.  The aqueous layer was extracted with CH2Cl2 (3 x 50 mL), 

and the combined organic layers were washed with H2O (50 mL), and brine (50 mL).  No 

product was isolated – complex mixture.  NOTE: all layers were quenched by adding 10 

wt% sodium thiosulfate until negative to KI-starch test paper. 

 

General procedure for preparing an ethereal solution of diazomethane 

(CH2N2) safely from Diazald.  [IMPORTANT NOTE: Only the proper glassware should 

be used for the preparation of diazomethane!  All glassware should not have ground-glass 

joints and should be free of all cracks and scratched surfaces!  A blast shield should 

always be in place when preparing or using diazomethane until all sources of 

diazomethane have been quenched!]  A solution of Diazald (0.867 g, 4.05 mmol) in 10 

mL of Et2O (0.4 M) was added dropwise to a solution of KOH (1.46 g, 26.0 mmol) in 9 

mL of 5:4 EtOH/H2O (2.9 M) that was heated in an oil bath (bath temp 68-70 °C) using 

the diazomethane glassware kit.  It was important that the oil bath temperature was 

maintained within this range before, during, and after the addition of the Diazald solution.  

The resultant ethereal diazomethane solution was immediately condensed with a dry 

ice/acetone-filled condenser into a flask containing the compound to be reacted with 

diazomethane, or is condensed into a flask for distribution to alternative reaction 

vessel(s).  The yellow diazomethane solution is quenched by the addition of 10 vol% 

HOAc in Et2O until bubbling ceases and the yellow color has completely disappeared. 
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(±)

O

N
Boc

CO2Me

CO2Me

 

(±)-Isoxazolidine-2,3,5-tricarboxylic acid 2-tert-butyl ester 3,5-dimethyl ester 

(3.44).  NaIO4 (6.79 g, 31.7 mmol) was added to a biphasic mixture of 3.38 (1.52 g, 7.70 

mmol) in 45 mL of CCl4/CH3CN/H2O (1:1:1).  The mixture was cooled to 0 °C and 

RuCl3•H2O (35.7 mg, 0.172 mmol) was added.  The solution was stirred at 0 °C for 3.5 h.  

The solid was removed by filtration.  The solid was washed with several portions of Et2O 

into the filtrate.  The filtrate was separated and the aqueous was extracted with Et2O (3 x 

50 mL).  The combined organic layers were dried over MgSO4, filtered, and concentrated 

to yield a light brown oil.  The oil was dissolved in 25 mL Et2O and treated with excess 

CH2N2 (see next procedure below!) at 0 °C.  The reaction was quenched with 5% HOAc 

in H2O.  The aqueous layer was made basic (pH ~8) by adding solid NaHCO3 and 

saturated NaHCO3.  The aqueous was extracted with Et2O (3 x 100 mL) and the combined 

Et2O layers were dried over MgSO4, filtered, and concentrated to yield 3.44 as a white 

solid (1.40 g, 63% from 3.38).  1H NMR (300 MHz, CDCl3) δ 1.49 (s, 9H), 2.77 - 2.83 

(m, 2H), 3.77 (s, 3H), 3.78 (s, 3H), 4.59 (t, J = 7.2 Hz, 1H), 4.81 (dd, J = 8.1, 5.2 Hz, 1H) 

ppm. 
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(±)

O

N

CO2H

CO2H

Boc

 

(±)-(3R,6S)-2-(tert-Butoxycarbonyl)morpholine-3,6-dicarboxylic acid (3.46).  

Na2CO3 (0.761 g, 7.18 mmol) was added to a solution of 3.39 (1.51 g, 7.13 mmol) in 44:1 

acetone/tert-BuOH (60 mL).  The solution was cooled to -10 °C (ice/NaCl/H2O bath) and 

KMnO4 (3.16 g, 20.0 mmol) was added slowly to maintain an internal reaction 

temperature less than 4 °C.  The reaction was stirred at -10 °C for 1 h, and an additional 

19 h at 23 °C.  The reaction was diluted with 75 mL of EtOAc and quenched with 75 mL 

of 10% Na2S2O5.  The reaction was acidified to an apparent pH of 2 (1M HCl), and the 

aqueous layer was saturated with NaCl and extracted with EtOAc (2 x 75 mL).  The 

combined EtOAc layers were dried over MgSO4, filtered, and concentrated.  Crude diacid 

3.46 was obtained as an off-white solid (1.65 g, 84.5%) and used directly without further 

purification. 

 

(±)

O

N

CO2Me

CO2Me

Boc

 

(±)-(3R,6S)-2-tert-Butyl 3,6-dimethyl morpholine-2,3,6-tricarboxylate (3.45).  

Crude diacid 3.46 (0.503 g, 1.83 mmol) was stirred as a suspension in 20 mL of Et2O and 

treated with excess CH2N2 at 0 °C.  The reaction was quenched with 5% HOAc in Et2O.  

The aqueous layer was made basic (pH = 8) with NaHCO3 and extracted with Et2O (3 x 

15 mL).  The combined Et2O layers were dried over MgSO4, filtered, and concentrated to 
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yield a light yellow oil.  The crude material was chromatographed through 50 g of silica 

using a solvent gradient from 80% hexanes/EtOAc to 65% hexanes/EtOAc and provided 

3.45 as a colorless oil (0.349 g, 63% yield, 53% from cycloadduct 3.39).  1H NMR (300 

MHz, CDCl3) δ 4.78 (d, J = 2.7 Hz, 1H), 4.39 (dd, J = 11.7, 2.1 Hz, 1H), 3.76 (s, 3H), 

3.74 (s, 3H), 2.41 (m, 1H), 2.02 – 1.70 (m, 4H), 1.49 (s, 9H) ppm.  13C NMR (75 MHz, 

CDCl3) δ 169.87, 168.93, 82.54, 78.86, 52.66, 52.32, 28.09, 24.29, 23.52, 17.43 ppm.  

HRMS (FAB) m/z [M+H] + calcd for C13H22NO7
+, 304.1396; obsd, 304.1405. 

 

(±)

O

N

CO2Bn

CO2Bn

Boc

 

(±)-(3R,6S)-3,6-Dibenzyl 2-tert-butyl morpholine-2,3,6-tricarboxylate (3.48).  

Crude diacid 3.46 (0.520 g, 1.89 mmol) and 3.47 (2.95 g, 9.38 mmol) were dissolved in 

20 mL of toluene and stirred for 4.5 h at 90–95 °C.  The reaction was filtered, diluted 

with CH2Cl2 (20 mL) and concentrated to yield a yellow oil (2.98 g).  The oil was 

chromatographed through silica using 4:1 hexanes/EtOAc and provided 3.48 as a light 

yellow oil (0.704 g, 82% yield, 69% from cycloadduct 3.39).  1H NMR (300 MHz, 

CDCl3) δ 7.35 – 7.29 (m, 10H), 5.28 – 5.15 (m, 4H), 4.85 (m, 1H), 4.45 (dd, J = 12.0, 2,4 

Hz, 1H), 2.47 – 2.42 (m, 1H), 2.00 – 1.70 (m, 3H), 1.43 (s, 9H) ppm.  HRMS (FAB) m/z 

[M+H] + calcd for C25H30NO7
+, 456.2022; obsd, 456.2042. 

 



 240 

N N
H

OBn

 

O-Benzyl-N, N’-dicyclohexylisourea (3.47).  N, N’-dicyclohexylcarbodiimide 

(10.42 g, 50.50 mmol) was added to a flame-dried 100-mL round-bottomed flask under 

Ar and placed in a 55 °C oil bath.  When the carbodiimide completely melted, benzyl 

alcohol (5.40 mL, 52.2 mmol) was added, followed by CuCl (151 mg, 1.52 mmol).  The 

mixture was stirred under Ar overnight in the 55 °C oil bath.  A small amount of white 

solid was observed in the reaction.  After 16 h of stirring, the brown mixture was cooled 

to RT under Ar.  The mixture was diluted with 80 mL of hexanes and filtered through a 

plug of neutral alumina (Al2O3), eluting with 20 mL of hexanes.  Green solid remained 

on top of the alumina.  The colorless filtrate was concentrated and dried under vacuum 

for 1 h and provided 3.47 as a colorless/light yellow oil (14.9 g, 94%).  The oil was stored 

at -10 to 4 °C until ready to use.  1H NMR (500 MHz, CDCl3) δ 7.40 – 7.28 (m, 5H), 5.13 

(s, 2H), 3.57 (br-m, 1H), 3.49 (br-m, 1H), 2.84 (br-m, 1H), 1.94 (m, 2H), 1.77 – 1.69 (m, 

6H), 1.60 (m, 2H), 1.32 – 1.07 (m, 10H) ppm.  13C NMR (125 MHz, CDCl3) δ 151.1, 

138.1, 128.1, 127.4, 127.2, 66.44, 66.41, 54.8, 50.3, 34.4, 25.9, 25.6, 25.2, 24.9 ppm. 

 

(±)

ONHO2C CO2H

Boc

 

(±)-(3R,8S)-2-(tert-Butoxycarbonyl)-1,2-oxazocane-3,8-dicarboxylic acid 

(3.50).  Prepared using RuO4.  Cycloadduct 3.40 (2.06 g, 8.60 mmol) was dissolved in 

3:2:2 H2O/CH3CN/CCl4 (84 mL) in a 250-mL flask and cooled to 4 °C in an ice/H2O 
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bath.  Sodium periodate (7.36 g, 34.4 mmol) was added, followed by ruthenium(III) 

chloride hydrate (45.7 mg, 0.220 mmol).  The mixture immediately turned brown and 

was stirred vigorously at 4 °C for 30 min, then warmed to RT and stirred for an 

additional 1.5 h.  The white solid was removed by filtration through a pad of celite.  The 

celite was washed with EtOAc (80 mL) and the filtrate was diluted with brine (50 mL).  

The aqueous layer was acidified to a pH of 2-3 (pH paper) using 1M HCl and saturated 

with NaCl.  The layers were separated and the aqueous layer was extracted with EtOAc 

(3 x 75 mL) and the combined organic layers were washed with brine (2 x 100 mL), dried 

over MgSO4, filtered, and concentrated to yield crude 3.50 as a brown/purple oil (2.58 g, 

99% crude yield).  The crude material was used directly without purification. 

 

Preparation of diacid 3.50 using KMnO4.  Cycloadduct 3.40 (3.07 g, 12.8 

mmol) was dissolved in 123 mL of 40:1 acetone/tBuOH in a 250-mL flask and cooled to 

-8 °C (internal temp.) in an ice/NaCl/H2O bath.  Na2CO3 (1.43 g, 13.5 mmol) was added 

and the suspension was stirred for 2 min.  The suspension turned from light yellow to 

orange, and KMnO4 (5.67 g, 35.9 mmol) was added to the reaction slowly over a period 

of 2 min while stirring vigorously.  The resultant purple mixture was stirred in the 

ice/NaCl/H2O bath for 30 min, during which time the internal temperature climbed to -2 

°C.  The purple/brown slurry was then warmed to RT and stirred vigorously overnight 

(20 h).  The reaction was quenched by adding 150 mL of 10 wt% aqueous Na2S2O5 

(exothermic) and was stirred for 15 min at RT.  EtOAc (100 mL) was added to the 

reaction and the aqueous layer was acidified by adding 6 M HCl slowly until the brown 

aqueous mixture became colorless (pH of about 2-3 - pH paper).  The layers were 
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separated and the aqueous layer was extracted with EtOAc (3 x 100 mL).  The combined 

organic layers were washed with brine (2 x 75 mL), dried over Na2SO4, filtered, and 

concentrated to yield crude diacid 3.50 as a yellow foam (3.51 g, 90% crude yield).  The 

material was used directly without purification. 

 

(±)

ONMeO2C CO2Me

Boc

 

(±)-(3R,8S)-2-tert-Butyl 3,8-dimethyl 1,2-oxazocane-2,3,8-tricarboxylate 

(3.52).  Crude diacid 3.50 (2.58 g, 8.49 mmol), prepared using RuO4 oxidation, was 

dissolved in 85 mL of ether and cooled in an ice/H2O bath.  The solution was treated with 

excess diazomethane (prepared as an ethereal solution from Diazald).  The reaction was 

stirred for 15 min, then quenched by adding 10 vol% HOAc in ether until the yellow tint 

disappeared and bubbling ceased.  The mixture was poured into saturated NaHCO3 (150 

mL) and the layers were separated.  The aqueous layer (pH 7-8) was extracted with ether 

(2 x 75 mL).  The combined organic layers were washed with brine (2 x 100 mL), dried 

over MgSO4, filtered, and concentrated to yield a brown oil.  The oil was 

chromatographed through 200 g of silica using a solvent gradient from 98% 

CH2Cl2/EtOAc to 95% CH2Cl2/EtOAc to yield 3.52 as a thick yellow oil (2.02 g, 71% 

yield from cycloadduct 3.40). 

 

Preparation of compound 3.52 from cycloadduct 3.40 using ozonolysis: O3, 

KOH, CH 2Cl2/MeOH.3  Cycloadduct 3.40 (1.20 g, 5.03 mmol) was dissolved in 40 mL 

of CH2Cl2 and cooled to -78 °C in a dry ice/acetone bath.  10 mL of 2.5M methanolic 
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KOH (25 mmol) was added, and the colorless solution immediately turned light yellow.  

The reaction was stirred at -78 °C as ozone was bubbled through the reaction.  The 

reaction immediately turned bright orange and a precipitate formed.  After 85 min, the 

flow of ozone was stopped, the reaction was removed from the dry ice/acetone bath, and 

the reaction was diluted with Et2O (50 mL), then H2O (50 mL) until the orange reaction 

became completely colorless and the solid dissolved.  The reaction was stirred for a few 

min to reach RT, then the layers were separated and the aqueous layer was extracted with 

Et2O (3 x 75 mL).  The combined organic layers were washed with brine (2 x 50 mL), 

dried over MgSO4, filtered, and concentrated to yield a light yellow oil (1.36 g, 82% 

crude yield).  The crude material was loaded onto silica and chromatographed through a 

Biotage 40S column (40 g of silica) using 97% CH2Cl2/EtOAc and provided 3.52 as a 

light yellow oil (466 mg, 28% yield).  1H NMR (500 MHz, CDCl3) δ 4.85 – 4.68 (br-m, 

1H), 4.44 – 4.28 (br-m, 1H), 3.70 (s, 3H), 3.69 (s, 3H), 2.14 – 2.02 (m, 2H), 1.95 – 1.85 

(m, 2H), 1.72 – 1.67 (m, 1H), 1.47 – 1.32 (m, 10H) ppm.  13C NMR (125 MHz, CDCl3) δ 

170.2, 82.3, 81.1, 80.4, 63.5, 61.9, 52.2, 51.9, 29.0, 28.1, 26.8, 25.8, 24.1, 24.03, 23.99, 

23.96 ppm.  HRMS (FAB) m/z [M+H] + calcd for C15H26NO7
+, 332.1709; obsd, 332.1685. 

 

(±)

OHNMeO2C CO2Me

 

(±)-(3R,8S)-Dimethyl 1,2-oxazocane-3,8-dicarboxylate (3.53).  MeOH (100 

mL) was added to a 250-mL round-bottomed flask under Ar, then cooled in an ice/H2O 

bath.  Thionyl chloride (4.00 mL, 55.0 mmol) was added slowly and the solution was 

stirred for 5 min.  A solution of crude 3.50 (4.14 g, 13.6 mmol) in 40 mL of MeOH was 
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transferred to the flask via cannula, and the reaction was stirred in the ice/H2O bath under 

Ar.  After 25 min, the reaction was removed from the ice/H2O bath and allowed to stir at 

RT.  After 22 h, the reaction was concentrated to yield a brown oil.  The oil was 

partitioned between 75 mL of CH2Cl2 and 200 mL of saturated aqueous NaHCO3 

(bubbled profusely).  The layers were separated and the aqueous layer (pH 8 - pH paper) 

was extracted with CH2Cl2 (3 x 75 mL).  The combined CH2Cl2 layers were washed with 

brine (1 x 80 mL), dried (Na2SO4), filtered, and concentrated to yield a brown oil (2.27 g, 

72% crude yield).  The oil was loaded onto silica and chromatographed through a Biotage 

40S column (40 g of silica) using a solvent gradient of 100% CH2Cl2 to 95% 

CH2Cl2/EtOAc and provided 3.53 as a yellow oil (1.93 g, 61% from cycloadduct 3.40).  

Rf = 0.26 (1:1 hexanes/EtOAc – CAM stain).  1H NMR (500 MHz, CDCl3) δ 6.27 (br-s, 

1H), 4.22 (dd, J = 10.0, 3.5 Hz, 1H), 3.72 (s, 3H), 3.71 (s, 3H), 2.42 – 2.22 (m, 1H), 2.08 

– 1.92 (m, 3H), 1.73 – 1.68 (m, 3H), 1.57 – 1.52 (m, 1H) ppm.  13C NMR (75 MHz, 

CDCl3) δ 172.4, 171.4, 80.7, 62.0, 51.8, 51.6, 28.0, 26.9, 26.0, 24.1 ppm.  HRMS (FAB) 

m/z [M+H] + calcd for C10H18NO5
+, 232.1185; obsd, 232.1198. 

 

Attempted formation of compounds 3.56 and 3.57 by ozonolysis of 

cycloadduct 3.40.  Cycloadduct 3.40 (501 mg, 1.83 mmol) was dissolved in 18 mL of 

5:1 CH2Cl2/MeOH in a single-necked 50-mL round-bottomed flask.  The light yellow 

solution was cooled to -78 °C in a dry ice/acetone bath and NaHCO3 (602 mg, 7.17 

mmol) was added.  Ozone was bubbled into the solution until the color changed to deep 

blue (5 min).  The solution was purged with Ar until the blue color disappeared.  The 

mixture was allowed to warm to RT and the solid material was removed by filtration.  
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The solid was rinsed with portions of CH2Cl2 (10 mL), and the filtrate was concentrated 

to yield a white foam.  The foam was dissolved in anhydrous 1:1 CH2Cl2/pyridine (20 

mL) in a single-necked 100-mL round-bottomed flask under Ar.  Distilled acetic 

anhydride (0.70 mL, 7.5 mmol) was added to the reaction and the colorless solution was 

stirred under Ar at RT.  The solution gradually turned from colorless to yellow, then 

yellow/orange.  After 2 days, the reaction was concentrated by passing a stream of air 

over the solution for ~2 h.   The orange residue was partitioned between 1M HCl (50 mL) 

and EtOAc (30 mL).  The layers were separated and the aqueous layer was extracted with 

EtOAc (3 x 20 mL).  The combined organic layers were washed with 1M HCl (2 x 20 

mL), H2O (20 mL), saturated NaHCO3 (2 x 20 mL), and brine (2 x 20 mL), dried over 

MgSO4, filtered, and concentrated to yield a reddish-orange, sweet-smelling oil (~0.432 g 

crude yield).  Analysis of the crude material indicated a complex mixture of products. 

 

(±)

ON
OH

O

O

 

(±)-(2S,6aR)-2-(Hydroxymethyl)-hexahydrooxazolo[3,4-b][1,2]oxazocin-

9(2H)-one (3.59).  Cycloadduct 3.43 (1.18 g, 4.32 mmol) was dissolved in 42 mL of 5:1 

CH2Cl2/MeOH in a single-necked 100-mL round-bottomed flask and cooled to -78 °C in 

a dry ice/acetone.  Ozone was bubbled through the light yellow solution until the blue 

color of ozone was observed in the solution (~5 min).  The solution was purged with Ar 

until the blue color disappeared then the reaction was removed from the dry ice/acetone 

bath and transferred to a crushed ice/NaCl/H2O bath.  NaBH4 (1.02 g, 27.0 mmol) was 
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added to the reaction in portions over 60 min.  Bubbling was observed during this time.  

After the addition was complete, the cloudy mixture was allowed to slowly reach RT 

over 45 min.  The volume of the mixture was reduced by rotary evaporation (40-45 °C, 

21 mm Hg) to 5 mL, at which time a white precipitate was observed.  The mixture was 

partitioned between H2O (50 mL) and EtOAc (50 mL) and the layers were separated.  

The aqueous layer was extracted with EtOAc (2 x 30 mL) and the combined organic 

layers were washed with brine (2 x 30 mL), dried over MgSO4, filtered, and concentrated 

to yield a colorless oil.  The oil was chromatographed through 150 g of silica gel and 

yielded 3.59 as a tan-colored solid (423.3 mg, 48% yield).  mp = 64-65 °C.  1H NMR 

(300 MHz, CDCl3) δ 4.38 (dd, J = 8.4, 7.5 Hz, 1H), 4.27 (dd, J = 11.1, 3.9 Hz, 1H), 3.98 

– 3.88 (m, 1H), 3.88 (dd, J = 11.4, 8.4 Hz, 1H), 3.76 – 3.65 (m, 1H), 3.51 – 3.32 (m, 1H), 

1.92 – 1.31 (m, 8H) ppm.  13C NMR (75 MHz, CDCl3) δ 162.1, 85.7, 67.1, 63.4, 60.9, 

27.1, 24.8, 22.7, 22.0 ppm.  MS (FAB) m/z [M+H] + at 202. 

 

F3C O NHOH

O

 

2,2,2-Trifluoroethyl N-hydroxycarbamate (3.63).  N,N'-Carbonyldiimidazole 

(2.468 g, 15.22 mmol) was dissolved in 50 mL of anhydrous THF in a flame-dried single-

necked 250-mL round-bottomed flask under Ar.  To this solution was added 2,2,2-

trifluoroethanol (1.00 mL, 13.9 mmol).  The resultant solution was stirred under Ar at RT 

for 2 h.  In a separate flame-dried single-necked 100-mL round-bottomed flask, 

hydroxylamine hydrochloride (1.111 g, 15.99 mmol) was dissolved in about 40 mL of 

anhydrous pyridine and transferred via cannula to the flask containing the acylimidazole.  

The light yellow solution immediately became cloudy and warmed slightly.  After 
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stirring for about 2 h, the reaction was analyzed by TLC and a FeCl3-positive spot was 

observed.  The reaction mixture was concentrated and the yellow oil/solid mixture was 

partitioned between EtOAc (50 mL) and H2O (50 mL).  6M HCl (10 mL) was added and 

the layers were separated.  The organic layer was washed with portions of 3M HCl (2 x 

25 mL) and brine (20 mL), dried over Na2SO4, filtered, concentrated and provided 3.63 

as a yellow oil (1.29 g, 58% yield).  Rf = 0.30 (1:1 hexanes/EtOAc – FeCl3 stain).  1H 

NMR (500 MHz, CDCl3) δ 7.72 (s, 1H), 4.52 (qd, J = 8.0, 0.5 Hz, 2H) ppm.  13C NMR 

(125 MHz, CDCl3) δ 157.1, 122.6 (q, J = 276 Hz), 61.5 (q, J = 37 Hz) ppm.  MS (FAB) 

m/z [M+H] + at 160. 

 

O
N O

O

CF3

(±)  

(±)-2,2,2-Trifluoroethyl 8-oxa-7-aza-bicyclo[4.2.2]dec-9-ene-7-carboxylate 

(3.64).  Compound 3.63 (1.289 g, 8.104 mmol) was dissolved in 40 mL of methanol in a 

250-mL round-bottomed flask.  cis,cis-1,3-cyclooctadiene (1.30 mL, 10.4 mmol) was 

added.  The reaction was stirred vigorously as a solution of sodium periodate (1.925 g, 

8.910 mmol) in 20 mL of H2O was added dropwise over about 30 min.  A yellow color 

was observed immediately, and a white solid was observed after a few minutes into the 

addition.  After the addition was complete, the mixture was stirred vigorously at RT.  

After 2 h, no 3.63 remained by TLC.  The white solid was removed by filtration and 

washed with EtOAc (10 mL).  The volume of the orange filtrate was reduced to half by 

rotary evaporation and partitioned between EtOAc (50 mL) and brine (50 mL).  The 

layers were separated and the aqueous was extracted with EtOAc (4 x 25 mL).  The 
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combined organic layers were washed with brine (25 mL), dried over Na2SO4, filtered, 

and concentrated to yield a brown oil (1.93 g).  The oil was chromatographed through 

200 g of silica using a solvent gradient from 90% CH2Cl2/hexanes to 100% CH2Cl2 to 

yield 3.64 as a yellow oil (1.103 g, 51.3% yield).  The NMR spectra for compound 3.64 

indicated a significant amount of impurities; however, the MS spectrum confirmed the 

presence of a 1:1 adduct.  MS (FAB) m/z [M+H] + at 266. 

 

(±)

ON

O

O

O

 

(±)-(2S,6aR)-9-Oxo-octahydrooxazolo[3,4-b][1,2]oxazocine-2-carbaldehyde 

(3.66).  Oxalyl chloride (0.12 mL, 1.4 mmol) was added to 5 mL of anhydrous CH2Cl2 in 

a flame-dried, single-necked 50-mL round-bottomed flask cooled to -78 °C (dry 

ice/acetone) under Ar.  In a separate flame-dried single-necked 10-mL round-bottomed 

flask was added anhydrous dimethyl sulfoxide (0.17 mL, 2.4 mmol) to 5 mL of 

anhydrous CH2Cl2.  The DMSO solution was added to the oxalyl chloride solution 

dropwise over about 1 min and the resultant solution was stirred at -78 °C for 10 min 

under Ar.  In a separate flame-dried single-necked 25-mL round-bottomed flask under Ar 

was dissolved 3.59 (0.151 g, 0.750 mmol) in 5 mL of anhydrous CH2Cl2.  This solution 

was transferred slowly to the flask that contained the oxidant via cannula.  The resultant 

solution was stirred at -78 °C for 45 min, then triethylamine (0.60 mL, 4.3 mmol) was 

added.  The reaction was stirred at -78 °C for 20 min, then removed from the dry 

ice/acetone bath and allowed to reach RT while stirring under Ar.  After 2 h, the reaction 
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was diluted with CH2Cl2 (20 mL) and H2O (50 mL) and the layers were separated.  The 

aqueous layer was extracted with CH2Cl2 (2 x 20 mL) and the combined organic layers 

were washed with brine (20 mL), dried over MgSO4, filtered, and concentrated to yield a 

yellow oil (149 mg).  The crude material was analyzed by TLC and was composed of 

mostly one spot with the same Rf as the starting material but that stained darker to CAM 

stain.  The crude material was chromatographed through 20 g of silica using a solvent 

gradient from 100% CH2Cl2 to 90% CH2Cl2/EtOAc and provided 3.66 as a yellow oil 

(80.5 mg, 54% yield).  1H NMR (300 MHz, CDCl3) δ 10.14 (s, 1H), 4.40 (dd, J = 8.4, 7.2 

Hz, 1H), 4.21 (ddd, J = 11.4, 2.7, 0.6 Hz, 1H), 3.89 (dd, J = 11.4, 8.4 Hz, 1H), 3.82 – 

3.71 (m, 1H), 2.19 – 2.05 (m, 1H), 2.00 – 1.86 (m, 3H), 1.81 – 1.69 (m, 3H), 1.58 – 1.43 

(m, 1H) ppm.  13C NMR (75 MHz, CDCl3) δ 204.0, 166.8, 89.0, 66.5, 60.9, 27.4, 24.7, 

22.5, 22.0 ppm.  HRMS (FAB) m/z [M+H] + calcd for C9H14NO4
+, 200.1923; obsd, 

200.0935. 

 

CO2MeBocHN

OHMeO2C

(±)  

(±)-(2R,7S)-Dimethyl 2-(tert-butoxycarbonylamino)-7-hydroxyoctanedioate 

(3.69).  General procedure for N-O bond reduction using samarium diiodide (Table 

3.5, entry 4).    To a flame-dried 50-mL round-bottomed flask under Ar was added 

samarium metal (160 mg, 1.06 mmol, 40 mesh) and 9 mL of anhydrous THF.  The 

mixture was stirred vigorously and cooled in an ice/H2O bath to 4°C under Ar.  
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Diiodomethane (0.072 mL, 0.89 mmol) was added slowly and the mixture was stirred in 

the ice/H2O bath under Ar.  After 15 min, the solution had turned from colorless to light 

yellow to a deep blue-green color (indicating formation of SmI2).  After 1.5 h of stirring, 

3.52 (144 mg, 0.435 mmol) was dissolved in 1 mL of anhydrous THF in a flame-dried 5-

mL flask under Ar and transferred to the SmI2 solution via cannula.  After a few min, the 

blue-green color turned to a dark green color.  No further color change was observed.  

Reaction progress was monitored by TLC (1:1 hexanes/EtOAc - CAM stain).  After 5 h, 

no starting material was observed and a new, more polar spot (Rf ~0.21) was observed by 

TLC.  The reaction was diluted with CH2Cl2 (30 mL) and 10 wt% aqueous Na2S2O3 (20 

mL) was added to quench the reaction.  An emulsion formed and H2O (~50-60 mL) was 

added. 1M HCl (~20 mL) was added and the layers were separated.  The aqueous layer 

was extracted with CH2Cl2 (2 x 20 mL).  The combined organic layers were washed with 

1M HCl (1 x 30 mL), dried over MgSO4, filtered through a pad of celite, and 

concentrated by rotary evaporation (30°C, 21 mm Hg) to afford a pungent-smelling 

yellow/white solid/oil.  The crude material was chromatographed through 50 g of silica 

using a solvent gradient from 100% CH2Cl2 to 80% CH2Cl2/EtOAc and yielded 3.69 as a 

colorless oil (57.0 mg, 39% yield).  Rf = 0.21 (1:1 hexanes/EtOAc – CAM stain).  1H 

NMR (500 MHz, CDCl3) δ 5.04 (br-d, J = 7.5 Hz, 1H), 4.26 (m, 1H), 4.15 (dd, J = 7.5, 

4.0 Hz, 1H), 3.76 (s, 3H), 3.71 (s, (3H), 2.52 (br, 1H), 1.79 – 1.73 (m, 2H), 1.64 – 1.57 

(m, 2H), 1.41 (s, 9H), 1.45 – 1.33 (m, 4H) ppm.  13C NMR (125 MHz, CDCl3) δ 175.6, 

173.3, 155.3, 79.8, 70.1, 53.3, 52.5, 52.2, 34.0, 32.5, 28.2, 24.9, 24.3 ppm.  MS (FAB) 

m/z [M+H] + at 334, 278, 234 (base peak), 174. 
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General procedure for N-O bond reduction using Mo(CO)6.  Attempted 

reduction of 3.52 (Table 3.5, entry 2).  Compound 3.52 (0.101 g, 0.303 mmol) was 

dissolved in 15:1 CH3CN/H2O (4.4 mL) in a 25-mL flask.  Molybdenum hexacarbonyl 

(59 mg, 0.22 mmol) was added and the solution was heated at reflux (oil bath 

temperature 85-100 °C) overnight.  The color of the solution changed to yellow, then 

deep brown.  The mixture was cooled to RT, then cooled at 0 °C for 1 h and filtered 

through a pad of celite, rinsing the solid residue with portions of EtOAc.  The filtrate was 

concentrated to yield a pale yellow residue.  Analysis of the crude material did not 

indicate the presence of the desired product, compound 3.69. 

 

General procedure for N-O bond reduction using Zn/HOac.  Attempted 

reduction of 3.52 (Table 3.5, entry 3).  Zinc dust (0.329 g, 5.03 mmol), previously 

activated by rinsing with conc. HCl and drying in the oven, was added to 3.52 (0.100 g, 

0.303 mmol) in 2.5 mL of glacial acetic acid in a 10-mL flask.  The mixture was stirred at 

RT overnight.  Analysis of the mixture only indicated the presence of 3.52 and the 

mixture was heated in an oil bath maintained at 75-80 °C overnight.  No change was 

observed during this time. 

 

General procedure for N-O bond reduction using Na-Hg.  Attempted 

reduction of 3.52 (Table 3.5, entry 5).  Compound 3.52 (0.122 g, 0.367 mmol) was 

added to a flame-dried 25-mL flask and dissolved in 2:1 MeOH/THF (6 mL) under Ar.  

The solution was cooled to 4 °C in an ice/H2O bath and Na2HPO4 (0.264 g, 1.86 mmol) 

was added.  5% sodium-mercury amalgam (0.868 g, 1.90 mmol sodium) was added and 
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the resultant cloudy mixture was stirred for 2 h.  Liquid mercury was observed in the 

bottom of the flask and the mixture was warmed to RT.  The mixture was stirred at RT 

for 2 h and the solution was decanted from the liquid mercury and filtered through celite.  

Multiple portions of EtOAc and MeOH were added to the reaction flask, decanted from 

the residual mercury, and filtered through celite.  The filtrate was concentrated to yield a 

white solid.  Analysis of the solid material did not indicate the presence of the desired 

compound. 

 

General procedure for N-O bond reduction using hydrogenolysis.  Attempted 

reduction of 3.53 (Table 3.5, entry 7).  Acetyl chloride (0.075 mL, 1.1 mmol) was 

added to 5 mL of anhydrous methanol under Ar in a 250-mL Parr bomb.  After 30 min, 

3.53 (0.204 g, 0.882 mmol) in 5 mL of methanol was added and the Parr bomb was 

evacuated and purged with Ar (2x).  10% Pd/C (33 mg, 16 wt%) was added and the 

reaction flask was evacuated and purged with Ar (2x), then evacuated and purged with H2 

(2x).  The mixture was shaken under H2 (2.8 bar, 30 psi) using a Parr hydrogenation 

apparatus for 6 h.  The mixture was evacuated and purged with Ar (3x), then filtered 

through celite.  The filtrate was concentrated to yield a pale yellow residue.  Analysis of 

the residue indicated mostly 3.53 remained in the mixture in addition to a small amount 

of baseline ninhydrin-positive material (presumably amine 3.70) and a less polar product.  

Transesterification may have occurred in the reaction, but this was not confirmed. 
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NHBocHO

(±)  

(±)-tert-Butyl (1R,4S)-4-hydroxycyclopent-2-enylcarbamate (3.71).  

Cycloadduct 3.38 (1.11 g, 5.63 mmol) was dissolved in 20 mL of 4:1 CH3CN/H+O.  

Mo(CO)6 (598 mg, 2.27 mmol) was added, followed by NaBH= (660 mg, 17.4 mmol).  

The reaction bubbled and turned bright yellow.  The reaction was heated to 70 °C with a 

condenser and stirred under mild reflux.  The reaction turned brown after 30 min.  The 

reaction was monitored by TLC (1:1 hexanes/EtOAc).  After 12 h, the reaction was 

cooled to room temperature and then cooled to 0 °C for 30 min.  The reaction was filtered 

through a pad of celite to remove the solid.  The celite was washed with EtOAc and 

CH3CN and the yellow filtrate was concentrated to yield a dark yellow oil (1.29 g).  The 

oil was chromatographed through 100 g of silica using 1:1 hexanes/EtOAc to yield 3.71 

as a yellow oil (898 mg, 80%).  Rf = 0.20 (1:1 hexanes/EtOAc – UV lamp, CAM stain).  

1H NMR (500 MHz, CDCl3) δ 5.94 (m, 1H), 5.80 (m, 1H), 5.01 (m, 1H), 4.65 (m, 1H), 

4.42 (m, 1H), 3.37 (br, 1H), 2.69 (m, 1H), 1.49 (d, J = 14.5 Hz, 1H), 1.41 (s, 10H) ppm.  

13C NMR (125 MHz, CDCl3) δ 155.3, 136.0, 134.1, 79.5, 75.0, 54.7, 41.3, 28.4 ppm. 

 

(±)

HO NHBoc

 

(±)-tert-Butyl (1R,4S)-4-hydroxycyclohex-2-enylcarbamate (3.72).  Prepared 

following the same procedure used for 3.71.  Cycloadduct 3.39 (1.05 g, 4.97 mmol), 

Mo(CO)6 (525 mg, 1.99 mmol), and NaBH4 (600 mg, 15.9 mmol) provided a dark yellow 

oil (1.12 g).  The oil was chromatographed through 75 g of silica using 1:1 
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hexanes/EtOAc to yield 3.72 as a yellow oil (903 mg, 85%).  1H NMR (300 MHz, 

CDCl3) δ 5.861 (dq, J = 9.9 Hz, 1H), 5.741 (dd, J = 10.2, 2.7 Hz, 1H), 4.596 (br-m, 1H), 

4.151 (br-m, 1H), 1.855 (m, 2H), 1.675 (m, 2H), 1.443 (s, 9H) ppm. 

 

NHBocAcO

(±)  

(±)-Acetic acid 4-tert-butoxycarbonylamino-cyclopent-2-enyl ester (3.73).  

Alcohol 3.71 (852 mg, 4.28 mmol) was dissolved in 30 mL of CH2Cl2.  Imidazole (501 

mg, 7.36 mmol) was added to the reaction and the reaction was cooled to 0 °C.  Acetyl 

chloride (0.460 mL, 6.45 mmol) was added slowly to the reaction.  A white precipitate 

formed.  The reaction was stirred overnight and monitored by TLC (1:1 hexanes/EtOAc).  

After 18 h, 1 equiv more acetyl chloride was added to the reaction.  No change was 

observed after 4 h.  The reaction was diluted and partitioned between CH2Cl2 and H2O.  

The aqueous layer (pH 2) was extracted with CH2Cl2.  The combined organic layers were 

washed with 1M HCl, dried over Na2SO4, filtered, and concentrated to yield an orange oil 

(867 mg).  The oil was chromatographed through 87 g of silica using 4:1 to 3:1 

hexanes/EtOAc to yield a colorless oil.  Recrystalization from hexanes yielded 3.73 as 

white needlelike crystals (673 mg, 65%).  mp = 48-51 °C.  1H NMR (500 MHz, CDCl3) δ 

5.95 (d, J = 5.5 Hz, 1H), 5.89 (d, J = 5.5 Hz, 1H), 5.49 (m, 1H), 4.65 (m, 1H), 2.79 (m, 

1H), 2.00 (s, 3H), 1.49 (dt, J = 14.5, 4.0 Hz, 1H), 1.41 (m, 10H) ppm.  13C NMR (125 

MHz, CDCl3) δ 170.5, 154.9, 136.9, 132.0, 79.5, 77.4, 54.2, 38.5, 28.3, 21.1 ppm. 
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(±)

AcO NHBoc

 

(±)-Acetic acid 4-tert-butoxycarbonylamino-cyclohex-2-enyl ester (3.74).  

Compound 3.74 was prepared following the same procedure for compound 3.73.  

Alcohol 3.72 (903 mg, 4.23 mmol), imidazole (489 mg, 7.18 mmol), and acetyl chloride 

(0.450 mL, 6.31 mmol) provided a yellow oil (900 mg).  The oil was chromatographed 

through 90 g of silica using 4:1 to 3:1 hexanes/EtOAc to yield 3.74 as a white solid (630 

mg, 59%).  mp = 82-83 °C.  1H NMR (500 MHz, CDCl3) δ 5.81 (dd, J = 10, 2.5 Hz, 1H), 

5.76 (d, J = 10 Hz, 1H), 5.14 (m, 1H), 4.60 (d, J = 7.0 Hz, 1H), 4.11 (m, 1H), 2.00 (s, 

3H), 1.87 – 1.69 (m, 3H), 1.63 – 1.54 (m, 1H), 1.40 (s, 9H) ppm.  13C NMR (125 MHz, 

CDCl3) δ 170.4, 155.1, 133.5, 127.9, 79.4, 68.1, 66.8, 45.8, 28.3, 25.7, 21.2 ppm. 

 

NHBocTBSO

(±)  

(±)-tert-Butyl (1R,4S)-4-(tert-butyldimethylsilyloxy)cyclopent-2-

enylcarbamate (3.75).  Compound 3.71 (201 mg, 1.01 mmol) was dissolved in 20 mL of 

anhydrous DMF in a flame-dried 50-mL round-bottomed flask under Ar.  Imidazole (277 

mg, 4.07 mmol) was added, followed by TBSCl (303 mg, 2.01 mmol) and the solution 

was stirred at RT under Ar.  After 4 h, TLC of the reaction (1:1 hexanes/EtOAc - CAM 

stain) did not show any starting material and the reaction was complete.  The reaction 

was concentrated to 10 mL by rotary evaporation.  H2O (75 mL) and EtOAc (50 mL) 

were added and the layers were separated.  The aqueous layer was extracted with EtOAc 

(3 x 50 mL), and the combined organic layers were washed with brine (2 x 35 mL), dried 
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over MgSO4, filtered, and concentrated to yield a yellow oil.  The oil was 

chromatographed through 30 g of silica using 100% CH2Cl2 and provided 3.75 as a 

colorless oil (0.288 g, 91%).  1H NMR (500 MHz, CDCl3) δ 5.85 – 5.78 (m, 2H), 4.69 (t, 

J = 6.0 Hz, 1H), 4.61 (br-m, 1H), 4.57 (br-m, 1H), 2.71 (m, 1H), 1.40 (s, 9H), 1.36 (m, 

1H), 0.89 (s, 9H), 0.07 (s, 6H) ppm.  13C NMR (125 MHz, CDCl3) δ 155.1, 136.6, 133.6, 

75.4, 54.4, 42.8, 28.4, 25.9, 18.2, -4.7 ppm. 

 

(±)

OHBocHN

 

(±)-tert-Butyl (1R,4S,Z)-4-hydroxycyclooct-2-enylcarbamate (3.76).  

Cycloadduct 3.40 (1.50 g, 6.27 mmol) was dissolved in 64 mL of 15:1 CH3CN/H2O in a 

250-mL round-bottomed flask and heated in a 55 °C oil bath.  Molybdenum 

hexacarbonyl (1.19 g, 4.52 mmol) was added to the reaction in one portion.  A jacketed 

condenser was attached to the flask and the reaction was heated to reflux (oil temp = 95 

°C).  The reaction turned yellow after 15 min of heating, then turned brown and finally 

black overnight.  After 19 h, the TLC analysis (1:1 hexanes/EtOAc - CAM stain), the of 

the reaction showed clean, but incomplete conversion to the product.  Additional 

Mo(CO)6 (0.462 g, 1.75 mmol) was added (total Mo(CO)6 = 1 equivalent) and the 

reaction was heated to reflux for an additional 2 h.  The reaction was cooled to RT, then 

filtered through a pad of celite.  The brown filtrate was concentrated to yield a brown oil 

and a glassy solid.  The mixture was partitioned between EtOAc (75 mL) and H2O (75 

mL) and the layers were separated.  The aqueous layer was extracted with EtOAc (3 x 60 

mL) and the combined organic layers were washed with brine (2 x 75 mL), dried over 
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MgSO4, filtered, and concentrated to yield a tan solid.  The crude material was loaded 

onto silica and chromatographed through a Biotage 40M column (90 g of silica) using a 

solvent gradient from 75% CH2Cl2/EtOAc to 60% CH2Cl2/EtOAc to yield 3.76 as a white 

solid (1.44 g, 95%).  mp = 137-139 °C.  Rf = 0.25 (1:1 hexanes/EtOAc – CAM stain).  1H 

NMR (500 MHz, CDCl3) δ 5.57 (dd, J = 11, 7.5 Hz, 1H), 5.23 (ddd, J = 11.5, 10.5, 1.5 

Hz, 1H), 4.63 (br, 1H), 4.34 (br, 1H), 2.44 (br, 1H), 1.91 – 1.81 (m, 2H), 1.61 – 1.53 (m, 

2H), 1.48 – 1.41 (m, 3H), 1.41 (s, 9H), 1.33 – 1.25 (m, 1H) ppm.  13C NMR (125 MHz, 

CDCl3) δ 155.2, 134.7, 130.0, 79.4, 69.3, 48.8, 38.2, 36.5, 28.4, 24.0, 23.4 ppm.  HRMS 

(FAB) m/z [M+H] + calcd for C13H24NO3
+, 242.1756; obsd, 242.1754. 

 

Preparation of 3.76 using SmI2.  Compound 3.76 was prepared following the 

general procedure for N-O bond reduction using samarium diiodide.  Cycloadduct 3.40 

(102 mg, 0.426 mmol) was treated with 2.5 eq of samarium diiodide prepared from 

samarium metal (0.161 g, 1.07 mmol) and diiodomethane (0.070 mL, 0.87 mmol) and 

provided 3.76 as a white foam after chromatography through 10 g of silica (81 mg, 79%). 

 

(±)

OAcBocHN

 

(±)-(1S,4R,Z)-4-(tert-Butoxycarbonylamino)cyclooct-2-enyl acetate (3.77).  

Alcohol 3.76 (2.59 g, 10.7 mmol) was dissolved in 50 mL of anhydrous pyridine in a 

flame-dried single-necked 250-mL round-bottomed flask under Ar.  Acetic anhydride 

(2.50 mL, 26.5 mmol) was added and the light yellow solution was stirred at RT under 

Ar.  After 25 h, the reaction was concentrated by rotary evaporation to yield a light 
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yellow solid.  The solid was partitioned between 1M HCl (100 mL) and EtOAc (100 

mL).  The layers were separated and the aqueous layer was extracted with EtOAc (2 x 40 

mL).  The combined organic layers were washed with 1M HCl (2 x 35 mL), H2O (35 

mL), saturated NaHCO3 (2 x 35 mL), and brine (35 mL), dried over MgSO4, filtered, and 

concentrated to yield a white solid (2.99 g, 98% yield).  Further purification was not 

necessary, but could be carried out by chromatography through silica using a solvent 

gradient from 100% CH2Cl2 to 80% CH2Cl2.  mp = 117-119 °C.  1H NMR (500 MHz, 

CDCl3) δ 5.60 (m, 1H), 5.54 (dd, J = 10.2, 7.6 Hz, 1H), 5.33 (t, J = 9.3 Hz, 1H), 4.57 (br-

m, 1H), 4.37 (br-m, 1H), 2.00 (s, 3H), 1.92 (m, 2H), 1.62-1.44 (m, 4H), 1.41 (s, 9H), 

1.36-1.29 (m, 2H) ppm.  13C NMR (125 MHz, CDCl3) δ 170.0, 154.9, 131.2, 129.7, 79.2, 

72.1, 49.0, 36.2, 35.1, 28.3, 23.8, 23.0, 21.2 ppm.  HRMS (FAB) m/z [M+H] + calcd for 

C15H26NO4
+, 284.1862; obsd, 284.1847. 

 

(±)

OBnBocHN

 

(±)-tert-Butyl (1R,4S,Z)-4-(benzyloxy)cyclooct-2-enylcarbamate (3.78).  

Alcohol 3.76 (0.504 g, 2.09 mmol) was dissoved in 20 mL of anhydrous THF under Ar in 

a flame-dried 100-mL round-bottomed flask.  Benzyl bromide (0.50 mL, 4.5 mmol) was 

added and the light yellow solution was cooled in an ice/H2O bath under Ar.  Sodium 

hydride (0.214 g, 50% dispersion in mineral oil, 4.46 mmol) was added to the reaction in 

one portion.  The reaction immediately turned cloudy.  The cloudy suspension was stirred 

in the ice/H2O bath, slowly reaching RT under Ar overnight.  Monitored reaction by TLC 

(4:1 hexanes/EtOAc - CAM stain).  Alcohol 3.76 remained after stirring overnight and 
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over the weekend (3 days).  An additional 20 mL of anhydrous THF was added to the 

white suspension and the reaction was stirred under Ar at RT.  After 2 days (5 days total) 

no 3.76 was observed by TLC of the reaction mixture.  The reaction was cooled in an 

ice/H2O bath and quenched by adding H2O dropwise until all of the white solid dissolved 

completely (~15 mL - some bubbling observed).  Et2O (50 mL) was added and the layers 

were separated.  The aqueous layer was extracted with Et2O (2 x 50 mL), and the 

combined organic layers were washed with brine (2 x 50 mL), dried over MgSO4, 

filtered, and concentrated to yield a light yellow oil.  The crude material was loaded onto 

silica and chromatographed through a 40S Biotage column (40 g of silica) using a solvent 

gradient from 100% hexanes to 80% hexanes/EtOAc and provided 3.78 as a light yellow 

oil (553 mg, 80% yield).  1H NMR (500 MHz, CDCl3) δ 7.41 – 7.28 (m, 5H), 5.67 (ddd, J 

= 11, 7.0, 1.0 Hz, 1H), 5.46 (ddd, J = 11, 8.0, 1.5 Hz, 1H), 4.73 (d, J = 7.0 Hz, 1H), 4.65 

(d, J = 11.5 Hz, 1H), 4.49 (d, J = 11.5 Hz, 1H), 4.39 (br, 2H), 2.07 – 2.01 (m, 1H), 1.91 

(m, 1H), 1.63 – 1.51 (m, 13H), 1.51 (s, 9H), 1.38 – 1.29 (m, 1H) ppm.  13C NMR (125 

MHz, CDCl3) δ 155.0, 138.4, 133.1, 132.0, 128.2, 127.7, 127.3, 79.1, 76.2, 70.8, 49.0, 

36.7, 35.8, 28.3, 24.2, 23.3 ppm.  HRMS (FAB) m/z [M+H] + calcd for C20H30NO3
+, 

332.2226; obsd, 332.2200. 

 

(±)

OTBSBocHN

 

(±)-tert-Butyl (1R,4S,Z)-4-(tert-butyldimethylsilyloxy)cyclooct-2-

enylcarbamate (3.79).  Alcohol 3.76 (1.44 g, 5.96 mmol) was dissolved in 60 mL of 

DMF in a single-necked 250-mL round-bottomed flask under Ar.  Imidazole (1.76 g, 25.9 
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mmol) was added, followed by TBSCl (1.81 g, 12.0 mmol).  The solution was stirred at 

RT under Ar.  After 2.5 days, the reaction was complete by TLC analysis of the reaction 

mixture (4:1 hexanes/EtOAc - CAM stain).  The yellow solution was concentrated by 

rotary evaporation (55 °C, 20 mm Hg) to about 10 mL, then partitioned between H2O (50 

mL) and EtOAc (100 mL).  The layers were separated and the aqueous layer was 

extracted with EtOAc (2 x 75 mL).  Some brine was added to the biphasic mixture during 

separation to break the emulsion that formed.  The combined EtOAc layers were washed 

with H2O (50 mL), and brine (2 x 50 mL), dried over MgSO4, filtered, and concentrated 

by rotary evaporation (45 °C, 20 mm Hg) to yield 2.8 g of a yellow oil.  The oil was 

chromatographed through 200 g of silica using a solvent gradient from 90% 

CH2Cl2/hexanes to 100% CH2Cl2 and yielded 3.79 as a white solid (2.02 g, 95% yield).  

mp = 84-85 °C.  1H NMR (500 MHz, CDCl3) δ 5.54 (dd, J = 11.0, 7.0 Hz, 1H), 5.17 

(ddd, J = 11.0, 8.5, 1.5 Hz, 1H), 4.53 (br, 2H), 4.34 (br, 1H), 1.89 – 1.79 (m, 2H), 1.55 – 

1.44 (m, 5H), 1.43 (s, 9H), 1.31 – 1.24 (m, 1H), 0.88 (s, 9H), 0.063 (s, 3H), 0.057 (s, 3H) 

ppm.  13C NMR (125 MHz, CDCl3) δ 155.0, 135.7, 128.5, 79.2, 70.2, 49.0, 39.3, 36.9, 

28.4, 25.8, 24.2, 23.4, 18.2, -4.6, -4.8 ppm.  HRMS (FAB) m/z [M+H] + calcd for 

C19H38NO3Si+, 356.2621; obsd, 356.2633. 

 

(±)

OHCbzHN

 

(±)-Benzyl (1R,4S,Z)-4-hydroxycyclooct-2-enylcarbamate (3.80).  Compound 

3.80 was prepared following the same procedure for 3.76.  Cycloadduct 3.43 (5.73 g, 

21.0 mmol) and molybdenum hexacarbonyl (5.55 g, 21.0 mmol) provided a brown solid.  
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Chromatography through 180 g of silica using a solvent gradient from 100% CH2Cl2 to 

60% CH2Cl2/EtOAc provided 3.80 as a white solid (5.01 g, 87%).  mp = 125-126 °C.  Rf 

= 0.18 (1:1 hexanes/EtOAc – CAM stain).  1H NMR (500 MHz, CDCl3) δ 7.35 (m, 5H), 

5.61 (dd, J = 11.0, 7.5 Hz, 1H), 5.27 (ddd, J = 11.0, 8.5, 1.5 Hz, 1H), 5.08 (s, 2H), 4.85 

(br, 1H), 4.65 (br, 1H), 4.42 (br, 1H), 2.12 (br, 1H), 1.90 (m, 2H), 1.61 (m, 2H), 1.49 (m, 

2H), 1.38 – 1.25 (m, 1H) ppm.  13C NMR (125 MHz, CDCl3) δ 155.6, 136.4, 134.9, 

129.7, 128.5, 128.1, 69.4, 66.7, 49.3, 38.3, 36.5, 24.0, 23.3 ppm.  HRMS (FAB) m/z 

[M+H] + calcd for C16H22NO3
+, 276.1600; obsd, 276.1592. 

 

(±)

OTBSCbzHN

 

(±)-Benzyl (1R,4S,Z)-4-(tert-butyldimethylsilyloxy)cyclooct-2-enylcarbamate 

(3.81).  Compound 3.81 was prepared following the same procedure for 3.79.  Alcohol 

3.80 (3.00 g, 10.9 mmol), TBDMSCl (3.32 g, 22.0 mmol), and imidazole (2.98 g, 43.8 

mmol) provided 4.5 g of crude material.  Chromatography through 200 g of silica using a 

solvent gradient from 90% CH2Cl2/hexanes to 100% CH2Cl2 yielded 3.81 as a colorless 

oil that solidified upon standing (3.96 g, 93%).  mp = 80-82 °C.  Rf = 0.50 (2:1 

hexanes/EtOAc – CAM stain).  1H NMR (500 MHz, CDCl3) δ 7.35 (m, 5H), 5.58 (m, 

1H), 5.21 (ddd, J = 10.5, 8.0, 1.5 Hz, 1H), 5.11 (m, 2H), 4.81 (br, 1H), 4.57 (br, 1H), 4.43 

(br, 1H), 1.90 – 1.82 (m, 2H), 1.60 – 1.48 (m, 5H), 1.32 (m, 1H), 0.90 (s, 9H), 0.10 (s, 

3H), 0.09 (s, 3H) ppm.  13C NMR (125 MHz, CDCl3) δ 155.4, 136.1, 128.5, 128.3, 128.0, 

70.2, 66.6, 49.4, 39.2, 36.7, 25.8, 24.1, 23.4, 18.2, -4.6, -4.9 ppm.  HRMS (FAB) m/z 

[M+H] + calcd for C22H36NO3Si+, 390.2464; obsd, 390.2458. 
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Attempted Kornblum-DeLaMare rearrangement of 3.40.  Cycloadduct 3.40 

(0.108 g, 0.451 mmol) was dissolved in 5 mL of anhydrous CH2Cl2 in a flame-dried 

single-necked 25-mL round-bottomed flask under Ar.  Dry triethylamine (0.020 mL, 0.14 

mmol) was added and the solution was stirred at RT under Ar.  After 2 days at RT, only 

3.40 was observed by TLC.  No change was observed after stirring at RT for a few 

additional days or after the addition of excess triethylamine. 

 

(±)

BocHN

OAc

OMe

O

MeO

O  

(±)-(2S,7R)-Dimethyl 2-acetoxy-7-(tert-butoxycarbonylamino)octanedioate 

(3.86).  Compound 3.77 (507.8 mg, 1.792 mmol) was dissolved in 17.5 mL of 

CCl4/CH3CN/H2O (2:2:3) in a 50-mL round-bottomed flask, and cooled to 4°C in an 

ice/H2O bath.  NaIO4 (1.542 g, 7.21 mmol) was added to the reaction, followed by RuCl3 

hydrate (15 mg, 0.072 mmol).  The reaction immediately turned light brown.  After 1 h 

the reaction mixture was still brown and was stirred at RT.  After 3.5 h, the reaction had 

become jet black in color.  20 mL of 10% Na2S2O5 was added to the reaction and the 

mixture was stirred for 10 min before filtering through a pad of celite and rinsing the 

reaction flask with 50 mL of EtOAc.  The layers in the filtrate were separated and the 

aqueous layer (dark green in color, pH 2-3 by pH paper) was extracted with EtOAc (3 x 

50 mL).  The combined organic layers were dried over Na2SO4, filtered, and concentrated 
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to yield a brown oil (720 mg).  The crude material was dissolved in Et2O (15 mL) in a 50-

mL flask and treated with excess diazomethane, prepared from Diazald as described in 

the general procedure, at 4 °C (ice/H2O bath).  Bubbling was observed in the reaction 

flask during the addition of fresh diazomethane solution.  The reaction was stirred for an 

15 min at 4 °C, then was quenched by adding 10 vol% HOAc in Et2O slowly until no 

bubbles were observed in the reaction.  The light brown solution was poured into 50 mL 

of saturated NaHCO3 and the layers were separated.  The aqueous layer (pH 8 - pH 

paper) was extracted with Et2O (2 x 20 mL), and the combined Et2O layers were washed 

with brine (20 mL), dried over MgSO4, filtered, and concentrated to yield a brown oil 

(~640 mg).  The crude material was chromatographed through 75 g of silica using a 

solvent gradient from 100% CH2Cl2 to 80% CH2Cl2/EtOAc to yield 3.86 as a yellow oil 

(503.5 mg, 74.8% yield) as well as minor amounts of two additional products (24.5 mg 

and 18 mg, respectively).  The byproducts were not fully characterized.  1H NMR (500 

MHz, CDCl3) δ 5.04 (m, 1H), 4.92 (m, 1H), 4.23 (m, 1H), 3.67 (s, 6H), 2.07 (s, 3H), 1.80 

– 1.72 (m, 3H), 1.63 – 1.53 (m, 2H), 1.42 – 1.28 (m, 12H) ppm.  13C NMR (125 MHz, 

CDCl3) δ 173.1, 170.5, 170.3, 155.2, 82.2, 79.7, 77.9, 71.9, 53.1, 52.1, 32.3, 30.7, 28.2, 

24.7, 24.6, 20.4 ppm.  MS (FAB) m/z [M+H] + at 376; 320, 276 (base), 260, 216. 

 

Ph N

H

NHTs
 

N'-Benzylidene-4-methylbenzenesulfonohydrazide (3.87).  p-

Toluenesulfonylhydrazide (14.24 g, 76.5 mmol) was suspended in 25 mL of MeOH in a 

125-mL Erlenmayer flask.  Benzaldehyde (7.0 mL, 68.9 mmol), purified from the 

benzaldehyde-bisulfite adduct, was added rapidly to the slurry while stirring.  The solid 
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material dissolved after 1 min and a mildly exothermic reaction was observed.  The 

yellow solution was left to stand and reach RT.  After a few minutes, the product began 

to crystallize out of the solution.  After 40 min, the mixture was filtered under vacuum 

and the white crystals were washed with a small amount of cold methanol.  The crystals 

were dried under the aspirator vacuum to yield 3.87 as white needle-like crystals (15.675 

g, 83% yield).  mp = 126-128 °C (lit. 124-125 °C). 

 

General procedure for preparation of phenyldiazomethane from 3.87.  A 

freshly prepared solution of 1.05 M sodium methoxide in MeOH (5.30 mL, 5.57 mmol) 

was added to 3.87 (1.48 g, 5.39 mmol) in a single-necked 25-mL round-bottomed flask.  

The mixture was swirled until the solid dissolved and the resultant yellow solution was 

concentrated by rotary evaporation (45 °C, 21 mm Hg) to yield a white solid.  The solid 

was dried under vacuum (<1 mm Hg) for 30 min.  The flask was fitted with a short-path 

distillation apparatus and a receiver flask, then evacuated (<1 mm Hg).  The receiver 

flask was cooled to -50 to -60 °C in a dry ice/acetone bath and a safety sheild was set in 

front of the apparatus.  The flask containing the hydrazone salt was heated in an oil bath.  

The oil temperature was raised slowly to ~200 °C over 45-60 min.  At an oil temperature 

of ~110 °C, red phenyldiazomethane (3.88) was observed collecting in the receiver flask.  

At an oil temperature of ~200 °C, phenyldiazomethane was not observed collecting in the 

receiver flask anymore and the oil bath was allowed to cool to < 100 °C before the 

apparatus was disassembled.  3.88 was used immediately without warming to RT (it has 

been reported to be explosive at room temperature).  Workup procedures for reactions 

utilizing phenyldiazomethane follow the same procedure used for diazomethane 
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reactions.  All remaining and excess diphenyldiazomethane was quenched by adding a 

dilute solution of acetic acid in ether. 

 

General procedure for oxidative alkene cleavage reactions using 

OsO4/Oxone.  Attempted oxidative cleavage of 3.77 (Table 3.6, entry 10).  Compound 

3.77 (148.1 mg, 0.523 mmol) was dissolved in 3 mL of anhydrous DMF in a flame-dried 

10-mL round-bottomed flask under Ar.  OsO4 (0.07 mL, 2.5 wt% in tBuOH, 0.006 mmol) 

was added to the solution (the reaction turned slightly yellow).  After 5 min, Oxone 

(1.285 g, 2.09 mmol) was added to the reaction in one portion and the mixture was stirred 

vigorously at RT under Ar.  The reaction was monitored by TLC (1:1 hexanes/EtOAc - 

CAM stain).  After 4 h, some products were observed, but not the desired dicarboxylic 

acid products (Rf was too high, just below 3.77), as well as remaining 3.77. After stirring 

overnight at RT, no change was observed.  The reaction was quenched by adding 6 equiv 

of Na2SO3 and stirring at RT.  Reactions using added sodium bicarbonate followed the 

same procedure except for the addition of 7 equivalents of NaHCO3 to the reaction 

mixture. 

 

General procedure for attempted dihydroxylation of an olefin using 

OsO4/NMO.  Attempted dihydroxylation of 3.77.  Compound 3.77 (117.3 mg, 0.414 

mmol) was dissolved in 4 mL of THF in a single-necked 25-mL round-bottomed flask.  

NMO (50 wt% in H2O, 0.18 mL, 0.87 mmol) was added to the reaction followed by 2 

drops of OsO4 (2.5 wt% in tBuOH).  The solution was stirred at RT.  TLC analysis (1:1 
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hexanes/EtOAc - CAM stain) of the solution after 4 h showed only starting material.  

After stirring at RT for 2 days, no change was observed. 

 

General procedure for attempted dihydroxylation of an olefin using 

RuCl3/NaIO4/CeCl3.  Attempted dihydroxylation of 3.79.  H2O (0.10 mL) was added 

to NaIO4 (65.2 mg, 0.305 mmol) and CeCl3•7H2O (10.5 mg, 0.028 mmol) in a 1-dram 

vial.  The mixture was heated until the color changed to bright yellow, then was cooled in 

a crushed ice/H2O bath.  CH3CN (0.30 mL) was added, followed by a 0.1 M aqueous 

solution of RuCl3 (0.01 mL, 0.001 mmol).  After stirring for 2 min, 3.79 (71 mg, 0.20 

mmol) was added to the brown suspension as a solution in EtOAc (0.30 mL).  The 

mixture was stirred in the ice/H2O bath and analyzed by TLC (1:1 hexanes/EtOAc - 

CAM stain) for the disappearance of 3.79.  After 15 min, TLC analysis indicated the 

reaction was progressing and two new, more polar spots were observed by TLC, but 3.79 

still remained.  After 45 min, the initial two new spots had not increased in intensity, but 

about 4 new spots started to emerge and a complex mixture was obtained. 

 

BocHN

O

OMe

O

MeO  

(±)-Dimethyl 2-(tert-butoxycarbonylamino)heptanedioate (3.90).  Compound 

3.77 (734.5 mg, 2.592 mmol) was dissolved in 21 mL of CH2Cl2.  5.2 mL of 2.5M 

methanolic KOH (13 mmol) was added and the colorless solution immediately became 

light yellow.  The solution was cooled in a dry ice/acetone bath and O3/O2 was bubbled 
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through the solution.  The reaction immediately turned a deep tangerine-orange color and 

a yellow/orange precipitate formed in the reaction.  After 1 h, the ozone bubbling was 

stopped and the reaction was diluted with Et2O (15 mL) then H2O until the reaction 

became colorless and the solid material dissolved completely.  The tangerine/orange 

suspension became a colorless solution as the reaction was warmed to RT.  The layers 

were separated and the aqueous layer was extracted with Et2O (3 x 40 mL), and the 

combined organic layers were washed with brine (2 x 30 mL), dried over MgSO4, 

filtered, and concentrated to yield a light yellow oil (708 mg).  TLC analysis (1:1 

hexanes/EtOAc - CAM stain) shows clean conversion to a mixture of 2 compounds.  The 

crude material was chromatographed through a 40S Biotage column (40g of silica) using 

a solvent gradient from 70% hexanes/EtOAc to 50% hexanes/EtOAc to yield 3.69 as a 

residue (74 mg, 8%) and 3.90 as a light yellow oil (309 mg, 39%).  1H NMR (500 MHz, 

CDCl3) δ 5.00 (d, J = 8.0 Hz, 1H), 4.29 (dd, J = 13.5, 8.0 Hz, 1H), 3.73 (s, 3H), 3.66 (s, 

3H), 2.30 (t, J = 7.5 Hz, 2H), 1.86 – 1.76 (m, 1H), 1.66 – 1.59 (m, 4H), 1.44 (s, 9H), 1.40 

– 1.34 (m, 1H) ppm.  13C NMR (125 MHz, CDCl3) δ 173.8, 173.2, 155.3, 79.8, 53.2, 

52.2, 51.5, 33.7, 32.4, 28.2, 24.8, 24.4 ppm.  MS (FAB) m/z [M+H] + at 304, 248, 204 

(base), 144. 

 

General procedure for removal of an acetate using K2CO3.  Compound 3.69 

from saponification of 3.86.  Compound 3.86 (0.398 g, 1.06 mmol) was dissolved in 11 

mL of anhydrous methanol in a 100-mL round-bottomed flask under Ar.  Potassium 

carbonate (0.208 g, 1.51 mmol) was added and the yellow mixture was stirred at RT 

under Ar.  The reaction was monitored by TLC (1:1 hexanes/EtOAc - CAM stain).  After 
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30 min, only a small amount of 3.86 was observed and a more polar spot was observed.  

After 1.5 h, the reaction was partitioned between H2O (25 mL), brine (25 mL), and 

EtOAc (30 mL).  The layers were separated and the aqueous layer was extracted with 

EtOAc (2 x 30 mL).  The combined organic layers were washed with brine (25 mL), 

dried over MgSO4, filtered, and concentrated to yield 3.69 as a yellow oil (0.277 g, 78% 

yield).  See above for characterization data. 

 

BocHN

OBn

OMe

O

MeO

O(±)  

(±)-(2S,7R)-Dimethyl 2-(benzyloxy)-7-(tert-butoxycarbonylamino) octane-

dioate (3.91).  Compound 3.91 was prepared following the same procedure used for 

compound 3.90.  The use of 3.78 (469 mg, 1.41 mmol) provided a colorless oil (471 mg).  

The oil was loaded onto silica and chromatographed through a Biotage 40S column (40 g 

of silica) using a solvent gradient from 100% CH2Cl2 to 90% CH2Cl2/EtOAc to yield 

3.91 as a yellow oil (118.5 mg, 20%).  The product was not pure by NMR; however, 

spectral information for the appropriate NMR signals are presented here from the impure 

sample: 1H NMR (300 MHz, CDCl3) δ 7.34 (m, 5H), 5.05 (d, J = 8.1 Hz, 1H), 4.69 (d, J 

= 11.7 Hz, 1H), 4.38 (d, J = 11.7 Hz, 1H), 4.28 (m, 1H), 3.93 (t, J = 6.3 Hz, 1H), 3.75 (s, 

3H), 3.72 (s, 3H), 2.36 – 2.29 (m, 1H), 1.79 – 1.60 (m, 6H), 1.44 (s, 9H), 1.43 – 1.31 (m, 

2H) ppm. 

 



 269 

BocHN

OTBS

OMe

O

MeO

O(±)  

(±)-(2R,7S)-Dimethyl 2-(tert-butoxycarbonylamino)-7-(tert-

butyldimethylsilyloxy)octanedioate (3.92).  Compound 3.92 was prepared following the 

same procedure used for 3.90.  The use of 3.79 (514.7 mg, 1.45 mmol) provided a yellow 

oil.  The oil was chromatographed through 65 g of silica using a solvent gradient from 

100% CH2Cl2 to 90% CH2Cl2/EtOAc to afford 3.92 as a pale yellow oil (351.9 mg, 54%).  

The product contained TBS-containing impurities by NMR.  1H NMR (500 MHz, CDCl3) 

δ 4.99 (br, 1H), 4.26 (br, 1H), 4.16 (t, J = 6.0 Hz, 1H), 3.70 (s, 3H), 3.68 (s, 3H), 2.29 (t, 

J = 7.0 Hz, 1H), 1.77 (m, 1H), 1.69 – 1.64 (m, 2H), 1.63 – 1.55 (m, 1H), 1.41 (s, 9H), 

1.38 – 1.29 (m, 2H), 0.90 (s, impurity), 0.87 (s, 9H), 0.23 (s, impurity), 0.04 (s, 3H), 0.02 

(s, 3H) ppm.  13C NMR (125 MHz, CDCl3) δ 174.1, 173.3, 155.3, 79.8, 72.0, 53.4, 52.1, 

51.7, 35.6, 34.8, 32.6, 32.4, 28.3, 25.7, 25.5, 25.0, 24.8, 24.7, 24.6, 18.2, 17.5, -4.9, -5.0, -

5.4 ppm. 

 

BocHN

OTBS

O

O

(±)  

(±)-tert-Butyl (2R,7S)-7-(tert-butyldimethylsilyloxy)-1,8-dioxooctan-2-

ylcarbamate (3.93).  Compound 3.79 (149.6 mg, 0.421 mmol) was dissolved in 5 mL of 
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4:1 CH2Cl2/MeOH in a single-necked 25-mL round-bottomed flask.  The solution was 

cooled in a dry ice/actone bath to -78 °C and a stream of ozone was bubbled through the 

solution.  The blue color of ozone was observed in the solution after ~5 min, and the 

ozone flow was stopped after 10 min.  The solution was purged of ozone by bubbling Ar 

through the solution until the blue color disappated (5 min), and polymer-supported 

triphenylphosphine (0.8 mmol/g, 1.2 g, 0.96 mmol) was added to the reaction.  The 

mixture was removed from the dry ice/acetone bath and stirred at RT for 1.5 h.  The PS-

PPh3 was removed by filtration and washed with CH2Cl2 (5-10 mL).  The filtrate was 

concentrated to yield a light yellow oil (146 mg crude).  The crude material was analyzed 

by TLC (2:1 hexanes/EtOAc - CAM stain) and was composed of one major spot plus 

some baseline material.  The oil was chromatographed through 20 g of silica gel using a 

solvent gradient from 100% CH2Cl2 to 85% CH2Cl2/EtOAc to afford 3.93 as a colorless 

oil (113.0 mg, 69.3%).  1H NMR (500 MHz, CDCl3) δ 9.56 (d, J = 1.0 Hz, 1H), 9.55 (s, 

1H), 5.07 (d, J = 6.5 Hz, 1H), 4.19 (dd, J = 7.0, 6.0 Hz, 1H), 3.99 (m, 1H), 1.88 (m, 1H), 

1.61 (m, 2H), 1.43 (s, 9H), 1.37 (m, 4H), 0.90 (s, 9H), 0.06 (s, 3H), 0.05 (s, 3H) ppm.  

13C NMR (125 MHz, CDCl3) δ 204.1, 199.7, 155.5, 80.0, 77.3, 59.7, 32.3, 29.0, 28.2, 

25.7, 25.0, 24.4, 18.1, -4.7, -5.0 ppm.  HRMS (FAB) m/z [M] + calcd for C19H37NO5Si+, 

387.2441; obsd, 387.2446. 
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(±)

BocHN

OTBS

OH

HO

 

(±)-tert-Butyl (2R,7S)-7-(tert-butyldimethylsilyloxy)-1,8-dihydroxyoctan-2-

ylcarbamate (3.94).  Compound 3.79 (3.035 g, 8.535 mmol) was dissolved in 100 mL of 

4:1 CH2Cl2/MeOH in a single-necked 250-mL round-bottomed flask.  The solution was 

cooled in a dry ice/actone bath to -78 °C and a stream of ozone was bubbled through the 

solution.  The blue color of ozone was observed in the solution after ~10 min, and the 

ozone flow was stopped.  The solution was purged of ozone by bubbling Ar through the 

solution until the blue color disappated (20 min).  The reaction was removed from the dry 

ice/acetone bath and placed in a crushed ice/NaCl/H2O bath, at which time NaBH4 (2.03, 

53.7 mmol) was added to the reaction in portions over 60 min.  Bubbling was observed 

and the reaction was allowed to stir in the ice/NaCl/H2O bath for 1 h, then warmed to RT 

and stirred for an additional 1 h.  The reaction was diluted with H2O (100 mL) and 

EtOAc (200 mL).  The layers were separated and the aqueous layer was extracted with 

EtOAc (3 x 100 mL).  The combined organic layers were washed with brine (2 x 100 

mL), dried over MgSO4, filtered, and concentrated to yield a colorless oil.  The oil was 

chromatographed through 250 g of silica gel using a solvent gradient from 50% 

hexanes/EtOAc to 30% hexanes/EtOAc to yield 3.94 as a colorless oil (3.30 g, 99%).  Rf 

= 0.13 (1:1 hexanes/EtOAc – CAM stain).  1H NMR (500 MHz, CDCl3) δ 4.77 (d, J = 

8.0 Hz, 1H), 3.68 (m, 1H), 3.58 (m, 2H), 3.50 (m, 2H), 3.41 (m, 1H), 3.08 (br-s, 1H), 

2.24 (br-s, 1H), 1.46 (m, 3H), 1.40 (s, 9H), 1.33-1.22 (m, 5H), 0.86 (s, 9H), 0.04 (s, 6H) 

ppm.  13C NMR (125 MHz, CDCl3) δ 156.4, 79.4, 72.6, 66.0, 65.5, 52.5, 33.7, 31.4, 28.3, 
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26.1, 25.8, 25.0, 18.0, -4.6, -4.7 ppm.  HRMS (FAB) m/z [M+H] + calcd for 

C19H42NO5Si+, 392.2832; obsd, 392.2838. 

 

(±)

CbzHN

OTBS

OH

HO

 

(±)-Benzyl (2R,7S)-7-(tert-butyldimethylsilyloxy)-1,8-dihydroxyoctan-2-

ylcarbamate (3.95).  Compound 3.95 was prepared following the procedure for 3.94.  

3.81 (1.949 g, 5.003 mmol) was treated with ozone at -78 °C, then NaBH4 (1.23 g, 32.5 

mmol) at -10 °C.  The crude material was purified through 100 g of silica gel using a 

solvent gradient from 50% EtOAc/hexanes to 60% EtOAc/hexanes to afford 3.95 as a 

colorless oil (2.02 g, 95%).  Rf = 0.11 (1:1 hexanes/EtOAc – CAM stain).  1H NMR (500 

MHz, CDCl3) δ 7.35 (m, 5H), 5.09 (s, 2H), 4.91 (d, J = 7.5 Hz, 1H), 3.0 (m, 3H), 3.56 

(m, 2H), 3.43 (m, 1H), 2.33 (br-s, 1H), 1.96 (t, J = 6.5 Hz, 1H), 1.49-1.25 (m, 8H), 0.89 

(s, 9H), 0.07 (s, 6H) ppm.  13C NMR (125 MHz, CDCl3) δ 156.7, 136.3, 128.5, 128.2, 

128.1, 72.6, 66.8, 66.1, 65.5, 53.1, 33.7, 31.3, 26.1, 25.9, 25.1, 18.1, -4.5, -4.6 ppm. 

 

(±)

BocHN

OH

OH

HO

 

(±)-tert-Butyl (2R,7S)-1,7,8-trihydroxyoctan-2-ylcarbamate (3.96).  Compound 

3.94 (0.418 g, 1.07 mmol) was dissolved in 5 mL of anhydrous THF in a flame-dried 



 273 

single-necked 25-mL round-bottomed flask under Ar.  TBAF (1.0 M, 1.60 mL, 1.60 

mmol) was added dropwise and the resultant light-yellow solution was stirred at RT 

under Ar.  After 4.5 h, the reaction was complete by TLC analysis (9:1 EtOAc/MeOH - 

CAM stain).  The reaction was concentrated by rotary evaporation (40-45 °C, 21 mm 

Hg), and the resultant yellow oil was chromatographed through 10 g of silica gel using a 

solvent gradient from 100% EtOAc to 90% EtOAc/MeOH to afford 80 as a colorless oil 

(285.5 mg, 87%).  The oil solidified upon standing for ~1 week.  1H NMR (500 MHz, d6-

DMSO) δ 6.32 (d, J = 8.0 Hz, 1H), 4.45 (t, J = 5.5 Hz, 1H), 4.32 (t, J = 5.5 Hz, 1H), 4.22 

(d, J = 5.0 Hz, 1H), 3.33 – 3.28 (m, 2H), 3.26 – 3.19 (m, 3H), 1.51 – 1.45 (m, 1H), 1.40 – 

1.37 (m, 11H), 1.31 – 1.27 (m, 1H), 1.25 – 1.17 (m, 4H) ppm.  13C NMR (125 MHz, d6-

DMSO) δ 155.3, 77.1, 70.9, 65.8, 63.5, 52.1, 33.3, 30.9, 28.1, 25.6, 25.1 ppm.  HRMS 

(FAB) m/z [M+H] + calcd for C13H28NO5
+, 278.1967; obsd, 278.1952. 

 

(±)

CbzHN

OH

OH

HO

 

(±)-Benzyl (2R,7S)-1,7,8-trihydroxyoctan-2-ylcarbamate (3.97).  Compound 

3.97 was prepared following the procedure for 3.96.  Compound 3.95 (1.00 g, 2.35 

mmol) was treated with 3.0 mL of 1.0 M TBAF (3.0 mmol).  The crude material was 

purified through 75 g of silica gel using a solvent gradient from 100% EtOAc to 90% 

EtOAc/MeOH to yield 3.97 as a colorless oil that solidified upon standing (0.641 g, 

88%).  mp = 81-83 °C.  Rf = 0.26 (9:1 EtOAc/MeOH – CAM stain).  1H NMR (500 

MHz, CD3OD) δ 7.35 – 7.28 (m, 5H), 5.07 (s, 2H), 3.58 (br-m, 2H), 3.49 – 3.39 (m, 4H), 
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1.62 – 1.30 (m, 8H) ppm.  13C NMR (125 MHz, CD3OD) δ 158.9, 138.5, 129.5, 129.0, 

128.8, 73.2, 67.40, 67.36, 65.4, 54.4, 34.4, 32.3, 27.2, 26.6 ppm. 

 

(±)

BocHN
OH

O
O

 

(±)-tert-Butyl (R)-6-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-1-hydroxyhexan-2-

ylcarbamate (3.98).  Compound 3.96 (1.499 g, 5.405 mmol) was dissolved in 55 mL of 

anhydrous THF in a flame-dried single-necked 250-mL round-bottomed flask under Ar.  

2,2-Dimethoxypropane (0.70 mL, 5.7 mmol) was added to the reaction, followed by 

anhydrous p-toluenesulfonic acid (48.1 mg, 0.279 mmol).  The reaction was stirred at RT 

under Ar for 6 h, at which time TLC analysis of the reaction mixture (1:1 hexanes/EtOAc 

and 9:1 EtOAc/MeOH - CAM stain) only shows a small amount of starting material and 

mostly one product.  About 300 mg of solid sodium carbonate was added to the reaction 

and the mixture was concentrated by rotary evaporation (30-35 °C, 21 mm Hg) to a 

yellow oil.  Saturated NaHCO3 (50 mL), H2O (20 mL), and EtOAc (75 mL) were added 

to the oil and the layers were separated.  The combined organic layers were washed with 

H2O (50 mL) and brine (50 mL), dried over Na2SO4, filtered, and concentrated to yield a 

yellow oil.  The oil was purified through 150 g of silica gel using a solvent gradient from 

75% hexanes/EtOAc to 33% hexanes/EtOAc to yield a light yellow oil. The oil was dried 

under vacuum (1.5 mm Hg) overnight to afford 3.98 as a waxy white solid (1.64 g, 96%).  

Rf = 0.14 (1:1 hexanes/EtOAc – CAM stain).  1H NMR (500 MHz, CDCl3) δ 4.73 (d, J = 
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7.0 Hz, 1H), 4.10 – 3.98 (m, 2H), 3.62 – 3.54 (br-m, 2H), 3.51 – 3.47 (m, 1H), 3.46 (t, J 

= 7.0 Hz, 1H), 2.83 (br, 1H), 1.61 – 1.57 (m, 1H), 1.52 -1.35 (m, 7H), 1.41 (s, 9H), 1.37 

(s, 3H), 1.32 (s, 3H) ppm.  13C NMR (125 MHz, CDCl3) δ 156.4, 108.6, 79.5, 75.9, 69.4, 

65.7, 52.6, 33.3, 31.3, 28.3, 26.9, 25.9, 25.7, 25.6 ppm.  HRMS (FAB) m/z [M+H] + calcd 

for C16H32NO5
+, 318.2280; obsd, 318.2259. 

 

(±)

CbzHN
OH

O
O

 

(±)-Benzyl (R)-6-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-1-hydroxyhexan-2-

ylcarbamate (3.99).  Compound 3.99 was prepared following the same procedure for 

3.98.  The use of 3.97 (0.641 g, 2.06 mmol), 2,2-dimethoxypropane (0.35 mL, 2.85 

mmol), and p-toluenesulfonic acid hydrate (27.8 mg, 0.146 mmol) provided a yellow oil.  

The oil was chromatographed through 75 g of silica using a solvent gradient from 75% 

hexanes/EtOAc to 33% hexanes/EtOAc and yielded 3.99 as an oil that solidified to a 

waxy solid upon standing (0.614 g, 85%).  1H NMR (500 MHz, CDCl3) δ 7.35 – 7.30 (m, 

5H), 5.09 (s, 2H), 4.95 (d, J = 7.5 Hz, 1H), 4.06 – 3.99 (m, 2H), 3.67 (br-m, 2H), 3.55 

(br-m, 1H), 3.47 (t, J = 7.5 Hz, 1H), 2.41 (br, 1H), 1.64 -1.24 (m, 8H), 1.39 (s, 3H), 1.34 

(s, 3H) ppm.  13C NMR (125 MHz, CDCl3) δ 156.7, 136.3, 128.5, 128.14, 128.08, 108.7, 

75.9, 69.4, 66.8, 65.4, 53.1, 33.3, 31.2, 26.9, 25.9, 25.7, 25.6 ppm. 
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BocHN
O

O
O

(±)
 

(±)-tert-Butyl (R)-6-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-1-oxohexan-2-

ylcarbamate (3.100).  Alcohol 3.98 (0.5158 g, 1.625 mmol) was dissolved in 10 mL of 

anhydrous CH2Cl2 in a flame-dried single-necked 50-mL round-bottomed flask under Ar.  

Dess-Martin periodinane (15 wt% in CH2Cl2, 5.10 mL, 2.40 mmol) was added and the 

resultant cloudy yellow mixture was stirred at RT.  The reaction was monitored by TLC 

(1:1 hexanes/EtOAc - CAM stain).  After 4 h, starting material remained and additional 

DMP was added (1 mL, ~0.3 eq).  After stirring for 45 min, 40 mL of 1:1 saturated 

NaHCO3/10 wt% Na2S2O3 was added to the reaction along with 10 mL of EtOAc.  The 

mixture was stirred at RT for 30 min until the solid material had completely dissolved.  

The layers were separated and the aqueous layer was extracted with EtOAc (3 x 50 mL).  

The combined organic layers were washed with saturated NaHCO3 (3 x 50 mL), H2O (50 

mL) and brine (50 mL), dried over Na2SO4, filtered, and concentrated to yield a yellow 

oil.  The oil was purified through 50 g of silica using a solvent gradient from 100% 

CH2Cl2 to 80% CH2Cl2/EtOAc to afford 3.100 as a light yellow oil that solidified upon 

standing to a waxy solid (0.489 g, 95%).  Rf = 0.40 (1:1 hexanes/EtOAc – CAM stain).  

1H NMR (500 MHz, CDCl3) δ 9.57 (br-s, 1H), 5.08 (d, J = 6.0 Hz, 1H), 4.21 (dd, J = 6.5, 

6.0 Hz, 1H), 4.06-4.00 (m, 2H), 3.48 (t, J = 7.0 Hz, 1H), 1.88 (br-m, 1H), 1.60-1.46 (m, 

5H), 1.44 (s, 9H), 1.39 (s, 3H), 1.34 (s, 3H) ppm.  13C NMR (125 MHz, CDCl3) δ 199.8, 
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155.5, 108.7, 80.1, 75.8, 69.4, 59.7, 33.2, 29.0, 28.3, 26.9, 25.7, 25.6, 25.1 ppm.  HRMS 

(FAB) m/z  [M+H]+ calcd for C16H30O5N
+, 316.2124; obsd, 316.2119. 

 

Aldehyde 3.100 from alcohol 3.98 by Swern oxidation.  Oxalyl chloride (0.20 

mL, 2.3 mmol) was added to 5 mL of anhydrous CH2Cl2 in a flame-dried, single-necked 

50-mL round-bottomed flask cooled to -78 °C (dry ice/acetone) under Ar.  In a separate 

flame-dried single-necked 10-mL round-bottomed flask was dissolved anhydrous 

dimethyl sulfoxide (0.35 mL, 4.9 mmol) in 5 mL of anhydrous CH2Cl2.  The DMSO 

solution was added to the oxalyl chloride solution slowly via cannula and the resultant 

solution was stirred at -78 °C for 20 min under Ar.  In a separate flame-dried single-

necked 25-mL round-bottomed flask under Ar was dissolved 3.98 (0.507 g, 1.60 mmol) 

in 10 mL of anhydrous CH2Cl2.  This solution was transferred dropwise to the reaction 

flask via cannula.  The resultant mixture was stirred at -78 °C for 1 h, then Et3N (1.25 

mL, 8.89 mmol) was added.  The mixture was stirred for 1 h at -78 °C, then the dry 

ice/acetone bath was removed and the mixture was allowed to slowly reach RT under Ar.  

After 1 h, the reaction mixture was diluted with H2O (25 mL) and CH2Cl2 (10 mL) and 

the layers were separated.  The aqueous layer was extracted with CH2Cl2 (2 x 25 mL) and 

the combined CH2Cl2 layers were washed with brine (30 mL), dried over MgSO4, and 

concentrated to yield an orange oil.  The crude material was chromatographed through 50 

g of silica using a solvent gradient from 100% CH2Cl2 to 75% CH2Cl2/EtOAc and 

yielded 3.100 as a yellow oil (0.460 g, 91.3% yield). 
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(±)

BocHN
OH

O
O

O

 

(±)-(R)-2-(tert-Butoxycarbonylamino)-6-((S)-2,2-dimethyl-1,3-dioxolan-4-

yl)hexanoic acid (3.101).  Oxidation using KMnO4.  Compound 3.100 (0.1592 g, 

0.5048 mmol) was dissolved in 10 mL of MeOH in a single-necked 50-mL round-

bottomed flask.  A solution of KMnO4 (0.185 g, 1.17 mmol) and 

benzyltriethylammonium chloride (5 mg, 0.02 mmol) in 15 mL of H2O was added and 

the mixture was stirred vigorously at RT.  The temperature of the mixture increased 

slightly and the color of the mixture changed from deep purple to a brownish/purple 

color.  After 5 h, the reaction was filtered.  EtOAc (20 mL) and H2O (10 mL) were added 

to the murky brown filtrate.  The aqueous layer was acidified to pH 3 using 6M HCl (3 

drops).  10 wt% sodium meta bisulfite (about 5 mL) was added and the brown mixture 

turned colorless.  The layers were separated and the aqueous was quickly extracted with 

EtOAc (3 x 10 mL).  The combined organic layers were dried over MgSO4, filtered, and 

concentrated to afford a colorless oil.  The oil was dried under vacuum (1.5 mm Hg) to 

afford a colorless oil (152.5 mg, 91.2% yield).  1H NMR (300 MHz, CDCl3) δ 9.93 (br-s, 

1H), 6.31 (m, 1H), 5.11 (d, J = 8.1 Hz, 1H), 4.27 (m, 1H), 4.07-3.99 (m, 3H), 3.47 (t, J = 

6.9 Hz, 1H), 1.82 (m, 1H), 1.66-1.57 (m, 3H), 1.41-1.32 (m, 2H), 1.42 (s, 9H), 1.38 (s, 

3H), 1.32 (s, 3H) ppm.  13C NMR (75 MHz, CDCl3) δ 176.8, 155.5, 108.7, 80.0, 75.8, 

69.3, 53.1, 33.2, 33.1, 32.2, 28.2, 26.8, 25.6, 25.3, 25.2 ppm. 
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Oxidation conditions for aldehyde 3.100 using NaClO2 (Table 3.7, entry 2).  

Aldenhyde 3.100 (55.0 mg, 0.174 mmol) was dissolved in 5 mL of 1:1 tBuOH/H2O in a 

20-mL scintillation vial.  2-Methyl-2-butene (0.40 mL, 3.8 mmol) was added followed by 

sodium chlorite (51.9, 0.574 mmol) and monobasic sodium phosphate (63.9 mg, 0.463 

mmol).  The mixture was stirred at RT for about 6 h, then partitioned between H2O (5 

mL) and EtOAc (5 mL).  The aqueous layer was carefully acidified to a pH of 2-3 (pH 

paper) using 1M HCl and the layers were separated.  The aqueous layer was extracted 

with EtOAc (2 x 5 mL) and the combined organic layers were dried over Na2SO4, 

filtered, and concentrated. 

 

Oxidation conditions for aldehyde 3.100 using Oxone (Table 3.7, entry 3).  

Aldehyde 3.100 (72.8 mg, 0.231 mmol) was dissolved in 4 mL of DMF in a 20-mL 

scintillation vial.  Oxone (160 mg, 0.26 mmol) was added in one portion and the mixture 

was stirred at RT for 5 h.  The reaction was partitioned between H2O (10 mL) and EtOAc 

(10 mL).  The aqueous layer was a pH of 2-3 (pH paper).  The layers were separated and 

the aqueous layer was extracted with EtOAc (2 x 10 mL).  The combined organic layers 

were dried over Na2SO4, filtered, and concentrated to afford a residue. 

 

Oxidation conditions for aldehyde 3.100 using Ag2O (Table 3.7, entry 5).  

Aldehyde 3.100 (59.7 mg, 0.189 mmol) was dissolved in 3 mL of EtOH in a 20 mL 

scintillation vial.  A solution of silver nitrate (82 mg, 0.48 mmol) in 0.5 mL of H2O was 

added, followed by the dropwise addition of a solution of KOH (62 mg, 1.1 mmol) in 1.5 

mL of H2O.  A brown solid precipitated out of solution immediately.  The mixture was 
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stirred at RT for about 4 h.  The brown solid was removed by filtration and the filtrate 

was diluted with EtOAc (5 mL) and H2O (5 mL).  The aqueous layer was carefully 

acidified to a pH of about 2-3 (pH paper) using 1M HCl.  The layers were separated and 

the aqueous layer was extracted with EtOAc (2 x 5 mL).  The combined organic layers 

were dried over Na2SO4, filtered, and concentrated to afford a residue. 

 

(±)

BocHN
OMe

O
O

O

 

(±)-(R)-Methyl 2-(tert-butoxycarbonylamino)-6-((S)-2,2-dimethyl-1,3-

dioxolan-4-yl)hexanoate (3.102).  Crude 3.101, prepared as described above from 

oxidation of 3.100 (79.8 mg, 0.253 mmol) using KMnO4, was dissolved in about 10 mL 

of Et2O and 2 mL of THF and treated with an excess of diazomethane in Et2O.  The 

resultant yellow solution was quenched with a 10 vol% acetic acid/Et2O solution until the 

yellow color disappeared.  Saturated NaHCO3 (20 mL) was added and the layers were 

separated.  The aqueous layer was extracted with EtOAc (2 x 5 mL) and the combined 

organic layers were washed with brine (5 mL), dried over Na2SO4, filtered, and 

concentrated.  The crude material was chromatographed through 5 g of silica using a 

solvent gradient from 100% CH2Cl2 to 90% CH2Cl2/EtOAc to afford 3.102 as a yellow 

oil (63.2 mg, 72.3% yield).  Rf = 0.46 (1:1 hexanes/EtOAc – CAM stain).  1H NMR (500 

MHz, CDCl3) δ 5.03 (d, J = 8.5 Hz, 1H), 4.26 (dd, J = 13.0, 7.5 Hz, 1H), 4.06-3.99 (m, 

2H), 3.71 (s, 3H), 3.47 (t, J = 7.0 Hz, 1H), 1.90-1.75 (m, 1H), 1.70-1.55 (m, 2H), 1.50-
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1.30 (m, 3H), 1.42 (s, 9H), 1.38 (s, 3H), 1.32 (s, 3H) ppm.  13C NMR (125 MHz, CDCl3) 

δ 173.3, 155.3, 108.6, 79.8, 75.8, 69.4, 53.3, 52.2, 33.2, 32.5, 28.3, 26.9, 25.7, 25.3, 25.2 

ppm.  HRMS (FAB) m/z [M+H] + calcd for C17H32NO6
+, 346.2230; obsd, 346.2219. 

 

BocHN
OAc

O
O

(±)  

(±)-(R)-2-(tert-butoxycarbonylamino)-6-((S)-2,2-dimethyl-1,3-dioxolan-4-

yl)hexyl acetate (3.105).  Compound 3.105 was prepared following the same procedure 

used for 3.77.  The use of 3.98 (0.503 g, 1.58 mmol) and acetic anhydride (0.40 mL, 4.2 

mmol) provided a yellow oil.  The oil was chromatographed through a Biotage 40S 

column using a solvent gradient from 100% CH2Cl2 to 85% CH2Cl2/EtOAc and yielded 

3.105 as a colorless oil.  The oil was dried under vacuum overnight to provide 3.105 

(0.529 g, 92.9% yield).  Rf = 0.44 (1:1 hexanes/EtOAc – CAM stain).  1H NMR (300 

MHz, CDCl3) δ 4.53 (d, J = 9.0 Hz, 1H), 4.04 (m, 4H), 3.83 (br, 1H), 3.49 (t, J = 6.9 Hz, 

1H), 2.07 (s, 3H), 1.70 – 1.35 (m, 8H), 1.45 (s, 9H), 1.41 (s, 3H), 1.35 (s, 3H) ppm.  13C 

NMR (75 MHz, CDCl3) δ 170.9, 155.4, 108.6, 75.9, 69.4, 66.3, 49.4, 33.3, 31.7, 28.3, 

26.9, 25.8, 25.7, 25.6, 20.8 ppm.  HRMS (FAB) m/z [M+H] + calcd for C18H34NO6
+, 

360.2386; obsd, 360.2388. 
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(±)

BocHN
OAc

OH
HO

 

(±)-(2R,7S)-2-(tert-Butoxycarbonylamino)-7,8-dihydroxyoctyl acetate (3.106).  

Compound 3.105 (0.253 g, 0.703 mmol) was dissolved in 6 mL of MeOH in a 20-mL 

scintillation vial.  Pyridinium para-toluenesulfonate (21.4 mg, 0.0852 mmol) was added 

and the mixture was stirred at RT.  After 1.5 h, the distinct aroma of 2,2-

dimethoxypropane was detected in the reaction mixture.  TLC of the reaction indicated a 

new more polar spot (just above baseline, 1:1 hexanes/EtOAc - CAM stain), but 3.105 

remained (Rf = 0.44).  After 24 h, no change was observed. The reaction was 

concentrated (to remove the 2,2-dimethoxypropane), and the resultant colorless oil was 

dissolved in 5 mL of MeOH and stirred at RT.  Only a small amount of 3.105 remained 

after stirring for 1 day.  The reaction was concentrated and the colorless oil was 

partitioned between EtOAc (20 mL), and H2O (10 mL).  The layers were separated and 

the organic layer was washed with 1M HCl (3 x 5 mL), H2O (5 mL), saturated NaHCO3 

(2 x 5 mL), and brine (5 mL), dried over Na2SO4, filtered, and concentrated to yield a 

colorless oil.  The oil was chromatographed through 15 g of silica using 100% EtOAc to 

yield 3.106 as a light yellow oil (171.1 mg, 76.2% yield).  Rf = 0.2 (100% EtOAc – CAM 

stain).  1H NMR (300 MHz, CDCl3) δ 4.74 (d, J = 7.8 Hz, 1H), 4.04 (m, 2H), 3.83 (br, 

1H), 3.69 – 3.60 (m, 2H), 3.42 (dd, J = 11.1, 7.5 Hz, 1H), 3.32 (br, 2H), 2.07 (s, 3H), 

1.52 – 1.32 (m, 8H), 1.44 (s, 9H) ppm.  13C NMR (75 MHz, CDCl3) δ 171.0, 155.6, 79.4, 

72.0, 66.6, 49.3, 32.7, 28.3, 25.6, 25.2, 20.8 ppm. 
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Attempted oxidation of 3.106 using trichloroisocyanuric acid/TEMPO.   

Compound 3.106 (59.7 mg, 0.187 mmol) was dissolved in 2 mL of CH2Cl2 in a 20-mL 

scintillation vial and cooled in an ice/H2O bath.  Trichloroisocyanuric acid (47.0 mg, 

0.202 mmol) was added, followed by TEMPO (1 mg, 0.006 mmol).  The yellow reaction 

was stirred in the ice/H2O bath.  A complex mixture was observed after 1 h. 

 

Enzymatic resolution of (±)-3.76 using Novozyme 435.  CH2Cl2 (40 mL) and 

wet n-heptane (50 mL) were added to (±)-3.76 (2.268 g, 9.40 mmol) in a 250-mL 

erlenmayer flask.  To the slurry was added vinyl acetate (2.90 mL, 31.5 mmol), followed 

by immobilized C. antarctica B lipase enzyme (Novozyme 435, 255 mg).  The mixture 

was not completely in solution.  The mixture was shaken at 37 °C overnight.  After 15 h, 

an aliquot was removed, concentrated, and the resultant solid was analyzed by 1H NMR.  

The reaction was determined to have proceeded to 50% conversion.  The immobilized 

enzyme was removed from the mixture by filtration and washed with portions of EtOAc 

(10 mL) and CH2Cl2 (10 mL).  The filtrate was concentrated to yield a white solid.  The 

solid was chromatographed through 250 g of silica using a solvent gradient from 100% 

CH2Cl2 to 80% CH2Cl2/EtOAc to elute (+)-3.77 and 50% CH2Cl2/EtOAc to elute (-)-

3.76.  Total recovery was 97%. 

 

OAcBocHN

 

(+)-(1R,4S,Z)-4-(tert-Butoxycarbonylamino)cyclooct-2-enyl acetate (+)-3.77.  

Compound (+)-3.77 was isolated as above as an off-white crystalline solid (1.24 g, 46% 
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yield).  NMR spectra matches racemic 3.77.  mp = 125-126 °C.  [α]23 = +69.6 (c = 0.53 

in MeOH).  HRMS (FAB) m/z [M+H] + calcd for C15H26NO4
+, 284.1862; obsd, 284.1885. 

 

OHBocHN

 

(-)-tert-Butyl (1R,4S,Z)-4-hydroxycyclooct-2-enylcarbamate (-)-3.76.  

Compound (-)-3.76 was isolated as above as a white amorphous solid (1.14 g, 50% 

yield).  NMR spectra matches racemic 3.76.  mp = 151-152 °C.  [α]23 = -84.1 (c = 0.52 in 

MeOH).  HRMS (FAB) m/z [M+H] + calcd for C13H24NO3
+, 242.1756; obsd, 242.1739. 

 

OAcBocHN

 

(-)-(1S,4R,Z)-4-(tert-Butoxycarbonylamino)cyclooct-2-enyl acetate (-)-3.77.  

Compound (-)-3.77 was prepared following the same procedure for (±)-3.77.  Compound 

(-)-3.76 (0.153 g, 0.632 mmol) and acetic anhydride (0.15 mL, 1.59 mmol) provided (-)-

3.77 as an off-white solid (0.167 g, 93% yield).  NMR spectra matches racemic 3.77. 

 

OHBocHN

 

(+)-tert-Butyl (1S,4R,Z)-4-hydroxycyclooct-2-enylcarbamate (+)-3.76.  

General procedure for acetate removal using K2CO3.  A 100-mL round-bottomed 

flask was charged with potassium carbonate (0.731 g, 5.29 mmol) and flame-dried under 

Ar.  (+)-3.77 (1.05 g, 3.70 mmol) was added and dissolved in 20 mL of anhydrous 

methanol.  The mixture was stirred at RT under Ar.  After 2.5 h, the reaction was 
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complete by TLC (1:1 hexanes/EtOAc - CAM stain) analysis.  The yellow mixture was 

partitioned between EtOAc (50 mL), H2O (25 mL), and brine (25 mL) and the layers 

were separated.  The aqueous layer was extracted with EtOAc (2 x 25 mL) and the 

combined organic layers were washed with H2O (25 mL) and brine (2 x 25 mL), dried 

over MgSO4, filtered, and concentrated to yield a white solid.  The solid was dried under 

vacuum overnight (1.5 mm Hg) to yield (+)-3.76 as a white solid (0.884 g, 99% yield).  

NMR spectra matches racemic 3.76.  mp = 150.5-151.5 °C.  [α]23 = +109 (c = 0.50 in 

MeOH). 

 

N

O2N

CO2H

 

(R)-1-(2-Nitrophenyl)pyrrolidine-2-carboxylic acid, R-2-NPP (3.108).  D-

Proline (1.06 g, 9.18 mmol) was dissolved in 100 mL of EtOH/H2O (1:1) in a 250-mL 

round-bottomed flask fitted with a stir bar and condenser.  Sodium bicarbonate (2.08 g, 

24.8 mmol) was added, followed by 1-fluoro-2-nitrobenzene (0.96 mL, 9.1 mmol).  The 

reaction was heated to reflux in an oil bath (oil temperature = 95-100 °C).  After about 10 

min, the color of the solution changed from yellow to red.  After 5 h, the mixture was 

cooled and stirred at RT overnight.  The volume of the red solution was reduced to about 

30-40 mL by rotary evaporation and the red mixture was acidified to pH 2-3 (pH paper) 

by adding 1M HCl (25-30 mL).  Yellow solid precipitated out of the solution.  The 

mixture was diluted with EtOAc (75 mL) and the layers were separated.  The aqueous 

layer was extracted with EtOAc (3 x 30 mL) and the combined organic layers were dried 

over MgSO4, filtered, and concentrated to yield a sticky orange oil.  The oil was dried 
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under vacuum (~2 torr).  After the sticky oil was scratched with a spatula and left to stand 

overnight at 4 °C, the oil solidified to yield 3.108 as a yellow solid (2.2 g, ~100% yield).  

[α]23 = +933 (c = 1.0 in MeOH); lit.6 = +1020 (c = 1.0 in MeOH).  1H NMR (500 MHz, 

CDCl3) δ 10.28 (br, 1H), 7.73 (dd, J = 8.0, 1.5 Hz, 1H), 7.39 (tdd, J = 7.5, 1.5, 0.5 Hz, 

1H), 6.86 (m, 2H), 4.43 (t, J = 7.5 Hz, 1H), 3.55 (td, J = 9.5, 7.5 Hz, 1H), 3.07 (ddd, J = 

9.5, 7.5, 4.0 Hz, 1H), 2.49 (dtd, J = 12, 7.0, 5.0 Hz, 1H), 2.20 – 2.07 (m, 2H), 1.98 – 1.89 

(m, 1H) ppm.  13C NMR (125 MHz, CDCl3) δ 177.9, 141.2, 138.9, 133.2, 126.6, 118.2, 

116.8, 61.7, 51.9, 30.9, 24.8 ppm. 

 

N

O2N

CO2H

 

(S)-1-(2-Nitrophenyl)pyrrolidine-2-carboxylic acid, S-2-NPP (3.109).  

Compound 3.109 was prepared following the same procedure used for 3.108.  L-proline 

(1.05 g, 9.12 mmol), 1-fluoro-2-nitrobenzene (0.96 mL, 9.08 mmol), and sodium 

bicarbonate (2.0 g, 24 mmol) provided 3.109 as a sticky orange oil (2.10 g, 98% yield).  

NMR spectra is identical to 3.108.  [α]23 = -941 (c = 1.0 in MeOH); lit. = -1080 (c = 1.0 

in MeOH). 

 

OAc
H
N

O
N

O2N

 

(1S,4R,Z)-4-((R)-1-(2-Nitrophenyl)pyrrolidine-2-carboxamido)cyclooct-2-enyl 

acetate (3.110).  Compound (-)-3.77 (126 mg, 0.445 mmol) was dissolved in 5 mL of 
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CH2Cl2 in a 25-mL round-bottomed flask.  Triethylsilane (0.080 mL, 0.50 mmol) was 

added, followed by trifluoroacetic acid (0.50 mL, 6.7 mmol).  The light yellow solution 

was stirred at RT under Ar.  The reaction was monitored by TLC (1:1 hexanes/EtOAc - 

CAM stain, ninhydrin stain) for the disappearance of (-)-3.77.  After 1.5 h, the reaction 

was still incomplete and an additional 0.5 mL (6.7 mmol) TFA was added.  After 2 h, the 

reaction was complete and the reaction was diluted with CH2Cl2 (10 mL) and poured into 

50 mL of saturated NaHCO3.  The pH of the aqueous layer was adjusted to 8 (pH paper) 

by adding portions of solid Na2CO3.  The layers were separated and the aqueous layer 

was extracted with CH2Cl2 (3 x 15 mL).  The combined organic layers were dried over 

MgSO4, filtered, and concentrated to yield a yellow oil (59.3 mg, 73% yield of free 

amine). 

The free amine intermediate (28.2 mg, 0.154 mmol) and HOBt (26.2 mg, 0.194 

mmol) were dissolved in 2 mL of CH3CN in a 25-mL round-bottomed flask under Ar.  

3.108 (44.4 mg, 0.188 mmol) was added as a solution in 3 mL of dry CH3CN.  EDC•HCl 

(44 mg, 0.23 mmol) was added to the yellow solution and the mixture was stirred at RT 

under Ar.  After 2 days, the reaction was analyzed by TLC (1:1 hexanes/EtOAc - UV 

lamp).  The mixture was concentrated and the yellow residue was partitioned between 

H2O (10 mL), and EtOAc (10 mL).  The layers were separated and the aqueous layer was 

extracted with EtOAc (2 x 15 mL).  The combined organic layers were washed with H2O 

(20 mL), saturated NaHCO3 (2 x 20 mL), H2O (20 mL), 10 wt% citric acid (2 x 20 mL), 

H2O (20 mL), and brine (20 mL), dried over Na2SO4, filtered, and concentrated.  The 

crude material was chromatographed through 15 g of silica using a solvent gradient from 

100% CH2Cl2 to 60% CH2Cl2/EtOAc to yield 3.110 as a bright yellow oil (49.8 mg, 
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80.6% yield).  Rf = 0.31 (3:2 CH2Cl2/EtOAc – UV lamp).  1H NMR (300 MHz, CDCl3) δ 

7.76 (dd, J = 8.4, 1.8 Hz, 1H), 7.41 (ddd, J = 8.7, 7.2, 1.5 Hz, 1H), 7.03 (d, J = 8.4 Hz, 

1H), 6.96 – 6.87 (m, 2H), 5.59 (m, 1H), 5.44 (ddd, J = 10.8, 7.2, 1.2 Hz, 1H), 5.05 (ddd, J 

= 11.1, 8.4, 1.5 Hz, 1H), 4.63 (m, 1H), 4.41 (t, J = 7.5 Hz, 1H), 3.64 (m, 1H), 2.82 (m, 

1H), 2.58 (m, 1H), 2.03 – 1.85 (m, 6H), 1.62 – 1.25 (m, 6H) ppm.  13C NMR (75 MHz, 

CDCl3) δ 171.4, 169.9, 142.0, 140.1, 133.6, 130.2, 130.1, 126.2, 119.4, 117.5, 72.0, 63.2, 

53.1, 47.6, 35.8, 34.9, 31.6, 25.5, 23.8, 23.0, 21.2 ppm.  HRMS (FAB) m/z [M+H] + calcd 

for C21H28N3O5
+, 402.2029; obsd, 402.2003. 

 

OAc
H
N

O
N

O2N

 

(1S,4R,Z)-4-((S)-1-(2-Nitrophenyl)pyrrolidine-2-carboxamido)cyclooct-2-enyl 

acetate (3.111).  Compound 3.111 was prepared following the same procedure used for 

3.110.  Used the free amine intermediate (28.9 mg, 0.158 mmol), HOBt (25.0 mg, 0.185 

mmol), 3.109 (46.0 mg, 0.195 mmol), and EDC•HCl (43 mg, 0.22 mmol) to provide 

3.111 as a bright yellow oil (62.6 mg, 98.9% yield).  Rf = 0.31 (3:2 CH2Cl2/EtOAc – UV 

lamp).  1H NMR (300 MHz, CDCl3) δ 7.76 (dd, J = 8.4, 2.1 Hz, 1H), 7.41 (ddd, J = 8.7, 

7.2, 1.5 Hz, 1H), 7.03 (d, J = 8.4 Hz, 1H), 6.93 (td, J = 8.4, 1.2 Hz, 1H), 6.85 (d, J = 7.2 

Hz, 1H), 5.66 – 5.27 (m, 2H), 5.33 (m, 1H), 4.62 (m, 1H), 4.41 (t, J = 7.5 Hz, 1H), 3.64 

(m, 1H), 2.81 (m, 1H), 2.56 (m, 1H), 2.10 – 1.80 (m, 6H), 1.70 – 1.30 (m, 6H) ppm.  13C 

NMR (75 MHz, CDCl3) δ 171.4, 170.0, 141.9, 140.0, 133.4, 130.4, 130.0, 126.1, 119.3, 
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117.3, 72.0, 63.4, 53.0, 47.6, 35.5, 34.9, 31.5, 25.6, 23.7, 22.9, 21.2 ppm.  HRMS (FAB) 

m/z [M+H] + calcd for C21H28N3O5
+, 402.2029; obsd, 402.2009. 

 

OTBSBocHN

 

(-)-tert-Butyl (1R,4S,Z)-4-(tert-butyldimethylsilyloxy)cyclooct-2-

enylcarbamate (1R,4S)-3.79.  The title compound was prepared following the same 

procedure used for racemic 3.79.  The use of (-)-3.76 (0.916 g, 3.80 mmol), imidazole 

(1.05 g, 15.5 mmol), and tert-butyldimethylsilyl chloride (1.03 g, 6.84 mmol) provided (-

)-3.79 as a white solid (1.148 g, 85.1% yield).  mp = 85.5-86.5 °C.  NMR spectra matches 

racemic 3.79.  [α]23 = -12.5 (c = 0.52 in MeOH). 

 

OTBSBocHN

 

(+)-tert-Butyl (1S,4R,Z)-4-(tert-butyldimethylsilyloxy)cyclooct-2-

enylcarbamate (1S,4R)-3.79.  The title compound was prepared following the same 

procedure used for racemic 3.79.  The use of (+)-3.76 (1.36 g, 5.65 mmol), imidazole 

(1.54 g, 22.6 mmol), and tert-butyldimethylsilyl chloride (1.54 g, 10.2 mmol) provided 

(+)-3.79 as a white solid (1.91 g, 95.1% yield).  mp = 85.5-86.5 °C.  NMR spectra 

matches racemic 3.79.  [α]23 = +17.1 (c = 0.53 in MeOH). 
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BocHN

OTBS

OH

HO
 

tert-Butyl (2R,7S)-7-(tert-butyldimethylsilyloxy)-1,8-dihydroxyoctan-2-

ylcarbamate (2R,7S)-3.94.  The title compound was prepared following the same 

procedure used for racemic 3.94.  The use of (-)-3.79 (2.45 g, 6.89 mmol) and sodium 

borohydride (1.41 g, 37.3 mmol) provided (2R,7S)-3.94 as a light yellow sticky oil (2.71 

g, 99% yield).  NMR spectra matches racemic 3.94.  [α]23 ~ 0 (c = 0.5 in MeOH).  

HRMS (FAB) m/z [M+H] + calcd for C19H42NO5Si+, 392.2832; obsd, 392.2812. 

 

BocHN

OTBS

OH

HO
 

tert-Butyl (2S,7R)-7-(tert-butyldimethylsilyloxy)-1,8-dihydroxyoctan-2-

ylcarbamate (2S,7R)-3.94.  The title compound was prepared following the same 

procedure used for racemic 3.94.  The use of (+)-3.79 (1.84 g, 5.19 mmol) and sodium 

borohydride (1.01 g, 26.7 mmol) provided (2S,7R)-3.94 as a light yellow sticky oil (1.63 

g, 80.2% yield).  NMR spectra matches racemic 3.94.  [α]23 ~ 0 (c = 0.5 in MeOH).  

HRMS (FAB) m/z [M+H] + calcd for C19H42NO5Si+, 392.2832; obsd, 392.2841. 
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BocHN

OH

OH

HO
 

tert-Butyl (2R,7S)-1,7,8-trihydroxyoctan-2-ylcarbamate (2R,7S)-3.96.  The 

title compound was prepared following the same procedure used for racemic 3.96.  The 

use of (2R,7S)-3.94 (2.56 g, 6.54 mmol) and 1.0M TBAF in THF (8.0 mL, 8.0 mmol) 

provided (2R,7S)-3.96 as a white solid (1.64 g, 90.3% yield).  mp = 75-77 °C.  NMR 

spectra matches racemic 3.96.  [α]23 = -1.1 (c = 0.47 in MeOH). 

 

BocHN

OH

OH

HO
 

tert-Butyl (2S,7R)-1,7,8-trihydroxyoctan-2-ylcarbamate (2S,7R)-3.96.  The 

title compound was prepared following the same procedure used for racemic 3.96.  The 

use of (2S,7R)-3.94 (1.55 g, 3.96 mmol) and 1.0M TBAF in THF (4.8 mL, 4.8 mmol) 

provided (2S,7R)-3.96 as a white solid (0.982 g, 89.3% yield).  mp = 74-76 °C.  NMR 

spectra matches racemic 3.96.  [α]23 = -5.2 (c = 0.33 in MeOH). 
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BocHN
OH

O
O

 

tert-Butyl (R)-6-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-1-hydroxyhexan-2-

ylcarbamate (2R,7S)-3.98.  The title compound was prepared following the same 

procedure used for racemic 3.98.  The use of (2R,7S)-3.96 (1.52 g, 5.49 mmol), 2,2-

dimethoxypropane (0.70 mL, 5.7 mmol), and p-toluenesulfonic acid (45 mg, 0.26 mmol) 

provided (2R,7S)-3.98 as a yellow oil that solidified upon standing (1.64 g, 95.5% yield).  

NMR spectra matches racemic 3.98.  [α]23 ~ 0 (c = 0.5 in MeOH).  HRMS (FAB) m/z 

[M+H] + calcd for C16H32NO5
+, 318.2280; obsd, 318.2259.   

 

BocHN
OH

O
O

 

tert-Butyl (S)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-1-hydroxyhexan-2-

ylcarbamate (2S,7R)-3.98.  The title compound was prepared following the same 

procedure used for racemic 3.98.  The use of (2S,7R)-3.96 (0.837 g, 3.02 mmol), 2,2-

dimethoxypropane (0.38 mL, 3.1 mmol), and p-toluenesulfonic acid (25 mg, 0.15 mmol) 

provided (2S,7R)-3.98 as a yellow oil that solidified upon standing (0.683 g, 71.4% 

yield).  NMR spectra matches racemic 3.98.  [α]23 ~ 0 (c = 0.5 in MeOH).  HRMS (FAB) 

m/z [M+H] + calcd for C16H32NO5
+, 318.2280; obsd, 318.2268.   
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BocHN
O

O
O

 

(-)-tert-Butyl (R)-6-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-1-oxohexan-2-

ylcarbamate (2R,7S)-3.100.  The title compound was prepared following the same 

procedure used for racemic 3.100 by Swern oxidation.  (2R,7S)-3.98 (0.560 g, 1.76 

mmol), oxalyl chloride (0.23 mL, 2.7 mmol), DMSO (0.33 mL, 4.6 mmol), and 

triethylamine (1.20 mL, 8.54 mmol) provided (2R,7S)-3.100 as a yellow oil that 

solidified (0.447 g, 80.3% yield).  mp = 42-45 °C.  NMR spectra matches racemic 3.100.  

[α]23 = -7.7 (c = 0.59 in CHCl3).  HRMS (FAB) m/z [M+H] + calcd for C16H30NO5
+, 

316.2124; obsd, 316.2131. 

 

BocHN
O

O
O

 

(+)-tert-Butyl (S)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-1-oxohexan-2-

ylcarbamate (2S,7R)-3.100.  The title compound was prepared following the same 

procedure used for racemic 3.100 by Swern oxidation.  (2S,7R)-3.98 (0.411 g, 1.30 

mmol), oxalyl chloride (0.18 mL, 2.1 mmol), DMSO (0.33 mL, 4.6 mmol), and 

triethylamine (0.90 mL, 6.4 mmol) provided (2S,7R)-3.100 as a yellow oil that solidified 
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(0.353 g, 86.3% yield).  mp = 45-47 °C.  NMR spectra matches racemic 3.100.  [α]23 = 

+36.2 (c = 0.54 in CHCl3).  HRMS (FAB) m/z [M+H] + calcd for C16H30NO5
+, 316.2124; 

obsd, 316.2131. 

 

CO2HBocHN

O
O

 

(R)-2-(tert-Butoxycarbonylamino)-6-((S)-2,2-dimethyl-1,3-dioxolan-4-

yl)hexanoic acid (2R,7S)-3.101.  The title compound was prepared following the same 

procedure used for racemic 3.101 by KMnO4 oxidation.  (2R,7S)-3.100 (0.458 g, 1.45 

mmol), KMnO4 (0.506 g, 3.20 mmol), and benzyltriethylammonium chloride (17.4 mg, 

0.0764 mmol) provided (2R,7S)-3.101 as a yellow oil (0.435 g, 90.5% yield).  NMR 

spectra matches racemic 3.101.  [α]23 = -5.2 (c = 0.35 in CHCl3).  HRMS (FAB) m/z 

[M+H] + calcd for C16H30NO6
+, 332.2073; obsd, 332.2054. 

 

CO2HBocHN

O
O

 

(S)-2-(tert-Butoxycarbonylamino)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-

yl)hexanoic acid (2S,7R)-3.101.  The title compound was prepared following the same 

procedure used for racemic 3.101 by KMnO4 oxidation.  (2S,7R)-3.100 (0.372 g, 1.18 
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mmol), KMnO4 (0.412 g, 2.61 mmol), and benzyltriethylammonium chloride (15.7 mg, 

0.0689 mmol) provided (2S,7R)-3.101 as a yellow oil (0.307 g, 78.6% yield).  NMR 

spectra matches racemic 3.101.  [α]23 = -2.1 (c = 0.39 in CHCl3).  HRMS (FAB) m/z 

[M+H] + calcd for C16H30NO6
+, 332.2073; obsd, 332.2048. 

 

CbzHN CO2H

OH

+

CbzHN CO2H  

Procedure for diazotization of L-lysine.  Preparation of intermediate 

carboxylic acids 3.113 and 3.114.  A 3-necked 500-mL round-bottomed flask was 

charged with Cbz-L-Lys-OH (3.112, 10.34 g, 36.88 mmol) and 150 mL of H2O.  The 

flask was fitted with a temperature probe and a pH probe and the solution was heated to 

60 °C (internal temperature) in an oil bath.  The pH of the solution was adjusted to 9.5 

through the addition of 3M NaOH (or 6M HCl if too basic).  Sodium nitroferricyanide 

dihydrate (13.20 g, 44.30 mmol) was added to the solution in portions while the solution 

was stirred vigorously at 60 °C.  As the reaction became more acidic, the pH was 

maintained at 9.5 by the addition of 3M NaOH.  Bubbles were observed and the color of 

the solution chanbed from colorless to yellow to a brick red suspension.  After the 

addition was complete, the reaction was stirred vigorously while the internal temperature 

was maintained at 60 °C and the pH was maintained at 9.5 for 4 h.  The mixture was 

cooled to RT, then filtered through a pad of celite.  The filter cake was washed with H2O 

(200 mL) and the reddish-orange filtrate was extracted with EtOAc (3 x 200 mL).  The 

combined organic layers were washed with brine (2 x 100 mL), dried over MgSO4, 

filtered, and concentrated to yield a yellow oil (11.7 g crude material).  The crude 
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material was used directly for the preparation of compounds 3.115-3.118 without 

purification. 

 

CbzHN

H
N

O

OBn

OH

 

(S)-Benzyl 1-(benzyloxyamino)-6-hydroxy-1-oxohexan-2-ylcarbamate (3.115).  

The crude mixture of 3.113 and 3.114 (36.9 mmol) was dissolved in 300 mL of THF and 

225 mL of H2O in a 1-L beaker equipped with a stir bar and pH probe.  O-

Benzylhydroxylamine hydrochloride (8.90 g, 55.8 mmol) was added and the pH of the 

yellow solution was adjusted to 4.5 by adding 3M NaOH (~10-15 mL).  To the yellow 

solution was added EDC•HCl (30.1 g, 157 mmol) in portions over 80 min.  The pH of the 

reaction was re-adjusted to 4.5 by adding 6M HCl as the pH of the solution increased.  

The mixture became cloudy after ~1-2 equivalents of EDC was added.  After the addition 

of EDC•HCl was complete, the mixture was stirred for an additional 50 min (~2 h total 

reaction time) as the pH was maintained at 4.5 by adding 6M HCl.  EtOAc (150 mL) was 

added and the layers were separated.  The aqueous layer was extracted with EtOAc (3 x 

150 mL), and the combined organic layers were washed with brine (2 x 100 mL), dried 

over Na2SO, filtered, and concentrated to yield a light yellow solid.  The crude material 

was purified through 500 g of silica using 80% CH2Cl2/EtOAc to afford the alkene 

product, 3.116 (see below), then 100% EtOAc to afford the alcohol product, 3.115 as a 

fluffy white solid (6.14 g, 43.1% yield from 3.112).  mp = 115-117 °C.  1H NMR (500 

MHz, CDCl3) δ 9.89 (s, 1H), 7.31 (m, 10H), 5.76 (d, J = 8.5 Hz, 1H), 5.02 (d, J = 12.5 

Hz, 1H), 4.95 (d, J = 12.5 Hz, 1H), 4.87 (d, J = 11 Hz, 1H), 4.84 (d, J = 11 Hz, 1H), 4.04 
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(q, J = 7.5 Hz, 1H), 3.50 (m, 2H), 2.58 (br, 1H), 1.76 – 1.68 (m, 1H), 1.63 – 1.55 (m, 

1H), 1.50 – 1.48 (m, 2H), 1.35 – 1.30 (m, 2H) ppm.  13C NMR (125 MHz, CDCl3) δ 

169.3, 156.3, 135.9, 135.0, 129.2, 128.7, 128.5, 128.4, 128.2, 127.9, 78.1, 67.1, 62.0, 

52.3, 32.1, 31.7, 21.7 ppm.  HRMS (FAB) m/z [M+H] + calcd for C21H27N2O5
+, 387.1920; 

obsd, 387.1927. 

 

CbzHN CO2H  

(S)-2-(Benzyloxycarbonylamino)hex-5-enoic acid (3.116).  Compound 3.116 

was isolated as described above as a yellow oil that solidified upon standing (3.96 g, 

29.2% yield from 3.112).  Still contains impurities by NMR.  1H NMR (500 MHz, 

CDCl3) δ 9.43 (s, 1H), 7.36 – 7.30 (m, 10H), 5.73 (td, J = 16.8, 6.5 Hz, 1H), 5.56 (d, J = 

8.5 Hz, 1H), 5.05 – 4.95 (m, 5H), 4.88 (s, 2H), 4.05 (q, J = 7.5 Hz, 1H), 2.10 – 1.95 (m, 

2H), 1.89 – 1.81 (m, 1H), 1.73 – 1.65 (m, 1H) ppm.  13C NMR (125 MHz, CDCl3) δ 

169.1, 156.2, 136.8, 135.8, 135.0, 129.2, 128.7, 128.5, 128.2, 128.0, 127.9, 115.8, 78.2, 

67.1, 51.8, 31.2, 29.4, 17.9 ppm.  MS (FAB) m/z [M+H] + at 369 (base peak), 325, 246, 

214. 

 

CbzHN CO2Me

OH

 

(S)-Methyl 2-(benzyloxycarbonylamino)-6-hydroxyhexanoate (3.118).  The 

crude mixture of 3.13 and 3.14 (12 mmol) was dissolved in about 100 mL of anhydrous 
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Et2O.  The blue-green solution was cooled in a crushed ice/H2O bath and a solution of 

excess CH2N2 in ether was added dropwise to the mixture.  The reaction was stirred in 

the ice/H2O bath for an additional 20 min then quenched by adding 10% acetic acid in 

Et2O (some bubbling was observed).  The mixture was poured into 100 mL of saturated 

NaHCO3 and the layers were separated.  The aqueous layer was extracted with Et2O (2 x 

75 mL) and the combined organic layers were washed with brine (75 mL), dried over 

Na2SO4, filtered, and concentrated to yield a light orange oil.  TLC analysis of the crude 

mixture was performed with 1:1 hexanes/EtOAc and 2:1 CH2Cl2/EtOAc (UV lamp, 

CAM stain).  The crude material was loaded onto silica and purified through a Biotage 

40M column using a solvent gradient from 100% CH2Cl2 to 50% CH2Cl2/EtOAc and 

provided 3.117 (see below) and 3.118 as a cloudy oil (1.346 g, 38% yield from 3.112).  

1NMR (500 MHz, CDCl3) δ 7.35 – 7.30 (m, 5H), 5.47 (d, J = 8.0 Hz, 1H), 5.09 (s, 2H), 

4.37 (td, J = 8.0, 5.5 Hz, 1H), 3.72 (s, 3H), 3.60 (t, J = 6.5 Hz, 2H), 2.00 (br, 1H), 1.84 

(m, 1H), 1.67 (m, 1H), 1.54 (m, 2H), 1.41 (m, 2H) ppm.  13C NMR (125 MHz, CDCl3) δ 

173.0, 155.9, 136.1, 128.4, 128.1, 128.0, 66.9, 62.2, 53.7, 52.3, 32.3, 31.9, 21.5 ppm.  

HRMS (FAB) m/z [M+H] + calcd for C15H22NO5
+, 296.1498; obsd, 296.1518. 

 

CbzHN CO2Me  

(S)-Methyl 2-(benzyloxycarbonylamino)hex-5-enoate (3.117).  Compound 

3.117 was isolated as described above as a cloudy oil (0.665 g, 20% yield from 3.112).  

Contains impurities by NMR.  1H NMR (500 MHz, CDCl3) δ 7.36 – 7.32 (m, 5H), 5.78 

(tdd, J = 13.0, 10.5, 6.5 Hz, 1H), 5.33 (d, J = 8.5 Hz, 1H), 5.01 (m, 2H), 4.40 (td, J = 8.5, 
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5.5 Hz, 1H), 3.75 (s, 3H), 3.68 (m, 1H), 2.17 – 2.05 (m, 2H), 1.98 – 1.91 (m, 1H), 1.80 – 

1.69 (m, 1H) ppm.  13C NMR (125 MHz, CDCl3) δ 172.9, 155.8, 136.7, 128.5, 128.2, 

128.15, 128.07, 115.8, 67.0, 53.3, 52.3, 31.8, 29.3 ppm.  HRMS (FAB) m/z [M+H] + calcd 

for C15H20NO4
+, 278.1392; obsd, 278.1411. 

 

CbzHN

H
N

O

OBn

OMs

 

(S)-6-(Benzyloxyamino)-5-(benzyloxycarbonylamino)-6-oxohexyl 

methanesulfonate (3.119).  Compound 3.115 (2.376 g, 6.15 mmol) was dissolved in 45 

mL of anhydrous pyridine in a flame-dried single-necked 200-mL round-bottomed flask 

under Ar.  The solution was cooled in an ice/H2O bath and methanesulfonyl chloride 

(0.58 mL, 7.5 mmol) was added dropwise over 10 min.  The solution was stirred for 1 h 

at 0 °C under Ar.  The reaction was partitioned between EtOAc (200 mL) and 1M HCl 

(200 mL).  The layers were separated and the organic layer was washed with 1M HCl (3 

x 100 mL), H2O (100 mL), and brine (100 mL), dried over Na2SO4, filtered, and 

concentrated to yield a white solid (2.714 g, 95.0% yield).  1H NMR (300 MHz, CDCl3) δ 

9.19 (s, 1H), 7.35 – 7.32 (m, 10H), 5.45 (d, J = 8.4 Hz, 1H), 5.04 (d, J = 12 Hz, 1H), 4.99 

(d, J = 12 Hz, 1H), 4.88 (s, 2H), 4.15 (m, 2H), 4.01 (q, J = 7.2 Hz, 1H), 2.96 (s, 3H), 1.80 

– 1.55 (m, 4H), 1.45 – 1.35 (m, 2H) ppm.  13C NMR (125 MHz, CDCl3) δ 169.0, 156.2, 

135.8, 134.9, 129.2, 128.7, 128.49, 128.47, 128.2, 127.9, 78.2, 69.5, 67.1, 52.1, 37.2, 

31.5, 28.4, 21.3 ppm. 
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CbzHN N

O
OBn

 

(S)-Benzyl 1-(benzyloxy)-2-oxoazepan-3-ylcarbamate (3.120).  Mesylate 3.119 

(6.32 g, 13.6 mmol) was dissolved in 350 mL of reagent grade acetone in a single-necked 

1-L round-bottomed flask.  Potassium carbonate (5.80 g, 42.0 mmol) was added, the flask 

was fitted with a water condenser and heated to reflux (oil bath temperature = 85-95 °C) 

overnight.  After 23 h, the reaction was cooled slowly to RT and allowed to stir for an 

additional 2 days before diluting with EtOAc (150 mL) and H2O (150 mL).  The layers 

were separated and the aqueous layer was extracted with EtOAc (3 x 150 mL).  The 

combined organic layers were washed with brine (2 x 75 mL), dried over Na2SO4, 

filtered, and concentrated to yield a yellow oil.  The oil was chromatographed through a 

Biotage 40M column using a solvent gradient from 100% CH2Cl2 to 80% CH2Cl2/EtOAc 

to afford 3.121 (see below), 3.120 as a colorless oil, and a mixture of 3.121 and 3.120 

(4.64 g total, 92.6% total yield).  Compound 3.120 was recovered as a colorless oil that 

solidified upon standing (3.33 g, 67% yield total).  mp = 62-64 °C.  Rf = 0.36 (9:1 

CH2Cl2/EtOAc – CAM stain).  1H NMR (500 MHz, CDCl3) δ 7.43-7.30 (m, 10H), 6.15 

(d, J = 6.0 Hz, 1H), 5.11 (m, 2H), 4.98 (d, J = 10.5 Hz, 1H), 4.88 (d, J = 10.5 Hz, 1H), 

4.27 (ddd, J = 11.0, 6.5, 1.5 Hz, 1H), 3.58 (dd, J = 16.0, 11.5 Hz, 1H), 3.46 (dd, J = 16.0, 

5.0 Hz, 1H), 2.03 (d, J = 12.0 Hz, 1H), 1.92-1.85 (m, 1H), 1.69-1.63 (m, 2H), 1.56-1.48 

(m, 1H), 1.43-1.35 (m, 1H) ppm.  13C NMR (125 MHz, CDCl3) δ 170.0, 155.4, 136.4, 

135.0, 129.6, 128.8, 128.5, 128.4, 128.0, 127.9, 76.8, 66.6, 53.2, 52.6, 31.8, 27.5, 26.1 

ppm. 
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CbzHN O

N
OBn  

(S)-Benzyl 2-(benzyloxyimino)oxepan-3-ylcarbamate (3.121).  Compound 

3.121 was isolated as a glassy solid (1.31 g, 26% yield) as described above.  Rf = 0.54 

(9:1 CH2Cl2/EtOAc - CAM stain).  1H NMR (500 MHz, CDCl3) δ 7.38-7.28 (m, 10H), 

5.93 (d, J = 6 Hz, 1H), 5.10 (s, 2H), 5.00 (s, 2H), 4.45 (dd, J = 9.5, 7.0 Hz, 1H), 4.37 (dd, 

J = 12.5, 4.5 Hz, 1H), 4.10 (m, 1H), 2.21 (d, J = 11.5 Hz, 1H), 1.90 (m, 2H), 1.72-1.58 

(m, 4H) ppm.  13C NMR (125 MHz, CDCl3) δ 155.6, 155.2, 137.5, 136.3, 128.5, 128.4, 

128.2, 128.12, 128.07, 127.8, 76.4, 70.2, 66.8, 50.7, 35.0, 29.6, 26.2 ppm. 

 

H3N N

O
OBn

Br

 

(S)-1-(Benzyloxy)-2-oxoazepan-3-amonium bromide (3.122).  Hydroxamate 

3.120 (2.128 g, 5.776 mmol) was dissolved in 60 mL of anhydrous CH2Cl2 in a flame-

dried 250-mL round-bottomed flask under Ar.  33% HBr in acetic acid (6.0 mL, 35 

mmol) was added to the solution slowly and the Ar inlet needle was removed.  The 

reaction was stirred at RT under Ar.  White solid was observed after 2 min.  After 3 h, no 

starting material was observed by TLC (4:1 CH2Cl2/EtOAc - CAM stain, ninhydrin stain) 

and a ninhydrin-positive baseline spot was observed.  The mixture was diluted with 

CH2Cl2 (20 mL), and concentrated by rotary evaporation (40 °C, 21 mm Hg) to yield a 

light orange slurry.  The slurry was concentrated from toluene (3 x 50 mL) to remove 

traces of acetic acid and water to afford a tan/orange solid.  The solid was dried under 
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vacuum (1.5 mm Hg) overnight to afford HBr salt 3.122 as an off-white solid (1.80 g, 

99% yield).  1H NMR (500 MHz, d6-DMSO) δ 8.25 (br, 3H), 7.47 – 7.38 (m, 5H), 4.93 

(d, J = 10.0 Hz, 1H), 4.90 (d, J = 10.0 Hz, 1H), 4.24 (d, J = 5.0 Hz, 1H), 3.88 (dd, J = 

16.0, 11.5 Hz, 1H), 3.60 (dd, J = 16.0, 5.0 Hz, 1H), 1.86 (m, 2H), 1.73 – 1.50 (m, 3H), 

1.33 – 1.25 (m, 1H) ppm.  13C NMR (125 MHz, CDCl3) δ 167.1, 135.0, 129.3, 128.7, 

128.4, 75.7, 51.3, 51.2, 28.2, 26.1, 25.8 ppm. 

 

N
H

N

O
OBn

O

HO

 

(R)-N-((S)-1-(Benzyloxy)-2-oxoazepan-3-yl)-3-hydroxybutanamide (3.124).  

Anhydrous CH3CN (30 mL) was added to a 100-mL round-bottomed flask containing 

3.122 (1.00 g, 3.17 mmol), (R)-3-hydroxybutyric acid (0.3906 g, 3.752 mmol), and HOBt 

(0.501 g, 3.71 mmol).  To the mixture was added triethylamine (0.50 mL, 3.6 mmol), 

followed by EDC•HCl (0.761 g, 3.97 mmol).  The mixture was stirred at RT under Ar.  

After 1 h, the solid material had fully dissolved.  The reaction was stirred overnight at RT 

under Ar.  The cloudy peach-colored solution was concentrated and the residue was 

partitioned between H2O (25 mL) and EtOAc (20 mL).  The layers were separated and 

the aqueous layer was extracted with EtOAc (2 x 25 mL).  The combined organic layers 

were washed with H2O (30 mL), saturated NaHCO3 (2 x 30 mL), H2O (30 mL), and brine 

(30 mL), dried over Na2SO4, filtered, and concentrated to yield a white solid.  The solid 

was chromatographed through a 40S Biotage column using 100% EtOAc to yield 3.124 

as a white solid (0.891 g, 87.7% yield).  mp = 120-123 °C.  1H NMR (500 MHz, CDCl3) 

δ 7.42-7.34 (m, 5H), 7.09 (d, J = 6.5 Hz, 1H), 4.97 (d, J = 10.5 Hz, 1H), 4.88 (d, J = 10.5 
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Hz, 1H), 4.48 (ddd, J = 11.0, 6.5, 1.5 Hz, 1H), 4.17 (m, 1H), 3.94 (m, 1H), 3.60 (dd, J = 

16.0, 11.5 Hz, 1H), 3.47 (dd, J = 16.0, 5.0 Hz, 1H), 2.43 (dd, J = 15.5, 3.0 Hz, 1H), 2.32 

(dd, J = 15.5, 9.0 Hz, 1H), 1.98 (d, J = 12.5 Hz, 1H), 1.91 (m, 1H), 1.71-1.65 (m, 2H), 

1.49-1.30 (m, 2H), 1.21 (d, J = 6.0 Hz, 3H) ppm.  13C NMR (125 MHz, CDCl3) δ 171.5, 

170.0, 134.9, 129.6, 128.9, 128.6, 76.8, 64.7, 52.7, 51.6, 43.6, 31.3, 27.5, 26.1, 22.6 ppm.  

HRMS (FAB) m/z [M+H] + calcd for C17H25N2O4
+, 321.1814; obsd, 321.1810. 

 

N
H

N

O
OBn

O

HO

 

(S)-N-((S)-1-(Benzyloxy)-2-oxoazepan-3-yl)-3-hydroxybutanamide (3.125).  

Compound 3.125 was prepared following the same procedure used for 3.124.  The use of 

3.122 (1.20 g, 3.81 mmol), (S)-3-hydroxybutyric acid (0.479 g, 4.60 mmol), HOBt (0.617 

g, 4.57 mmol), EDC•HCl (0.938 g, 4.89 mmol), and triethylamine (0.60 mL, 4.27 mmol) 

provided 3.125 as a white solid (0.863 g, 70.7% yield).  Rf = 0.14 (100% EtOAc – CAM 

stain).  mp = 135-137 °C.  1H NMR (500 MHz, CDCl3) δ 7.41-7.40 (m, 2H), 7.37-7.35 

(m, 3H), 6.99 (d, J = 6.5 Hz, 1H), 4.98 (d, J = 10.5 Hz, 1H), 4.89 (d, J = 10.5 Hz, 1H), 

4.47 (ddd, J = 11.5, 7.0, 2.0 Hz, 1H), 4.18 (m, 1H), 3.61 (dd, J = 16.0, 11.5 Hz, 1H), 3.48 

(dd, J = 16.0, 5.0 Hz, 1H), 2.40 (dd, J = 15.0, 3.0 Hz, 1H), 2.32 (dd, J = 15.0, 9.0 Hz, 

1H), 1.98 (m, 1H), 1.92 (m, 1H), 1.71-1.65 (m, 2H), 1.54-1.35 (m, 2H), 1.23 (d, J = 6.5 

Hz, 3H) ppm.  13C NMR (125 MHz, CDCl3) δ 171.8, 170.1, 134.9, 129.6, 128.9, 128.6, 

76.8, 64.9, 52.7, 51.8, 44.1, 31.2, 27.5, 26.1, 22.7 ppm.  HRMS (FAB) m/z [M+H] + calcd 

for C17H25N2O4
+, 321.1814; obsd, 321.1802. 
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8.3 Experimental procedures for chapter 4 

OH
N

O
H
N

O

CO2Me

OHMeO2C  

Dimethyl 2-hydroxy-7-((S)-2-(2-hydroxyphenyl)-4,5-dihydrooxazole-4-

carboxamido)octanedioate (4.5a and 4.5b).  Compound 3.69 (130.8 mg, 0.392 mmol) 

was dissolved in 5 mL of anhydrous Et2O in a 25-mL round-bottomed flask.  The 

solution was cooled in an ice/H2O bath and HCl gas (generated by adding conc. H2SO4 

dropwise to conc. HCl/NaCl then drying by bubbling through conc. H2SO4) was bubbled 

through the solution for 30 min.  The solution was brownish in color, and no significant 

precipitate was observed.  Bubbling was ceased and the reaction was warmed to RT and 

stirred for an additional 4 h.  The reaction was concentrated by rotary evaporation to yield 

the amine•HCl salt as a brown semi-solid residue.  The crude material was used 

immediately without purification. 

Anhydrous CH3CN (5 mL) was added to the crude amine (105.8 mg, 0.452 mmol) 

and 2.62 (102.4 mg, 0.494 mmol) in a 25-mL round-bottomed flask under Ar.  Distilled 

triethylamine (0.10 mL, 0.71 mmol) was added and most of the solid material dissolved.  

To the resultant yellow solution was added HOBt (67.4 mg, 0.499 mmol) and EDC•HCl 

(108.1 mg, 0.564 mmol).  The reaction was stirred at RT under Ar.  After 4 days, the 

reaction was concentrated by rotary evaporation (35°C, 21 mm Hg).  The orange residue 

was partitioned between EtOAc (20 mL) and H2O (30 mL).  The layers were separated 

and the aqueous layer was extracted with EtOAc (2 x 20 mL).  The combined organic 

layers were washed with saturated aqueous NaHCO3 (2 x 20 mL), H2O (1 x 20 mL), 5 
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wt% aqueous citric acid (2 x 20 mL), H2O (1 x 20 mL), and brine (2 x 20 mL), dried over 

Na2SO4, filtered, and concentrated by rotary evaporation (35°C, 21 mm Hg) to yield an 

orange oil (200 mg).  The oil was purified through 20 g of silica using a solvent gradient 

from 100% CH2Cl2 to 50% CH2Cl2/EtOAc to yield a mixture of 4.5a and 4.5b as a 

cloudy pink residue (59.7 mg, 31.3% yield) and 4.6 (see below).  Recovered as a mixture 

of diastereomers by NMR:  1H NMR (500MHz, CDCl3) δ 7.67 (m, 2H), 7.41 (m, 2H), 

7.02 (d, J = 8.5 Hz, 2H), 6.91 - 6.87 (m, 2H), 4.98 - 4.93 (m, 2H), 4.70 - 4.55 (m, 6H), 

4.17 (dd, J = 7.6, 4.0 Hz, 1H), 4.11 (dd, J = 7.7, 4.0 Hz, 1H), 3.77 (s, 3H, CH3), 3.75 (s, 

3H), 3.72 (s, 3H), 3.69 (s, 3H), 1.93 - 1.24 (m, 16H) ppm.  MS (FAB) m/z [M+H] + at 

423; 363, 162. 

 

OH
N

O
H
N

O

* CO2Me

*

CO2MeO

O

N

O

OH

 

Diacylated byproduct (4.6).  Compound 4.6 was isolated as described above as a 

cloudy yellow oil (63.6 mg, 23.0% yield).  Recovered as a mixture of diastereomers by 

NMR:  1H NMR (500 MHz, CDCl3) δ 7.69 – 7.62 (m, 2H), 7.46 – 7.53 (m, 2H), 7.07 – 

7.00 (m, 2H), 6.91 – 6.82 (m, 2H), 5.12 – 5.04 (m, 3H), 4.78 – 4.55 (m, 4H), 3.75 (s, 3H), 

3.73 (s, 3H), 3.72 (s, 3H), 3.70 (s, 3H), 1.95 – 1.70 (m, 4H), 1.47 – 1.30 (m, 4H) ppm.  

13C NMR (125 MHz, CDCl3) δ 172.2, 172.0, 169.99, 169.92, 169.87, 169.8, 169.7, 168.2, 

168.1, 168.0, 159.9, 159.8, 134.7, 134.2, 128.7, 128.4, 119.2, 118.8, 116.93, 116.90, 72.9, 
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69.9, 69.0, 67.0, 66.3, 52.5, 52.1, 31.9, 31.8, 31.54, 30.47, 29.6, 24.8, 24.6 ppm.  MS 

(FAB) m/z [M+H] + at 612 (base peak), 307, 208. 

 

OH
N

O
H
N

O

CO2Me

OAcMeO2C

+ OH
N

O
H
N

O

CO2Me

OAcMeO2C  

Dimethyl 2-acetoxy-7-((S)-2-(2-hydroxyphenyl)-4,5-dihydrooxazole-4-

carboxamido)octanedioate (mixture of diastereomers 4.7a and 4.7b).  Compound 

3.86 (194 mg, 0.517 mmol) was dissolved in 10 mL of anhydrous Et2O in a 50-mL 

round-bottomed flask.  Anhydrous HCl gas (generated by adding conc. H2SO4 dropwise 

to NaCl/HCl, then passed through conc. H2SO4) was bubbled through the solution.  After 

30 min, the solution appeared slightly cloudy.  After 1.5 h, TLC of the solution (1:1 

hexanes/EtOAc - CAM stain, ninhydrin stain) indicated no starting material remained and 

a new, ninhydrin positive spot appeared on the baseline.  The solution was concentrated 

to afford a yellow oil (mass recovery was >100%).  The oil was used immediately 

without purification. 

Anhydrous CH3CN (5 mL) was added to the yellow oil in a 50-mL round-

bottomed flask under Ar.  Anhydrous triethylamine (0.10 mL, 0.712 mmol) was added 

and the solid dissolved.  To the light orange/yellow solution was added 2.62 (114 mg, 

0.550 mmol) and the color of the solution changed to deep orange/red.  EDC•HCl (122 

mg, 0.636 mmol) was added and the solution was stirred under Ar at RT overnight.  The 

reaction was concentrated by rotary evaporation (35°C, 21 mm Hg).  The orange residue 

was partitioned between EtOAc (20 mL) and H2O (30 mL).  The layers were separated 
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and the aqueous layer was extracted with EtOAc (2 x 20 mL).  The combined organic 

layers were washed with saturated aqueous NaHCO3 (2 x 20 mL), H2O (1 x 20 mL), 5 

wt% aqueous citric acid (2 x 20 mL), H2O (1 x 20 mL), and brine (2 x 20 mL), dried over 

Na2SO4, filtered, and concentrated by rotary evaporation (35°C, 21 mm Hg) to yield a 

yellow oil.  The oil was purified through 20 g of silica using CH2Cl2/EtOAc to afford the 

mixture of diastereomers 4.7a and 4.7b as a yellow oil (75.8 mg, 31.6% yield).  1H NMR 

(500 MHz, CDCl3) δ 11.33 (br-s, 2H), 7.68 - 7.65 (m, 2H), 7.42 - 7.37 (m, 2H), 7.02 - 

7.00 (m, 2H), 6.90 - 6.81 (m, 4H), 4.99 – 4.90 (m, 4H), 4.68 – 4.53 (m, 6H), 3.75 (s, 3H), 

3.72 (s, 3H), 3.69 (s, 3H), 3.68 (s, 3H), 2.11 (s, 3H), 2.07 (s, 3H), 1.90 – 1.64 (m, 10H), 

1.42 – 1.23 (m, 12H) ppm.  13C NMR (125 MHz, CDCl3) δ 172.06, 171.97, 170.50, 

170.46, 170.38, 170.33, 170.26, 167.99, 167.75, 159.70 (2), 134.23, 128.49, 128.46, 

119.02, 116.89, 116.86, 109.90, 109.88, 71.88, 71.84, 69.44, 69.42, 67.94, 67.88, 52.43, 

52.40, 52.17, 52.11, 51.91, 31.98, 31.92, 30.72, 30.64, 29.58, 24.82, 24.77, 24.57, 25.50, 

20.53, 20.48 ppm.  HRMS (FAB) m/z [M+H] + calcd. for C22H29N2O8
+, 465.1873; obsd, 

465.1855. 

 

CO2Me
H
N

OAcMeO2C

Ph

O

(±)  

(±)-(2S,7R)-Dimethyl 2-acetoxy-7-benzamidooctanedioate (4.8).  Compound 

3.86 (138 mg, 0.366 mmol) was dissolved in 1 mL of CH2Cl2 in a 10-mL round-bottomed 

flask and cooled in a crushed ice/H2O bath under Ar.  TFA (0.20 mL, 2.7 mmol) was 
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added to the reaction and the resultant light pink solution was stirred in the crushed 

ice/H2O bath for 60 min.  TLC of the reaction (1:1 hexanes/EtOAc - CAM stain) 

indicates a complex mixture, but some amine present on the baseline.  The reaction was 

warmed to RT and allowed to stir for an additional 60 min, then concentrated and used 

immediately without purification. 

The crude material was dissolved in CH2Cl2 (1.5 mL).  Benzoyl chloride (0.090 

mL, 0.77 mmol) and Et3N (0.75 mL, 5.3 mmol) were added and the reaction was stirred 

at RT overnight.  The reaction was diluted with H2O (10 mL) and CH2Cl2 (10 mL) and 

the layers were separated.  The aqueous layer was washed with CH2Cl2 (5 mL) and the 

combined CH2Cl2 layers were washed with saturated NaHCO3 (2 x 15 mL), H2O (15 

mL), 10 wt% citric acid (2 x 15 mL), H2O (15 mL), and brine (15 mL), dried over 

MgSO4, filtered, and concentrated to yield a yellow oil.  The oil was chromatographed 

through 20 g of silica using a solvent gradient from 100% CH2Cl2 to 85% CH2Cl2/EtOAc 

and provided 4.8 as a yellow oil (117 mg, 84% yield).  Evidence of epimerization is 

observed from the 13C NMR spectrum.  1H NMR (500 MHz, CDCl3) δ 7.77 (d, J = 7.0 

Hz, 2H), 7.46 (m, 1H), 7.39 (t, J = 7.5 Hz, 2H), 6.83 (d, J = 7.5 Hz, 1H), 4.93 (t, J = 6.0 

Hz, 1H), 4.76 (td, J = 8.0, 6.0 Hz, 1H), 3.73 (s, 3H), 3.67 (s, 3H), 2.06 (s, 3H), 1.80 – 

1.74 (m, 4H), 1.43 – 1.34 (m, 4H) ppm.  13C NMR (125 MHz, CDCl3) δ 172.9, 171.0, 

170.5, 170.4, 166.9, 133.7, 131.6, 128.4, 126.9, 71.9, 60.2, 52.33, 52.27, 52.1, 32.1, 30.7, 

24.8, 24.6, 20.9, 20.5 ppm.  MS (FAB) m/z [M+H] + found at 380. 

 

Attempted saponification of compound 4.8.  Compound 4.8 (22 mg, 0.058 

mmol) was dissolved in 0.6 mL of 2:1 THF/H2O in a 1-dram screw-cap vial.  LiOH (6 
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mg, 0.25 mmol) was added and the mixture was stirred at RT.  Monitored by TLC (1:1 

hexanes/EtOAc and 100% EtOAc - UV lamp, CAM stain).  After 45 min the reaction 

was nearly complete, and after 1 h, no 4.8 was observed by TLC.  1 mL of 1M HCl was 

added to the vial and the acidic mixture (pH ~2-3 - pH paper) was extracted with EtOAc 

(10 x 1 mL).  The combined organic layers were dried over Na2SO4, filtered, and 

concentrated to yield a light yellow residue (18.9 mg, ~100% yield).  Residue did not 

dissolve in CDCl3, but dissolved in EtOAc.  MS data did not show evidence of the 

desired product.  No identifiable peaks were found in the LC-MS traces of the aqueous 

layer. 
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(4S)-N-(6-(2,2-Dimethyl-1,3-dioxolan-4-yl)-1-hydroxyhexan-2-yl)-2-(2-

hydroxyphenyl)-4,5-dihydrooxazole-4-carboxamide (mixture of diastereomers 4.10a 

and 4.10b).  Compound (±)-3.99 (74.1 mg, 0.211 mmol) was dissolved in 10 mL of 

methanol in a flame-dried single-necked 25-mL round-bottomed flask.  The solution was 

purged with Ar and 10 wt% Pd/C (17.7 mg) was added.  The solution was purged with 

Ar, then H2, and stirred under 1 atm of H2 (balloon).  After 4 h, TLC analysis of the 

reaction mixture (1:1 hexanes/EtOAc - CAM stain, ninhydrin stain) indicated the starting 

material was consumed and a new, ninhydrin/CAM stain positive spot was observed on 

the baseline.  The reaction was purged with Ar, then filtered through a pad of celite.  The 
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celite was rinsed with MeOH (5 mL) and the filtrate was concentrated to yield a colorless 

residue.  The material was used immediately without purification. 

The residue (41 mg, 0.20 mmol) and HOBt (25 mg, 0.19 mmol) were dissolved in 

5 mL of dry acetonitrile in a single-necked 25-mL round-bottomed flask under Ar.  

EDC•HCl (43 mg, 0.22 mmol) was added and the peach-colored solution was stirred at 

RT under Ar overnight.  H2O (30 mL) and EtOAc (20 mL) were added to the solution 

and the layers were separated.  The aqueous layer was extracted with EtOAc (3 x 15 mL) 

and the combined organic layers were washed successively with saturated NaHCO3 (2 x 

20 mL), H2O (20 mL), 10 wt% citric acid (2 x 20 mL), and brine (2 x 20 mL), dried over 

MgSO4, filtered, and concentrated to yield a light yellow residue.  The residue was 

chromatographed through 15 g of silica gel using a solvent gradient from 2:1 

CH2Cl2/EtOAc to 100% EtOAc to afford one of the diastereomers of  4.10 pure (14.0 mg, 

19.7% yield), and mixtures of diastereomers 4.10a and 4.10b (46.6 mg, 65.8% yield).  

Total yield of 4.10 was 60.6 mg (85.5% yield).  Analysis of the pure diastereomer 

isolated:  mp = 112-115 °C.  Rf = 0.15 (1:2 CH2Cl2/EtOAc – UV lamp; other isomer Rf = 

0.09).  1H NMR (500 MHz, CDCl3) δ 11.37 (s, 1H), 7.69 (m, 1H), 7.43 (m, 1H), 7.02 (d, 

J = 8.5 Hz, 1H), 6.91 (td, J = 8.0, 0.5 Hz, 1H), 6.48 (d, J = 8.0 Hz, 1H), 4.95 (dd, J = 

11.0, 8.0 Hz, 1H), 4.70 (dd, J = 11.0, 9.0 Hz, 1H), 4.62 (t, J = 8.5 Hz, 1H), 4.06 (m, 1H), 

4.02 (dd, J = 7.5, 6.0 Hz, 1H), 3.95 (m, 1H), 3.65 (d, J = 10.5 Hz, 1H), 3.56 (dd, J = 11.0, 

5.5 Hz, 1H), 3.50 (t, J = 7.5 Hz, 1H), 2.46 (br-s, 1H), 1.66-1.40 (m, 8H), 1.40 (s, 3H), 

1.35 (s, 3H) ppm.  13C NMR (125 MHz, CDCl3) δ 171.4, 168.0, 159.6, 134.4, 128.6, 

119.2, 110.0, 108.7, 75.9, 69.8, 69.4, 68.0, 65.2, 51.9, 33.4, 30.9, 29.7, 26.9, 26.1, 25.7, 

25.6 ppm.  HRMS (FAB) m/z [M+H] + calcd for C21H31N2O6
+, 407.2182; obsd, 407.2176. 
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NHCbzMeO2C

NH2

 

(R)-Methyl 6-amino-2-(benzyloxycarbonylamino)hexanoate (4.15).  Methanol 

(10 mL) was cooled under Ar to 4 °C in an ice/H2O bath.  Thionyl chloride (0.35 mL, 4.8 

mmol) was added and the resultant solution was transferred via cannula to a stirred 

suspension of 4.14 (1.03 g, 3.67 mmol) in 30 mL of MeOH under Ar at 4 °C.  The 

mixture was stirred for 1 h, then warmed to RT and stirred for an additional 7.5 h.  The 

reaction was concentrated to yield a yellow oil.  The oil was dissolved in saturated 

NaHCO3 (100 mL) and extracted with CH2Cl2 (3 x 20 mL).  The combined organic layers 

were dried over MgSO4, filtered, and concentrated to yield 4.15 as a reddish-brown oil 

(1.05 g, 97% yield).  The oil was stored at -10 °C and used immediately, otherwise 

decomposition was observed. 

 

NHCbzHO2C

NHBoc

 

(R)-13,13-Dimethyl-3,11-dioxo-1-phenyl-2,12-dioxa-4,10-diazatetradecane-5-

carboxylic acid (4.16).  Sodium bicarbonate (0.343 g, 4.08 mmol) was added to 4.14 

(0.454 g, 1.62 mmol) in 12 mL of 2:1 THF/H2O, followed by di-tert-butyldicarbonate 

(0.411 g, 1.88 mmol).  The mixture was stirred at RT overnight.  The THF was removed 

in vacuo and the reaction was diluted with H2O (50 mL) and CH2Cl2 (20 mL).  The 
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aqueous layer was acidified to a pH of 2-3 (pH paper) using 1M HCl.  The layers were 

separated and the aqueous was extracted with CH2Cl2 (3 x 15 mL).  The combined 

organic layers were washed with brine (2 x 20 mL), dried over MgSO4, filtered, and 

concentrated to a pale yellow oil.  The oil was dried under vacuum to yield 4.16 as a 

white foam (0.577 g, 94% yield).  The crude material was used directly without further 

purification. 

 

NHCbzBnO2C

NHBoc

 

2S-Benzyloxycarbonylamino-6-tert-butoxycarbonylamino-hexanoic acid 

benzyl ester (4.17).  Crude 4.16 (651 mg, 1.71 mmol) was dissolved in 10 mL of 

CH3CN.  K2CO3 (548 mg, 3.96 mmol) was added, followed by benzyl bromide (0.30 mL, 

2.53 mmol).  The reaction was stirred for 24 h and monitored by TLC (3:1 

hexanes/EtOAc – ninhydrin stain).  The solid was removed by filtration and the filtrate 

was concentrated to yield a cloudy oil (1.20 g).  Chromatographed through 40 g of silica 

using 3:1 hexanes/EtOAc to yield 4.17 as a colorless oil (747 mg, 93%).  1H NMR (300 

MHz, CDCl3) δ 7.347 (s, 10H), 5.386 (d, J = 7.2 Hz, 1H), 5.167 (d, J = 6.0 Hz, 2H), 

5.101 (s, 2H), 4.507 (br-s, 1H), 4.399 (m, 1H), 3.047 (m, 1H), 1.826 – 1.626 (m, 2H), 

1.422 (s, 9H) ppm. 
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BocHN CO2Bn

NHCbz  

6-Benzyloxycarbonylamino-2S-tert-butoxycarbonylamino-hexanoic acid 

benzyl ester (4.20).  Compound 4.20 was prepared following the procedure used for 

4.17.  The use of 4.19 (801 mg, 2.10 mmol), K2CO3 (735 mg, 5.32 mmol), and BrBr 

(0.38 mL, 3.20 mmol) afforded a colorless oil (1.20 g).  Chromatographed through 50 g 

of silica using 3:1 hexanes/EtOAc provided 4.20 as a light yellow oil (986 mg, 100%).  

1H NMR (500 MHz, CDCl3) δ 7.36 – 7.34 (m, 10H), 5.20 (d, J = 12 Hz, 1H), 5.11 (d, J = 

12 Hz, 1H), 5.09 (br-s, 4H), 4.77 (m, 1H), 4.33 (m, 1H), 3.14 (m, 2H), 1.80 (m, 1H), 1.65 

(m, 1H), 1.42 (s, 9H), 1.45 – 1.29 (m, 4H) ppm.  13C NMR (125 MHz, CDCl3) δ 172.6, 

156.4, 155.4, 136.5, 135.3, 128.5, 128.44, 128.39, 128.3, 128.1, 128.0, 79.8, 66.9, 66.5, 

53.2, 40.5, 32.2, 29.3, 28.2, 22.3 ppm. 

 

NHCbzBnO2C

NH2

 

(R)-Benzyl 6-amino-2-(benzyloxycarbonylamino)hexanoate (4.18).  HCl gas, 

prepared by adding conc. H2SO4 dropwise to NaCl/conc. HCl and dried by bubbling 

through conc. H2SO4, was bubbled through a solution of 4.17 (0.634 g, 1.35 mmol) in 

Et2O at 0 °C for 2.5 h.  The reaction was monitored by TLC for the disappearance of 

4.17.  The solvent was removed to yield a pale yellow oil.  The oil was dissolved in 

saturated NaHCO3 (50 mL) and CH2Cl2 (20 mL) was added.  The layers were separated 
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and the aqueous layer was extracted with CH2Cl2 (2 x 20 mL).  The combined organic 

layers were dried over MgSO4, filtered, and concentrated to yield 4.18 as a pale yellow 

oil (0.461 g, 92% yield).  The material was used immediately without purification. 

 

H2N CO2Bn

NHCbz  

(S)-Benzyl 2-amino-6-(benzyloxycarbonylamino)hexanoate (4.21).  Compound 

4.21 was prepared following the same procedure used for 4.18.  4.20 (0.980 g, 2.08 

mmol) provided 4.21 as a pale yellow oil (0.697 g, 90% yield).  The material was used 

immediately without purification. 

 

N

O
H
N

O

NHCbz

CO2Me

 

(S)-Methyl 2-(benzyloxycarbonylamino)-6-((S)-2-phenyl-4,5-dihydrooxazole-

4-carboxamido)hexanoate (4.22).  Compound 3.11 (135 mg, 0.708 mmol) and 4.15 

(250 mg, 0.848 mmol) were dissolved in CH3CN (20 mL).  EDC•HCl (166 mg, 0.865 

mmol) was added and the reaction was stirred at 23°C for 15 h.  The reaction was 

monitored by TLC (2:3 hexanes/EtOAc).  The reaction was diluted with H2O (50 mL) 

and extracted with EtOAc (4 x 30 mL).  The combined EtOAc layers were washed with 

saturated NaHCO3 (3 x 20 mL), 5% citric acid (3 x 20 mL), and brine (2 x 30 mL), dried 

(MgSO4), filtered, and concentrated to yield a pale orange oil (170 mg).  
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Chromatographed through 17 g of silica using 3:2 CH2Cl2/EtOAc to yield 4.22 as an 

orange oil (135 mg, 41%).  Rf = 0.111 (2:3 hexanes/EtOAc).  1H NMR (300 MHz, 

CDCl3) δ 7.96 (dd, J = 8.1, 0.9 Hz, 2H), 7.52 (t, J = 7.3 Hz, 1H), 7.42 (t, J = 7.5 Hz, 2H), 

7.34 (m, 5H), 6.72 (br-t, 1H), 5.44 (d, J = 8.1 Hz, 1H, NHCbz), 5.09 (s, 2H), 4.821 (dd, J 

= 10.8, 8.7 Hz, 1H), 4.68 – 4.54 (m, 2H), 4.34 (m, 1H), 3.71 (s, 3H), 3.34 – 3.15 (m, 2H), 

1.88 – 1.60 (m, 2H), 1.53 – 1.33 (m, 4H) ppm.  HRMS (FAB) m/z [M+H] + calcd for 

C25H30N3O6
+, 468.2135; obsd, 468.2144. 

 

N

O
H
N

O

NHCbz

CO2Me

OH

 

(S)-Methyl 2-(benzyloxycarbonylamino)-6-((S)-2-(2-hydroxyphenyl)-4,5-

dihydrooxazole-4-carboxamido)hexanoate (4.23).  Compound 4.23 was prepared 

following the same procedure used for 4.22.  The use of oxazoline 2.62 (0.104 g, 0.502 

mmol), amine 4.15 (0.174 g, 0.591 mmol), and EDC•HCl (0.125 g, 0.653 mmol) 

provided a pale orange oil (0.149 g, 61%).  Chromatography through 20 g of silica using 

4:1 CH2Cl2/EtOAc afforded 4.23 as a white solid (0.127 g, 52%).  mp = 142-143 °C.  Rf 

= 0.189 (2:3 hexanes/EtOAc).  1H NMR (300 MHz, CDCl3) δ 7.68 (dd, J = 7.8, 1.3 Hz, 

1H), 7.42 (td, J = 8.7, 1.5 Hz, 1H), 7.35 (m, 5H), 7.02 (d, J = 8.4 Hz, 1H), 6.91 (t, J = 7.8 

Hz, 1H), 6.42 (br-t, 1H, NHBoc), 5.41 (d, J = 8.1 Hz, 1H, NHCbz), 5.10 (s, 2H), 4.90 (t, 

J = 9.5 Hz, 1H), 4.67 – 4.58 (m, 2H), 4.34 (m, 1H), 3.72 (s, 3H), 3.27 (m, 2H), 1.84 – 

1.60 (m, 2H), 1.56 – 1.25 (m, 4H) ppm.  13C NMR (75 MHz, CDCl3) δ 170.7, 167.9, 

159.6, 155.9, 136.2, 134.3, 128.50, 128.46, 128.1, 119.2, 116.8, 110.0, 69.9, 67.9, 67.0, 
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53.6, 52.3, 38.8, 31.9, 28.9, 22.3 ppm.  HRMS (FAB) m/z [M+H] + calcd for 

C25H30N3O7
+, 484.2084; obsd, 484.2107. 

 

N

O
H
N

O

NHCbz

CO2Bn

 

(S)-Benzyl 2-(benzyloxycarbonylamino)-6-((S)-2-phenyl-4,5-dihydrooxazole-

4-carboxamido)hexanoate (4.24).  Compound 4.24 was prepared following the same 

procedure used for 4.22.  The use of acid 3.11 (89 mg, 0.47 mmol), amine 4.18 (204 mg, 

0.550 mmol), and EDC•HCl (112 mg, 0.583 mmol) provided a light orange oil (156 mg).  

Chromatography through 16 g of silica using a solvent gradient from 3:1 to 3:2 

CH2Cl2/EtOAc yielded 4.24 as a white solid (89 mg, 35%).  mp = 125-128 °C.  Rf = 

0.167 (2:3 hexanes/EtOAc).  1H NMR (300 MHz, CDCl3) δ 7.97 (d, J = 7.2 Hz, 2H), 7.52 

(t, J =7.3 Hz, 1H), 7.42 (t, J = 7.5 Hz, 1H), 7.34 (br-s, 10H), 6.72 (br-t, J = 5.1 Hz, 1H), 

5.48 (d, J = 6.9 Hz, 1H, NHCbz), 5.15 (d, J = 2.7 Hz, 2H), 5.09 (s, 2H), 4.814 (dd, J = 

10.8, 9.0 Hz, 1H), 4.68 – 4.55 (m, 2H), 4.42 – 4.35 (m, 1H), 3.28 – 3.15 (m, 2H), 1.83 

(m, 1H), 1.71 (m, 1H), 1.49 (m, 2H), 1.33 (m, 2H) ppm.  HRMS (FAB) m/z [M+H] + 

calcd for C31H34N3O6
+, 544.2448; obsd, 544.2452. 

 



 317 

N

O
H
N

O

NHCbz

CO2Bn

OH

 

(S)-Benzyl 2-(benzyloxycarbonylamino)-6-((S)-2-(2-hydroxyphenyl)-4,5-

dihydrooxazole-4-carboxamido)hexanoate (4.25).  Compound 4.25 was prepared 

following the same procedure used for 4.22.  The use of acid 2.62 (109 mg, 0.524 mmol), 

amine 4.18 (234 mg, 0.631 mmol), and EDC•HCl (127 mg, (0.663 mmol) provided a 

light orange oil (148 mg).  Chromatography through 15 g of silica using 1:1 

hexanes/EtOAc yielded 4.25 as a white solid (106 mg, 36%).  mp = 149-151 °C.  Rf = 

0.270 (2:3 hexanes/EtOAc).  1H NMR (300 MHz, CDCl3) δ 7.68 (dd, J = 7.8, 1.3 Hz, 

1H), 7.42 (m, 1H), 7.34 (m, 10H), 7.02 (d, J = 8.4 Hz, 1H), 6.91 (t, J = 7.8 Hz, 1H), 6.37 

(br-t, 1H), 5.41 (d, J = 8.1 Hz, 1H, NHCbz), 5.16 (d, J = 3.3 Hz, 2H), 5.10 (s, 2H), 4.89 

(t, J = 9.6 Hz, 1H), 4.67 – 4.60 (m, 2H), 4.42 – 4.35 (m, 1H), 3.26 – 3.18 (m, 2H), 1.83 

(m, 1H), 1.70 (m, 1H), 1.51 (m, 2H), 1.31 (m, 2H) ppm.  HRMS (FAB) m/z [M+H] + 

calcd for C31H34N3O7
+, 560.2397; obsd, 560.2406. 

 

H
N

O

NHCbz

CO2Me

N
H

O

OH

OH

 

(S)-Methyl 2-(benzyloxycarbonylamino)-6-((S)-3-hydroxy-2-(2-

hydroxybenzamido)propanamido)hexanoate (4.26).  Compound 4.26 was prepared 

following the same procedure used for 4.22.  The use of acid 2.62 (90 mg, 0.399 mmol), 
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amine 4.15 (123 mg, 0.418 mmol), and EDC•HCl (95 mg, 0.498 mmol) provided a pale 

yellow oil (217 mg).  Chromatography through 25 g of silica using 1:4 hexanes/EtOAc 

yielded 4.26 as a white glassy solid (158 mg, 79%).  1H NMR (300 MHz, CDCl3) δ 7.99 

(m, 1H), 7.56 (d, J = 7.5 Hz, 1H), 7.32 – 7.26 (m, 5H), 7.09 (t, J = 5.1 Hz, 1H), 6.89 (d, J 

= 8.1 Hz, 1H), 6.76 (t, J = 7.5 Hz, 1H), 5.77 (d, J = 7.8 Hz, 1H), 5.02 (s, 2H), 4.61 (m, 

1H), 4.27 (m, 1H), 4.03 (m, 1H), 3.74 (q, J = 5.4 Hz, 1H), 3.65 (s, 3H), 3.19 (m, 2H), 

1.76 – 1.30 (m, 6H) ppm.  13C NMR (75 MHz, CDCl3) δ 172.7, 170.6, 170.2, 161.1, 

156.1, 136.3, 134.4, 128.4, 128.1, 127.9, 126.6, 119.0, 118.3, 114.3, 67.1, 62.6, 54.4, 

52.1, 39.1, 32.0, 28.7, 22.4 ppm. 

 

N

O
H
N

O

CO2Bn

NHCbz  

(S)-Benzyl 6-(benzyloxycarbonylamino)-2-((S)-2-phenyl-4,5-dihydrooxazole-

4-carboxamido)hexanoate (4.27).  Compound 4.27 was prepared following the same 

procedure used for 4.22.  The use of acid 3.11 (106 mg, 0.529 mmol), amine 4.21 (263 

mg, 0.710 mmol), and EDC•HCl (143 mg, 0.748 mmol) provided a light orange oil (228 

mg).  Chromatography through 25 g of silica using a solvent gradient from 85:15 to 4:1 

CH2Cl2/EtOAc yielded 4.27 as a white solid (195 mg, 65%).  mp = 102-104 °C.  1H 

NMR (300 MHz, CDCl3) δ 7.99 (dd, J = 8.4, 1.5 Hz, 2H), 7.51 (tt, J = 7.3, 1.5 Hz, 1H), 

7.42 (t, J = 7.3 Hz, 1H), 7.35 (m, 10H), 7.23 (d, J = 7.8 Hz, 1H), 5.21 (d, J = 12 Hz, 1H), 

5.18 (d, J = 12 Hz, 1H), 5.06 (s, 2H), 4.86 (m, 2H), 4.61 (m, 3H), 3.06 (m, 2H), 1.83 (m, 



 319 

1H), 1.70 (m, 1H), 1.43 (m, 2H), 1.27 (m, 2H) ppm.  HRMS (FAB) m/z [M+H] + calcd for 

C31H34N3O6
+, 544.2448; obsd, 544.2445. 

 

N

O
H
N

O

CO2Bn

NHCbz

OH

 

(S)-Benzyl 6-(benzyloxycarbonylamino)-2-((S)-2-(2-hydroxyphenyl)-4,5-

dihydrooxazole-4-carboxamido)hexanoate (4.28).  Compound 4.28 was prepared 

following the same procedure used for 4.22.  The use of acid 2.62 (56.9 mg, 0.275 

mmol), amine 4.21 (95.8 mg, 0.259 mmol), and EDC•HCl (62 mg, 0.32 mmol) provided 

a cloudy oil (150 mg).  Chromatography through 15 g of silica using 90% CH2Cl2/EtOAc 

yielded 4.28 as an oil (111.5 mg, 77.1%).  1H NMR (500 MHz, CDCl3) δ 11.44 (br, 1H), 

7.68 (d, J = 7.5 Hz, 1H), 7.41 – 7.29 (m, 10H), 7.02 (d, J = 8.5 Hz, 1H), 6.97 (d, J = 7.5 

Hz, 1H), 6.90 (t, J = 8 Hz, 1H), 5.22 (d, J = 12.5 Hz, 1H), 5.16 (d, J = 12.5 Hz, 1H), 5.06 

(s, 2H), 4.92 (m, 2H), 4.62 (m, 3H), 3.08 (q, J = 6.5 Hz, 2H), 1.86 – 1.83 (m, 1H), 1.75 – 

1.67 (m, 1H), 1.48 – 1.39 (m, 2H), 1.27 – 1.21 (m, 2H) ppm.  13C NMR (125 MHz, 

CDCl3) δ 171.5, 170.3, 167.7, 159.6, 156.3, 136.5, 135.1, 134.2, 128.6, 128.5, 128.43, 

128.36, 128.26, 128.0, 127.9, 119.0, 116.9, 109.9, 69.3, 67.9, 67.2, 66.4, 51.9, 40.4, 31.7, 

29.6, 29.1, 22.2 ppm.  HRMS (FAB) m/z [M+H] + calcd for C31H34N3O7
+, 560.2397; obsd, 

560.2375. 
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N

S
H
N

O

CO2Bn

NHCbz  

(S)-Benzyl 6-(benzyloxycarbonylamino)-2-((R)-2-phenyl-4,5-dihydrothiazole-

4-carboxamido)hexanoate (4.31).  Compound 4.31 was prepared following the same 

procedure used for 4.22.  The use of thiazoline 4.29 (53.3 mg, 0.257 mmol), amine 4.21 

(96.5 mg, 0.261 mmol), and EDC•HCl (60.6 mg, 0.316 mmol) provided a yellow oil (159 

mg).  Chromatography through 15 g of silica using 90% CH2Cl2/EtOAc yielded 4.31 as a 

yellow oil (109 mg, 75%).  Rf = 0.24 (1:1 hexanes/EtOAc – UV lamp).  1H NMR (500 

MHz, CDCl3) δ 7.88 (d, J = 7.5 Hz, 2H), 7.50 (t, J = 7.0 Hz, 1H), 7.44 – 7.33 (m, 12H), 

5.21 – 5.16 (m, 4H), 5.10 – 5.05 (m, 2H), 4.84 (m, 1H), 4.69 (td, J = 7.5, 5.5 Hz, 1H), 

3.66 (m, 2H), 3.06 (m, 2H), 1.91 – 1.83 (m, 1H), 1.71 – 1.66 (m, 1H), 1.50 – 1.41 (m, 

2H), 1.30 – 1.25 (m, 2H) ppm.  13C NMR (125 MHz, CDCl3) δ 171.6, 171.3, 171.0, 

156.2, 136.5, 135.1, 132.3, 131.9, 128.6, 128.5, 128.44, 128.41, 128.39, 128.2, 128.1, 

128.03, 127.97, 78.8, 67.1, 66.4, 51.8, 40.5, 35.5, 32.1, 28.9, 22.2 ppm.  HRMS (FAB) 

m/z [M+H] + calcd for C31H34N3O5S
+, 560.2219; obsd, 560.2228. 

 

OH
N

S
H
N

O

CO2Bn

NHCbz  

(S)-Benzyl 6-(benzyloxycarbonylamino)-2-((R)-2-(2-hydroxyphenyl)-4,5-

dihydrothiazole-4-carboxamido)hexanoate (4.32).  Compound 4.32 was prepared 



 321 

following the same procedure used for 4.22.  The use of thiazoline 4.30 (57.5 mg, 0.258 

mmol), amine 4.21 (86.7 mg, 0.234 mmol), and EDC•HCl (56.5 mg, 0.295 mmol) 

provided a yellow oil.  Chromatography through 10 g of silica using 90% CH2Cl2/EtOAc 

yielded 4.32 as an off-white solid (86.2 mg, 64%).  Minor epimerization was observed 

from analysis of 1H and 13C spectra.  1H NMR (500 MHz, CDCl3) δ 11.95 (br, 1H), 7.45 

(d, J = 7.5 Hz, 1H), 7.35 – 7.29 (m, 10H), 7.03 (d, J = 8.5 Hz, 1H), 6.89 (t, J = 7.5 Hz, 

2H), 5.28 – 5.06 (m, 6H), 4.88 (br-m, 1H), 4.66 (td, J = 8.0, 5.5 Hz, 1H), 3.69 (dd, J = 11, 

8.0 Hz, 1H), 3.60 (m, 1H), 3.07 (m, 2H), 1.87 (m, 1H), 1.70 (m, 1H), 1.44 (m, 2H), 1.27 

(m, 2H) ppm.  13C NMR (125 MHz, CDCl3) δ 175.8, 171.4, 169.8, 158.8, 156.3, 136.6, 

135.1, 133.8, 130.8, 128.6, 128.51, 128.49, 128.4, 128.3, 128.2, 128.03, 127.98, 119.3, 

117.3, 115.8, 77.9, 67.3, 66.5, 52.1, 40.5, 33.9, 31.8, 29.0, 22.2 ppm.  HRMS (FAB) m/z 

[M+H] + calcd for C31H34N3O6S
+, 576.2168; obsd, 576.2143. 

 

OH
N

O

O

N

O

 

3-Oxa-2-aza-bicyclo[2.2.1]hept-5-en-2-yl((S)-2-(2-hydroxyphenyl)-4,5-

dihydrooxazol-4-yl)methanone (mixture of diastereomers 4.36 and 4.36’).  

Hydroxamic acid 3.32 (0.304 g, 1.37 mmol) was dissolved in 14 mL of MeOH in a 100-

mL round-bottomed flask with a stir bar.  The flask and stir bar were previously washed 

with 6M HCl, H2O, and acetone to remove any trace metals in the glassware.  The 

methanolic solution was cooled in an ice/H2O bath to 4 °C (internal temp.).  Freshly 

cracked cyclopentadiene (0.60 mL, 7.2 mmol) was added to the reaction followed 

immediately by the dropwise addition of a solution of NaIO4 (0.315 g, 1.47 mmol) in 4 
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mL of H2O (0.36M).  After 1 min, a white solid was observed in the reaction.  The 

addition of the NaIO4 solution was complete after 8 min.  The reaction was stirred in the 

ice/H2O bath for an additional 40 min, after which time the reaction was complete as 

observed by TLC (1:1 hexanes/EtOAc and 9:1 CH2Cl2/MeOH - UV lamp).  The white 

solid was removed by vacuum filtration and washed with EtOAc (50 mL).  Brine (50 mL) 

was added to the filtrate, and solid immediately crashed out of solution.  H2O was added 

until all of the solid dissolved (30 mL).  The layers were separated and the aqueous layer 

was extracted with EtOAc (2 x 50 mL).  The combined EtOAc layers were washed with 

brine (50 mL), dried over Na2SO4, filtered, and concentrated by rotary evaporation (bath 

temp <40°C) to yield a yellow oil (497 mg).  The oil was chromatographed through a 

Biotage 40S column using a solvent gradient from 2:1 hexanes/EtOAc to 3:2 

hexanes/EtOAc to yield the two isomers 4.36 (164.5 mg, 42%) and 4.36’ (114.8 mg, 

29.3%), as well as mixed 4.36 and 4.36’ (71.4 mg, 18.2%), all as colorless oils.  Total 

combined yield of 4.36 and 4.36’ was 350.7 mg (90%).  Absolute configuration of the 

stereochemistry was not assigned.  4.36: Rf  = 0.21 (1:1 hexanes/EtOAc – UV lamp, 

CAM stain).  1H NMR (500 MHz, CDCl3) δ 11.76 (br, 1H), 7.59 (d, J = 7.5 Hz, 1H), 7.33 

(t, J = 7.5 Hz, 1H), 6.94 (d, J = 8.5 Hz, 1H), 6.81 (m, 1H), 6.56 (m, 1H), 6.41 (ddd, J = 

5.5, 2.5, 1.5 Hz, 1H), 5.32 (br-m, 2H), 5.00 (m, 1H), 4.68 (t, J = 8.0 Hz, 1H), 4.46 (dd, J 

= 10.0, 9.0 Hz, 1H), 1.97 (d, J = 8.0 Hz, 1H), 1.84 (d, J = 8.5 Hz, 1H) ppm.  13C NMR 

(125 MHz, CDCl3) δ 171.5, 166.9, 159.7, 136.5, 133.5, 132.5, 118.4, 116.5, 110.1, 84.8, 

68.2, 66.5, 62.3, 48.1 ppm.  4.36’: Isolated with impurity (imp) as described herein.  Rf = 

0.14 (1:1 hexanes/EtOAc – UV lamp, CAM stain).  1H NMR (500 MHz, CDCl3) δ 11.78 

(br, 1H), 7.59 (d, J = 7.5 Hz, 1H), 7.33 (t, J = 7.5 Hz, 1H), 6.96 (dd, J = 8.0, 0.5 Hz, 1H), 
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6.82 (m, 1H), 6.59 (td, J = 5.5, 2.0 Hz, 1H), 6.36 (m, 1H), 5.34 (m, 2H), 5.07 (dd, J = 9.5, 

8.5 Hz, 1H), 4.42 (m, 2H), 2.02 (d, J = 8.5 Hz, 1H), 1.85 (d, J = 9.0 Hz, 1H) ppm.  13C 

NMR (125 MHz, CDCl3) δ 171.1, 167.1, 164.8 (imp), 159.7, 159.4 (imp), 136.8, 134.0 

(imp), 133.9 (imp), 133.5, 133.1, 132.7 (imp), 128.4 (imp), 128.0, 118.9 (imp), 118.4, 

116.6, 110.1, 84.7, 83.8 (imp), 68.1 (imp), 67.4, 66.5, 66.4 (imp), 64.6 (imp), 62.0, 48.4, 

48.2 (imp). 

 

OBn
N

O

O

N

O

 

3-Oxa-2-aza-bicyclo[2.2.1]hept-5-en-2-yl((S)-2-(2-(benzyloxy)phenyl)-4,5-

dihydrooxazol-4-yl)methanone (mixture of diastereomers 4.37 and 4.37’).  The 

mixture of diastereomers was prepared following the same procedure for 4.36 and 4.36’.  

The use of hydroxamate 3.21 (52 mg, 0.166 mmol), cyclopentadiene (0.100 mL, 1.25 

mmol), and NaIO4 (60 mg, 0.282 mmol) provided a yellow oil.  Chromatography through 

silica gel using 4:1 EtOAc/hexanes yielded a colorless oil composed of both 

diastereomers 4.36 and 4.36’ as well as a mixture of other impurities (37 mg). 

 

O

H2N

CO2Me

CO2Me
Cl

(±)  

(±)-(3R,5S)-3,5-Bis(methoxycarbonyl)isoxazolidin-2-ium chloride (4.38).  

Compound 3.44 (0.153 mg , 0.529 mmol) was dissolved in Et2O (25 mL) and HCl gas, 

produced from the addition of concentrated H2SO4 to a mixture of concentrated HCl and 
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NaCl, was bubbled through the solution for 1.5 h.  White solid was observed and the 

reaction was monitored by TLC.  The solvent was evaporated and the residue was used 

immediately without purification. 

 

O

HN

CO2Me

CO2Me(±)  

(±)-(3R,6S)-Dimethyl morpholine-3,6-dicarboxylate (4.41).  TFA (0.50 mL, 6.5 

mmol) was added slowly to a solution containing 3.45 (0.246 g, 0.811 mmol) in CH2Cl2 

(10 mL) at 4 °C (ice/H2O bath).  The mixture was stirred for 10 min, then warmed to RT 

and stirred for an additional 3 g.  3.45 was still present by TLC, so an additional 4 eq. of 

TFA was added to the reaction.  After stirring for 1.5 h at RT, 25 mL of 10 wt% aqueous 

Na2CO3 was added to the solution slowly and the layers were separated.  The aqueous 

layer was extracted with CH2Cl2 (3 x 20 mL) and the combined organic layers were dried 

over MgSO4, filtered, and concentrated to yield 4.41 as a yellow oil (0.141 g, 86%).  The 

oil was used immediately without purification.  Rf = 0.16 (1:1 hexanes/EtOAc – CAM 

stain).  1H NMR (300 MHz, CDCl3) δ 4.41 (dd, J = 7.8, 4.2 Hz, 1H), 3.76 (s, 3H), 3.75 (s, 

3H), 3.71 (dd, J = 9.0, 4.2 Hz, 1H), 2.21 – 1.82 (m, 4H) ppm. 

 

O

HN

CO2Bn

CO2Bn(±)  

(±)-(3R,6S)-Dimethyl morpholine-3,6-dicarboxylate (4.42).  Compound 4.42 

was prepared following the same procedure for 4.41.  Compound 3.48 (0.623 g, 1.37 
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mmol) provided 4.42 as a yellow oil (0.443 g, 91%).  The oil was used directly without 

purification.  Rf = 0.38 (1:1 hexanes/EtOAc – CAM stain).  1H NMR (300 MHz, CDCl3) 

δ 7.35 (m, 10H), 6.50 (d, J = 2.7 Hz, 1H), 5.30 – 5.14 (m, 4H), 4.45 (dd, J = 6.9, 4.8 Hz, 

1H), 3.75 (dt, J = 5.4, 4.2 Hz, 1H), 2.26 – 1.90 (m, 4H) ppm. 

 

BocHN

O

O * N
H

O
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O
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4.47

BocHN

O

O * N
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(S)-4-((S)-1-(Benzyloxy)-2-oxoazepan-3-ylamino)-4-oxobutan-2-yl 2-(tert-

butoxycarbonylamino)-6-(2,2-dimethyl-1,3-dioxolan-4-yl)hexanoate (mixture of 

diastereomers 4.47 and 4.48).  Preparation using Yamaguchi esterification 

conditions.  Acid (±)-3.101 (52.9 mg, 0.160 mmol) and 3.125 (52.4 mg, 0.164 mmol) 

were dissolved in 3 mL of anhydrous CH2Cl2 in a 25-mL round-bottomed flask under Ar.  

DMAP (5.8 mg, 0.047 mmol) was added, followed by triethylamine (0.045 mL, 0.32 

mmol) and 2,4,6-trichlorobenzoyl chloride (0.050 mL, 0.32 mmol).  The solution was 

stirred at RT under Ar.  After about 1 day, the reaction was progressing by TLC (100% 

EtOAc - UV lamp, CAM stain), but also incomplete.  The reaction was allowed to stir at 

RT under Ar.  After 3 days, an additional 3 mL of CH2Cl2 was added to replace the 

amount that had evaporated.  After 5 days, not much had changed by TLC and the 

reaction was diluted with EtOAc (15 mL) and H2O (10 mL) was added.  The layers were 

separated and the aqueous layer was extracted with EtOAc (2 x 15 mL).  The combined 

organic layers were washed with saturated NaHCO3 (20 mL) and brine (20 mL), dried 
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over Na2SO4, filtered, and concentrated to yield a colorless residue.  The residue was 

chromatographed through 12 g of silica using a solvent gradient from 100% CH2Cl2 to 

100% EtOAc to afford the mixture of diastereomers 4.47 and 4.48 as a colorless residue 

(54.7 mg, 54.1% yield) and unreacted cobactin 3.125 as a white solid (4.1 mg, 7.8% 

recovery).  1H NMR (500 MHz, CDCl3) δ 7.44 – 7.41 (m, 2H), 7.40 – 7.37 (m, 3H), 7.08 

(m, 1H), 5.36 – 5.19 (m, 2H), 5.00 (dd, J = 10.5, 3.0 Hz, 1H), 4.90 (dd, J = 10.5, 3.0 Hz, 

1H), 4.48 (m, 1H), 4.25 (m, 1H), 4.07 – 3.89 (m, 2H), 3.68 – 3.61 (m, 1H), 3.53 – 3.46 

(m, 2H), 2.60 – 2.55 (m, 1H), 2.50 – 2.44 (m, 1H), 2.03 – 1.96 (m, 1H), 1.94 – 1.88 (m, 

1H), 1.86 – 1.78 (m, 1H), 1.76 – 1.58 (m, 4H), 1.50 – 1.30 (m, 19H) ppm.  13C NMR 

(125 MHz, CDCl3) δ 171.9, 171.8, 170.0, 169.9, 168.2, 168.1, 155.4, 155.3, 134.90, 

134.87, 129.5, 128.9, 128.8, 128.52, 128.50, 108.5, 79.6, 79.5, 76.8, 75.79, 75.77, 69.3, 

68.9, 53.5, 52.64, 52.58, 51.73, 51.65, 42.6, 42.5, 33.29, 33.27, 33.2, 32.3, 32.2, 31.4, 

28.3, 28.2, 27.5, 26.8, 26.1, 25.6, 25.42, 25.37, 25.3, 25.24, 25.22, 19.7, 19.6 ppm.  

HRMS (FAB) m/z [M] + calcd for C33H51N3O9
+, 633.3625; obsd, 633.3602. 

 

Preparation of the mixture of diastereomers 4.47 and 4.48 using EDC and 

DMAP (Table 4.2, entry 5).  Acid 3.101 (0.472 g, 1.43 mmol) and 3.125 (0.457 g, 1.43 

mmol) were dissolved in 10 mL of anhydrous CH2Cl2 in a 100-mL round-bottomed flask 

under Ar.  DMAP (180 mg, 1.48 mmol) was added, followed by EDC•HCl (1.28 g, 6.68 

mmol).  The mixture was stirred at RT under Ar and monitored by TLC (100% EtOAc - 

UV lamp, CAM stain).  The volume of the reaction was reduced to ~5 mL and the orange 

mixture was partitioned between EtOAc (50 mL) and H2O (50 mL).  The layers were 

separated and the aqueous layer was extracted with EtOAc (3 x 30 mL).  The combined 
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organic layers were washed with H2O (25 mL), 10 wt% citric acid (2 x 25 mL), H2O (25 

mL), saturated NaHCO3 (2 x 25 mL), and brine (25 mL), dried over MgSO4, filtered, and 

concentrated to yield a yellow oil.  The oil was chromatographed through 100 g of silica 

using a solvent gradient from 100% CH2Cl2 to 1:3 CH2Cl2/EtOAc to yield a mixture of 

4.47 and 4.48 as a light yellow oil.  The oil was dried under vacuum (2 mm Hg) for 1 h to 

yield a white foam (0.626 g, 69.3% yield). 

 

Preparation of the mixture of diastereomers 4.47 and 4.48 using EDC, 

DMAP, and 4-pyrrolidinopyridine (Table 4.2, entry 6).  Acid 3.101 (0.805 mmol) and 

3.125 (0.265 g, 0.826 mmol) were dissolved in 5 mL of anhydrous CH2Cl2 in a 25-mL 

round-bottomed flask under Ar.  DMAP (25 mg, 0.205 mmol) and 4-pyrrolidinopyridine 

(25 mg, 0.17 mmol) were added, followed by EDC•HCl (0.660 g, 3.44 mmol).  The 

mixture was stirred at RT under Ar and monitored by TLC (100% EtOAc - UV lamp, 

CAM stain).  The reaction was diluted with EtOAc (20 mL) and H2O (20 mL) and the 

layers were separated.  The aqueous layer was extracted with EtOAc (2 x 20 mL), and the 

combined organic layers were washed with H2O (20 mL) and brine (20 mL), dried over 

MgSO4, filtered, and concentrated to a yellow oil.  The oil was chromatographed through 

50 g of silica using a solvent gradient from 100% CH2Cl2 to 25% CH2Cl2/EtOAc and 

yielded a mixture of 4.47 and 4.48 as a yellow oil (0.354 g, 69% yield). 

 

Attempted deprotection of 4.47 and 4.48 using TMSOTf and 2,6-lutidine.  A 

mixture of 4.47 and 4.48 (75.6 mg, 0.119 mmol) was dissolved in 2 mL of anhydrous 

CH2Cl2 in a flame-dried 10-mL round-bottomed flask under Ar.  2,6-Lutidine (0.030 mL, 
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0.26 mmol) was added, followed by trimethylsilyl trifluoromethanesulfonate (0.035 mL, 

0.18 mmol) dropwise.  The solution was stirred at RT under Ar and monitored by TLC 

(100% EtOAc - CAM stain, ninhydrin stain).  After 15 min, the reaction was not clean by 

TLC, and starting material remained.  After stirring for 3 days, with no change observed 

by TLC, additional 2,6-lutidine (0.030 mL, 0.26 mmol) and TMSOTf (0.035 mL, 0.18 

mmol) was added.  The reaction was stirred at RT under Ar for 20 min, then diluted with 

CH2Cl2 (5 mL) and saturated NaHCO3 (10 mL) was added.  The layers were separated 

and the aqueous layer was extracted with CH2Cl2 (2 x 7 mL).  The combined organic 

layers were dried over MgSO4, filtered, and concentrated to yield a yellow oil (103.6 

mg).  The mixture was analyzed by LC-MS and was found to contain large amounts of 

2,6-lutidine (rt = 3.80 min), and starting material 4.47 and 4.48 (rt = 9.02 min). 

Approximately equal amounts of 4.51 (rt = 6.10 min, MW = 535) 4.52 (rt = 6.60 min, 

MW = 595) were observed in the LC trace as well as 4.53. 

 

H2N
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O N
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O
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OH

OH

 

(S)-4-((S)-1-(Benzyloxy)-2-oxoazepan-3-ylamino)-4-oxobutan-2-yl 2-amino-

7,8-dihydroxyoctanoate (4.53).  A mixture of 4.47 and 4.48 (0.185 g, 0.291 mmol) was 

dissolved in 4 mL of 90% TFA/H2O in a 25-mL round-bottomed flask.  The brown 

solution was stirred at RT for 20 min, then added dropwise to a beaker containing 

saturated NaHCO3 (50 mL).  Solid sodium carbonate was added to the mixture until the 
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aqueous layer was a pH of 8-9 (pH paper).  CH2Cl2 (15 mL) was added and the layers 

were separated.  The cloudy aqueous layer was extracted with CH2Cl2 (3 x 10 mL).  The 

combined organic layers were dried over MgSO4, filtered, concentrated to yield crude 

4.53 as a yellow oil (92.8 mg, 64.6% yield).  The material was used without purification.  

1H NMR (300 MHz, CDCl3) δ 7.40 – 7.36 (m, 5H), 4.98 – 4.85 (m, 2H), 4.46 (m, 1H), 

3.66 – 3.35 (m, 5H), 2.98 (br, 3H), 2.61 – 2.42 (m, 2H), 2.00 – 1.30 (m, 17H) ppm. 

 

H
N

O

O N
H

O
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O
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mixture of two
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O

O
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(S)-4-((S)-1-(Benzyloxy)-2-oxoazepan-3-ylamino)-4-oxobutan-2-yl 7,8-

dihydroxy-2-((S)-2-(2-hydroxyphenyl)-4,5-dihydrooxazole-4-carboxamido)octanoate 

(4.54).  Amine 4.53 (92.8 mg, 0.188 mmol), 2.62 (40.7 mg, 0.196 mmol), and HOBt 

(29.6 mg, 0.219 mmol) were dissolved in 5 mL of anhydrous CH2Cl2 in a 25-mL round-

bottomed flask under Ar.  EDC•HCl (51.7 mg, 0.270 mmol) was added in one portion 

and the mixture was stirred at RT under Ar.  After 17 h, product formation was observed 

by TLC (9:1 EtOAc/MeOH - UV lamp, CAM stain).  The reaction was diluted with 

EtOAc (25 mL) and H2O (25 mL) and the layers were separated.  The cloudy aqueous 

layer was extracted with EtOAc (3 x 20 mL) and the combined organic layers were 

washed with saturated NaHCO3 (2 x 20 mL), H2O (2 x 20 mL), and brine (20 mL), dried 

over MgSO4, filtered, and concentrated to yield a yellow oil.  The oil was 

chromatographed through 10 g of silica using a solvent gradient from 100% EtOAc to 
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90% EtOAc/MeOH and yielded 4.54 as a colorless residue (83.1 mg, 64.7% yield).  Rf = 

0.28 (9:1 EtOAc/MeOH – UV lamp, CAM stain).  1H NMR (500 MHz, CDCl3) δ 7.77 – 

7.67 (m, 1H), 7.42 – 7.35 (m, 5H), 7.21 – 7.16 (m, 0.5H), 7.09 – 7.01 (m, 2H), 7.94 – 

7.89 (m, 1H), 5.36 – 5.33 (m, 0.5H), 5.26 (m, 0.5H), 5.02 – 4.95 (m, 2H), 4.89 (t, J = 

10.5 Hz, 1H), 4.82 – 4.78 (m, 0.5H), 4.68 – 4.59 (m, 2H), 4.54 – 4.43 (m, 2H), 3.71 – 

3.57 (m, 2H), 3.55 – 3.47 (m, 2H), 3.39 – 3.33 (m, 1H), 2.58 (dd, J = 10.5, 8.0 Hz, 0.5H), 

2.50 (dd, J = 14.5, 4.5 Hz, 0.5H), 2.41 (d, J = 7.0 Hz, 1H), 2.00 – 1.85 (m, 3H), 1.80 – 

1.60 (m, 3H), 1.50 – 1.20 (m, 11H) ppm.  13C NMR (125 MHz, CDCl3) δ 170.99, 170.97, 

170.61, 170.57, 170.4, 170.23, 170.20, 170.17, 170.1, 170.0, 168.9, 168.8, 168.4, 168.3, 

167.6, 167.22, 167.18, 159.7, 159.4, 135.02, 134.98, 134.82, 134.81, 134.2, 134.1, 129.5, 

129.4, 128.94, 128.92, 128.58, 128.56, 128.5, 119.2, 119.1, 116.9, 116.7, 110.2, 110.0, 

76.9, 71.9, 71.55, 71.45, 70.9, 69.74, 69.69, 69.5, 69.4, 69.21, 69.18, 67.9, 67.84, 67.81, 

66.82, 66.76, 66.71, 66.69, 52.70, 52.67, 52.6, 52.3, 52.20, 52.15, 51.9, 51.7, 51.64, 

51.60, 51.58 ppm.  HRMS (FAB) m/z [M+H] + calcd for C35H47N4O10
+, 683.2392; obsd, 

683.3283. 
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(S)-4-Oxo-4-((S)-2-oxoazepan-3-ylamino)butan-2-yl 7,8-dihydroxy-2-((S)-2-

(2-hydroxyphenyl)-4,5-dihydrooxazole-4-carboxamido)octanoate (4.55).  All 

glassware used was washed with 6M HCl (2x), then DI water to neutral pH (pH paper), 
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then acetone and was flame-dried before use to remove trace amounts of Fe and other 

metals.  Anhydrous MeOH (2 mL) was added to 4.54 (11.6 mg, 0.0170 mmol) in a 10-

mL round-bottomed flask.  The mixture was purged with Ar and 10 wt% Pd/C (2 mg) 

was added.  The black mixture was purged with Ar, then with H2 for 30 seconds, then 

was stirred under H2 (balloon).  After 55 min, the mixture was analyzed by TLC (9:1 

EtOAc/MeOH - UV lamp, CAM stain), but only starting material was observed.  Glacial 

acetic acid (0.001 mL, 0.017 mmol, ~1 equiv) was added to the mixture.  After 30 min, 

no change was observed.  Additional 10 wt% Pd/C was added (about 3 mg) and the 

mixture was stirred under H2.  After 1 h, no starting material was observed by TLC, and a 

new, FeCl3-positive spot was observed just above the baseline.  The reaction was filtered 

through glass filter paper.  The colorless filtrate was concentrated to yield a mixture of 

4.55 and other impurities as a residue (6.8 mg, 67.5% crude yield).  LC/MS (5 – 80% 

CH3CN/10 mM NH4OAc) Rt = 5.43 and 5.57 min; m/z [M+H] + 577.5. 
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(S)-4-((S)-1-Hydroxy-2-oxoazepan-3-ylamino)-4-oxobutan-2-yl 7,8-

dihydroxy-2-((S)-2-(2-hydroxyphenyl)-4,5-dihydrooxazole-4-carboxamido)octanoate 

(4.56).  All glassware used was washed with 6M HCl (2x), then H2O to neutral pH (pH 

paper), then acetone and was oven-dried before use to remove trace amounts of metals.  

Anhydrous MeOH (10 mL) was added to 4.54 (70.6 mg, 0.103 mmol) in a 25-mL round-
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bottomed flask.  The mixture was purged with Ar (3 min) and 10 wt% Pd/C (31.5 mg, 45 

wt% of 4.54) was added.  The black mixture was purged with Ar (2 min), then with H2 (2 

min), then was stirred under H2 (balloon).  After 1 h, no starting material remained by 

TLC analysis of the reaction mixture (9:1 EtOAc/MeOH - UV lamp, FeCl3 stain), and a 

FeCl3-positive spot was observed just above the baseline.  The reaction was purged with 

Ar (3 min) and filtered through a pad of celite over glass filter paper.  The filtrate was 

still contaminated with fine particles of Pd/C and was filtered through a 4mm acrodisc 

syringe filter and concentrated to yield a light orange oil.  The oil was dried under 

vaccuum (2 mm Hg) and solidified (51.2 mg, 83.6% crude yield).  The crude material 

was dissolved in MeOH and analyzed by LC-MS.  The desired product eluted at 5.32 

min.  Other peaks were observed at 6.62 min, 7.15 min, and a significant impurity at 7.72 

min.  The crude mixture was purified by trituration with acetonitrile and provided 4.56 as 

a white solid (26.2 mg, 42.8% yield).  LC/MS (5%-80% CH3CN/10mM NH4OAc) Rt = 

5.32 min.  1H NMR (500 MHz, d6-DMSO, 30 °C) δ 8.64 (m, 1H), 8.04 (dd, J = 14, 7.0 

Hz, 1H), 7.62 (d, J = 7.5 Hz, 1H), 7.44 (m, 1H), 7.97 – 7.87 (m, 2H), 5.12 (m, 1H), 4.99 

(m, 1H), 4.60 (q, J = 9.5 Hz, 1H), 4.50 (m, 1H), 4.44 (m, 1H), 4.21 (m, 0.5H), 4.15 (m, 

0.5H), 3.86 (d, J = 11.5 H, 0.5H), 3.82 (d, J = 11.5 Hz, 0.5H), 3.51 – 3.45 (m, 1H), 3.38 – 

3.21 (m, 5H), 2.54 – 2.39 (m, 1H), 1.84 – 1.58 (m, 6H), 1.47 – 1.21 (m, 8H), 1.19 (d, J = 

6.5 Hz, 1.5H), 1.14 (d, J = 6.0 Hz, 1.5H) ppm.  13C NMR (125 MHz, d6-DMSO, 30 °C) δ 

171.0, 170.8, 169.7, 169.6, 168.54, 168.45, 167.87, 167.78, 165.7, 133.77, 133.73, 128.0, 

118.4, 116.8, 116.7, 109.98, 109.87, 70.9, 70.8, 69.0, 68.7, 68.5, 67.04, 67.00, 65.8, 52.4, 

52.3, 52.2, 50.6, 41.2, 33.01, 32.98, 30.7, 30.59, 30.55, 30.4, 26.89, 26.86, 25.4, 25.33, 
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25.28, 24.7, 19.4, 19.2 ppm.  HRMS (FAB) m/z [M+H] + calcd for C29H41N4O10
+, 

593.2823; obsd, 593.2801. 
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(R)-4-((S)-1-(Benzyloxy)-2-oxoazepan-3-ylamino)-4-oxobutan-2-yl 2-(tert-

butoxycarbonylamino)-6-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)hexanoate (4.57).  

Compound 4.57 was prepared following the procedure used for 4.47 and 4.48 using EDC, 

DMAP, and 4-pyrrolidinopyridine.  The use of acid (2S,7R)-3.101 (0.246 g, 0.742 mmol), 

3.124 (0.238 g, 0.742 mmol), EDC•HCl (0.650 g, 3.39 mmol), DMAP (33.0 mg, 0.270 

mmol), and 4-pyrrolidinopyridine (40.0 mg, 0.270 mmol) provided a yellow oil.  

Chromatography through 50 g of silica using a solvent gradient from 100% CH2Cl2 to 

33% CH2Cl2/EtOAc yielded 4.58 as a light white foam (0.268 g, 57% yield).  The 

product consisted of approximately a 2:1 mixture of epimers from 1H NMR data.  Rf = 

0.37 (100% EtOAc – CAM stain).  LC/MS (5 – 80% CH3CN/10 mM NH4OAc) Rt = 8.95 

min.  1H NMR (500 MHz, CDCl3) δ 7.43 – 7.36 (m, 5H), 7.05 (d, J = 6.5 Hz, 1H), 7.02 

(d, J = 6.5 Hz, 1H epimer), 5.35 – 5.19 (m, 2H), 4.98 (d, J = 10.5 Hz, 1H), 4.99 (d, J = 

10.0 Hz, 1H epimer), 4.90 (d, J = 10.5 Hz, 1H), 4.46 (ddd, J = 11.0, 6.5, 1.0 Hz, 1H), 

4.23 (m, 1H), 4.07 – 3.98 (m, 2H), 3.64 (d, J = 11.5 Hz, 1H epimer), 3.60 (d, J = 11.5 Hz, 

1H), 3.53 – 3.45 (m, 2H), 2.59 – 2.45 (m, 2H), 1.98 – 1.88 (m, 2H), 1.81 – 1.61 (m, 5H), 

1.51 – 1.33 (m, 19H) ppm.  13C NMR (125 MHz, CDCl3) δ 171.9, 170.00 (epimer), 
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169.97, 168.2, 155.4, 134.93 (epimer), 134.90, 129.58 (epimer), 129.57, 128.89, 128.87 

(epimer), 128.5, 108.58 (epimer), 108.56, 79.6, 76.8, 75.8, 69.3, 68.94, 68.88 (epimer), 

53.6, 53.5 (epimer), 52.7, 51.7, 42.6 (epimer), 42.5, 33.3 (epimer), 33.2, 32.5, 32.4 

(epimer), 31.5, 31.4, 28.3, 27.52 (epimer), 27.48, 26.9, 26.1, 25.7, 25.42, 25.40, 25.35, 

25.42, 19.62 (epimer), 19.56 ppm.  HRMS (FAB) m/z [M+H] + calcd for C33H52N3O9
+, 

634.3704; obsd, 634.3709. 
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(R)-4-((S)-1-(Benzyloxy)-2-oxoazepan-3-ylamino)-4-oxobutan-2-yl 2-(tert-

butoxycarbonylamino)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)hexanoate (4.58).  

Compound 4.58 was prepared following the procedure used for 4.47 and 4.48 using EDC, 

DMAP, and 4-pyrrolidinopyridine.  The use of acid (2S,7R)-3.101 (0.276 g, 0.832 mmol), 

3.124 (0.268 g, 0.837 mmol), EDC•HCl (0.730 g, 3.81 mmol), DMAP (36.5 mg, 0.299 

mmol), and 4-pyrrolidinopyridine (44 mg, 0.30 mmol) provided a yellow oil.  

Chromatography through 50 g of silica using a solvent gradient from 100% CH2Cl2 to 

33% CH2Cl2/EtOAc yielded 4.58 as a light yellow oil (0.292 g, 55% yield).  The product 

consisted of approximately a 2:1 mixture of epimers from 1H NMR data.  Rf = 0.37 

(100% EtOAc – CAM stain).  LC/MS (5 – 80% CH3CN/10 mM NH4OAc) Rt = 8.97 min.  

1H NMR (500 MHz, CDCl3) δ 7.44 – 7.36 (m, 5H), 7.03 (m, 1H epimer), 7.00 (d, J = 6.0 

Hz, 1H), 5.35 – 5.18 (m, 2H), 4.99 (m, 1H), 4.90 (dd, J = 10.5, 2.0 Hz, 1H), 4.46 (dd, J = 
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10.5, 6.5 Hz, 1H), 4.25 (dd, J = 13.5, 8.0 Hz, 1H), 4.08 – 3.99 (m, 2H), 3.62 (m, 1H), 

3.53 – 3.45 (m, 2H), 2.59 – 2.45 (m, 2H), 1.99 – 1.96 (m, 1H), 1.92 – 1.88 (m, 1H), 1.82 

(m, 1H), 1.75 – 1.60 (m, 4H), 1.48 – 1.31 (m, 19H) ppm.  13C NMR (125 MHz, CDCl3) δ 

171.91, 171.89, 170.0, 168.2, 155.4, 135.0, 129.6, 128.94, 128.91, 128.6, 108.6, 79.6, 

76.9, 75.8, 69.4, 68.9, 53.5, 52.8, 51.7, 42.64, 42.59 (epimer), 33.32 (epimer), 33.27, 32.6 

(epimer), 32.4, 31.6 (epimer), 31.5, 28.3, 27.6, 26.9, 26.2, 25.7, 25.5, 25.42, 25.38, 25.2, 

19.7, 19.6 (epimer) ppm.  HRMS (FAB) m/z [M+H] + calcd for C33H52N3O9
+, 634.3704; 

obsd, 634.3706. 
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O
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(S)-4-((S)-1-(Benzyloxy)-2-oxoazepan-3-ylamino)-4-oxobutan-2-yl 2-(tert-

butoxycarbonylamino)-6-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)hexanoate (4.59).  

Compound 4.59 was prepared following the procedure used for 4.47 and 4.48 using EDC, 

DMAP, and 4-pyrrolidinopyridine.  The use of (2R,7S)-3.101 (0.141 g, 0.425 mmol), 4-

pyrrolidinopyridine (23.0 mg, 0.155 mmol), EDC•HCl (0.356 g, 1.86 mmol), DMAP 

(22.1 mg, 0.181 mmol), and 3.125 (0.136 g, 0.425 mmol) provided a colorless oil.  

Chromatography through 30 g of silica using a solvent gradient from 100% CH2Cl2 to 

33% CH2Cl2/EtOAc yielded 4.59 as a yellow oil (0.177 g, 66% yield).  Isolated as a 

mixture of epimers.  Rf = 0.36 (100% EtOAc – CAM stain).  1H NMR (500 MHz, 

CDCl3) δ 7.44 – 7.32 (m, 5H), 7.12 (m, 1H), 5.40 (d, J = 8.5 Hz, 1H), 5.30 (m, 2H), 5.00 
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(dd, J = 10.0, 2.5 Hz, 1H), 4.89 (dd, J = 10.5, 3.0 Hz, 1H), 4.50 – 4.43 (m, 1H), 4.25 (m, 

1H), 4.06 – 3.98 (m, 2H), 3.68 – 3.60 (m, 1H), 3.53 – 3.44 (m, 2H), 2.58 (dd, J = 15.0, 

7.0 Hz, 1H), 2.51 – 2.45 (m, 1H), 2.04 – 1.97 (m, 1H), 1.94 – 1.88 (m, 1H), 1.86 – 1.80 

(m, 1H), 1.76 – 1.58 (m, 4H), 1.50 – 1.25 (m, 19H) ppm.  13C NMR (125 MHz, CDCl3) δ 

171.75 (epimer), 171.70, 169.9, 169.8 (epimer), 168.1, 168.0 (epimer), 155.34, 155.25 

(epimer), 134.80, 134.77 (epimer), 129.4, 128.73 (epimer), 128.69, 128.4, 108.4, 79.4 

(epimer), 79.3, 76.6, 75.7 (epimer), 75.6, 69.22 (epimer), 69.20, 68.8, 53.4, 53.3 

(epimer), 52.5, 52.4, 51.6 (epimer), 51.5, 42.5, 42.3 (epimer), 33.2 (epimer), 33.1, 32.2 

(epimer), 32.0, 31.25, 31.22, 28.2, 28.1 (epimer), 27.3, 26.7, 26.0, 25.5, 25.3, 25.2, 25.1, 

19.5 ppm. 
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(S)-4-((S)-1-(Benzyloxy)-2-oxoazepan-3-ylamino)-4-oxobutan-2-yl 2-(tert-

butoxycarbonylamino)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)hexanoate (4.60).  

Compound 4.60 was prepared following the procedure used for 4.47 and 4.48 using EDC, 

DMAP, and 4-pyrrolidinopyridine.  The use of (2S,7R)-3.101 (33.8 mg, 0.102 mmol), 4-

pyrrolidinopyridine (6.8 mg, 0.046 mmol), EDC•HCl (92.2 mg, 0.481 mmol), DMAP 

(8.0 mg, 0.65 mmol), and 3.125 (33.2 mg, 0.104 mmol) provided a yellow residue.  

Chromatography through 10 g of silica using a solvent gradient from 100% CH2Cl2 to 

50% CH2Cl2/EtOAc yielded 4.60 as a yellow foam (40.0 mg, 62% yield).  Isolated as a 



 337 

mixture of epimers.  Rf = 0.36 (100% EtOAc – CAM stain).  1H NMR (500 MHz, CDCl3-

) δ 7.44 – 7.37 (m, 5H), 7.07 (d, J = 6.0 Hz, 1H), 5.35 – 5.18 (m, 2H), 5.00 (m, 1H), 4.90 

(m, 1H), 4.49 – 4.42 (m, 1H), 4.28 – 4.22 (m, 1H), 4.08 – 3.99 (m, 2H), 3.68 – 3.60 (m, 

1H), 3.54 – 3.45 (m, 2H), 2.59 (dd, J = 15.0, 6.0 Hz, 1H), 2.46 (dd, J = 15.0, 6.0 Hz, 1H), 

2.05 – 1.98 (m, 1H), 1.94 – 1.87 (m, 1H), 1.85 – 1.57 (m, 5H), 1.53 – 1.25 (m, 19H) ppm.  

13C NMR (125 MHz, CDCl3) δ 171.9, 170.02 (epimer), 169.97, 168.2 (epimer), 168.1, 

155.4, 134.94 (epimer), 134.90, 129.6, 128.9, 128.6, 108.6, 79.64, 79.55 (epimer), 76.9, 

75.8, 69.4, 68.9, 53.5, 52.7, 52.6 (epimer), 51.8, 51.7 (epimer), 42.7 (epimer), 42.5, 33.31 

(epimer), 33.25, 32.4, 31.4, 28.31 (epimer), 28.27, 27.5, 26.9, 26.1, 25.7, 25.4, 25.3, 19.7 

(epimer), 19.6 ppm. 
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(S)-((R)-4-((S)-1-(Benzyloxy)-2-oxoazepan-3-ylamino)-4-oxobutan-2-yl) 2-

amino-7,8-dihydroxyoctanoate (4.61).  Compound 4.61 was prepared following the 

same procedure used for 4.53.  Compound 4.57 (0.175 g, 0.276 mmol) provided crude 

4.61 as an off-white foam (98.9 mg, 73% yield).  Isolated as a mixture of epimers.    1H 

NMR (300 MHz, CDCl3) δ 7.40 – 7.14 (m, 6H), 5.32 – 5.23 (m, 1H), 4.95 (d, J = 10.2 

Hz, 1H), 4.85 (d, J = 10.2 Hz, 1H), 4.56 – 4.41 (m, 1H), 3.66 – 3.33 (m, 9H), 2.58 – 2.43 

(m, 2H), 1.93 – 1.22 (m, 17H) ppm.  13C NMR (75 MHz, CDCl3) δ 174.0, 170.1, 169.9 

(epimer), 168.6, 168.3 (epimer), 134.8, 129.5, 128.8, 128.5, 76.8, 71.6 (epimer), 71.4, 
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68.8, 66.5, 54.0, 52.6, 51.6, 42.3, 33.7, 32.5, 31.3, 27.4 (epimer), 27.3, 26.0, 24.9, 24.7, 

19.7 ppm. 
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(S)-((R)-4-((S)-1-(Benzyloxy)-2-oxoazepan-3-ylamino)-4-oxobutan-2-yl) 7,8-

dihydroxy-2-((S)-2-(2-hydroxyphenyl)-4,5-dihydrooxazole-4-carboxamido)octanoate 

(4.62).  Compound 4.62 was prepared following the same procedure used for 4.54.  

Oxazoline 2.62 (44.4 mg, 0.214 mmol), EDC•HCl (53 mg, 0.276 mmol), HOBt (31.9 mg, 

0.236 mmol), and 4.61 (98.9 mg, 0.200 mmol) provided an oil.  Chromatography through 

15 g of silica using a solvent gradient from 100% EtOAc to 95% EtOAc/MeOH yielded 

4.62 as a white solid (73 mg, 53% yield).  Isolated as a mixture of epimers.  Rf = 0.27 

(9:1 EtOAc/MeOH – CAM stain, UV lamp).  1H NMR (500 MHz, CDCl3) δ 11.45 (br, 

1H), 6.68 (dt, J = 8.0, 1.5 Hz, 1H), 7.43 – 7.35 (m, 5H), 7.17 – 7.01 (m, 3H), 6.90 (t, J = 

7.5 Hz, 1H), 5.37 – 5.23 (m, 1H), 4.99 – 4.93 (m, 2H), 4.89 – 4.86 (m, 1H), 4.68 – 4.62 

(m, 2H), 4.58 – 4.54 (m, 1H), 4.47 – 4.42 (m, 1H), 3.72 – 3.34 (m, 5H), 2.62 – 2.43 (m, 

2H), 1.96 – 1.84 (m, 3H), 1.78 – 1.64 (m, 3H), 1.50 – 1.26 (m, 11H) ppm.  13C NMR 

(125 MHz, CDCl3) δ 170.9 (epimer), 170.8, 170.4 (epimer), 170.3, 170.1 (epimer), 170.0, 

168.4, 168.3 (epimer), 167.9, 167.6 (epimer), 159.61, 159.59 (epimer), 134.9 (epimer), 

134.8, 134.2, 129.53, 129.49 (epimer), 128.91, 128.85 (epimer), 128.6, 128.5 (epimer), 

119.1, 116.89 (epimer), 116.87, 110.0, 76.8, 71.5 (epimer), 71.2, 69.45 (epimer), 69.41, 
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67.94 (epimer), 67.90, 66.8, 66.7 (epimer), 52.64 (epimer), 52.58, 52.2, 52.0 (epimer), 

51.7 (epimer), 51.6, 42.4 (epimer), 42.2, 32.5, 31.9 (epimer), 31.8, 31.5, 31.3 (epimer), 

27.4 (epimer), 27.3, 26.1 (epimer), 26.0, 24.72, 24.69, 24.5, 24.4, 19.69, 19.66 ppm. 
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(R)-((R)-4-((S)-1-(Benzyloxy)-2-oxoazepan-3-ylamino)-4-oxobutan-2-yl) 2-

amino-7,8-dihydroxyoctanoate (4.63).  Compound 4.63 was prepared following the 

same procedure used for 4.53.  Compound 4.58 (0.254 g, 0.401 mmol) provided 4.63 as 

an off-white foam (125 mg, 63% yield).  1H NMR (300 MHz, CDCl3) δ 7.40 – 7.33 (m, 

5H), 7.15 (d, J = 6.6 Hz, 1H), 5.27 (m, 1H), 4.95 (d, J = 10.2 Hz, 1H), 4.85 (d, J = 10.2 

Hz, 1H), 4.43 (dd, J = 10.2, 6.3 Hz, 1H), 3.64 – 3.33 (m, 6H), 2.89 (br, 3H), 2.58 – 2.43 

(m, 2H), 1.93 – 1.83 (m, 2H), 1.74 – 1.21 (m, 15H) ppm.  13C NMR (75 MHz, CDCl3) δ 

174.9, 170.07, 170.00 (epimer), 168.5, 134.8, 129.5, 128.8, 128.5, 76.7, 71.8, 71.7 

(epimer), 68.64 (epimer), 68.56, 66.5, 54.1 (epimer), 54.0, 52.6, 51.6, 42.5, 34.1, 32.7, 

31.3, 27.4, 26.0, 25.3, 25.0, 19.8 ppm. 
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(R)-((R)-4-((S)-1-(Benzyloxy)-2-oxoazepan-3-ylamino)-4-oxobutan-2-yl) 7,8-

dihydroxy-2-((S)-2-(2-hydroxyphenyl)-4,5-dihydrooxazole-4-carboxamido)octanoate 

(4.64).  Compound 4.64 was prepared following the same procedure used for 4.54.  

Oxazoline 2.62 (55.8 mg, 0.269 mmol), EDC•HCl (67.0 mg, 0.350 mmol), HOBt (41.2 

mg, 0.305 mmol), and 4.63 (0.125 g, 0.253 mmol) provided an oil.  Chromatography 

through 20 g of silica using a solvent gradient from 100% EtOAc to 95% EtOAc/MeOH 

yielded 4.64 as a white solid (94.4 mg, 55% yield).  Rf = 0.25 (9:1 EtOAc/MeOH – UV 

lamp, CAM stain).  1H NMR (500 MHz, CDCl3) δ 7.65 (dd, J = 7.5, 1.0 Hz, 1H), 7.40 – 

7.32 (m, 6H), 7.13 (m, 2H), 6.99 (d, J = 8.5 Hz, 1H), 6.87 (t, J = 7.5 Hz, 1H), 5.31 (m, 

1H), 5.25 (m, 1H epimer), 4.96 – 4.90 (m, 2H), 4.86 – 4.83 (m, 1H), 4.63 – 4.58 (m, 2H), 

4.55 – 4.51 (m, 1H), 4.47 – 4.40 (m, 1H), 3.63 – 3.57 (m, 2H), 3.52 (dd, J = 11.0, 3.0 Hz, 

1H), 3.47 – 3.34 (m, 1H), 3.40 – 3.36 (m, 1H epimer), 3.33 (dd, J = 11, 7.5 Hz, 1H), 2.57 

(dd, J = 15.0, 7.5 Hz, 1H), 2.49 (dd, J = 15.0, 5.0 Hz, 1H), 2.40 (dd, J = 15.0, 5.0 Hz, 1H 

epimer), 1.93 – 1.80 (m, 3H), 1.73 – 1.61 (m, 3H), 1.47 – 1.26 (m, 11H) ppm.  13C NMR 

(125 MHz, CDCl3) δ 170.9, 170.7 (epimer), 170.5 (epimer), 170.2, 170.02, 170.0 

(epimer), 168.4, 168.3 (epimer), 167.8 (epimer), 167.5, 159.54 (epimer), 159.50, 134.8, 

134.7 (epimer), 134.2 (epimer), 134.1, 129.5 (epimer), 129.4, 128.9 (epimer), 128.8, 

128.5, 128.4 (epimer), 119.0, 116.8, 109.9, 76.9, 71.7, 71.6 (epimer), 69.4, 69.3, 67.9, 



 341 

67.8 (epimer), 66.65 (epimer), 66.61, 52.6, 52.1, 51.6, 42.3, 32.5 (epimer), 32.4, 31.7, 

31.3, 27.4, 27.3 (epimer), 26.03, 26.00 (epimer), 25.0, 24.7, 19.6 ppm. 
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(S)-((R)-4-((S)-1-Hydroxy-2-oxoazepan-3-ylamino)-4-oxobutan-2-yl) 7,8-

dihydroxy-2-((S)-2-(2-hydroxyphenyl)-4,5-dihydrooxazole-4-carboxamido)octanoate 

(4.65).  Compound 4.65 was prepared following the same procedure for 4.56.  Compound 

4.62 (12.0 mg, 0.018 mmol) was subjected to hydrogenolysis using 10 wt% Pd/C (6 mg) 

for 20 min.  Trituration with acetonitrile yielded 4.65 as a white solid (3 mg, 30%).  1H 

NMR (500 MHz, d6-DMSO, 30 °C) δ 8.62 (m, 1H), 8.02 (d, J = 7.0 Hz, 1H), 7.60 (d, J = 

8.0 Hz, 1H), 7.38 (m, 1H), 6.91 – 6.78 (m, 2H), 5.10 (sextet, J = 6.5 Hz, 1H), 4.96 (m, 

1H), 4.58 (m, 1H), 4.43 (dd, J = 9.5, 7.5 Hz, 2H), 4.19 (m, 1H), 3.84 (dd, J = 16.0, 11.5 

Hz, 1H), 3.48 (m, 1H), 3.38 (m, 1H), 3.30 – 3.20 (m, 3H), 2.51 (m, 1H), 2.39 (dd, J = 

14.5, 6.0 Hz, 1H), 1.82 (m, 1H), 1.72 – 1.58 (m, 3H), 1.46 – 1.34 (m, 3H), 1.46 – 1.18 

(m, 10H) ppm.  HRMS (FAB) m/z [M+H] + calcd for C28H41N4O10
+, 593.2823; obsd, 

593.2801. 
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(R)-((R)-4-((S)-1-Hydroxy-2-oxoazepan-3-ylamino)-4-oxobutan-2-yl) 7,8-

dihydroxy-2-((S)-2-(2-hydroxyphenyl)-4,5-dihydrooxazole-4-carboxamido)octanoate 

(4.66).  Compound 4.66 was prepared following the same procedure for 4.56.  Compound 

4.64 (47.0 mg, 0.069 mmol) was subjected to hydrogenolysis using 10 wt% Pd/C (18 mg) 

for 20 min.  Trituration with acetonitrile yielded 4.66 as a white solid (13 mg, 32% yield).  

1H NMR (500 MHz, d6-DMSO, 30 °C) δ 8.67 (br, 1H), 8.02 (d, J = 7.5 Hz, 1H epimer), 

7.98 (d, J = 7.0 Hz, 1H), 7.59 (d, J = 8.0 Hz, 1H), 7.40 (m, 1H), 6.92 (m, 1H), 6.83 (m, 

1H), 5.11 (q, J = 6.5 Hz, 1H), 4.98 (dd, J = 9.5, 7.5 Hz, 1H), 4.60 (t, J = 9 Hz, 1H), 4.49 

– 4.41 (m, 2H), 4.20 (m, 1H), 3.84 (dd, J = 16.0, 11.5 Hz, 1H), 3.46 (dd, J = 15.5, 5.0 Hz, 

1H), 3.28 – 3.19 (m, 3H), 2.51 (m, 1H), 2.40 (dd, J = 14.5, 6.5 Hz, 1H), 1.83 – 1.58 (m, 

6H), 1.46 – 1.16 (m, 11H) ppm.  13C NMR (125 MHz, d6-DMSO, 30 °C) δ 170.9, 170.8 

(epimer), 169.8, 168.6, 168.5 (epimer), 167.9, 167.9 (epimer), 165.75, 165.69 (epimer), 

133.7, 128.0, 118.2 (br), 116.8 (br), 109.9 (br), 70.9, 68.9, 68.7, 67.1, 65.9, 52.3, 52.2 

(epimer), 50.7, 41.3, 41.2 (epimer), 33.0, 30.7, 30.3 (epimer), 30.1, 26.8, 25.4 (epimer), 

25.3, 24.72 (epimer), 24.66, 19.3, 19.2 (epimer) ppm.  HRMS (FAB) m/z [M+H] + calcd 

for C28H41N4O10
+, 593.2823; obsd, 593.2825. 
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8.4 Experimental procedures for chapter 5 

N
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O
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OH

 

(S)-Methyl 2-benzamido-3-hydroxypropanoate (5.20).  Compound 5.20 was 

prepared following the same procedure for compound 3.5 using EDC-mediated amide 

formation.  Benzoic acid  (3.55 g, 29.0 mmol), 3.18 (4.03 g, 25.9 mmol), EDC•HCl (5.57 

g, 29.1 mmol), and triethylamine (3.85 mL, 27.4 mmol) provided 5.20 as an oil that 

solidified upon storage (3.64 g, 63% yield).  mp = 84-86 °C.  1H NMR (300 MHz, 

CDCl3) δ 7.78 (d, J = 6.9 Hz, 2H), 7.50 – 7.28 (m, 3H), 4.81 (dt, J = 7.5, 3.9 Hz, 1H), 

4.06 – 3.94 (m, 2H), 3.75 (s, 3H), 3.53 (br, 1H) ppm.  13C NMR (125 MHz, CDCl3) δ 

171.0, 167.8, 133.3, 131.9, 128.5, 127.1, 63.0, 55.1, 52.7 ppm. 
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(S)-Methyl 3-hydroxy-2-(4-methoxybenzamido)propanoate (5.21).  Compound 

5.21 was prepared following the same procedure for compound 3.5 using EDC-mediated 

amide formation.  4-Anisic acid (0.558 g, 3.67 mmol), 3.18 (0.632 g, 4.06 mmol), 

EDC•HCl (0.780 g, 4.07 mmol), and triethylamine (0.60 mL, 4.3 mmol) provided 5.21 as 

a colorless oil (0.512 g, 55% yield).  1H NMR (300 MHz, CDCl3) δ 7.79 (m, 2H), 7.08 

(d, J = 6.9 Hz, 1H), 6.90 (m, 2H), 4.84 (td, J = 7.2, 3.6 Hz, 1H), 4.08 – 3.99 (m, 2H), 3.84 

(s, 3H), 3.81 (s, 3H) ppm. 
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(S)-Methyl 3-hydroxy-2-(4-nitrobenzamido)propanoate (5.22).  Compound 

5.22 was prepared following the same procedure for compound 3.5 using EDC-mediated 

amide formation.  4-Nitrobenzoic acid (0.519 g, 3.11 mmol), 3.18 (0.413 g, 3.44 mmol), 

EDC•HCl (0.660 g, 3.44 mmol), and triethylamine (0.50 mL, 3.6 mmol) provided 5.22 as 

a light yellow solid (0.304 g, 36% yield).  1H NMR (300 MHz, CDCl3) δ 8.29 (m, 2H), 

7.99 (m, 2H), 7.22 (d, J = 7.2 Hz, 1H), 4.88 (td, J = 7.0, 3.4 Hz, 1H), 4.14 (dd, J = 11.4, 

3.6 Hz, 1H), 4.05 (dd, J = 11.4, 3.6 Hz, 1H), 3.84 (s, 3H), 2.40 (br, 1H) ppm. 
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Methyl 2-benzamidoacrylate (5.23).  Compound 5.20 (1.206 g, 5.403 mmol) 

was dissolved in 50 mL of dry CH2Cl2 in a flame-dried 100-mL round-bottomed flask 

under Ar.  EDC•HCl (1.238 g, 6.458 mmol) was added to the solution in one portion 

followed by CuCl (160.7 mg, 1.623 mmol).  The reaction was wrapped in foil and stirred 

under Ar at rt.  After 2 h, TLC of the reaction (1:1 hexanes/EtOAc - UV lamp) indicated 

5.20 had been completely consumed and a new, less polar compound was observed.  

After 3 h, H2O (100 mL) was added to the reaction and the layers were separated.  The 

aqueous layer was extracted with CH2Cl2 (2 x 20 mL) and the combined CH2Cl2 layers 

were washed with H2O (100 mL), dried over MgSO4, filtered, and concentrated to yield a 

yellow oil.  The oil was purified through a plug (30 g) of silica using 100% CH2Cl2 and 

yielded 5.23 as a colorless, cloudy liquid (1.06 g, 96% yield).  1H NMR (500 MHz, 
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CDCl3) δ 8.49 (br-s, 1H), 7.75 (dd, J = 5.1, 0.9 Hz, 2H), 7.43 (m, 1H), 7.37 (m, 2H), 6.71 

(s, 1H), 5.90 (d, J = 0.6 Hz, 1H), 3.76 (s, 3H) ppm.  13C NMR (125 MHz, CDCl3) δ 

165.3, 164.3, 133.9, 131.7, 130.8, 128.4, 126.6, 108.5, 52.7 ppm.  HRMS (FAB) m/z 

[M+H] + calcd for C11H12NO3
+, 206.0817; obsd, 206.0818. 

 

N
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Benzyl 2-benzamidoacrylate (5.24).  Compound 5.24 was prepared following 

the same procedure for 5.23.  Compound 3.9 (1.51 g, 5.03 mmol), EDC•HCl (1.17 g, 6.12 

mmol), and CuCl (0.150 g, 1.51 mmol) provided an oil.  Chromatography through silica 

using 100% CH2Cl2 yielded 5.24 as a white solid (1.45 g, 99% yield).  mp = 51-52 °C.  

1H NMR (500 MHz, CDCl3) δ 8.56 (br-s, 1H), 7.84 (dd, J = 7.0, 1.5 Hz, 2H), 7.55 (m, 

1H), 7.47 (m, 2H), 7.41 – 7.36 (m, 5H), 6.82 (s, 1H), 6.06 (m, 1H), 5.32 (s, 2H) ppm.  13C 

NMR (125 MHz, CDCl3) δ 165.7, 164.2, 135.0, 134.2, 132.0, 131.0, 128.8, 128.7, 128.6, 

128.2, 126.9, 109.1, 67.9 ppm.  HRMS (FAB) m/z [M+H] + calcd for C17H16NO3
+, 

282.1130; obsd, 282.1140. 

 

N
H

O

CO2Me

MeO  

Methyl 2-(4-methoxybenzamido)acrylate (5.25).  Compound 5.25 was prepared 

following the same procedure for 5.23.  Compound 5.21 (0.495 g, 1.95 mmol), EDC•HCl 

(0.448 g, 2.33 mmol), and CuCl (59.7 mg, 0.603 mmol) provided an oil.  

Chromatography through silica using 100% CH2Cl2 yielded 5.25 as a white solid (0.426 
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g, 93% yield).  mp = 47.0-47.5 °C.  Rf = 0.47 (1:1 hexanes/EtOAc – UV lamp).  1H NMR 

(300 MHz, CDCl3) δ 8.44 (br, 1H), 7.77 (m, 2H), 6.93 (m, 2H), 6.73 (s, 1H), 5.93 (d, J = 

1.2 Hz, 1H), 3.86 (s, 3H), 3.83 (s, 3H) ppm.  13C NMR (75 MHz, CDCl3) δ 165.2, 164.8, 

162.6, 131.0, 128.8, 126.4, 113.9, 108.3, 55.4, 43.0 ppm.  HRMS (FAB) m/z [M+H] + 

calcd for C12H14NO4
+, 236.0923; obsd, 236.0922. 

 

N
H

O

CO2Me

O2N  

Methyl 2-(4-nitrobenzamido)acrylate (5.26).  Compound 5.26 was prepared 

following the same procedure for 5.23.  Compound 5.22 (0.289 g, 1.08 mmol), EDC•HCl 

(0.249 g, 1.30 mmol), CuCl (36.0 mg, 0.363 mmol)  provided an oil.  Chromatography 

through silica using 100% CH2Cl2 yielded 5.26 as a white solid (0.244 g, 90% yield).  mp 

= 158-159 °C.  Rf = 0.45 (1:1 hexanes/EtOAc – UV lamp).  1H NMR (500 MHz, CDCl3) 

δ 8.57 (br, 1H), 8.33 (m, 2H), 8.00 (m, 2H), 6.81 (s, 1H), 6.06 (m, 1H), 3.91 (s, 3H) ppm.  

13C NMR (125 MHz, CDCl3) δ 164.5, 163.6, 149.8, 139.6, 130.6, 128.2, 124.0, 110.0, 

53.3 ppm.  HRMS (FAB) m/z [M+H] + calcd for C11H11N2O5
+, 251.0668; obsd, 251.0670. 

 

N
H

O

CO2Bn

OH

O2N  

(S)-Benzyl 3-hydroxy-2-(4-nitrobenzamido)propanoate (5.27).  Compound 

5.27 was prepared following the same procedure for 3.5 using acid chloride-mediated 

amide formation.  p-nitrobenzoic acid (1.01 g, 6.06 mmol), oxalyl chloride (1.10 mL, 
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12.6 mmol), and catalytic DMF provided the acid chloride intermediate as a yellow semi-

solid.  3.4 (1.42 g, 6.12 mmol) and diisopropylethylamine (2.70 mL, 15.5 mmol) yielded 

a peach-colored solid.  Chromatography through 150 g of silica using a solvent gradient 

from 90% CH2Cl2/EtOAc to 60% CH2Cl2/EtOAc yielded 5.27 as a light yellow solid 

(1.40 g, 67% yield).  mp = 129.5-130.0 °C.  Rf = 0.15 (1:1 hexanes/EtOAc  - UV lamp).  

1H NMR (500 MHz, CDCl3) δ 8.29 (d, J = 8.5 Hz, 2H), 7.99 (d, J = 9.0 Hz, 2H), 7.37 (m, 

5H), 7.16 (d, J = 6.5 Hz, 1H), 5.29 (d, J = 12.0 Hz, 1H), 5.25 (d, J = 12.0 Hz, 1H), 4.92 

(dt, J = 7.5, 3.5 Hz, 1H), 4.16 (dd, J = 11.5, 3.5 Hz, 1H), 2.18 (br, 1H) ppm.  13C NMR 

(125 MHz, CDCl3) δ 170.1, 165.5, 139.1, 134.9, 128.7, 128.4, 128.3, 123.9, 67.9, 63.2, 

55.3 ppm.  HRMS (FAB) m/z [M+H] + calcd for C17H17N2O6
+, 345.1087; obsd, 345.1111. 

 

N
H

O

CO2Bn

O2N  

Benzyl 2-(4-nitrobenzamido)acrylate (5.28).  Compound 5.28 was prepared 

following the same procedure for 5.23.  Compound 5.27 (0.945 g, 2.75 mmol), EDC•HCl 

(0.585 g, 3.05 mmol), and CuCl (83.9 mg, 0.847 mmol) provided an oil.  

Chromatography through silica using 100% CH2Cl2 yielded 5.28 as a white solid (0.869 

g, 97% yield).  mp = 144-145 °C.  1H NMR (300 MHz, CDCl3) δ 8.59 (br-s, 1H), 8.31 

(dt, J = 9.0, 2.1 Hz, 2H), 7.98 (m, 2H), 7.40 (m, 5H), 6.83 (s, 1H), 6.12 (d, J = 1.2 Hz, 

1H), 5.32 (s, 2H) ppm.  13C NMR (75 MHz, CDCl3) δ 163.9, 163.5, 149.8, 139.6, 134.8, 

130.7, 128.7, 128.2, 128.1, 124.0, 110.2, 68.1 ppm.  HRMS (FAB) m/z [M+H] + calcd for 

C17H15N2O5
+, 327.0981; obsd, 327.0984. 
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General procedure for one-pot preparation of 2-amidoacrylates from benzoic 

acid and serine esters.  Acrylate 5.24.  Anhydrous CH2Cl2 (50 mL) was added to 3.4 

(1.01 g, 4.37 mmol) and benzoic acid (0.542 g, 4.44 mmol) in a flame-dried single-

necked 200-mL round-bottomed flask under Ar.  Triethylamine (0.65 mL, 4.6 mmol) was 

added, followed by EDC•HCl (1.83 g, 9.55 mmol).  The mixture was stirred at rt under 

Ar.  After 1 h, the reaction was progressing by TLC (1:1 hexanes/EtOAc - UV lamp, 

ninhydrin stain).  After 2.5 h, CuCl (0.137 g, 1.38 mmol) was added and the color of the 

solution turned light blue/green in color.  After 4 h, there was no change in the reaction 

by TLC and more EDC•HCl (0.9 g, 4.7 mmol, ~1 equiv) was added.  After about 10 h, 

the reaction color had changed to dark greenish/yellow, but was still incomplete by TLC.  

More CuCl (about 0.1 g, ~1 mmol, 22 mol%) was added and the solution was stirred at rt.  

The color of the reaction changed to orange and the reaction was complete.  The reaction 

was diluted with CH2Cl2 (50 mL) and H2O (100 mL) was added.  The mixture was 

diluted with brine (100 mL) and EtOAc (~400 mL).  The layers were separated and the 

organic layer was washed with brine (2 x 50 mL), dried over Na2SO4, filtered, and 

concentrated to yield a yellow oil.  The oil was chromatographed through an Analogix SF 

25-40g silica column using 100% CH2Cl2 and yielded 5.24 as a white solid (0.945 g, 77% 

yield). 

 

CO2Me

OH

HN

Me

Ph O  

(2S,3R)-Methyl 2-benzamido-3-hydroxybutanoate (5.30).  Compound 5.30 was 

prepared following the same procedure for compound 3.5 using EDC-mediated amide 
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formation.  Benzoic acid (2.39 g, 19.6 mmol), 5.29 (2.97 g, 17.5 mmol), EDC•HCl (4.03 

g, 21.0 mmol), and triethylamine (2.65 mL, 18.9 mmol) provided a yellow oil that 

solidified upon standing.  Chromatography through an Analogix F40M column using a 

solvent gradient from 90% to 60% CH2Cl2/EtOAc yielded 5.30 as a white solid (2.61 g, 

63% yield).  mp = 95-96 °C.  Rf = 0.5 (1:1 hexanes/EtOAc – UV lamp).  1H NMR (500 

MHz, CDCl3) δ 7.82 (d, J = 7.5 Hz, 2H), 7.48 (m, 1H), 7.39 (t, J = 7.5 Hz, 2H), 7.13 (d, J 

= 9.0 Hz, 1H), 4.78 (dd, J = 9.0, 2.5 Hz, 1H), 4.42 (qd, J = 6.5, 2.5 Hz, 1H), 3.74 (s, 3H), 

3.17 (br, 1H), 1.24 (d, J = 6.5 Hz, 3H) ppm.  13C NMR (125 MHz, CDCl3) δ 171.5, 

168.0, 133.5, 131.9, 128.5, 127.2, 68.0, 57.7, 52.6, 20.0 ppm. 

 

N
H

O

CO2MePh

Me

 

Methyl 2-benzamidobut-2-enoate (5.31).  Compound 5.31 was prepared 

following the same procedure for 5.23.  Compound 5.30 (1.21 g, 5.08 mmol), EDC•HCl 

(1.18 g, 6.13 mmol), and CuCl (0.150 g, 1.52 mmol) were stirred at rt for 2 h and 

concentrated.  The mixture was chromatographed through 30 g of silica using a solvent 

gradient from 100% CH2Cl2 to 80% CH2Cl2/EtOAc and yielded 5.31 as a pale yellow oil 

that solidified upon storage (1.07 g, 97% yield).  5.31 was isolated as a 29:1 mixture of 

Z:E isomers based on NMR data.  mp = 66-68 °C.  1H NMR (500 MHz, CDCl3) δ 8.22 

(br, 1H, E isomer), 7.86 (m, 2H, Z isomer), 7.79 (m, 2H, E isomer), 7.65 (br, 1H, Z 

isomer), 7.52 (t, J = 7.5 Hz, 1H), 7.44 (m, 2H), 7.37 (q, J = 8.0 Hz, 1H, E isomer), 6.88 

(q, J = 7 Hz, 1H, Z isomer), 3.86 (s, 3H, E isomer), 3.76 (s, 3H, Z isomer), 2.12 (d, J = 

7.5 Hz, 3H, E isomer), 1.83 (d, J = 7.0 Hz, 3H, Z isomer) ppm.  13C NMR (125 MHz, 
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CDCl3) δ 165.4 (E), 165.1 (Z), 133.85 (E), 133.77 (Z), 131.9 (Z), 131.7 (E), 128.6 (Z), 

127.4 (Z), 126.8 (E), 126.0 (E), 52.4, 15.0 (Z), 14.1 (E) ppm.  HRMS (FAB) m/z [M+H] + 

calcd for C12H14NO3
+, 220.0974; obsd, 220.0975. 

 

N
H

CO2Me

OH

S
O O

Me  

(S)-Methyl 3-hydroxy-2-(4-methylphenylsulfonamido)propanoate (5.32).  

Compound 3.18 (2.107 g, 13.54 mmol), p-toluenesulfonyl chloride (2.87 g, 15.1 mmol), 

and anhydrous CH2Cl2 (100 mL) were added to a flame-dried single-necked 250-mL 

round-bottomed flask under Ar.  N,N-Diisopropyl-N-ethylamine (5.50 mL, 31.6 mmol) 

was added and the solid material dissolved.  The resultant solution was stirred at rt under 

Ar overnight.  After 22 h, the reaction was analyzed by TLC (1:1 hexanes/EtOAc and 9:1 

CH2Cl2/EtOAc - UV lamp) and one new polar spot was observed (along with unreacted 

TsCl).  The light yellow solution was concentrated by rotary evaporation and the resultant 

residue was partitioned between EtOAc (100 mL) and H2O (100 mL).  The aqueous layer 

was extracted with EtOAc (2 x 50 mL) and the combined organic layers were washed 

with saturated NaHCO3 (2 x 50 mL), H2O (50 mL), 1M HCl (2 x 50 mL), H2O (50 mL), 

and brine (2 x 50 mL), dried over Na2SO4, filtered, and concentrated to yield an orange 

oil.  The oil solidified upon standing.  The crude material was chromatographed through a 

Biotage 40S column using a solvent gradient from 100% CH2Cl2 to 50% CH2Cl2/EtOAc 

and yielded 5.32 as a white solid (3.04 g, 82% yield).  mp = 89-90 °C.  Rf = 0.11 (1:1 

hexanes/EtOAc – UV lamp).  1H NMR (500 MHz, CDCl3) δ 7.75 (d, J = 8.0 Hz, 2H), 

7.31 (d, J = 8.0 Hz, 2H), 5.85 (d, J = 8.0 Hz, 1H), 4.01 (dt, J = 8.0, 3.5 Hz, 1H), 3.89 (m, 



 351 

2H), 3.61 (s, 3H), 2.61 (br, 1H), 2.42 (s, 3H) ppm.  13C NMR (125 MHz, CDCl3) δ 170.1, 

143.9, 136.4, 129.7, 127.2, 63.6, 57.6, 52.9, 21.5 ppm.  HRMS (FAB) m/z [M+H] + calcd 

for C11H16NO5S
+, 274.0749; obsd, 274.0725. 

 

N
H

CO2Me
S

O O

Me  

Methyl 2-(4-methylphenylsulfonamido)acrylate (5.33).  Compound 5.33 was 

prepared following the same procedure for 5.23.  Compound 5.32 (1.01 g, 3.71 mmol), 

EDC•HCl (0.826 g, 4.31 mmol), and CuCl (0.120 g, 1.21 mmol) were stirred at rt for 1 h, 

concentrated, and chromatographed through a Biotage 40S column using 100% CH2Cl2 

and yielded 5.33 as a free-flowing yellow solid (0.924 g, 98% yield).  mp = 99-100 °C.  

Rf = 0.45 (1:1 hexanes/EtOAc – UV lamp).  1H NMR (500 MHz, CDCl3) δ 7.75 (d, J = 

8.0 Hz, 2H), 7.30 (d, J = 8.5 Hz, 2H), 5.67 (m, 1H), 5.64 (m, 1H), 3.76 (s, 3H), 2.42 (s, 

3H) ppm.  13C NMR (125 MHz, CDCl3) δ 163.6, 144.3, 135.3, 130.8, 129.7, 127.5, 

106.8, 53.2, 21.5 ppm.  HRMS (FAB) m/z [M+H] + calcd for C11H15NO4S
+, 256.0644; 

obsd, 256.0668. 

 

N
H

O

CO2MeMe
 

Methyl 2-acetamidoacrylate (5.34).  To a flame-dried 50-mL round-bottomed 

flask containing 3.18 (2.021 g, 12.99 mmol) under Ar was added 15 mL of anhydrous 

triethylamine.  The mixture was stirred at RT for 10 min, then cooled in a crushed 

ice/H2O bath.  Acetic anhydride (3.00 mL, 32.0 mmol) was added slowly the reaction 
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under Ar.  The mixture was stirred in the ice/H2O bath for 15 min, then stirred at rt.  After 

stirring 1 h, the reaction color changed from a white mixture to a yellow mixture.  After 4 

days, the brown mixture was partitioned between H2O (100 mL) and EtOAc (50 mL).  

The layers were separated and the aqueous layer was extracted with EtOAc (2 x 50 mL).  

The combined organic layers were washed with 1M HCl (3 x 50 mL), H2O (50 mL), and 

brine (50 mL), dried over MgSO4, filtered, and concentrated to yield an orange oil (~0.8 

g crude material).  The oil solidified upon storage at 10 °C.  The crude material was 

purified through 100 g of silica gel using a solvent gradient from 100% CH2Cl2 to 90% 

CH2Cl2/EtOAc and yielded 5.34 as a yellow oil that solidified upon standing (0.681 g, 

37% yield).  mp = 49-50 °C.  Rf = 0.30 (1:1 hexanes/EtOAc – UV lamp).  1H NMR (300 

MHz, CDCl3) δ 7.76 (br, 1H), 6.54 (s, 1H), 5.82 (d, J = 1.5 Hz, 1H), 3.80 (s, 3H), 2.09 (s, 

3H) ppm.  13C NMR (75 MHz, CDCl3) δ 168.8, 164.4, 130.8, 108.6, 52.8, 24.5 ppm.  

HRMS (FAB) m/z [M+H] + calcd for C6H10NO3
+, 144.0661; obsd, 144.0650. 

 

N
H

O

CO2MeH
 

Methyl 2-formamidoacrylate (5.35).  Methyl formate (30 mL) was added to 

3.18 (1.516 g, 9.744 mmol) and potassium carbonate (5.403 g, 39.10 mmol) in a single-

necked 100-mL round-bottomed flask.  One drop of triethylamine was added and the 

mixture was stirred at rt overnight.  After 28 h, the solid material was removed by 

filtration and washed with small portions of methyl formate (20 mL).  The colorless 

filtrate was concentrated to yield a light yellow oil.  The oil was chromatographed 

through a short column of silica (~35 g) using 50% hexanes/EtOAc and yielded 5.35 as a 
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colorless oil that solidified upon standing to a white solid (0.88 g, 70% yield).  Isolated as 

a mixture of rotamers (88:12 trans:cis).  mp = 55-57 °C (lit. 56.9-57.2 °C).  Rf = 0.29 

(1:1 hexanes/EtOAc – UV lamp).  1H NMR (500 MHz, CDCl3) δ 8.53 (m, 1H, cis), 8.39 

(s, 1H, trans), 8.06 (br, 1H, trans), 7.76 (br, 1H, cis), 6.60 (s, 1H, trans), 5.92 (s, 1H, 

trans), 5.67 (s, 1H, cis), 5.42 (s, 1H, cis), 3.81 (s, 3H, trans/cis) ppm.  13C NMR (125 

MHz, CDCl3) δ 164.1, 161.1, 159.6, 131.8, 130.1, 110.3, 104.8, 95.8, 52.9 ppm.  HRMS 

(FAB) m/z [M+H] + calcd for C5H8NO3
+, 130.0504; obsd, 130.0527. 

 

N3

 

General procedure for the preparation of alkyl azides.  Benzyl azide (5.36a).  

CAUTION: Azides may be explosive and shock sensitive and should be handled with 

care.  A blast shield was used for every reaction that involved the use or preparation of 

azides.  75 mL of DMSO was added to sodium azide (2.45 g, 37.7 mmol) in a 250-mL 

single-necked round-bottomed flask under Ar.  The mixture was stirred at rt until the 

sodium azide dissolved.  Benzyl bromide (4.00 mL, 34.6 mmol) was added and the 

solution was stirred at rt under Ar for 4 h.  100 mL of H2O was added slowly to quench 

the reaction (exothermic), the resultant cloudy mixture was allowed to warm to rt (30 

min), then poured into 100 mL of H2O.  The mixture was extracted with Et2O (3 x 100 

mL), and the combined Et2O layers were washed with brine, dried over MgSO4, filtered, 

and concentrated by rotary evaporation (30 °C, 21 mm Hg) and yielded 5.36a as a 

colorless oil (4.604 g, 99.9% yield).  Stored at 4 °C until ready to use.  1H NMR (500 

MHz, CDCl3) δ 7.46 – 7.36 (m, 5H), 4.37 (s, 2H) ppm.  13C NMR (125 MHz, CDCl3) δ 
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135.2, 128.7, 128.13, 128.06, 54.6 ppm.  FT-IR (film) 3066, 3033, 2931, 2097 (N3), 

1496, 1456, 1256, 1203, 1078, 1029 cm-1 

 

N3

 

1-Azidooctane (5.36b).  Compound 5.36b was prepared according to the general 

procedure for alkyl azides.  1-bromooctane (0.32 mL, 1.8 mmol) and sodium azide (0.112 

g, 2.0 mmol) were stirred in DMSO at rt for 4 h and yielded 5.36b as a pale yellow oil 

(0.251 g, 88% yield).  1H NMR (300 MHz, CDCl3) δ 3.25 (t, J = 6.9 Hz, 2H), 1.60 (m, 

2H), 1.32 – 1.27 (m, 10H), 0.88 (t, J = 6.9 Hz, 3H) ppm.  FT-IR (film) 2929 (CH), 2858 

(CH), 2096 (N3), 1467 (CH bend), 1378 (CH bend), 1349, 1260 (N3) cm-1. 

 

N3
 

Azidocyclopentane (5.36c).  Compound 5.36c was prepared according to the 

general procedure for alkyl azides.  Bromocyclopentane (1.00 mL, 9.14 mmol) and 

sodium azide (0.658 g, 10.1 mmol) were stirred in DMSO for 25 h and yielded 5.36c as a 

pale yellow liquid (0.738 g, 73% yield).  1H NMR (500 MHz, CDCl3) δ 3.92 (m, 1H), 

1.83 – 1.71 (m, 2H), 1.71 – 1.69 (m, 4H), 1.61 – 1.59 (m, 2H) ppm. 

 

S
N3

O O

 

4-Methylbenzenesulfonyl azide (5.37).  To a 500-mL round-bottomed flask 

cooled in an ice/H2O bath was added p-toluenesulfonyl chloride (8.00 g, 42.0 mmol) and 



 355 

240 mL of 1:1 acetone/H2O.  The resultant suspension was stirred vigorously as sodium 

azide (2.767 g, 42.6 mmol) was added in one portion to the reaction.  The cloudy 

suspension was stirred vigorously for 6 h, allowing the reaction to slowly reach rt as the 

ice/H2O bath melted.  Most of the acetone was removed by rotary evaporation (~40°C, 21 

mm Hg) to yield a light yellow oil beneath the aqueous layer.  Et2O (~100 mL) was 

added and the layers were separated.  The aqueous layer was extracted with Et2O (2 x 

100 mL), and the combined ether layers were dried over MgSO4, filtered, and 

concentrated by rotary evaporation (~30°C, 21 mm Hg) and yielded 5.37 as a colorless 

liquid that solidified upon storage at -10 °C (7.59 g, 92% yield).   1H NMR (300 MHz, 

CDCl3) δ 7.84 (d, J = 8.4 Hz, 2H), 7.40 (d, J = 8.1 Hz, 2H), 2.48 (s, 3H) ppm.  13C NMR 

(75 MHz, CDCl3) δ 146.2, 135.5, 130.3, 127.5, 21.8 ppm.  FT-IR (film) 2360, 2128 (N3), 

1596, 1372, 1121, 1168, 1086, 814, 748, 665 cm-1. 

 

N3

 

Phenyl azide (5.38a).  Preparation using NaNO2/HCl.   75 mL of H2O and 

concentrated HCl (14.0 mL, 169 mmol) were added to a 500-mL 3-necked round-

bottomed flask equipped with a thermometer and a 10-mL addition funnel.  The flask was 

cooled in a ice/NaCl/H2O bath to an internal temperature of about -5 °C.  

Phenylhydrazine (7.6 mL, 77.2 mmol) was added to the solution dropwise over 5 min.  

Phenylhydrazine-HCl precipitated out of the mixture as a fine white solid.  25 mL of 

Et2O was added and the mixture was stirred vigorously as a solution of NaNO2 (6.254 g, 

90.64 mmol) in 7.5 mL of H2O was added to the solution dropwise over about 25 min.  

During this time, the internal temperature of the reaction was maintained below 5 °C.  
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The white flakes of Phenylhydrazine-HCl had dissolved in the reaction and the mixture 

had turned a bright yellow color.  After stirring for 10 min, the mixture was subjected to 

steam distillation until about 100 mL of distillate were collected.  During the distillation, 

the mixture turned from yellow to brick red in color.  An appreciable amount of tar was 

also formed.  The orange ether layer of the distillate was removed and the aqueous layer 

was extracted with Et2O (2 x 20 mL).  The combined Et2O layers were dried over MgSO4 

and filtered into a 100-mL round-bottomed flask.  The Et2O was removed by rotary 

evaporation (RT, 21 torr) to yield an orange oil.  The oil was purified by vacuum 

distillation and yielded 5.38a as a yellow oil (1.58 g, 17% yield).  bp = 26-27 °C (1.5 mm 

Hg).  Isolated with impurities.  

 

Preparation of phenyl azide from aniline.  Aniline (0.50 mL, 5.48 mmol) was 

suspended in 4 mL of H2O and cooled in a crushed ice/H2O bath.  Conc. H2SO4 (1.20 

mL, 21.7 mmol) was added dropwise and aniline hydrochloride precipitated out of the 

solution.  To this mixture was added a solution of NaNO2 (432 mg, 6.26 mmol) in 2.5 mL 

of H2O dropwise.  A yellow color was observed in the mixture.  Hexanes (8 mL) was 

added, followed by a solution of NaN3 (383 mg, 5.89 mmol) in 2.5 mL of H2O dropwise 

to the biphasic mixture.  A lot of bubbling was observed.  The mixture was stirred 

vigorously in the ice/H2O bath over 3 h, allowing the ice/H2O bath to melt and reach rt.  

The layers were separated and the organic layer was dried over MgSO4, filtered, and 

concentrated by rotary evaporation (30 °C, 21 mm Hg) and yielded 5.38a as a yellow oil 

(465 mg, 71% yield).  A blast sheild was used when concentrating the azide as a 

precautionary measure.  1H NMR (500 MHz, CDCl3) δ 7.36 (m, 2H), 7.14 (m, 1H), 7.03 
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(m, 2H) ppm.  13C NMR (125 MHz, CDCl3) δ 140.0, 129.7, 124.9, 119.0 ppm.  FT-IR 

(film) 2130, 2096, 1594, 1493, 1296, 749 cm-1. 

 

N3

MeO  

1-Azido-4-methoxybenzene (5.38b).  Compound 5.38b was prepared following 

the same procedure for 5.38a from aniline.  p-anisidine (0.662 g, 5.38 mmol), 

concentrated H2SO4 (1.20 mL, 21.7 mmol), NaNO2 (0.434 g, 6.29 mmol), and sodium 

azide (0.375 g, 5.77 mmol) yielded 5.38b as a brown oil (0.343 g, 44% yield).  1H NMR 

(500 MHz, CDCl3) δ 6.96 (m, 2H), 6.89 (m, 2H), 3.80 (s, 3H) ppm.  13C NMR (125 

MHz, CDCl3) δ 156.9, 132.3, 119.9, 115.1, 55.5 ppm.  FT-IR (film) 2955, 2837, 2105, 

1505, 1465, 1286, 1246, 1182, 1035, 825, 626 cm-1. 

 

N

N
Bn

CO2Me  

General procedure for the preparation of imidazoles from 2-amidoacrylates 

and azides.  Methyl 1-benzyl-2-phenyl-1H-imidazole-4-carboxylate (5.40a).  

Compound 5.23 (116.2 mg, 0.5663 mmol) and benzyl azide (0.11 mL, 0.87 mmol) were 

dissolved in 5 mL of toluene in a sealed tube fitted with a stir bar.  The tube was heated 

in an oil bath maintained at 190 °C overnight.  After 1 h, the colorless solution turned 

yellow in color and gradually the color became brown.  After 24 h, the reaction was 

cooled to rt and concentrated.  The crude brown oil was purified through 25 g of silica gel 

using a solvent gradient from 100% CH2Cl2 to 80% CH2Cl2/EtOAc and yielded pure 
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5.41a (see below) (26.5 mg, 15.1% yield), pure 5.40a as an amber oil (84.1 mg, 50.8% 

yield), and a mixture of 5.41a and 5.40a (26.1 mg).  Total yield of 5.40a isolated as an 

amber oil was 90.1 mg (54% yield).  5.40a was recrystallized from EtOAc/hexanes to 

produce light yellow crystals suitable for x-ray diffraction.  Rf = 0.14 (1:1 

hexanes/EtOAc – UV lamp).  1H NMR (500 MHz, CDCl3) δ 7.69 (s, 1H), 7.60 (m, 2H), 

7.44 – 7.40 (m, 3H), 7.37 – 7.32 (m, 3H), 7.09 (m, 2H), 5.23 (s, 2H), 3.90 (s, 3H) ppm.  

13C NMR (125 MHz, CDCl3) δ 163.0, 148.8, 135.4, 132.5, 129.2, 129.0, 128.8, 128.7, 

128.2, 127.9, 126.9, 126.5, 51.3, 50.5 ppm.  HRMS (FAB) m/z [M+H] + calcd for 

C18H17N2O2
+, 293.1290; obsd, 293.1293. 

 

HN CO2Me

BnHN

OPh  

(Z)-Methyl 2-benzamido-3-(benzylamino)acrylate (5.41a).  Compound 5.41a 

was isolated as an amber oil.  Total yield isolated was 46.6 mg (27% yield).  5.41a was 

recrystallized from 70% EtOH/H2O to yield colorless crystals suitable for x-ray 

diffraction.  Rf = 0.26 (1:1 hexanes/EtOAc – UV lamp).  1H NMR (500 MHz, CDCl3) δ 

8.00 (br, 1H), 7.84 (m, 2H), 7.51 (m, 1H), 7.44 (m, 2H), 7.37 – 7.26 (m, 6H), 6.50 (br, 

1H), 4.42 (d, J = 6.0 Hz, 2H), 3.73 (s, 3H) ppm.  13C NMR (125 MHz, CDCl3) δ 166.5, 

164.8, 140.1, 138.5, 134.0, 131.6, 131.3, 128.73, 128.69, 128.6, 128.51, 128.46, 127.2, 

127.1, 127.0, 126.9, 98.6, 52.5, 51.6 ppm.  HRMS (FAB) m/z [M] + calcd for 

C18H18N2O3
+, 310.1317; obsd, 310.1297. 

 



 359 

N

N
Bn

CO2Bn  

Benzyl 1-benzyl-2-phenyl-1H-imidazole-4-carboxylate (5.40b).  Compound 

5.40b was prepared following the general procedure for the synthesis of imidazoles from 

acrylates and azides.  Acrylate 5.24 (0.144 g, 0.513 mmol) and benzyl azide (0.10 mL, 

0.79 mmol) were heated in toluene (5 mL) in a sealed tube for 24 h in a 190 °C oil bath.  

Chromatography through 25 g of silica using a solvent gradient from 100% CH2Cl2 to 

90% CH2Cl2/EtOAc yielded pure 5.41b (see below), 5.40b, and a mixture of 5.40b and 

5.41b as amber oils.  Total yield of 5.40b was 120 mg (63% yield).  1H NMR (500 MHz, 

CDCl3) δ 7.65 (s, 1H), 7.56 (m, 2H), 7.44 (m, 2H), 7.42 – 7.29 (m, 9H), 7.05 (d, J = 7.0 

Hz, 2H), 5.36 (s, 2H), 5.18 (s, 2H) ppm.  13C NMR (125 MHz, CDCl3) δ 162.6, 149.2, 

136.1, 135.6, 132.8, 129.4, 129.3, 129.1, 129.0, 128.44, 128.36, 128.3, 128.2, 128.0, 

127.2, 126.7, 66.0, 50.7 ppm.  HRMS (FAB) m/z [M+H] + calcd for C24H21N2O2
+, 

369.1603; obsd, 369.1602. 

 

HN CO2Bn

BnHN

OPh  

(Z)-Benzyl 2-benzamido-3-(benzylamino)acrylate (5.41b).  Compound 5.41b 

was isolated as an amber oil (35 mg, 18% yield).  5.41b was isolated as an 8:1 mixture of 

isomers as evidenced by 1H NMR data.  1H NMR (500 MHz, CDCl3) δ 9.04 (br, 1H), 

7.84 (d, J = 7.5 Hz, 2H), 7.79 (d, J = 7.5 Hz, 2H, isomer), 7.51 (m, 1H), 7.45 – 7.26 (m, 

13H), 6.59 (br, 1H), 5.21 (s, 2H), 4.44 (d, J = 6.0 Hz, 2H) ppm.  13C NMR (125 MHz, 
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CDCl3) δ 164.9, 138.4, 136.5, 134.0, 131.6, 128.8, 128.7, 128.6, 128.53, 128.47, 128.02, 

127.98, 127.5, 127.2, 127.1, 126.9, 66.1, 52.6 ppm.  HRMS (FAB) m/z [M•] + calcd for 

C24H22N2O3
+, 386.1630; obsd, 386.1628. 

 

N

N
Bn

CO2Bn

O2N

 

Benzyl 1-benzyl-2-(4-nitrophenyl)-1H-imidazole-4-carboxylate (5.69b).  

Compound 5.69b was prepared following the general procedure for the synthesis of 

imidazoles from acrylates and azides.  Acrylate 5.28 (0.166 g, 0.510 mmol) and benzyl 

azide (0.117 g, 0.879 mmol) were heated in toluene.  Chromatography through 20 g of 

silica using a solvent gradient from 100% CH2Cl2 to 85% CH2Cl2/EtOAc provided 5.70b 

(see below), 5.69b (123 mg), and a mixture of 5.69b and 5.70b as amber oils.  Total yield 

of 5.69b was 135 mg (64% yield).  1H NMR (500 MHz, CDCl3) δ 8.20 (m, 2H), 7.75 (m, 

2H), 7.72 (s, 1H), 7.43 (m, 2H), 7.37 – 7.26 (m, 6H), 7.04 (m, 2H), 5.35 (s, 2H), 5.25 (s, 

2H) ppm.  13C NMR (125 MHz, CDCl3) δ 162.1, 147.9, 146.5, 135.8, 135.2, 134.8, 

133.4, 129.6, 129.1, 128.44, 128.40, 128.3, 128.0, 126.3, 123.6, 66.2, 51.0 ppm.  HRMS 

(FAB) m/z [M+H] + calcd for C24H20N3O4
+, 414.1454; obsd, 414.1460. 

 

HN CO2Bn

BnHN

O

O2N  

(Z)-Benzyl 3-(benzylamino)-2-(4-nitrobenzamido)acrylate (5.70b).  

Compound 5.70b was isolated as an amber oil with impurities (18.1 mg, 8% yield).  1H 
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NMR (500 MHz, CDCl3) δ 8.29 (m, 2H), 8.12 (br, 1H), 7.99 (m, 2H), 7.44 – 7.27 (m, 

10H), 6.51 (br, 1H), 5.21 (s, 2H), 4.46 (d, J = 6.0 Hz, 2H) ppm.  13C NMR (125 MHz, 

CDCl3) δ 162.5, 149.6, 139.5, 138.1, 136.3, 128.8, 128.6, 128.4, 128.2, 128.1, 127.7, 

127.1, 123.9, 66.4, 52.8 ppm.  HRMS (FAB) m/z [M•] + calcd for C24H21N3O5
+, 431.1481; 

obsd, 431.1465. 

 

Me
N

N
Bn

CO2Me  

Methyl 1-benzyl-2-methyl-1H-imidazole-4-carboxylate (5.73).  Compound 

5.73 was prepared following the general procedure for the synthesis of imidazoles from 

acrylates and azides.  Acrylate 5.34 (0.100 g, 0.701 mmol) and benzyl azide (0.122 g, 

0.916 mmol) were heated in toluene (6 mL) in a sealed tube for 15 h in a 190 °C oil bath.  

Chromatography through 25 g of silica using a solvent gradient from 25% 

hexanes/EtOAc to 100% EtOAc provided 5.73 and 5.74.  Byproduct 5.74 was isolated 

with a large amount of impurities.  Imidazole 5.73 was isolated as an amber oil (120 mg, 

74% yield).  1H NMR (500 MHz, CDCl3) δ 7.50 (s, 1H), 7.31 – 7.25 (m, 3H), 7.03 (d, J = 

6.5 Hz, 2H), 5.02 (s, 2H), 3.80 (s, 3H), 2.31 (s, 3H) ppm.  13C NMR (125 MHz, CDCl3) δ 

163.2, 146.1, 134.9, 131.4, 129.0, 128.2, 126.7, 126.1, 51.4, 50.1, 13.0 ppm.  HRMS 

(FAB) m/z [M+H] + calcd for C13H15N2O2
+, 231.1134; obsd, 231.1139. 
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H
N

N
Bn

CO2Me  

Methyl 1-benzyl-1H-imidazole-4-carboxylate (5.75).  Compound 5.75 was 

prepared following the general procedure for the synthesis of imidazoles from acrylates 

and azides.  Acrylate 5.35 (76.6 mg, 0.593 mmol) and benzyl azide (0.101 g, 0.756 

mmol) were heated in toluene (6 mL) in a sealed tube in a 190 °C oil bath for 15 h.  

Chromatography through 25 g of silica using a solvent gradient from 50% 

hexanes/EtOAc to 33% hexanes/EtOAc provided 5.75 and 5.76.  Byproduct 5.76 was 

isolated with a large amount of impurities.  Imidazole 5.75 was isolated as an amber oil 

(90.9 mg, 71% yield).  1H NMR (500 MHz, CDCl3) δ 7.53 (d, J = 1.0 Hz, 1H), 7.50 (d, J 

= 1.0 Hz, 1H), 7.33 – 7.28 (m, 3H), 7.15 (m, 2H), 5.08 (s, 2H), 3.79 (s, 3H) ppm.  13C 

NMR (125 MHz, CDCl3) δ 163.0, 137.9, 134.8, 133.7, 129.0, 128.5, 127.4, 125.2, 51.4, 

51.1 ppm.  HRMS (FAB) m/z [M+H] + calcd for C12H13N2O2
+, 277.0977; obsd, 277.0983. 

 

N NMe

Cl

 

3-Butyl-1-methyl-1H-imidazol-3-ium chloride, BMIM +Cl- (5.67).  Freshly 

distilled 1-methylimidazole (18.4 mL, 0.231 mol) was added to a 3-necked 250-mL 

round-bottomed flask fitted with a internal thermometer adapter, a condenser, under Ar.  

Dry acetonitrile (12.5 mL) was added, followed by 1-chlorobutane (31.5 mL, 0.299 mol).  

The colorless solution was heated in an oil bath (oil temp = 85-88 °C) to reflux (internal 

temperature = 75-80 °C).  After 48 h, the yellow solution was cooled to rt, transferred to 

a single-necked 200-mL round-bottomed flask, and the volume was reduced by rotary 
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evaporation (55-60 °C, 21 mm Hg).  The resultant thick yellow oil was stored under Ar at 

rt, then dried under vacuum (~1 mm Hg) for 5 h.  The oil was dissolved in 32 mL of dry 

acetonitrile and added dropwise via cannula to a single-necked 500-mL round-bottomed 

flask containing EtOAc (125 mL) and one seed crystal of BMIM chloride (obtained from 

a previous preparation).  The mixture is stirred vigorously during the addition and solid 

BMIM chloride crystallized immediately upon the addition of the acetonitrile solution.  

Once the addition was complete, the mixture was stirred vigorously under Ar and cooled 

in a -30 °C bath (dry ice/acetone) for 2 h.  The mixture was quickly filtered while still 

cold and the white solid was washed with a minimal amount of EtOAc.  (NOTE: The 

solid was very hygroscopic and started to turn into an oil very quickly).  The solid was 

dried with P2O5 under vacuum (1 mm Hg) for 24 h.  Yielded 5.67 as a white solid 

material (35.5 g, 88% yield).  lit. 89% yield.  1H NMR (500 MHz, CDCl3) δ 10.31 (s, 

1H), 7.54 (t, J = 2 Hz, 1H), 7.37 (t, J = 2 Hz, 1H), 4.07 (s, 2H), 3.85 (s, 3H), 1.63 (m, 

2H), 1.09 (septet, J = 7.5 Hz, 2H), 0.67 (t, J = 7.5 Hz, 3H) ppm.  13C NMR (125 MHz, 

CDCl3) δ 137.0, 123.3, 121.6, 49.1, 35.9, 31.6, 18.8, 12.8 ppm. 

 

N NMe

BF4

 

3-Butyl-1-methyl-1H-imidazol-3-ium tetrafluoroborat e, BMIM +BF4
- (5.68).  

Compound 5.67 (30.46 g, 174.4 mmol) was dissolved in 35 mL of H2O in a 125-mL 

erlenmayer flask with a stir bar and thermometer.  NaBF4 (20.16 g, 183.6 mmol) was 

added to the solution in portions with stirring over 15 min.  The NaBF4 dissolved and the 

solution cooled to ~15 °C during the addition.  The solution was stirred until reaching 

ambient temperature (~21 °C), then CH2Cl2 (30 mL) was added.  The layers were 
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separated and the aqueous layer was extracted with CH2Cl2 (20 mL).  The combined 

CH2Cl2 layers were washed with a solution of NaBF4 (10 g in 20 mL of H2O), dried over 

a mixture of Na2SO4 (1 g) and MgSO4 (3 g), filtered, and concentrated by rotary 

evaporation (45 °C, 20 mm Hg).  The resultant oil was dried under vacuum (~1 mm Hg) 

at ambient temperature for 24 h to yield 5.68 as a thick, colorless/light yellow oil (36.2 g, 

92% yield).  lit. 89% yield.  1H NMR (300 MHz, CD2Cl2) δ 8.70 (s, 1H), 7.28 (dt, J = 

6.0, 1.8 Hz, 2H), 4.13 (t, J = 7.2 Hz, 2H), 3.89 (s, 3H), 1.81 (m, 2H), 1.31 (sextet, J = 7.5 

Hz, 2H), 0.91 (t, J = 7.5 Hz, 3H) ppm. 

 

Ph
N

N

CO2Bn

MeO

 

Benzyl 1-(4-methoxyphenyl)-2-phenyl-1H-imidazole-4-carboxylate (5.81).  

Acrylate 5.24 (162.1 mg, 0.576 mmol) and azide 5.38b (169.3 mg, 1.14 mmol) were 

dissolved in 5 mL of nitromethane in a single-necked 25-mL round-bottomed flask fitted 

with a stir bar and condenser.  The solution was heated to reflux in an oil bath (oil 

temperature = 115 °C).  The reaction was monitored by TLC (1:1 hexanes/EtOAc and 3:2 

hexanes/EtOAC - UV lamp).  The reaction color changed to deep brown overnight, but 

was incomplete.  The reaction was still incomplete after 2 and 3 days at reflux.  After 

heating for 4 days, no starting material was observed by TLC and the solution was cooled 

to rt and concentrated.  The brown oil was chromatographed through 25 g of silica using 

a gradual solvent gradient from 100% CH2Cl2 to 85% CH2Cl2/EtOAc and yielded the 

major product 5.81 as an orange oil (46.3 mg, 21% yield).  1H NMR (500 MHz, CDCl3) δ 
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7.76 (s, 1H), 7.45 – 7.39 (m, 4H), 7.36 – 7.21 (m, 6H), 7.10 (m, 2H), 6.88 (m, 2H), 5.39 

(s, 2H), 3.81 (s, 3H) ppm.  13C NMR (125 MHz, CDCl3) δ 162.8, 159.6, 147.9, 136.2, 

132.8, 130.4, 129.2, 128.9, 128.61, 128.57, 128.44, 128.38, 128.1, 126.9, 114.7, 66.2, 

55.5 ppm.  HRMS (FAB) m/z [M+H] + calcd for C24H21N2O3
+, 385.1552; obsd, 385.1532. 

 

 

 

N
S

O O

I

 

N-Tosyliminoisodosobenzene (5.82).  p-Toluenesulfonamide (3.405 g, 19.89 

mmol) and KOH (3.30 g, 58.8 mmol) were dissolved in 30 mL of MeOH (exothermic).  

The solution was cooled in a crushed ice/H2O bath and became a white slurry that was 

hard to stir.  About 10 mL of MeOH were added to the suspension.  Iodobenzene 

diacetate (7.505 g, 23.30 mmol) was added to the vigorously stirred mixture in portions 

over about 5 min, maintaining an internal reaction temperature of less than 10 °C.  The 

mixture turned yellow and most of the solid material dissolved.  After about 5 minutes, 

white crystals were observed in the solution.  The mixture was removed from the ice/H2O 

bath and stored in the refridgerator (about 5 °C) overnight.  No solid was observed 

(except for the bit that did not dissolve) in the morning.  The yellow solution was stirred 

at rt.  After 30 min, yellow solid precipitated out of solution.  The mixture was stirred for 

an additional 3 h at rt, then stored at 5 °C for 4 h.  The solid was collected by filtration 

and 5.82 was obtained as an off-white solid (3.36 g, 45% yield).  mp = 103-105 °C (dec. 
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violently).  1H NMR (300 MHz, CDCl3) δ 7.70 (m, 2H), 7.46 (m, 3H), 7.30 (m, 2H), 7.06 

(m, 2H), 2.27 (s, 3H) ppm. 

 

Attempted aziridination of acrylate 5.35 using iminoiodinane 5.82.  

Anhydrous CH3CN (10 mL) was added to a flame-dried single-necked 50-mL round-

bottomed flask containing 5.35 (0.134 g, 1.04 mmol) and 5.82 (0.452 g, 1.21 mmol), 

under Ar.  Cu(CH3CN)4PF6 (21.9 mg, 0.0588 mmol) was added to the light yellow 

suspension.  The color of the mixture changed immediately to a light lime-green color.  

After 2 min, most of the solid had dissolved and the mixture was a mint green color.  The 

reaction flask was wrapped in foil and stirred at rt under Ar. After 2 h, the TLC of the 

reaction (1:1 hexanes/EtOAc - UV lamp) still showed mostly 5.35 and a two additional 

(faint) more nonpolar spots.  The mixture was placed in an oil bath (oil temperature 55-60 

°C) and stirred under Ar.  After stirring overnight, no change was observed and the oil 

bath temperature was raised to ~90 °C.  The reaction was heated to reflux overnight.  No 

change by TLC.  After heating for 4 days at reflux, no change was observed by TLC 

except for decomposition.  Minor products were observed, but mostly starting material 

was left in the reaction. 

 

Synthesis of imidazoles from oxazolines.  Imidazole 5.40b from oxazoline 

3.10.  Compound 3.10 (143.2 mg, 0.509 mmol) and benzyl azide (118.4 mg, 0.889 mmol) 

were dissolved in 5 mL of toluene in a 25-mL round-bottomed flask.  pTsOH (24.0 mg, 

0.139 mmol) was added and the solution was heated in an oil bath to reflux (oil temp 

~123 °C).  The pTsOH did not seem to dissolve completely in the reaction.  TLC analysis 
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of the reaction mixture (1:1 hexanes/EtOAc - UV lamp) indicated the reaction was 

complete after 4 days of reflux.  The reaction was filtered, concentrated by rotary 

evaporation (40°C, 21 torr) and purified through 15 g of silica using a solvent gradient 

from 100% CH2Cl2 to 95% CH2Cl2/EtOAc and yielded 5.40b as a brown/orange oil (92 

mg, 49% yield). 

 

8.5 Experimental procedures for chapter 6 

 

General Procedure for the Synthesis of Triazolines Using Method A.  The 

alkene (1 mmol) and azide (1.5 mmol) were combined and stirred neat at 25 °C in a 

single-necked round-bottomed flask.  The progress of the reaction was monitored by TLC 

or 1H NMR for the disappearance of the alkene, and the crude material was purified 

through silica. 

 

General Procedure for the Synthesis of Triazolines Using Method B.  The 

alkene (1 mmol) and azide (1.5 mmol) were dissolved in 10 mL of CHCl3 in a single-

necked round-bottomed flask and stirred at 25 °C.  The progress of the reaction was 

monitored by TLC or 1H NMR for the disappearance of the alkene (typically 4 weeks), 

and the crude material was purified through silica. 

 

General Procedure for the Synthesis of Triazolines Using Method C.  The 

alkene (1 mmol) and azide (1.5 mmol) were dissolved in 10 mL of CHCl3 in a single-
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necked round-bottomed flask fitted with a condensor and heated to reflux in an oil bath 

(oil temp. = 80 °C).  The progress of the reaction was monitored by TLC or 1H NMR for 

the disappearance of the alkene (typically 3 days), and the crude material was purified 

through silica. 

 

General Procedure for the Synthesis of Triazolines Using Method D.  The 

alkene (1 mmol) and azide (1.5 mmol) were dissolved in 10 mL of PhCH3 in a single-

necked round-bottomed flask fitted with a condensor and heated to reflux in an oil bath 

(oil temp. = 125 °C).  The progress of the reaction was monitored by TLC or 1H NMR for 

the disappearance of the alkene (typically 3-4 h), and the crude material was purified 

through silica. 

 

H
O

N
BocN

N

N
Bn

H
H

O
N

BocN
N

N

H

Bn

(±)-6.7a (±)-6.8a  

tert-Butyl (3aαααα,4ββββ,7ββββ,7aαααα)-1-benzyl-3a,4,7,7a-tetrahydro-4,7-

methano[1,2,3]triazole[4,5-d][1,2]oxazine-6(1H)-carboxylate (6.7a) and tert-butyl 

(3aαααα,4ββββ,7ββββ,7aαααα)-3-benzyl-3a,4,7,7a-tetrahydro-4,7-methano[1,2,3]triazole[4,5-

d][1,2]oxazine-6(3H)-carboxylate (6.8a).  The title compounds were prepared following 

the general procedure for the synthesis of triazolines using Method A.  Cycloadduct 3.38 

(198 mg, 1.01 mmol) and benzyl azide (211 mg, 1.58 mmol) were reacted for 48 h.  The 

brown crude material was purified through 15 g of silica using a solvent gradient of 

100% CH2Cl2 to 98% CH2Cl2/EtOAc to afford triazoline 6.8a (159 mg, 48% yield) as a 
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white solid, then 85% CH2Cl2/EtOAc to afford triazoline 6.7a (170 mg, 51% yield) as a 

white solid (99% total combined yield).  Analytical and x-ray crystallographic samples of 

6.7a and 6.8a were prepared by recrystallization from EtOAc/hexanes.  6.7a: mp = 104-

105 °C.  λmax = 255 nm.  1H NMR (500 MHz, CDCl3) δ 7.37–7.27 (m, 5H), 4.92 (s, 

1H), 4.90 (d, J = 14.5 Hz, 1H), 4.82 (d, J = 9.8 Hz, 1H), 4.72 (d, J = 14.5 Hz, 1H), 4.09 

(s, 1H), 3.55 (d, J = 9.8 Hz, 1H), 1.70 (dt, J = 11.4, 1.5 Hz, 1H), 1.45 (d, J = 11.5 Hz, 

1H), 1.39 (s, 9H) ppm.  13C NMR (125 MHz, CDCl3) δ 156.4, 135.6, 128.8, 128.24, 

128.17, 84.6, 82.6, 79.9, 61.2, 59.3, 53.4, 32.4, 27.9 ppm.  HRMS (FAB) m/z [M+H] + 

calcd for C17H23N4O3
+, 331.1770; obsd, 331.1745.  6.8a: mp = 100-101 °C.  λmax = 255 

nm.  1H NMR (500 MHz, CDCl3) δ 7.35-7.24 (m, 5H), 4.92 (d, J = 14.7 Hz, 1H), 4.85 (s, 

1H), 4.84 (d, J = 9.9 Hz, 1H), 4.61 (d, J = 14.7 Hz, 1H), 4.09 (s, 1H), 3.50 (d, J = 9.9 Hz, 

1H), 1.68 (d, J = 11.5 Hz, 1H), 1.45-1.43 (m, 10H) ppm.  13C NMR (125 MHz, CDCl3) δ 

156.4, 135.6, 128.8, 128.3, 128.2, 83.7, 82.7, 79.6, 61.5, 59.9, 53.6, 32.3, 27.9 ppm.  

HRMS (FAB) m/z [M+H] + calcd for C17H23N4O3
+, 331.1770; obsd, 331.1753. 

 

H
O

N
BocNN

N

H
H

O
N

BocNN
N

H

(±)-6.7b (±)-6.8b  

tert-Butyl (3aαααα,4ββββ,7ββββ,7aαααα)-1-(1-adamantyl)-3a,4,7,7a-tetrahydro-4,7-

methano[1,2,3]triazole[4,5-d][1,2]oxazine-6(1H)-carboxylate (6.7b) and tert-butyl 

(3aαααα,4ββββ,7ββββ,7aαααα)-3-(1-adamantyl)-3a,4,7,7a-tetrahydro-4,7-

methano[1,2,3]triazole[4,5-d][1,2]oxazine-6(3H)-carboxylate (6.8b).  The title 
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compounds were prepared following the general procedure for the synthesis of triazolines 

using Method B.  Cycloadduct 3.38 (104 mg, 0.527 mmol) and 1-azidoadamantane (140 

mg, 0.79 mmol) were reacted for 4 weeks.  The crude material was purified through 20 g 

of silica using a solvent gradient from 100% CH2Cl2 to 97% CH2Cl2/EtOAc to afford 

6.8b (86 mg, 43% yield) as a white solid, then 85% CH2Cl2/EtOAc to afford 6.7b (102 

mg, 52% yield) as a white solid (95% total combined yield).  6.7b: mp > 144 °C (dec.).  

1H NMR (500 MHz, CDCl3) δ 4.93 (s, 1H), 4.77 (dt, J = 9.5, 1.5 Hz, 1H), 4.42 (s, 1H), 

3.85 (d, J = 9.5 Hz, 1H), 2.14-2.07 (m, 6H), 1.84-1.81 (m, 4H), 1.72-1.65 (m, 6H), 1.47 

(m, 10H) ppm.  13C NMR (125 MHz, CDCl3) δ 156.5, 83.2, 82.7, 80.4, 63.1, 57.2, 41.7, 

36.0, 32.4, 29.2, 28.1 ppm.  HRMS (FAB) m/z [M+H] + calcd for C20H31N4O3
+, 375.2396; 

obsd, 375.2375.  6.8b: mp > 166 °C (dec.).  1H NMR (500 MHz, CDCl3) δ 4.85 (m, 1H), 

4.76 (dt, J = 10.0, 1.4 Hz, 1H), 4.49 (t, J = 1.4 Hz, 1H), 3.80 (dt, J = 10.0, 1.2 Hz, 1H), 

2.12 (m, 2H), 2.03 (ddd, J = 11.6, 4.7, 3.0 Hz, 4H), 1.77 (m, 4H), 1.70-1.62 (m, 6H), 1.47 

(m, 10H) ppm.  13C NMR (125 MHz, CDCl3) δ 156.5, 82.782.3, 81.5, 61., 57.0, 56.7, 

41.7, 36.0, 32.3, 29.2, 28.0 ppm.  HRMS (FAB) m/z [M+H] + calcd for C20H31N4O3
+, 

375.2396; obsd, 375.2372. 

 

H
O

N
BocNN

N

H
H

O
N

BocNN
N

H

(±)-6.7c (±)-6.8c  

tert-Butyl (3aαααα,4ββββ,7ββββ,7aαααα)-1-(n-octyl)-3a,4,7,7a-tetrahydro-4,7-

methano[1,2,3]triazole[4,5-d][1,2]oxazine-6(1H)-carboxylate (6.7c) and tert-butyl 
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(3aαααα,4ββββ,7ββββ,7aαααα)-3-(n-octyl)-3a,4,7,7a-tetrahydro-4,7-methano[1,2,3]triazole[4,5-

d][1,2]oxazine-6(3H)-carboxylate (6.8c).  The title compounds were prepared following 

the general procedure for the synthesis of triazolines using Method C.  Cycloadduct 3.38 

(199 mg, 1.01 mmol) and n-octyl azide (237 mg, 1.53 mmol) were reacted for 2 days.  

The crude material was purified through 40 g of silica using 80% hexanes/EtOAc to 

afford 6.8c (124 mg, 35% yield), mixed 6.7c/6.8c (192 mg, 54%), and 6.7c (38 mg, 11% 

yield) as off-white semi-solids (99% total combined yield).  6.7c: mp = 58-59 °C.  1H 

NMR (500 MHz, CDCl3) δ 4.97 (s, 1H), 4.87 (d, J = 9.5 Hz, 1H), 4.55 (s, 1H), 3.71-3.66 

(m, 2H), 3.58-3.52 (m, 1H), 1.80 (dt, J = 11.5, 1.5 Hz, 1H), 1.70-1.64 (m, 2H), 1.50 (m, 

10H), 1.33-1.24 (m, 12H), 0.88 (t, J = 7.0 Hz, 3H) ppm.  13C NMR (125 MHz, CDCl3) δ 

156.9, 84.0, 83.0, 80.2, 61.6, 60.1, 49.3, 32.4, 31.7, 29.7, 29.1, 28.8, 28.1, 26.7, 22.6, 14.1 

ppm.  HRMS (FAB) m/z [M+H] + calcd for C18H33N4O3
+, 353.2553; obsd, 353.2525.  

6.8c: mp = 49-50 °C.  1H NMR (500 MHz, CDCl3) δ 4.87 (m, 1H), 4.58 (s, 1H), 3.66-

3.61 (m, 2H), 3.52-3.47 (m, 1H), 1.80 (dt, J = 11.5, 1.5 Hz, 1H), 1.61-1.58 (m, 2H), 1.48 

(m, 10H), 1.30-1.24 (m, 12H), 0.86 (t, J = 7.0 Hz, 3H) ppm.  13C NMR (125 MHz, CDCl-

3) δ 156.6, 83.0, 82.9, 80.0, 61.7, 60.1, 49.3, 32.4, 31.7, 29.0, 28.8, 28.1, 26.6, 22.6, 14.0 

ppm.  HRMS (FAB) m/z [M+H] + calcd for C18H33N4O3
+, 353.2553; obsd, 353.2525. 
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(±)-6.7d (±)-6.8d  

tert-Butyl (3aαααα,4ββββ,7ββββ,7aαααα)-1-cyclopentyl-3a,4,7,7a-tetrahydro-4,7-

methano[1,2,3]triazole[4,5-d][1,2]oxazine-6(1H)-carboxylate (6.7d) and tert-butyl 

(3aαααα,4ββββ,7ββββ,7aαααα)-3-cyclopentyl-3a,4,7,7a-tetrahydro-4,7-methano[1,2,3]triazole[4,5-

d][1,2]oxazine-6(3H)-carboxylate (6.8d).  The title compounds were prepared following 

the general procedure for the synthesis of triazolines using Method C.  Cycloadduct 3.38 

(201 mg, 1.02 mmol) and 1-azidocyclopentane (155 mg, 1.39 mmol) were reacted for 2 

days.  The crude material was purified through 30 g of silica using 80% hexanes/EtOAc 

to afford 6.8d (88 mg, 28% yield) as a white solid, mixed 6.7d/6.8d (194 mg, 62%) as an 

off-white solid, and 6.7d (25 mg, 8% yield) as a colorless oil (97% total combined yield).  

6.7d: mp >70 °C (dec.).  1H NMR (500 MHz, CDCl3) δ 4.96 (s, 1H), 4.85 (d, J = 9.5 Hz, 

1H), 4.52 (s, 1H), 4.05 (p, J = 7.0 Hz, 1H), 3.70 (d, J = 9.5 Hz, 1H), 2.08-1.92 (m, 2H), 

1.83-1.62 (m, 8H), 1.49 (m, 10H) ppm.  13C NMR (125 MHz, CDCl3) δ 156.7, 83.7, 82.9, 

80.3, 62.1, 60.9, 59.4, 32.5, 31.6, 31.1, 28.1, 23.6, 23.4 ppm.  HRMS (FAB) m/z [M+H] + 

calcd for C15H25N4O3
+, 309.1927; obsd, 309.1913.  6.8d: mp > 120 °C (dec.).  1H NMR 

(500 MHz, CDCl3) δ 4.84 (s, 1H), 4.81 (d, J = 9.5 Hz, 1H), 4.55 (s, 1H), 3.97 (p, J = 7.0 

Hz, 1H), 3.61 (d, J = 9.5 Hz, 1H), 2.02-1.95 (m, 1H), 1.87-1.83 (m, 1H), 1.78-1.57 (m, 

7H), 1.45-1.42 (m, 10H) ppm.  13C NMR (125 MHz, CDCl3) δ 156.5, 82.8, 82.7, 80.4, 

61.6, 60.8, 59.8, 32.3, 31.5, 31.1, 28.0, 23.5, 23.3 ppm.  HRMS (FAB) m/z [M+H] + calcd 

for C15H25N4O3
+, 309.1927; obsd, 309.1913. 
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(±)-6.7e (±)-6.8e  

tert-Butyl (3aαααα,4ββββ,7ββββ,7aαααα)-1-phenyl-3a,4,7,7a-tetrahydro-4,7-

methano[1,2,3]triazole[4,5-d][1,2]oxazine-6(1H)-carboxylate (6.7e) and tert-butyl 

(3aαααα,4ββββ,7ββββ,7aαααα)-3-phenyl-3a,4,7,7a-tetrahydro-4,7-methano[1,2,3]triazole[4,5-

d][1,2]oxazine-6(3H)-carboxylate (6.8e).  The title compounds were prepared following 

the general procedure for the synthesis of triazolines using Method D.  Cycloadduct 3.38 

(202 mg, 1.02 mmol) and phenyl azide (165 mg, 1.39 mmol) were reacted for 3 h.  The 

crude material was purified through 35 g of silica using 100% CH2Cl2 to afford 6.8e (175 

mg, 54% yield) as a light yellow solid, then 80% CH2Cl2/EtOAc to afford 6.7e (144 mg, 

45% yield) as a light yellow oil that solidified upon standing (99% total combined yield).  

6.7e: mp = 117-120 °C.  1H NMR (500 MHz, CDCl3) δ 7.41-7.35 (m, 4H), 7.10 (t, J = 

7.0 Hz, 1H), 5.09 (d, J = 10.0 Hz, 1H), 5.085 (s, 1H), 4.86 (s, 1H), 4.46 (d, J = 10.0 Hz, 

1H), 1.91 (dt, J = 12.0, 2.0 Hz, 1H), 1.54 (m, 10H) ppm.  13C NMR (125 MHz, CDCl3) δ 

156.4, 139.3, 129.6, 123.0, 113.8, 83.9, 83.2, 79.7, 60.2, 57.1, 32.2, 28.0 ppm.  HRMS 

(FAB) m/z [M+H] + calcd for C16H21N4O3
+, 317.1614; obsd, 317.1622.  6.8e: mp > 158 

°C (dec.).  1H NMR (500 MHz, CDCl3) δ 7.37 (t, J = 8.0 Hz, 3H), 7.30 (d, J = 8.5 Hz, 

2H), 7.08 (t, J = 7.5 Hz, 1H), 5.10 (d, J = 9.5 Hz, 1H), 5.02 (s, 1H), 4.92 (s, 1H), 4.24 (d, 

J = 9.5 Hz, 1H), 1.86 (dt, J = 12.0, 2.0 Hz, 1H), 1.54 (m, 10H) ppm.  13C NMR (125 
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MHz, CDCl3) δ 156.6, 139.4, 129.7, 123.1, 113.9, 83.2, 78.7, 61.4, 58.0, 32.3, 28.1 ppm.  

HRMS (FAB) m/z [M+H] + calcd for C16H21N4O3
+, 317.1614; obsd, 317.1605. 

 

Attempted formation of aziridine 6.9 directly from cycloadduct 3.38.  

Compound 3.38 (197.0 mg, 0.9988 mmol) was dissolved in 10 mL of toluene in a 50-mL 

round-bottomed flask.  Azidotrimethylsilane (0.20 mL, 1.5 mmol) was added and the 

reaction was heated to reflux (oil bath temp ~125°C) for 4 h.  The reaction was 

concentrated by rotary evaporation (~20 torr, ~40°C) to yield an amber oil.  No triazoline 

or aziridine products were observed by TLC or NMR. 

Second reaction attempt without heating: A 1-dram screw-cap vial was charged 

with 3.38 (21 mg, 0.10 mmol) and dissolved in 1 mL of CDCl3.  Azidotrimethylsilane (21 

uL, 0.16 mmol) was added and the solution was stirred at rt.  The reaction was monitored 

by 1H NMR after 3, 7, 14, 22, and 28 days.  No reaction was observed. 
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(±)-tert-Butyl (1αααα,2ββββ,4ββββ,5αααα)-3-[(4-methylphenyl)sulfonyl]-6-oxa-3,7-

diazatricyclo[3.2.1.02,4]octane-7-carboxylate (6.10).  Cycloadduct 3.38 (205 mg, 1.04 

mmol) and tosyl azide (268 mg, 1.36 mmol) were dissolved in 10 mL of PhCH3 in a 25-

mL single-necked round-bottomed flask fitted with a condenser and heated to reflux in an 

oil bath (oil temperature = 125 °C).  The reaction was monitored by TLC (1:1 

hexanes/EtOAc; UV lamp) for the disappearance of 3.38.  After 9 h, the reaction was 

complete and the solution was concentrated to yield a brown oil.  The oil was purified 
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through 35 g of silica using a solvent gradient from 100% CH2Cl2 to 90% CH2Cl2/EtOAc 

to yield 6.10 as a tan solid (263 mg, 69% yield).  mp = 111-115 °C.  1H NMR (500 MHz, 

CDCl3) δ 7.74 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.5 Hz, 2H), 4.78 (s, 1H), 4.62 (s, 1H), 

3.26 (d, J = 6.0 Hz, 1H), 3.22 (d, J = 6.0 Hz, 1H), 2.40 (s, 3H), 2.01 (d, J = 11.0 Hz. 1H), 

1.44 (s, 10H) ppm.  13C NMR (125 MHz, CDCl3) δ 156.6, 145.0, 133.9, 129.7, 127.8, 

82.9, 78.1, 59.4, 36.5, 36.2, 29.0, 27.9, 21.5 ppm.  MS (FAB) m/z [M+H] + at 367, 311, 

267 (100%).  HRMS (FAB) m/z [M+H] + calcd for C17H23N2O5S
+, 367.1328; obsd, 

367.1314. 
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(±)-6.11 (±)-6.12 (±)-6.13 (±)-6.14

 

Reaction of 3.39 With Benzyl Azide: Formation of triazolines 6.11, 6.12, 6.13, 

and 6.14.  Compound 3.39 (421 mg, 1.99 mmol) and benzyl azide (1.33 g, 9.97 mmol) 

were dissolved in 10 mL of toluene in a 25-mL single-necked round-bottomed flask fitted 

with a condenser and heated to reflux in an oil bath (oil temp. = 125 °C).  The reaction 

was monitored by TLC (1:1 hexanes/EtOAc; UV lamp) for the disappearance of 3.39.  

After 28 h, the deep brown solution was concentrated to yield a brown oil.  The oil was 

chromatographed through silica using a solvent gradient from 100% hexanes to 50% 

hexanes/EtOAc to afford 6.12 (136 mg, 20% yield), 6.11 (128 mg, 19% yield), and an 

inseparable mixture of 6.13 and 6.14 (163 mg, 24% yield), all as brown solids (62% total 

combined yield).  6.11: 1H NMR (500 MHz, CDCl3) δ 7.38-7.30 (m, 5H), 4.99 (ddd, J = 
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13.0, 4.5, 1.5 Hz, 1H), 4.85 (d, J = 14.5 Hz, 1H), 4.77 (d, J = 14.5 Hz, 1H), 4.54 (t, J = 

4.0 Hz, 3.83 (br-s, 1H), 3.63 (dd, J = 13.0, 4.0 Hz, 1H), 1.98-1.90 (m, 1H), 1.76-1.70 (m, 

1H), 1.63 (tdd, J = 13.8, 4.2, 2.5 Hz, 1H), 1.52-1.46 (m, 1H), 1.43 (m, 10H) ppm.  13C 

NMR (125 MHz, CDCl3) δ 155.4, 132.9, 128.8, 128.5, 128.2, 81.9, 78.1, 69.5, 53.5, 47.2, 

28.1, 19.6, 18.5 ppm.  HRMS (FAB) m/z [M+H] + calcd for C18H25N4O3
+, 345.1927; obsd, 

345.1931.  6.12: 1H NMR (500 MHz, CDCl3) δ 7.32-7.21 (m, 5H), 4.90 (ddd, J = 12.5, 

4.0, 1.0 Hz, 1H), 4.75 (d, J = 14.5 Hz, 1H), 4.66 (d, J = 14.5 Hz, 1H), 4.45 (m, 1H), 3.71 

(m, 1H), 3.60 (dd, J = 12.5, 4.5 Hz, 1H), 1.86-1.80 (m, 1H), 1.77-1.70 (m, 1H), 1.55-1.49 

(m, 1H), 1.47-1.43 (m, 1H), 1.42 (m, 10H) ppm.  13C NMR (125 MHz, CDCl3) δ 155.7, 

134.9, 128.9, 128.7, 128.4, 82.1, 78.4, 70.3, 54.2, 54.1, 47.6, 47.6, 28.2, 20.2, 17.9 ppm; 

HRMS (FAB) m/z [M+H] + calcd for C18H25N4O3
+, 345.1927; obsd, 345.1931.  6.13 and 

6.14 were obtained as ~1:1 mixture as evidenced by 1H NMR.  HRMS (FAB) m/z 

[M+H] + calcd for C18H25N4O3
+, 345.1927; obsd, 345.1931. 

 

General procedure for the addition of benzyl azide to other alkenes (3.73, 

3.74, 3.77, 3.40, and 6.15).  Benzyl azide (1.5 equivalents or greater) was heated with the 

alkene (1 equivalent) in toluene or neat.  Reactions were monitored by 1H NMR and TLC 

for consumption of the alkene starting material.  When alkene 3.73 was heated with 1.5 

eq. of BnN3 in toluene at reflux for 2 days, a complex mixture of triazoline products were 

observed by 1H NMR; however, the reaction did not progress to completion.  All other 

alkenes examined resulted in no reaction. 
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General procedure for investigation of the effect of Ru(II) catalyst 6.16 on 

azide [3+2] cycloaddition reactions.  Cycloadduct 3.38 or 3.40 (1 mmol) and benzyl 

azide (1.2 – 1.5 mmol) were dissolved in 10 mL of benzene in a 50-mL round-bottomed 

flask equipped with a stir bar and condenser.  Catalyst 6.16 (0.05 mmol) was added to the 

reaction and the mixture was stirred at rt.  Control reactions were performed as described 

above without the addition of catalyst 6.16.  The reaction was monitored by TLC for the 

disappearance of cycloadduct 3.38 or 3.40.  After 1 h, no reaction was observed and the 

reaction was stirred in a 55 °C oil bath for 3 days.  The reaction was incomplete at this 

time.  The mixture was heated to reflux (oil bath temperature = 85 °C) for 6 h and the 

mixture was concentrated.  The residue was analyzed by TLC and 1H NMR.  % 

conversion was determined by 1H NMR. 
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General Procedure for Photolysis of Triazolines.  (±)-tert-Butyl 

(1αααα,2ββββ,4ββββ,5αααα)-3-benzyl-6-oxa-3,7-diazatricyclo[3.2.1.02,4]octane-7-carboxylate (6.17).  

Compound 6.7a (333 mg, 1.01 mmol) was dissolved in 300 mL of degassed CH3CN and 

transferred to a 450-mL photochemical reaction vessel.  The solution was irradiated in an 

immersion-well reactor under a stream of Ar with a Hanovia 450W mercury lamp 

equipped with a Vycor filter sleeve.  Reaction progress was monitored by TLC and 1H 

NMR for the disappearance of 6.7a.  After 3 h, the reaction was concentrated and the 

crude material was purified through 30 g of silica using a gradient consisting of 100% 

CH2Cl2 to 95% CH2Cl2/EtOAc to afford 6.17 as a colorless oil (205 mg, 67% yield).  1H 
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NMR (500 MHz, CDCl3) δ 7.35-7.27 (m, 5H), 4.79 (m, 1H), 4.62 (m, 1H), 3.40 (d, J = 

13.5 Hz, 1H), 3.35 (d, J = 14.0 Hz, 1H), 2.29-2.22 (m, 3H), 1.50 (s, 9H), 1.39 (d, J = 10.5 

Hz, 1H) ppm.  13C NMR (125 MHz, CDCl3) δ 157.5, 138.6, 128.4, 127.7, 127.3, 82.3, 

79.9, 60.7, 59.1, 37.1, 36.7, 29.4, 28.2 ppm.  MS (FAB) m/z [M+H] + at 303, 247, 203, 

171 (100%).  HRMS (FAB) m/z [M+H] + calcd for C17H23N2O3
+, 303.1709; obsd, 

303.1712. 

 

Attempted photolytic conversion of triazoline 6.7a to aziridine 6.17 using 

TPP as a sensitizer.  Compound 6.7a (100.6 mg, 0.305 mmol) and tetraphenylporphyrin 

(TPP, 1.9 mg, 0.0031 mmol) were dissolved in 10 mL of anhydrous CH3CN and 2 mL of 

CH2Cl2 (to help solubilize the TPP).  The solution was degassed with Ar for 5 min, then 

irradiated using a 250-W sunlamp while bubbling the solution with Ar.  After 30 min, the 

heat of the sunlamp had melted the ice bath, part of the outlet needle, and the upper 

portion of the rubber septum (it made a big mess...).  Only the triazoline 6.7a and TPP 

were observed when the reaction mixtre (now a darker purple color) was analyzed by 

TLC (1:1 hexanes/EtOAc - UV lamp, CAM stain).  None of the desired product was 

observed, and no obvious decomposition of starting materials was observed either. 

 

Attempted conversion of triazoline 6.7a to aziridine 6.17 with pyridine.  

Compound 6.7a (101 mg, 0.306 mmol) was dissolved in 3 mL of toluene in a 25-mL 

round-bottomed flask.  Pyridine (0.030 mL, 0.37 mmol) was added and the solution was 

heated to reflux (oil bath temp ~125 °C).  After ~5 h, TLC of the reaction did not indicate 

the presence of aziridine 6.17, and only showed starting material 6.7a (1:1 
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hexanes/EtOAc - UV lamp).  The reaction was heated at reflux overnight.  Even when 

heated neat overnight, no reaction was observed. 

 

Attempted conversion of triazoline 6.7a to aziridine 6.17 using TMSOTf.  

Compound 6.7a (80.2 mg, 0.243 mmol) was dissolved in 2 mL of CHCl3 in a 20-mL 

scintillation vial under Ar.  TMSOTf (0.010 mL, 0.052 mmol) was added and the solution 

was stirred under Ar at RT.  After 1 h, the initially yellow solution appeared slightly 

darker, however TLC of the reaction (1:1 hexanes/EtOAc - UV lamp) only showed 

triazoline 6.7a plus a minor amount of decomposition. 
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General procedure for N-O bond reduction of triazolines using 

Mo(CO)6/NaBH4.  (±)-tert-Butyl (3aαααα,4αααα,6αααα,6aαααα)-3-benzyl-6-hydroxy-3,3a,4,5,6,6a-

hexahydrocyclopenta[d][1,2,3]triazol-4-ylcarbamate (6.19).  Triazoline 6.7a (207 mg, 

0.628 mmol) was dissolved in 5 mL of 4:1 CH3CN/H2O in a 25-mL single-necked round-

bottomed flask and heated in a 50 °C oil bath.  Molybdenum hexacarbonyl (72 mg, 0.27 

mmol) was added to the solution in one portion, followed by sodium borohydride (80 mg, 

2.1 mmol) added in portions.  Bubbling was observed and the color of the reaction 

changed from light yellow to a deep, murky brown.  After the bubbling subsided, the 

reaction was heated to reflux (oil temperature = 70 °C) and monitored by TLC (1:1 

hexanes/EtOAc; UV lamp) for the disappearance of 6.7a.  After 18 h, the reaction was 

cooled in a crushed ice/H2O bath and the solid material was removed by filtration through 
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a pad of celite.  The celite was washed with EtOAc (20 mL) and the filtrate was 

concentrated to yield an off-white solid, which was purified through 20 g of silica using 

50% hexanes/EtOAc to afford 6.19 as a white solid (123 mg, 59% yield).  mp = 153-155 

°C (dec.).  1H NMR (300 MHz, CDCl3) δ 7.34-7.28 (m, 5H), 5.60 (d, J = 9.0 Hz, 1H), 

5.15 (d, J = 15.0 Hz, 1H), 4.78 (d, J = 10.8 Hz, 1H), 4.63 (d, J = 15.0 Hz, 1H), 4.51 (d, J 

= 4.2 Hz, 1H), 4.11 (m, 1H), 3.66 (d, J = 10.8 Hz, 1H), 1.76 (d, J = 14.4 Hz, 1H), 1.55-

1.49 (m, 1H), 1.43 (s, 9H) ppm.  HRMS (FAB) m/z [M+H] + calcd for C17H25N4O3
+, 

333.1927; obsd, 333.1906. 
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(±)-tert-Butyl (3aαααα,4αααα,6αααα,6aαααα)-1-benzyl-6-hydroxy-1,3a,4,5,6,6a-

hexahydrocyclopenta[d][1,2,3]triazol-4-ylcarbamate (6.20).  Compound 6.20 was 

prepared following the same procedure for 6.19.  6.8a (506 mg, 1.53 mmol), 

molybdenum hexacarbonyl (181 mg, 0.686 mmol) and NaBH4 (220 mg, 5.8 mmol) 

provided an amber foam (540 mg).  Chromatography through 10 g of silica using 83% 

CH2Cl2/EtOAc yielded 6.20 as a light yellow solid (295 mg, 58% yield).  mp > 110 °C 

(dec.).  1H NMR (500 MHz, CDCl3) δ 7.30-7.20 (m, 5H), 5.63 (br-m, 1H), 4.91-4.85 (m, 

2H), 4.63 (d, J = 15.0 Hz, 1H), 4.21 (t, J = 8.0 Hz, 1H), 4.07 (d, J = 4.0 Hz, 1H), 3.64 (d, 

J = 10.5 Hz, 1H), 1.69 (d, J = 14.0 Hz, 1H), 1.53 (br-s, 1H), 1.39 (s, 10H) ppm.  13C 

NMR (125 MHz, CDCl3) δ 155.1, 136.0, 128.7, 128.2, 127.9, 89.4, 79.6, 76.0, 66.9, 56.7, 

52.9, 37.8, 28.4 ppm.  HRMS (FAB) m/z [M+H] + calcd for C17H25N4O3
+, 333.1927; obsd, 

333.1930. 
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(±)-tert-Butyl (1αααα,2αααα,4αααα,5αααα)-6-benzyl-4-hydroxy-6-aza-bicyclo[3.1.0]hexan-2-

ylcarbamate (6.21).  Triazoline 6.19 (108 mg, 0.323 mmol) was dissolved in 300 mL of 

degassed CH3CN in a 450-mL photochemical reaction reaction vessel.  The solution was 

irradiated in an immersion-well reactor under a stream of Ar with a Hanovia 450W 

mercury lamp fitted with a Vycor filter sleeve.  The progress of the reaction was 

monitored by 1H NMR.  After 5 h, the solution was concentrated (40 °C, 21 torr) to yield 

an amber oil (110 mg).  The oil was chromatographed through a pad of silica using a 

solvent gradient from 100% CH2Cl2 to 40% CH2Cl2/EtOAc and yielded 6.21 as a yellow 

oil (89.9 mg, 91% yield).  1H NMR (500 MHz, CDCl3) δ 7.32-7.23 (m, 5H), 5.16 (m, 

1H), 4.26 (d, J = 5.0 Hz, 1H), 4.08 (t, J = 7.5 Hz, 1H), 3.52 (d, J = 14 Hz, 1H), 3.32 (d, J 

= 14 Hz, 1H), 2.30 (m, 2H), 2.05 (m, 1H), 1.47 (d, J = 15 Hz, 1H), 1.43 (s, 9H), 1.25 (m, 

1H) ppm.  13C NMR (125 MHz, CDCl3) δ 155.4, 138.7, 128.3, 127.3, 126.9, 71.8, 60.7, 

51.0, 48.4, 47.6, 39.8, 29.6, 28.3 ppm.  HRMS (FAB) m/z [M] + calcd for C17H24N2O3
+, 

304.1787; obsd, 304.1785. 
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8.6 Experimental procedures for chapter 7 

 

Ph

N

Ph

NH2

 

(Diphenylmethylene)hydrazine (7.12).  Benzophenone (10.099 g, 55.323 mmol) 

was dissolved in 60 mL of absolute EtOH in a 250-mL round-bottomed flask.  The 

solution was heated in a 50 °C oil bath and hydrazine monohydrate (4.10 mL, 82.8 

mmol) was added.  A condenser was attached to the flask and the colorless solution was 

heated to reflux (oil bath temp = 100 °C) overnight.  After 16 h, the reaction was cooled 

to rt and the colorless solution was concentrated to yield a white solid.  The solid was 

recrystallized from absolute EtOH to yield 7.12 as white needles (6.17 g, 57%).  mp = 96-

98 °C (lit.2 97-98 °C). 

 

 

Ph Ph

N2

 

Diphenyldiazomethane (7.13).  7.12 (2.011 g, 10.25 mmol) was dissolved in 20 

mL of anhydrous CH2Cl2 in a 100-mL round-bottomed flask and cooled in an ice/H2O 

bath under Ar.  Anhydrous MgSO4 (3.21 g, 26.7 mmol) was added and the mixture was 

stirred vigorously.  A blast shield was placed in front of the reaction as a precautionary 

measure as activated MnO2 (88%, 1.187 g, 12.02 mmol) was added in one portion to the 

reaction.  The reddish-purple suspension was stirred in the ice/H2O bath for 2 h, then 

warmed to rt and stirred an additional 1 h.  The solid material was removed by vacuum 
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filtration and washed with CH2Cl2.  The filtrate was concentrated by rotary evaporation 

(~20 torr, ~30°C) to yield crude 7.13 as a deep purple-colored solid (2.02 g).  The solid 

was stored in the freezer (-10°C) under Ar.  The crude mixture of 7.13 was used without 

purification in further reactions. 

 

Treatment of cycloadduct 3.38 with diphenyldiazomethane.  Compound 3.38 

(207.8 mg, 1.054 mmol) and crude 7.13 (388 mg, 2.00 mmol) were dissolved in 5 mL of 

benzene in a 25-mL round-bottomed flask under Ar.  The purple solution was purged 

with Ar and stirred at rt in the dark (covered in foil).  The reaction was monitored by 

TLC (1:1 and 2:1 hexanes/EtOAc - UV lamp), and after 3 days the reaction appeared to 

be progressing; however, there was still a lot of starting material (3.38) in the reaction.  

After 10 days, the reaction was concentrated and a crude 1H NMR of the residue 

indicated that the reaction was progressing.  After stirring for another week, 3.38 was 

completely consumed. 

 

O

N
OH

O

H

H  

(±)-(3aR,6aS)-3-Hydroxy-3a,4-dihydro-3H-cyclopenta[d]oxazol-2(6aH)-one 

(7.34).  Initial preparation using un-purified dimethyl sulfate.  Compound 3.38 (100.2 

mg, 0.5080 mmol) was dissolved in 5 mL of anhydrous CH2Cl2 in a flame-dried single-

necked 25-mL round-bottomed flask under Ar.  Dimethyl sulfate (0.10 mL, 1.1 mmol, 

not distilled prior to use) was added and bubbling was observed.  After 5 min, the 

bubbling had ceased and the reaction was analyzed by TLC (1:1 hexanes/EtOAc - UV 
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lamp, CAM stain).  After 4 h, no cycloadduct was observed and anhydrous methanol 

(0.20 mL, 4.9 mmol) was added to the reaction.  After 1 h, there was no change by TLC 

and the reaction was stirred overnight at rt under Ar.  The reaction was concentrated and 

the residue was purified through 15 g of silica using a solvent gradient from 100% 

CH2Cl2 to 50% CH2Cl2/EtOAc and yielded 7.34 as a white solid (37.6 mg, 52% yield).  

Hydroxamate 7.34 was insoluble in CH2Cl2 and CHCl3, sparingly soluble in MeOH, and 

soluble in DMSO and H2O.  See below for full characterization data. 

 

Optimized synthesis of hydroxamate (±)-7.34 using catalytic triflic acid 

(TfOH).   Cycloadduct 3.38 (1.07 g, 5.40 mmol) was dissolved in 50 mL of anhydrous 

THF in a 200-mL round-bottomed flask that was rinsed with concentrated HCl (2x), 

washed with H2O, and acetone, then flame-dried under Ar.  The solution was cooled in a 

crushed ice/H2O bath under Ar and trifluromethanesulfonic acid (0.010 mL, 0.11 mmol) 

was added.  The solution was stirred in the ice/H2O bath under Ar and monitored by TLC 

(1:1 hexanes/EtOAc - UV lamp, CAM stain).  After 1 h, the reaction was complete and 

the solution was warmed to rt and concentrated by rotary evaporation to a yellow oil.  

The oil was triturated with Et2O (50 mL) to yield pure 7.34 as a white powdery solid 

(0.562 g, 74% yield).  1H NMR (500 MHz, d6-DMSO, 40 °C) δ 9.72 (s, 1H), 6.12 (d, J = 

5.0 Hz, 1H), 5.85 (d, J = 5.0 Hz, 1H), 5.41 (d, J = 7.0 Hz, 1H), 4.34 (t, J = 6.0 Hz, 1H), 

2.54 (m, 2H) ppm.  13C NMR (125 MHz, d6-DMSO, 40 °C) δ 156.1, 135.9, 128.2, 81.4, 

59.3, 36.1 ppm.  HRMS (FAB) m/z [M+H] + calcd for C6H8NO3
+, 142.0504; obsd, 

142.0521. 
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(±)
O

N
OH

H
 

General procedure for the investigation of nitrone formation under acid 

catalysis.  (±)-(3aR,6aS)-2-Phenyl-4,6a-dihydro-3aH-cyclopenta[d]oxazole 3-oxide 

(7.50).  Cycloadduct 7.49 (0.104 g, 0.517 mmol) was dissolved in 10 mL of anhydrous 

CH2Cl2 under Ar in a flame-dried single-necked 50-mL round-bottomed flask.  Triflic 

acid (0.050 mL, 0.56 mmol) was added and the solution was stirred at rt and monitored 

by TLC.  After 15 min, no starting material was observed by TLC (1:1 hexanes/EtOAc - 

UV lamp) and a new, more nonpolar spot was observed.  Saturated NaHCO3 (5 mL) was 

added and the layers were separated.  The aqueous layer was extracted with CH2Cl2 (2 x 

5 mL) and the combined organic layers were dried over Na2SO4, filtered, and 

concentrated to yield an off-white residue.  The residue was chromatographed through 10 

g of silica using 100% CH2Cl2 and yielded 7.50 as a yellow residue (19.5 mg, 20% yield).  

Rf = 0.48 (1:1 hexanes/EtOAc – UV lamp).  1H NMR (300 MHz, CDCl3) δ 7.85 (dd, J = 

8.1, 1.3 Hz, 2H), 7.41 (m, 3H), 6.09 (dd, J = 5.7, 1.8 Hz, 1H), 5.97 (dd, J = 6.0, 1.8 Hz, 

1H), 5.37 (m, 1H), 4.39 (q, J = 3.9 Hz, 1H), 2.71 (m, 2H) ppm.  13C NMR (75 MHz, 

CDCl3) δ 172.6, 133.9, 130.7, 129.6, 128.2, 125.9, 81.8, 72.0, 37.4 ppm.  HRMS (FAB) 

m/z [M+H] + calcd for C12H12NO2
+, 202.0868; obsd, 202.0869. 

 

Attempted homo-Diels-Alder reaction with norbornadiene by direct 

oxidation of hydroxamate using NaIO4.  A solution of 3.37 (47.5 mg, 0.357 mmol) in 

2.8 mL of MeOH/H2O (4:1) was cooled to 0 °C (ice/H2O bath).  Norbornadiene (0.045 

mL, 0.442 mmol) was added (did not dissolve), followed by the dropwise addition of a 
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solution of sodium periodate (84.5 mg, 0.395 mmol) in 1.5 mL of H2O over 5 min using a 

syringe.  White solid was observed in the reaction and the mixture was stirred in the 

ice/H2O bath for 1.5 h.  The mixture was diluted with H2O (20 mL), saturated with NaCl, 

and extracted with EtOAc (5 x 10 mL).  The combined organic layers were washed with 

brine (2 x 10 mL), dried over MgSO4, filtered, and concentrated to yield a light yellow oil 

(19 mg).  NMR analysis did not indicate the formation of the desired adduct and was 

inconclusive. 

 

Attempted homo-Diels-Alder reaction with norbornadiene by direct 

oxidation of hydroxamate using Swern oxidation.  Compound 3.37 (44.3 mg, 0.333 

mmol) was dissolved in 5.1:1 CH2Cl2/DMSO under Ar and cooled to -78 °C in a dry 

ice/acetone bath.  In a separate flask, 1.6 mL of CH2Cl2 was cooled to -78 °C and oxalyl 

chloride (0.12 mL, 1.40 mmol) was added followed by DMSO (0.15 mL, 2.11 mmol).  

This mixture was stirred for 5 min, then transferred to the flask containing 3.37 via 

cannula over 3-4 min.  A yellow color was observed and the resultant solution was stirred 

at -78 °C for 20 min under Ar.  Triethylamine (0.48 mL, 3.45 mmol) was added slowly 

over 5 min and the mixture was stirred at -78 °C for 5 min before slowly warming to rt.  

Et2O (10 mL), EtOAc (7 mL), and 1M HCl (7 mL) were added to the mixture and the 

layers were separated.  The aqueous layer was extracted with EtOAc (2 x 10 mL) and the 

combined organic layers were washed with saturated NaHCO3 (2 x 15 mL) and brine (2 x 

15 mL), dried over MgSO4, filtered, and concentrated to yield a yellow oil (25 mg).  

NMR analysis did not indicate the formation of the desired adduct and was inconclusive. 
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Attempted homo-Diels-Alder reaction with norbornadiene by direct 

oxidation of hydroxamate using Dess-Martin periodinane.  Compound 7.65 (66.0 mg, 

0.437 mmol) was dissolved in THF (4.5 mL) under Ar.  Norbornadiene (0.050 mL, 0.492 

mmol) was added and the solution was cooled to -78 °C in a dry ice/acetone bath.  Dess-

Martin periodinane (0.48M in CH2Cl2, 1.05 mL, 0.504 mmol) was added dropwise over 3 

min and the mixture was stirred at -78 °C for 35 min under Ar, then warmed to rt and 

stirred for an additional 4 h.  Saturated NaHCO3 (5 mL) and saturated Na2S2O3 (5 mL) 

were added and the mixture was stirred for 10 min until all of the solid material dissolved 

completely.  The layers were separated and the aqueous layer was extracted with CH2Cl2 

(2 x 15 mL).  The combined organic layers were washed with saturated NaHCO3 (2 x 40 

mL) and brine (2 x 40 mL), dried over MgSO4, filtered, and concentrated to yield a white 

solid (36 mg).  NMR analysis did not indicate the formation of the desired adduct and 

was inconclusive. 

 

O
N

O

O

 

General procedure for cycloaddition reactions with 9,10-Dimethylanthracene 

using Bu4NIO 4.  Cycloadduct 7.67.  Tetrabutylammonium periodate (0.204 g, 0.471 

mmol) and 9,10-dimethylanthracene (80.8 mg, 0.392 mmol) were dissolved in 1 mL of 

CHCl3 and cooled in an ice/H2O bath.  A solution of 3.37 (62.4 mg, 0.469 mmol) in 0.25 

mL of DMF was added dropwise over 3 min.  The resultant mixture was stirred in the 

ice/H2O bath for 25 min, then at rt for an additional 1.5 h.  The reaction was poured into 
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10 mL of EtOAc and washed with saturated Na2S2O3 (2 x 10 mL), H2O (10 mL), and 

brine (2 x 10 mL), dried over MgSO4, filtered, and concentrated to yield a yellow solid 

(204 mg).  Chromatography through 20 g of silica using 3:2 CH2Cl2/hexanes yielded 7.67 

as a yellow solid (80.3 mg, 61% yield).  Product obtained is 90% pure by NMR and 

contains 10% 9,10-dimethylanthracene.  1H NMR (300 MHz, CDCl3) δ 7.45 (dd, J = 5.9, 

2.9 Hz, 2H), 7.37 (dd, J = 5.1, 3.4 Hz, 2H), 7.25 (dd, J = 5.6, 3.4 Hz, 4H), 2.57 (s, 3H), 

2.23 (s, 3H), 1.22 (s, 9H) ppm. 

 

O
N

O

 

9,10-Dimethylanthracene cycloadduct 7.68.  Comopund 7.68 was prepared 

following the same procedure for 7.67.  Hydroxamic acid 7.65 (71.1 mg, 0.470 mmol), 

9,10-dimethylanthracene (80.7 mg, 0.391 mmol), and tetrabutylammonium periodate 

(0.203 g, 0.469 mmol) provided a yellow oil.  Chromatography through 30 g of silica 

using a solvent gradient from 2:1 to 3:1 CH2Cl2/hexanes yielded 7.68 as a yellow oil 

(62.6 mg, 45% yield).  1H NMR (300 MHz, CDCl3) δ 7.49 (d, J = 6.9 Hz, 2H), 7.31 – 

7.12 (m, 6H), 7.12 (d, J = 6.3 Hz, 3H), 6.82 (dd, J = 7.5, 1.8 Hz, 2H), 3.54 (s, 2H), 2.75 

(s, 3H), 2.07 (s, 3H) ppm. 
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N
Ac  

1-(2,3-Dimethyl-1H-indol-1-yl)ethanone (7.82).  2,3-Dimethylindole (5.00 g, 

34.4 mmol) was dissolved in 75 mL of acetic anhydride in a single-necked 250-mL 

round-bottomed flask fitted with a stir bar and reflux condenser.  p-Toluenesulfonic acid 

monohydrate (68 mg, 0.36 mmol) was added and the deep red solution was heated to 

reflux in an oil bath (oil temperature = 130 - 150 °C) overnight.  After 15 h, the resultant 

black mixture was cooled to rt, then concentrated by rotary evaporation to afford a black 

solid.  TLC of the crude mixture seems to indicate starting material remained, however 

the product also appears at the same Rf in the solvent systems used for visualization (3:7 

ether/pet Eter and 85:15 hexanes/EtOAc).  The solid was loaded onto silica and purified 

through a Biotage 40M column using 100% hexanes to 95% hexanes/EtOAc and yielded 

7.82 as a white solid (4.61 g, 72% yield).  The solid gradually became light orange after 

standing for 1 h to overnight, and was stored in a scintillation vial under Ar at -10 °C 

until use.  mp = 66-68 °C.  1H NMR (500 MHz, CDCl3) δ 7.99 (m, 1H), 7.45 (m, 1H), 

7.27 (m, 2H), 2.72 (s, 3H), 2.57 (s, 3H), 2.21 (s, 3H) ppm.  13C NMR (125 MHz, CDCl3) 

δ 170.1, 135.5, 132.5, 131.2, 123.6, 122.8, 118.1, 115.4, 114.9, 27.5, 14.4, 8.7 ppm.  

HRMS (FAB) m/z [M] + calcd for C12H13NO+, 187.0997; obsd, 187.1003. 
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APPENDIX A:  

NMR SPECTRA FOR SELECTED COMPOUNDS 
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1H and 13C NMR spectra for compound 2.62 
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1H and 13C NMR spectra for compound 3.8 
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1H and 13C NMR spectra for compound 3.9 
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1H and 13C NMR spectra for compound 3.10 
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1H and 13C NMR spectra for compound 3.14a 
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1H and 13C NMR spectra for compound 3.14b 
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1H and 13C NMR spectra for compound 3.17 
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1H and 13C NMR spectra for compound 3.20 
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1H and 13C NMR spectra for compound 3.27 
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1H and 13C NMR spectra for compound 3.28 
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1H and 13C NMR spectra for compound 3.29 
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1H and 13C NMR spectra for compound 3.31 
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1H and 13C NMR spectra for compound 3.32 
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1H and 13C NMR spectra for compound 3.33 
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1H and 13C NMR spectra for compound 3.34 



 406 

 

1H and 13C NMR spectra for compound 3.37 



 407 

 

1H and 13C NMR spectra for compound 3.38 
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1H and 13C NMR spectra for compound 3.39 



 409 

 

1H and 13C NMR spectra for compound 3.40 
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1H and 13C NMR spectra for compound 3.42 
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1H and 13C NMR spectra for compound 3.43 



 412 

 

1H and 13C NMR spectra for compound 3.45 
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1H and 13C NMR spectra for compound 3.47 



 414 

 

1H NMR spectrum for compound 3.48 
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1H and 13C NMR spectra for compound 3.52 
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1H and 13C NMR spectra for compound 3.53 



 417 

 

1H and 13C NMR spectra for compound 3.59 
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COSY NMR spectra for compound 3.59 
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HETCOR NMR spectra for compound 3.59 
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1H and 13C NMR spectra for compound 3.63 



 421 

 

1H and 13C NMR spectra for compound 3.64 (includes impurities) 
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1H and 13C NMR spectra for compound 3.66 
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1H and 13C NMR spectra for compound 3.69 



 424 

 

1H and 13C NMR spectra for compound 3.71 



 425 

 

1H and 13C NMR spectra for compound 3.73 



 426 

 

1H and 13C NMR spectra for compound 3.74 
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1H and 13C NMR spectra for compound 3.75 
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1H and 13C NMR spectra for compound 3.76 
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1H and 13C NMR spectra for compound 3.77 
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1H and 13C NMR spectra for compound 3.78 
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1H and 13C NMR spectra for compound 3.79 
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1H and 13C NMR spectra for compound 3.80 
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1H and 13C NMR spectra for compound 3.81 
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1H and 13C NMR spectra for compound 3.86 
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1H and 13C NMR spectra for compound 3.90 
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1H and 13C NMR spectra for compound 3.92 (includes impurities) 
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1H and 13C NMR spectra for compound 3.93 
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1H and 13C NMR spectra for compound 3.94 
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1H and 13C NMR spectra for compound 3.95 
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1H and 13C NMR spectra for compound 3.96 
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1H and 13C NMR spectra for compound 3.97 
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1H and 13C NMR spectra for compound 3.98 
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1H and 13C NMR spectra for compound 3.99 
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1H and 13C NMR spectra for compound 3.100 
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1H and 13C NMR spectra for compound 3.101 
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1H and 13C NMR spectra for compound 3.102 
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1H and 13C NMR spectra for compound 3.105 
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1H and 13C NMR spectra for compound 3.106 
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1H and 13C NMR spectra for compound 3.108 



 450 

 

1H and 13C NMR spectra for compound 3.110 
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COSY NMR spectra for compound 3.110 
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1H and 13C NMR spectra for compound 3.111 
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COSY NMR spectra for compound 3.111 
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1H and 13C NMR spectra for compound 3.115 
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1H and 13C NMR spectra for compound 3.116 
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1H and 13C NMR spectra for compound 3.117 
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1H and 13C NMR spectra for compound 3.118 
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1H and 13C NMR spectra for compound 3.119 
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1H and 13C NMR spectra for compound 3.120 



 460 

 

1H and 13C NMR spectra for compound 3.121 
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1H and 13C NMR spectra for compound 3.122 
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1H and 13C NMR spectra for compound 3.124 
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COSY NMR spectra for compound 3.124 
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1H and 13C NMR spectra for compound 3.125 
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COSY NMR spectra for compound 3.125 
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1H and 13C NMR spectra for compound 4.6 
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1H and 13C NMR spectra for a mixture of compounds 4.7a and 4.7b 
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1H and 13C NMR spectra for compound 4.8 
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1H and 13C NMR spectra for the purified diastereomer of compound 4.10 
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1H and 13C NMR spectra for compound 4.20 
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1H NMR spectra for compound 4.22 
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1H and 13C NMR spectra for compound 4.23 
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1H NMR spectra for compound 4.24 

 

 

1H NMR spectra for compound 4.25 
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1H and 13C NMR spectra for compound 4.26 
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1H NMR spectra for compound 4.27 
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1H and 13C NMR spectra for compound 4.28 
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1H and 13C NMR spectra for compound 4.31 
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1H and 13C NMR spectra for compound 4.32 
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1H and 13C NMR spectra for compound 4.36 
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1H and 13C NMR spectra for compound 4.36’ 
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1H NMR spectra for compound 4.41 

 

 

1H and 13C NMR spectra for compound 4.42 
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1H and 13C NMR spectra for a mixture of diastereomers 4.47 and 4.48 



 483 

 

1H NMR spectra for compound 4.53 
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1H and 13C NMR spectra for compound 4.54 
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1H and 13C NMR spectra for compound 4.56 
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COSY NMR spectra for compound 4.56 
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1H and 13C NMR spectra for compound 4.57 
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1H and 13C NMR spectra for compound 4.58 
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1H and 13C NMR spectra for compound 4.59 
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1H and 13C NMR spectra for compound 4.60 
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1H and 13C NMR spectra for compound 4.61 
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1H and 13C NMR spectra for compound 4.62 
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COSY NMR spectra for compound 4.62 
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HETCOR NMR spectra for compound 4.62 
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1H and 13C NMR spectra for compound 4.63 
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COSY NMR spectra for compound 4.64 
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1H NMR spectra for compound 4.65 
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1H and 13C NMR spectra for compound 5.20 
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1H NMR spectra for compound 5.21 

 

 

1H NMR spectra for compound 5.22 
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1H and 13C NMR spectra for compound 5.23 
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1H and 13C NMR spectra for compound 5.24 
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1H and 13C NMR spectra for compound 5.25 
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1H and 13C NMR spectra for compound 5.26 



 504 

 

1H and 13C NMR spectra for compound 5.27 
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1H and 13C NMR spectra for compound 5.28 



 506 

 

1H and 13C NMR spectra for compound 5.30 
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1H and 13C NMR spectra for compound 5.31 
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1H and 13C NMR spectra for compound 5.32 
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1H and 13C NMR spectra for compound 5.33 
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1H and 13C NMR spectra for compound 5.34 
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1H and 13C NMR spectra for compound 5.35 
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1H and 13C NMR spectra for compound 5.36a 
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1H NMR spectra for compound 5.36b 

 

 

1H NMR spectra for compound 5.36c 
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1H and 13C NMR spectra for compound 5.37 
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1H and 13C NMR spectra for compound 5.38a 
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1H and 13C NMR spectra for compound 5.38b 
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1H and 13C NMR spectra for compound 5.40a 
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1H and 13C NMR spectra for compound 5.40b 
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1H and 13C NMR spectra for compound 5.41a 
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1H and 13C NMR spectra for compound 5.41b 
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1H and 13C NMR spectra for compound 5.67 
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1H NMR spectra for compound 5.68 
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1H and 13C NMR spectra for compound 5.69b 
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1H and 13C NMR spectra for compound 5.70b 
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1H and 13C NMR spectra for compound 5.73 
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1H and 13C NMR spectra for compound 5.75 
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1H and 13C NMR spectra for compound 5.81 
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1H NMR spectra for compound 5.82 
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1H and 13C NMR spectra for compound 6.7a 
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1H and 13C NMR spectra for compound 6.7b 
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HETCOR NMR spectra for compound 6.7b 
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gHMBC NMR spectra for compound 6.7b 
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1H and 13C NMR spectra for compound 6.7c 
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1H and 13C NMR spectra for compound 6.7d 
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COSY NMR spectra for compound 6.7d 
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ROESY NMR spectra for compound 6.7d 
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HETCOR NMR spectra for compound 6.7d 
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gHMBC NMR spectra for compound 6.7d 
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1H and 13C NMR spectra for compound 6.7e 
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HETCOR NMR spectra for compound 6.7e 
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gHMBC NMR spectra for compound 6.7e 



 542 

 

1H and 13C NMR spectra for compound 6.8a 
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1H and 13C NMR spectra for compound 6.8b 
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1H and 13C NMR spectra for compound 6.8c 
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1H and 13C NMR spectra for compound 6.8d 
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COSY NMR spectra for compound 6.8d 
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ROESY NMR spectra for compound 6.8d 
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HETCOR NMR spectra for compound 6.8d 



 549 

 

gHMBC NMR spectra for compound 6.8d 



 550 

 

1H and 13C NMR spectra for compound 6.8e 



 551 

 

COSY NMR spectra for compound 6.8e 



 552 

 

ROESY NMR spectra for compound 6.8e 



 553 

 

gHMBC NMR spectra for compound 6.8e 
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1H and 13C NMR spectra for compound 6.10 
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1H and 13C NMR spectra for compound 6.11 
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COSY NMR spectra for compound 6.11 



 557 

 

ROESY NMR spectra for compound 6.11 



 558 

 

HETCOR NMR spectra for compound 6.11 



 559 

 

gHMBC NMR spectra for compound 6.11 
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1H and 13C NMR spectra for compound 6.12 
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COSY NMR spectra for compound 6.12 



 562 

 

ROESY NMR spectra for compound 6.12 



 563 

 

HETCOR NMR spectra for compound 6.12 



 564 

 

gHMBC NMR spectra for compound 6.12 



 565 

 

1H and 13C NMR spectra for a mixture of compounds 6.13 and 6.14 
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1H and 13C NMR spectra for compound 6.17 



 567 

 

Fromation of compound 6.17 monitored by 1H NMR (CDCl3, 300 MHz) 
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1H NMR spectra for compound 6.19 



 569 

 

1H and 13C NMR spectra for compound 6.20 



 570 

 

1H and 13C NMR spectra for compound 6.21 
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1H and 13C NMR spectra for compound 7.34 



 572 

 

COSY NMR spectra for compound 7.34 
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1H and 13C NMR spectra for compound 7.50 
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1H NMR spectra for compound 7.67 

 

 

1H NMR spectra for compound 7.68 
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1H and 13C NMR spectra for compound 7.82 
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